George N. Makrakis
Professor
Address
Department of Mathematics & Applied Mathematics
University of Crete, Heraklion
Heraklion 70013 Crete, Greece
email: makrakg(at)uoc.gr
phone: +30 2810 393708
Institute of Applied and Computational Mathematics (IACM)
Foundation for Research & Technology-Hellas (FORTH)
Heraklion 70013 Crete, Greece
email: g.n.makrakis(at)iacm.forth.gr
phone: +30 2810 391777
Curriculum vitae (CV)
Research interests
Wave propagation (acoustics, elastodynamics, quantum),
Inverse Scattering, Asymptotic techniques
Selected publications
G.A. Athanassoulis and G.N. Makrakis , A function-theoretic approach to a two-dimensional wave-body interaction problem,
Applicable Analysis, Vol. 54, No. 3-4, pp. 283-303, 1994.
T. Katsaounis, G.T. Kossioris and G.N. Makrakis, Computation of high-frequency fields near caustics,
Mathematical Methods and Models in Applied Sciences, Vol. 11, No. 2, pp. 1-30, 2001.
M.Ikehata, G.N. Makrakis and G. Nakamura, Inverse boundary value problem in ocean acoustics,
Mathematical Methods in Applied Sciences, Vol. 24, pp. 1-8, 2001.
S. Filippas and G.N. Makrakis, Semiclassical Wigner function and geometrical optics,
SIAM Multiscale Modeling & Simulation, Vol. 1, No.4, pp.674-710, 2004.
S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii and T. Ya. Tudorovskii,
New formulas for Maslov’s canonical operator in a neighborhood of focal points and caustics in 2D semiclassical asymptotics,
Theoretical and Mathematical Physics, Vol. 177, No. 3, pp. 1579-1605, 2013.
S. Yu. Dobrokhotov, G.N. Makrakis and V.E.Nazaikisinskii,
Maslov’s Canonical Operator, Hörmander’s Formula, and Localization of Berry–Balazs’ Solution in the Theory of Wave Beams,
Theoretical and Mathematical Physics, Vol. 180, No. 3, pp. 162-182, 2014.
P.D. Karageorge and G.N. Makrakis, Asymptotic approximations for the phase space Schrödinger equation,
J. Phys. A: Math. Theor. 55 (2022) 345201 (49 pp), https://doi.org/10.1088/1751-8121/ac76f6.
Preprints
E.K. Kalligiannaki & G.N. Makrakis,
Perturbation solutions of the semiclassical Wigner equation
G.N. Makrakis,
Formal asymptotic expansion of the Faddeev-Green function in unbounded domain
K.S. Giannopoulou & G.N. Makrakis,
An approximate series solution of the semiclassical Wigner equation
Teaching
Εαρινό εξάμηνο 2025 (spring semester 2025): Λογισμός μεταβολών (Calculus of variations), Στοχαστικές διαδικασίες (Stochastic processes)