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ABSTRACT

The Fourier analytic approach to sections of convex bodies has been
developed recently, and the main idea is to express different parameters of a
body in terms of the Fourier transform and then apply methods of Fourier
analysis to solve geometric problems. The original Fourier approach applies
to convex bodies in Rn.

This thesis is focused at extending this approach to the complex case,
where origin symmetric complex convex bodies are convex subsets of Cn. If
considered as convex bodies in R2n complex convex bodies acquire the prop-
erty of invariance with respect to certain rotations. This crucial observation
arises from the nature of the norm of the bodies. Also complex hyperplanes
correspond to only few of (2n−2)-dimensional subspaces of R2n. These facts
motivated the study of the complex analogue of certain problems on sections
of real convex bodies.

In chapter 2 we present the solution of the complex Busemann-Petty
problem which surprisingly gives a different answer than the original Busemann-
Petty problem.

In chapter 3 we introduce a modification of the complex Busemann-
Petty problem and give necessary conditions to obtain a positive answer to
the problem in all dimensions.

Chapter 4 is dedicated to the study of a generalization of the complex
Busemann-Petty, where the volume is replaced by any measure. This gen-
eralization forms the complex analogue to Zvavitch’s result on the complex
Busemann-Petty problem for arbitrary measures.

In chapter 5 we study the extremal sections of complex lp-balls for 0 <
p ≤ 2 by complex hyperplanes.

Lastly, in Chapter 6, we prove that the complex unit ball, Bp(Cn), of
lp, p > 2 is not a k-intersection body, if k < 2n− 4.
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Chapter 1

Introduction

1.1 Problems on sections of convex bodies in Rn

In this thesis we study complex analogs of several problems from the theory

of convex geometry in Rn.

In 1956 Busemann and Petty [BP], published an article posing a series

of problems on the theory of convex bodies. One of them, known as The

Busemann-Petty problem asks the following question: Suppose that K and L

are two origin symmetric convex bodies in Rn such that for every ξ ∈ Sn−1,

Voln−1

(
K ∩ ξ⊥

)
≤ Voln−1

(
L ∩ ξ⊥

)
.

Does it follow that

Voln
(
K
)
≤ Voln

(
L
)

?

The problem was solved in the late 90’s as a result of the work of many
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mathematicians, ([Ha], [Gie], [LR], [Ba], [Gi], [Bo], [Bu], [Lu], [Pa], [Ga1],

[Ga2], [K2], [K3], [Zh1], [Zh2], [GKS]; see [K9, p.3] for the history of the

solution). The answer to the Busemann-Petty problem is affirmative for

n ≤ 4 and negative for n ≥ 5.

Since the answer to the original real Busemann-Petty problem is negative

in most dimensions, it is natural to ask what condition on the (n − 1)-

dimensional volumes of central sections allow to compare the n-dimensional

volumes. Such conditions were found by Koldobsky, Yaskin and Yaskina

([KYY]). The result is as follows: For an origin symmetric convex body D

in Rn define the section function

SD(ξ) = Voln−1(D ∩ ξ⊥), ξ ∈ Sn−1.

Suppose K and L are origin symmetric convex smooth bodies in Rn and

α ∈ R with α ≥ n− 4. Then, the inequality

(
−∆

)α/2
SK(ξ) ≤

(
−∆

)α/2
SL(ξ), ξ ∈ Sn−1

implies that Voln(K) ≤ Voln(L). If α < n − 4 this is not necessarily true.

Here, ∆ is the Laplace operator in Rn.

A few years after the complete solution of the Busemann-Petty problem

a generalization of the problem was found by Zvavitch [Zv], who showed
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that one can replace the volume by essentially any measure on Rn. Namely,

if we consider any even continuous positive function f on Rn and denote by

µ the measure with density f, we can define

µ(D) =
∫
D f(x)dx and µ(D ∩ ξ⊥) =

∫
D∩ξ⊥ f(x)dx,

for every closed bounded set D in Rn and every direction ξ ∈ Sn−1. Then, we

have the following problem: Suppose that K and L are two origin symmetric

convex bodies in Rn such that, for every ξ ∈ Sn−1,

µ(K ∩ ξ⊥) ≤ µ(L ∩ ξ⊥).

Does it follow that

µ(K) ≤ µ(L) ?

Surprisingly, the answer remains the same as in the original problem, namely,

it is affirmative n ≤ 4 and negative for n ≥ 5.

Zvavitch’s ideas for general measures were applied and further developed

in [Rb1], [Y1] and [Y2], for hyperbolic and spherical spaces and for sections

of lower dimensions.

The study of extremal sections of lp-balls has long history and many

mathematicians have contribute to it. The extremal hyperplane sections of
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the cube are known in both real and complex cases. Hadwiger [Ha] proved

that the minimal volume of hyperplane sections of the real unit cube is equal

to 1 and corresponds to the sections parallel to the faces. Different proofs

of this fact were later given by Vaaler [V], who generalized the result to

sections of arbitrary dimensions, Hensley [He] and Ball [B1]. It was shown

by Barthe and Koldobsky, [BK], that this property of the cube is in some

sense stable, i.e. for every 0 < t < 3/4 the slab parallel to the face has

minimal volume among all central slabs of the cube with fixed width t. The

exact upper bound
√

2 for the volume of hyperplane sections of the real unit

cube was found by Ball [B1] and corresponds to the hyperplane orthogonal

to the vector (1, 1, 0, . . . , 0). The case of the complex cube was studied by

Oleszkiewicz and Pelczynski [OP], who proved that the minimal sections

are the ones orthogonal to vectors with only one non-zero coordinate, and

the maximal sections are orthogonal to vectors of the form ej + σek, where

j 6= k, ej and ek are standard basic vectors, and σ ∈ C, |σ| = 1. Note that

the ”minimal” part also follows from an earlier result of Meyer and Pajor

[MP], Corollary 2.5.

The critical sections of lp-balls, 0 < p < ∞ are different for p > 2 and

p < 2. Meyer and Pajor [MP] proved that the section orthogonal to the
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vector (1, 0, . . . , 0) is minimal for p > 2 and maximal for 1 ≤ p < 2. The

latter result also holds for 0 < p < 1, as proved by Caetano [Ca]. In the

same paper, Meyer and Pajor proved that the minimal hyperplane section of

B1(Rn) is the one perpendicular to the vector (1, 1, . . . , 1) and conjectured

that this is also true for every p ∈ [1, 2]. This conjecture was proved in [K2]

for 0 < p ≤ 2. It is still an open question what are the maximal sections

of Bp(Rn) when 2 < p <∞. Oleszkiewicz [O] showed that the answer must

depend on p and the dimension.

1.2 Basic concepts and notation

In this thesis a star body K is a closed bounded set K in Rn, with 0 ∈ int(K),

where every straight line passing through the origin, crosses the boundary

at exactly two points different from the origin. Moreover, the boundary of

K is continuous in the sense that the Minkowski functional of K, defined by

‖x‖K = min {a ≥ 0 : x ∈ aK} ,

is a continuous function on Rn. A star body K is called origin symmetric, if

‖x‖K = ‖−x‖K for every x ∈ Rn. If, in addition, K is a convex subset of Rn,

then it is an origin symmetric convex body. Note that then the Minkowski
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functional ‖x‖K becomes a norm as a homogeneous function of degree 1 on

Rn and the body K is the unit ball of the normed space
(
Rn, ‖ · ‖K

)
.

We define the support function of a body K in Rn as

hK(x) = max{< x, u >, u ∈ K}, x ∈ Rn.

If K is origin symmetric, then hK is a norm on Rn. The convex body K∗

which is the unit ball of this norm, is called the polar body of K:

hK(x) = ‖x‖K∗ , x ∈ Rn.

The radial function of K is defined by

ρK(u) = sup{λ > 0 : λu ∈ K}, u ∈ Rn \ {0}.

For bodies that contain 0 in their interior the radial function is positive

and homogeneous of degree −1. From the definition we can easily see that

ρK(x) = ‖x‖−1
K , x ∈ Rn \ {0}. If u ∈ Sn−1, then ρK(u) is the ”radius” of K

in the direction of u, i.e. the distance from the origin to the boundary of K

in the direction of u.

We denote by Bn
2 and Sn−1, the unit ball and the unit sphere of Rn,

with volumes

|Bn
2 | =

πn/2

Γ(1 + n
2 )
, |Sn−1| = 2πn/2

Γ(n2 )
,
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respectively. For any star body D, we write volm(D) for the m-dimensional

volume of D and use the notation | · |2 for the Euclidean norm in the proper

space. If χ is the indicator function of the interval [−1, 1], then χ
(
‖ · ‖K

)
is

the indicator function of the body K.

SupposeK is a star body in Rn, then we can easily obtain a polar formula

for the volume of K,

Voln(K) =
∫

Rn
χ
(
‖x‖K

)
dx =

∫
Sn−1

∫ ∞
0

rn−1χ
(
‖rθ‖K

)
drdθ

=
∫
Sn−1

∫ ‖θ‖−1
K

0
rn−1drdθ =

1
n

∫
Sn−1

‖θ‖−nK dθ. (1.2.1)

An important tool for the approximation of a body is the radial metric

which is defined on the set of all origin symmetric star bodies in Rn by

ρ
(
K,L

)
= max

u∈Sn−1
|ρK(u)− ρL(u)|.

We denote by Ck
(
Sn−1

)
,
(
C∞

(
Sn−1

))
, the space of k-times (infinitely)

differentiable functions on the unit sphere Sn−1, equipped with the topology

of the uniform convergence of all the derivatives.

A star body K is m-smooth (infinitely) smooth, if the restriction of ‖x‖K

to the sphere belongs to the class Ck
(
Sn−1

)
,
(
C∞

(
Sn−1

))
.

It is well known that a convex body in Rn can be approximated, in the

radial metric, by a sequence of infinitely smooth convex bodies, preserving
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certain useful properties of the original body. Since the Minkowski functional

of a convex body is the support function of the polar body, the following

theorem describes this approximation.

Theorem 1.2.1. ([Sch Theorem 3.3.1]) Let ε > 0 and suppose φ : [0,∞)→

0,∞) is a C∞ function with support in [ ε2 , ε] so that
∫

Rn φ(|z|2)dz = 1. If

hD : Rn −→ R is the support function of a convex body D then the function

h̃D defined by

h̃D(x) :=
∫

Rn
hD(x+ |x|z)φ(|z|)dz, x ∈ Rn

is infinitely differentiable on Rn \ {0} and it is the support function of a

convex body Dε, i.e. h̃D = hDε . Moreover, h̃D has the following properties:

(a) ρ(h̃D) = h̃ρD, for every rotation ρ of Rn,

(b) |hDε(u)− hD(u)| < rε.

Proof. Since hD is the support function of D, the homogeneity of h̃

immediately follows from the definition. For simplicity we will use h for hD.

To prove the subadditivity we define a function gz as follows: Let z ∈ Rn

and

gz(x) := h(x+ |x|z) + h(x− |x|z), x ∈ Rn.
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For x, y ∈ Rn and α ∈ [0, 1] we have that

gz(x+ y) ≤ h(x+ α|x+ y|z) + h(y + (1− α)|x+ y|z)

+ h(x− α|x+ y|z) + h(y − (1− α)|x+ y|z), (1.2.2)

since h is subadditive. Without loss of generality we may assume that x and

y are linearly independent. We put α = |x|
|x|+|y| , β = |x+y|

|x| , γ = |x+y|
|y| , then

1− αβ > 0 and 1− (1− α)γ > 0. Since,

2(x+ α|x+ y|z) = (1 + αβ)(x+ |x|z) + (1− αβ)(x− |x|z),

2(x− α|x+ y|z) = (1− αβ)(x+ |x|z) + (1 + αβ)(x− |x|z),

we have that

h(x+α|x+y|z)+h(x−α|x+y|z) ≤ h(x+|x|z)+h(x−|x|z) = gz(x). (1.2.3)

Similarly, we obtain that

h(y + (1− α)|x+ y|z) + h(y − (1− α)|x+ y|z) ≤ gz(y). (1.2.4)

Now, by equations (1.2.2), (1.2.3) and (1.2.4), we have that

gz(x+ y) ≤ gz(x) + gz(y).
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By the definition of gz and the fact that φ ≥ 0 the subadditivity is proved.

So, h̃ is a support function.

To prove that h̃ is a C∞ function on Rn \ {0}, we write

h̃(u) =
∫

Rn
h(u+ z)φ(|z|)dz =

∫
Rn
h(y)φ(|y − u|)dy, u ∈ Sn−1.

Then, for x ∈ Rn \ {0},

h̃(x) = |x|
∫

Rn
h(y)φ

(∣∣y − x

|x|
∣∣)dy.

Let ρ be a rotation of Rn, proper or improper. We define (ρh)(x) :=

h(ρ−1x), x ∈ Rn and have that

(ρh̃)(x) =
∫

Rn
h(ρ−1x+ |ρ−1x|z)φ(|z|)dz

=
∫

Rn
h(ρ−1(x+ |x|ρz)φ(ρ|z|)dz

=
∫

Rn
(ρh)(x+ |x|z)φ(|z|)dz.

This proves that (ρ̃h) = ρh̃, which means that ρ(h̃D) = h̃ρD. This completes

the proof of part (a).

To prove part (b) we need the following fact, proved in [Sch, Lemma

1.8.10]: Suppose that K and L are two convex bodies contained in the

Euclidean ball of radius r, Bn
2 (r). Then for x, y ∈ Rn

|hK(x)− hL(y)| ≤ r|x− y|+ max{|x|, |y|}δ(K,L), (1.2.5)
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where δ(K,L) is the Hausdorf metric, defined as δ(K,L) = min{λ ≥ 0 :

K ⊂ L+ λBn
2 , L ⊂ K + λBn

2 }.

Now, we assume that there exists r > 0, so that the body D ⊂ Bn
2 (r).

Using the triangle inequality, the fact that
∫

Rn φ(|z|2)dz = 1 and equation

(1.2.5), we have that for u ∈ Sn−1,

|hDε(u)− hD(u)| =
∣∣∣ ∫

Rn
hD(u+ z)φ(|z|)dz − hD(u)

∣∣∣
≤

∫
Rn

∣∣hD(u+ z)− hD(u)
∣∣φ(|z|)dz

≤
∫

Rn
r|z|φ(|z|)dz < rε,

since φ(|z|) = 0 for |z| > ε. Part (b) is proved since u ∈ Sn−1 was arbitrary.

For z ∈ C, with Rez > 0, the Gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt. (1.2.6)

It is not difficult to see that, if we apply a change of variables, we have that,

for any p, q > 0,

∫ ∞
0

rq−1e−r
p
dr =

Γ( qp)

p
. (1.2.7)
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The Beta function is defined as follows: For every α, β > 0

B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

=
∫ 1

0
xα−1(1− x)β−1 (1.2.8)

Lastly, we often use different generalization of Brunn’s theorem, (see

for example [K9, Theorem 2.3]). The theorem states that, for an origin

symmetric convex body and a fixed direction, the central hyperplane section

has the maximal volume among all hyperplane sections perpendicular to the

given direction.

1.3 Complex convex bodies and hyperplanes in Cn

Let ξ ∈ Cn, |ξ| = 1 we denote by

Hξ = {z ∈ Cn : (z, ξ) =
n∑
k=1

zkξk = 0}

the complex hyperplane perpendicular to ξ.

Origin symmetric convex bodies in Cn are the unit balls of norms on

Cn. We denote by ‖ · ‖K the norm corresponding to the body K

K = {z ∈ Cn : ‖z‖K ≤ 1}.

We identify Cn with R2n using the mapping

ξ = (ξ1, . . . , ξn) = (ξ11 + iξ12, . . . , ξn1 + iξn2) 7−→ (ξ11, ξ12, . . . , ξn1, ξn2)(1.3.1)
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and observe that under this mapping the complex hyperplane Hξ turns into

a two-codimensional subspace of R2n orthogonal to the vectors

ξ = (ξ11, ξ12, . . . , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, . . . ,−ξn2, ξn1).

We denote by Bp(Cn) and use the notation ‖ · ‖p for the unit ball and

the norm, respectively, of the complex n-dimensional lp space. Then Bp(Cn)

becomes a 2n-dimensional subset of R2n under the mapping (1.3.1):

Bp(Cn) = {(x11 + ix12, . . . xn1 + ixn2) ∈ Cn :
n∑
j=1

(x2
j1 + x2

j2)
p
2 ≤ 1}

= {(x11, . . . xn1, xn2) ∈ R2n :
n∑
j=1

(x2
j1 + x2

j2)
p
2 ≤ 1}.

If p ≥ 1 then Bp(Cn) is an origin symmetric convex body in R2n.

Since norms on Cn satisfy the equality

‖λz‖ = |λ|‖z‖, ∀z ∈ Cn, ∀λ ∈ C,

origin symmetric complex convex bodies correspond to those origin symmet-

ric convex bodies K in R2n that are invariant with respect to any coordinate-

wise two-dimensional rotation. Namely, for each θ ∈ [0, 2π] and for each

x ∈ R2n,

‖x‖K = ‖Rθ(x11, x12), . . . , Rθ(xn1, xn2)‖K , (1.3.2)
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where Rθ stands for the counterclockwise rotation of R2 by the angle θ with

respect to the origin. If a convex body satisfies (1.3.2) we will say that it is

invariant with respect to all Rθ. The unit ball Bp(Cn) is an example of an

origin symmetric invariant with respect to all Rθ body in R2n.

It is easy for one to see that the central section of a complex convex

body K by a hyperplane H in Cn, when viewed as a subset of R2n−2, is a

convex body that is also invariant with respect to all Rθ. In other words, if

ρθ is an Rθ-rotation, θ ∈ [0, 2π], of R2n, then ‖x‖ρθ(K∩H) = ‖x‖K∩H .

As a natural consequence, our problems on sections of complex convex

bodies will be reformulated as problems on sections of invariant with respect

to all Rθ convex bodies in R2n, under the theory described in this section.

1.4 The Fourier analytic approach

Throughout this study, we use some important facts from the theory of

distributions, as well as from the theory of the Fourier transform of distri-

butions. Here, we present the Fourier analytic approach mostly using the

definitions from the real space Rn, (see [GS], [K9] and [Ru] for more details).

We will apply this analytic approach on R2n.
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We denote by S the set of test functions which is defined to be the class

of all the C∞ functions φ on Rn with values in C that are rapidly decreasing

at infinity, and with S ′ we denote the space of distributions on S.

The space S, known as the Schwartz class, consists of all the functions

with all their partial derivatives continuous and so that

sup
x∈Rn

|xα
(
Dβφ

)
(x)| <∞,

for all n-tuples α = (α1, . . . , αn) and β = (β1, . . . , βn) of non-negative inte-

gers. The n-tuples α, β are called multi-indices and are defined for every x ∈

Rn to be so that xα = xα1
1 xα2

2 · · ·xαnn andDβ = ∂β1+β2+···+βn/∂xβ1
1 ∂x

β2
2 · · · ∂x

βn
n .

The set S ′, of all the continuous linear on S, forms the space of tempered

distributions when S is induced with the topology described below.

For every ordered pair (α, β) of non negative n-tuples we define the semi-

norm ραβ(φ) = sup
x∈Rn

|xα(Dβφ)(x)| in S and the semi-metric d′αβ(φ, ψ) =

ραβ(φ − ψ). Let d′1, d
′
2, . . . be all the semi-metrics of this form, we define

dn := d′n
1+d′n

, n = 1, 2, . . . . It is not difficult to see that dn is also a semi-

norm, equivalent to d′n and that dn ≤ 1. The metric that defines the topology

of S, is

d =
∞∑
n=1

2−ndn.
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We can easily see that φk
d−→ φ if and only if φk → φ with respect to every

dn, as k → +∞. Hence, we have that the vector operations

(φ, ψ) −→ φ+ ψ

(α, φ) −→ αφ, α ∈ C

are continuous. This implies that the space
(
S, d

)
is a topological vector

space.

A linear functional L of S is a tempered distribution if and only if there

exists a constant c > 0 and m, l ∈ Z such that

|L(φ)| ≤ c
∑
|α|≤l
|β|≤m

ραβ(φ),

for every φ ∈ S ([SW p.22]).

If f ∈ S ′, φ ∈ S, then

〈f, φ〉 =
∫

Rn
f(x)φ(x)dx.

As mentioned before, the main tool of this study is the Fourier transform

of distributions. See [GS], [Ru] and [K9] for more details on this subject. Our

definition is slightly different from those in [GS] or [Ru]. Let f ∈ L1(Rn),

we define the Fourier transform of f by

f̂(x) =
∫

Rn
f(ξ)e−iξ·xdξ.
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If φ ∈ S, then φ̂ ∈ S. Moreover, since the Fourier transform is invertible

on S, we have that for every φ ∈ S,

(φ̂)∧(x) = (2π)nφ(−x).

Suppose f ∈ S ′ , then the Fourier transform f̂ of a distribution is

defined to be the distribution given by

〈f̂ , φ〉 = 〈f, φ̂〉, φ ∈ S.

From the above we have that, if a test function φ is even, then

(φ̂)∧ = (2π)nφ and 〈f̂ , φ̂〉 = (2π)n〈f, φ〉,

for every f ∈ S ′. Here, we only consider real-valued even test functions φ,

for which the Fourier transform φ̂ is also an even real-valued test function.

A distribution f is called even homogeneous of degree p ∈ R, if

〈f, φ
(
·/t)〉 = |t|n+p〈f, φ〉,

for every φ ∈ S, t ∈ R me t 6= 0. The Fourier transform of an even homoge-

neous distribution of degree p is an even homogeneous distribution of degree

−n− p, ([K9, Lemma 2.21]).

A distribution f is called positive definite if, for every test function φ,

〈f, φ ∗ φ(−x)〉 ≥ 0.
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By Schwartz’s generalization of Bochner’s theorem, this is equivalent to f̂

being a positive distribution in the sense that 〈f̂ , φ〉 ≥ 0, for every non-

negative test function φ.

We denote by ∆ =
∑k

i=1 ∂
2/∂u2

i the k-dimensional Laplace operator in

Rk. Then the fractional powers of the Laplacian in Rn are defined by

((
−∆

)α/2
f
)∧

=
1

(2π)n
|x|α2 f̂(x), (1.4.1)

where the Fourier transform is considered in the sense of distributions.

Let q be non integer, then the Fourier transform of the function |z|q, z ∈

R, is equal to (see [GV vol.1, p.173] and [K9, Lemma 2.23] for more details)

(|z|q)∧(t) = −2Γ(1 + q) sin
qπ

2
|t|−q−1, t ∈ R (1.4.2)

A very important tool in the analytic theory, is the Minkowski func-

tional raised to certain powers and treated as a distribution. The following

proposition, see [K9, Lemma 2.1], allows us to consider the functional as a

locally integrable function on Rn.

Proposition 1.4.1. Let D be an origin symmetric star body in Rn. Then,

for 0 < p < n, the function ‖ · ‖−pD is locally integrable on Rn. Also, if f is a
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bounded integrable function on Rn, then the function ‖ · ‖−pD f(·) is integrable

on Rn.

Another important fact, that is often used, is the following proposition,

proved in [K9, Lemma 3.16]. It shows that the Fourier transform of a smooth

homogeneous function is also smooth.

Proposition 1.4.2. ([K9, Lemma 3.16]) Let k ∈ N ∪ {0} and let f ∈

C2k(Sn−1) be an even function. Suppose that q ≤ 2k, where q is not an

odd integer. Then, the following hold:

(i) The Fourier transform of the distribution f(θ)r−n+q+1 is a homoge-

neous of degree −1 − q, continuous function on Rn \ {0}. If q < 2k,

then, for every x ∈ Rn,

|x|2k2
(
f(θ)r−n+q+1

)∧(x)

=
(−1)kπ

−2Γ(2k − q) sin(π(2k − q − 1)/2)

∫
Sn−1

|(x, ξ)|2k−q−1∆k
(
f(θ)r−n+q+1

)
(ξ)dξ.

If q = 2k, then

|x|2k2
(
f(θ)r−n+q+1

)∧(x)

= (−1)kπ|x|−1
2

∫
Sn−1∩(x/|x|2)⊥

∆k
(
f(θ)r−n+q+1

)
(ξ)dξ.
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(ii) If f ∈ C∞(Sn−1), then, there exists an even function g ∈ C∞(Sn−1)

so that for every x = tξ ∈ Rn, t 6= 0, t ∈ Sn−1,

(
f(θ)r−n+q+1

)∧(x) = g(ξ)t−1−q,

so the Fourier transform of f(θ)r−n+q+1 is an infinitely smooth func-

tion on Rn \ {0}.

The following result is a Parseval type identity on the unit sphere Sn−1,

established in [K5], (see also [K9, Lemma 3.22]). Note that, the key to this

formula is that the total homogeneity of the integrands has to be of the

order of −n.

Proposition 1.4.3. Let D be an infinitely smooth origin symmetric star

body in Rn and g ∈ Ck−1(Rn) even homogeneous of degree −n + k func-

tion. Then ĝ and
(
‖ · ‖−kD

)∧ are continuous functions on Sn−1, extended to

homogeneous functions on the whole Rn and

∫
Sn−1

g(θ)‖θ‖−kD dθ = (2π)n
∫
Sn−1

ĝ(ξ)
(
‖θ‖−kD

)∧(ξ)dξ.

The classes of k-intersection bodies were introduced in [K5], [K8] as

follows: Let 1 ≤ k < n, and let D and L be origin symmetric star bodies
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in Rn. We say that D is a k-intersection body of L if for every (n − k)-

dimensional subspace H of Rn

Volk(D ∩H⊥) = Voln−k(L ∩H).

More generally, we say that an origin symmetric star body D in Rn is a

k-intersection body if there exists a finite Borel measure µ on Sn−1 so that

for every even test function φ ∈ S(Rn),

∫
Rn
‖x‖−kD φ(x) dx =

∫
Sn−1

(∫ ∞
0

tk−1φ̂(tξ) dt
)
dµ(ξ).

Note that k-intersection bodies of star bodies are those k-intersection bodies

for which the measure µ has a continuous strictly positive density; see [K8]

or [K9, p. 77]. When k = 1 we get the class of intersection bodies introduced

by Lutwak in [Lu].

A more general concept of embedding in L−p was introduced in [K7].

Let D be an origin symmetric star body in Rn, and X = (Rn, ‖ · ‖D). For

0 < p < n, we say that X embeds in L−p if there exists a finite Borel measure

µ on Sn−1 so that, for every even φ ∈ S

∫
Rn
‖x‖−pD φ(x) dx =

∫
Sn−1

(∫
R
|z|p−1φ̂(zθ) dz

)
dµ(θ).

Obviously, an origin symmetric star body D in Rn is a k-intersection body

if and only if the space (Rn, ‖ · ‖D) embeds in L−k. In this article we use
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embeddings in L−p only to state some results in continuous form; for more

applications of this concept, see [K9, Ch.6].

Embeddings in L−p and k-intersection bodies admit a Fourier analytic

characterization that we are going to use throughout this text:

Proposition 1.4.4. ([K8], [K9, Th. 6.16]) Let D be an origin symmetric

star body in Rn, 0 < p < n. The space (Rn, ‖ · ‖D) embeds in L−p if and

only if the function ‖x‖−pD represents a positive definite distribution on Rn.

In particular, D is a k-intersection body if and only if ‖x‖−kD is a positive

definite distribution on Rn.

Most of the problems that are presented here require an analytic rep-

resentation of the (2n − k)-dimensional volume, 1 ≤ k < 2n, of sections of

convex bodies by subspaces of R2n. A very important tool, in order to obtain

such representation, is the distribution |u|−q−k2 /Γ(−q/2). This idea was first

introduced in [K8] and it is a generalization of the connection between the

distribution tq+, and the fractional derivatives of the section function, (see

[K9, Section 2.6, Theorem 3.18] for details). Here we introduce the theory

on Rn.

Let 1 < k < n.We consider the action of the distributions |u|−q−k2 /Γ(−q/2),
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u ∈ Rk on an infinitely differentiable function A with compact support on

Rk. Note that, for our purposes A will only need to be infinitely differentiable

or even differentiable up to a certain order, at the origin. For simplicity here

we assume that it is a test function.

For Req < 0, the distribution is an analytic function of q and〈
|u|−q−k2

Γ(− q
2)
, A(u)

〉
=

1
Γ(−q/2)

∫
Rk
|u|−q−k2 A(u)du. (1.4.3)

A standard normalization argument allows us to have the following

proposition, (see [GS, p.71-74]).

Proposition 1.4.5. Let A be an infinitely differentiable function with com-

pact support, on Rk. Then, the function

q 7−→

〈
|u|−q−k2

Γ(− q
2)
, A(u)

〉
(1.4.4)

is an entire function of q ∈ C. Moreover, if q = 2m, m ∈ N ∪ {0}, then

〈 |u|−q−k2

Γ(−q/2)

∣∣∣
q=2m

, AD,H(u)
〉

=
(−1)m|Sk−1|

2m+1k(k + 2)...(k + 2m− 2)
∆mAD,H(0), (1.4.5)

Proof : Let u ∈ Rk. For the first part, we only need to show that the poles

of 〈|u|−q−k2 , A(u)〉 and Γ(− q
2) coincide.
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We use polar coordinates to get that

〈|u|−q−k2 , A(u)〉 =
∫

Rk
|u|−q−k2 A(u)du

=
∫ ∞

0
r−q−1

(∫
Sk−1

A(rθ)dθ
)
dr. (1.4.6)

Observe that the inner integral in (1.4.6) is an infinitely differentiable func-

tion of r, with compact support, since A(rθ) vanishes for r large enough.

Moreover, all of its odd derivatives vanish at r = 0. So, if we expand it in a

Taylor series we can easily see that is also an even function of r.

Let α(r) :=
∫
Sk−1 A(rθ)dθ.We consider (1.4.6) as the action of r−q−1

+ , t ∈

R on α(r), where r+ = max{r, 0}. It is known, that r−q−1
+ is analytic for

Req > 0, (see [GS, p.48] and [K9, p.36] for more details). In addition, one

may apply analytic continuation to extend r−q−1
+ to an entire function of q

on C \ {0, 1, 2, . . .}. But, since all the odd derivatives of α(r) vanish at zero,

we have that the function

q 7−→
〈
r−q−1

+ , α(r)
〉

has simple poles only at q = 0, 2, 4, . . .

On the other hand, as it is known, the Gamma function has simple poles

at the points −m, m ∈ N0. This proves that the function in (1.4.4) is an

entire function of q ∈ C.
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To prove the second part of the proposition, first, we need to compute

the residue of 〈|u|−q−k2 , A(u)〉 at q = 2m, m ∈ N0 :

As mentioned above, the distribution r−q−1
+ has simple poles for q = 0, 1, 2, . . . ,

and the residue of 〈r−q−1
+ , α(r)〉 at q = m, m ∈ N0, is α(m)(0)

m! .

Accordingly, we have that

Res(〈|u|−q−k2 , A(u)〉) |q=2m=
α(2m)(0)

(2m)!
. (1.4.7)

On the other hand, if we use the fact that

∆(|u|−q−k+2
2 ) = q(q + k − 2)|u|−q−k2 (1.4.8)

we can find a different representation of the residue of 〈|u|−q−k2 , A(u)〉 at q =

2m. Note that, the equality in (1.4.8) can be proved with a straightforward

computation if Req < k, and by analytic continuation for the other values

of q. By iteration we find that

|u|−q−k2 =
∆m(|u|−q−k+2m

2 )
(q + k − 2)(q + k − 4) · · · (q + k − 2m)q(q − 2) · · · (q − 2m+ 2)

(1.4.9)

Now, by the definition of differentiation of distributions, it is true that

〈∆m(|u|−q−k+2m
2 ), A(u)〉 = 〈∆(|u|−q−k+2m

2 ),∆mA(u)〉. (1.4.10)
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Hence, by equations (1.4.9) and (1.4.10), we have that the residue of

〈|u|−q−k2 , A(u)〉 at q = 2m is equal to

∆mA(u)
2mm!k(k + 2) · · · (k + 2m− 2)

, (1.4.11)

since at q = k the function has a simple pole with residue A(0).

To complete the proof, we need to calculate the residue of Γ(− q
2) at

q = 2m. Since,

Γ(−q
2

) =
2

|Sk−1|

∫
Rk
|u|−q−k2 e−|u|

2
2du,

equation (1.4.7) gives that the residue is equal to

2
|Sk−1|

Res(〈|u|−q−k2 , e−|u|
2
2〉) |q=2m=

2
|Sk−1|

(e−r
2
)(2m)(0)

(2m)!
. (1.4.12)

But (e−r
2
)(2m)(0) = (−1)m (2m)!

m! . Hence, for q = 2m,

〈
|u|−q−k2 , A(u)

〉
=

Res(〈|u|−q−k2 , A(u)〉) |q=2m

ResΓ(− q
2) |q=2m

,

and by (1.4.11) and (1.4.12) we obtain equation (1.4.5).

If the function A is even, for 0 < q < 2, we have (see also [K9, p.39])〈
|u|−q−k2

Γ(−q/2)
, A(u)

〉
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=
1

Γ(−q/2)

∫
Sn−1

(∫ ∞
0

A(tθ)−A(0)
t1+q

dt

)
dθ. (1.4.13)

Note that the function (1.4.4) is equal (up to a constant) to the fractional

power of the Laplacian ∆q/2AD,H .
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Chapter 2

The complex
Busemann-Petty problem

2.1 Introductory

The complex Busemann-Petty problem can be formulated as follows: sup-

pose K and L are origin symmetric invariant with respect to all Rθ convex

bodies in R2n such that

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L ∩Hξ)

for each ξ ∈ S2n−1. Does it follow that

Vol2n(K) ≤ Vol2n(L)?

This formulation is reminiscent of the lower-dimensional Busemann-

Petty problem, where one tries to deduce the inequality for 2n-dimensional

volumes of arbitrary origin-symmetric convex bodies from the inequalities

for volumes of all (2n−2)-dimensional sections. In the case where n = 2 this
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amounts to considering two-dimensional sections of four-dimensional bodies,

where the answer to the lower dimensional problem is affirmative by the so-

lution to the original Busemann-Petty problem - we first get inequalities for

the volumes of all three-dimensional sections and then the inequality for the

four-dimensional volumes. However, if n = 3 we get four-dimensional sec-

tions of six-dimensional bodies, where the answer to the lower-dimensional

problem is negative by a result of Bourgain and Zhang [BZ]. Our problem

is different from the lower-dimensional Busemann-Petty problem in two as-

pects. First, we do not have all (2n− 2)-dimensional sections, only sections

by subspaces coming from complex hyperplanes, which makes the situation

worse than for the lower-dimensional problem. Secondly, we consider only

those convex bodies in R2n that are invariant with respect to all Rθ,

It appears that the complex Busemann-Petty problem is closely related

to the class of 2-intersection bodies introduced in [K5], [K8]. Namely, the

answer to the problem is affirmative if and only if every origin symmetric

invariant with respect to all Rθ convex body in R2n is a 2-intersection body.

This extends to the complex case the connection between the real Busemann-

Petty problem and intersection bodies, established by Lutwak, ([L]). This

connection played the crucial role in the solution of the real Busemann-Petty
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problem. We shall prove this connection in Theorem 2.3.2. After that we

prove that every origin symmetric invariant with respect to all Rθ convex

body in R2n is a (2n − 4)-intersection body, but not every such body is a

(2n− 6)-intersection body. Putting n = 3 and then n = 4, one can see how

these results imply the solution of the complex Busemann-Petty problem.

2.2 The analytic aspect

Let 1 ≤ k < 2n and let H be an (2n − k)-dimensional subspace of R2n.

Fix any orthonormal basis e1, ..., ek in the orthogonal subspace H⊥. For

a convex body D in R2n, define the (2n − k)-dimensional parallel section

function AD,H as a function on Rk such that

AD,H(u) = Vol2n−k(D ∩ {H + u1e1 + ...+ ukek})

=
∫
{x∈R2n:(x,e1)=u1,...,(x,ek)=uk}

χ(‖x‖D) dx, u ∈ Rk. (2.2.1)

If the body D is infinitely smooth, the function AD,H is infinitely differ-

entiable at the origin (see [K9, Lemma 2.4]). So, we can consider the action

of the distribution |u|−q−k2 /Γ(−q/2), u ∈ Rk on AD,H and apply Proposition

1.4.5 for A = AD,H . Also, equations (1.4.3) and (1.4.13) hold for AD,H . Note

that, if the body D is origin symmetric, the function AD,H is even.
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The following proposition was proved in [K8, Th. 2], (see also [KKZ]).

We reproduce the proof here, because we formulate the proposition in a

slightly different form. We use a well-known formula (see for example [GS

p.76]): for any v ∈ Rk and q < −k + 1,

(v2
1 + ...+ v2

k)
(−q−k)/2

=
Γ(−q/2)

2Γ((−q − k + 1)/2)π(k−1)/2

∫
Sk−1

|(v, u)|−q−k du. (2.2.2)

Proposition 2.2.1. Let D be an infinitely smooth origin symmetric convex

body in R2n and 1 ≤ k < 2n. Then for every (2n− k)-dimensional subspace

H of R2n and any q ∈ R, −k < q < 2n− k,

〈 |u|−q−k2

Γ(−q/2)
, AD,H(u)

〉

=
2−q−kπ−k/2

Γ((q + k)/2)(2n− q − k)

∫
S2n−1∩H⊥

(
‖x‖−2n+q+k

D

)∧(θ) dθ. (2.2.3)

Also for every m ∈ N ∪ {0}, m < (2n− k)/2,

∆mAD,H(0) =
(−1)m

(2π)k(2n− 2m− k)

∫
S2n−1∩H⊥

(‖x‖−2n+2m+k
D )∧(η) dη,

(2.2.4)

Proof : First let q ∈ (−k,−k + 1). Then,

〈 |u|−q−k2

Γ(−q/2)
, AD,H(u)

〉
=

1
Γ(−q/2)

∫
Rk
|u|−q−k2 AD,H(u) du.
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Using the expression (2.2.1) for the function AD,H , writing the integral in

polar coordinates and then using (3.2.4), we see that the right-hand side of

the latter equation is equal to

1
Γ(−q2 )

∫
R2n

(
(x, e1)2 + ...+ (x, ek)2)(−q−k)/2χ(‖x‖D) dx =

1
Γ(−q2 )(2n− q − k)

∫
S2n−1

(
(θ, e1)2 + ...+ (θ, ek)2

)(−q−k)/2 ‖θ‖−2n+q+k
D dθ =

1

2Γ(−q−k+1
2 )π

k−1
2 (2n− q − k)

×

∫
S2n−1

‖θ‖−2n+q+k
D

(∫
Sk−1

∣∣( k∑
i=1

uiei, θ)
∣∣−q−k du) dθ =

1

2Γ(−q−k+1
2 )π

k−1
2 (2n− q − k)

×

∫
Sk−1

(∫
Sn−1

‖θ‖−2n+q+k
D

∣∣( k∑
i=1

uiei, θ)
∣∣−q−k dθ) du. (2.2.5)

Let us show that the function under the integral over Sk−1 is the Fourier

transform of ‖x‖−2n+q+k
D at the point

∑
uiei. For any even test function φ ∈

S(R2n), using the well-known connection between the Fourier and Radon

transforms (see [K9 p. 27]) and the expression for the Fourier transform of

the distribution |z|q+k−1 (see [K9 p. 38]), we get

〈(‖x‖−2n+q+k
D )∧, φ〉 = 〈‖x‖−2n+q+k

D , φ̂〉 =
∫

Rn
‖x‖−2n+q+k

D φ̂(x) dx =

∫
S2n−1

‖θ‖−2n+q+k
D

(∫ ∞
0

zq+k−1φ̂(zθ) dz
)
dθ =
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1
2

∫
S2n−1

‖θ‖−2n+q+k
D

〈
|z|q+k−1, φ̂(zθ)

〉
dθ =

2q+k
√
π Γ((q + k)/2)

2Γ((−q − k + 1)/2)

∫
S2n−1

‖θ‖−2n+q+k
D

〈
|t|−q−k,

∫
(y,θ)=t

φ(y) dy
〉
dθ =

2q+k
√
πΓ((q + k)/2)

2Γ((−q − k + 1)/2)

∫
R2n

(∫
S2n−1

|(θ, y)|−q−k‖θ‖−2n+q+k
D dθ

)
φ(y) dy.

Since φ is an arbitrary test function, this proves that, for every y ∈ R2n\{0},

(
‖x‖−2n+q+k

D

)∧(y) =
2q+k
√
πΓ((q + k)/2)

2Γ((−q − k + 1)/2)

∫
S2n−1

|(θ, y)|−q−k‖θ‖−2n+q+k
D dθ.

Together with (3.2.7), the latter equality shows that

〈 |u|−q−k2

Γ(−q/2)
, AD,H(u)

〉
=

2−q−kπ−k/2

Γ((q + k)/2)(2n− q − k)

∫
S2n−1∩H⊥

(
‖x‖−2n+q+k

D

)∧(θ) dθ, (2.2.6)

because in our notation Sk−1 = S2n−1 ∩H⊥.

We have proved (3.2.8) under the assumption that q ∈ (−k,−k + 1).

However, both sides of (3.2.8) are analytic functions of q ∈ C in the domain

where −k < Re(q) < 2n− k. This implies that the equality (3.2.8) holds for

every q from this domain (see [K9 p.61] for the details of a similar argument).

Putting q = 2m, m ∈ N ∪ {0}, m < (2n− k)/2 in (3.2.8) and applying

(1.4.5) and the fact that Γ(x+ 1) = xΓ(x), we get the second formula.

As mentioned in the Introduction (Section 1.2) we use a generalization

of the Brunn’s theorem.
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Lemma 2.2.1. If D is a 2-smooth origin symmetric convex body in Rn,

then the function AD,H is twice differentiable at the origin and

∆AD,H(0) ≤ 0.

Besides that for any q ∈ (0, 2),

〈 |u|−q−k2

Γ(−q/2)
, AD,H(u)

〉
≥ 0.

Proof : Differentiability follows from [K9 Lemma 2.4]. Applying the

Brunn’s theorem to the bodies D∩(H+ tθ), θ ∈ Sn−1∩H⊥, we see that the

function t 7→ AD,H(tθ) has maximum at zero. Therefore, the interior integral

in (1.4.13) for the function AD,H instead of A, is negative, but Γ(−q/2) < 0

for q ∈ (0, 2), which implies the second statement. The first inequality also

follows from the fact that each of the functions t 7→ AD,H(tej), j = 1, ..., k

has maximum at the origin.

We often use Lemma 4.10 from [K9] for the purpose of approximation

by infinitely smooth bodies. For convenience, let us formulate this lemma:

Lemma 2.2.2. ([K9, Lemma 4.10]) Let 1 ≤ k < n. Suppose that D is an

origin symmetric convex body in Rn that is not a k-intersection body. Then

there exists a sequence Dm of origin symmetric convex bodies so that Dm

converges to D in the radial metric, each Dm is infinitely smooth, has strictly
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positive curvature and each Dm is not a k-intersection body.

If, in addition, D is invariant with respect to Rθ, one can choose Dm

with the same property.

2.3 Connection with intersection bodies

We now return to the complex case. The following simple observation is cru-

cial for applications of the Fourier methods to convex bodies in the complex

case:

Lemma 2.3.1. Suppose that K is an origin symmetric infinitely smooth

invariant with respect to all Rθ star body in R2n. Then for every 0 < p < 2n

and ξ ∈ S2n−1 the Fourier transform of the distribution ‖x‖−pK is a constant

function on S2n−1 ∩H⊥ξ .

Proof : By Proposition 1.4.2 ([K9, Lemma 3.16]), the Fourier transform

of ‖x‖−pK is a continuous function outside of the origin in R2n. The function

‖x‖K is invariant with respect to all Rθ, so by the connection between the

Fourier transform of distributions and linear transformations, the Fourier

transform of ‖x‖−pK is also invariant with respect to all Rθ. Recall that the

two-dimensional space H⊥ξ is spanned by vectors ξ and ξ⊥ (see Section 1.3).

39



Every vector in S2n−1 ∩H⊥ξ is the image of ξ under one of the coordinate-

wise rotations Rθ, so the Fourier transform of ‖x‖−pK is a constant function

on S2n−1 ∩H⊥ξ .

Of course, this argument also applies to the Fourier transform of any

distribution of the form h(‖x‖K).

Similarly to the real case (see [K1], [K9 Theorem 3.8]), one can express

the volume of hyperplane sections in terms of the Fourier transform.

Theorem 2.3.1. Let K be an infinitely smooth origin symmetric invariant

with respect to Rθ convex body in R2n, n ≥ 2. For every ξ ∈ S2n−1, we have

Vol2n−2(K ∩Hξ) =
1

4π(n− 1)
(
‖x‖−2n+2

K

)∧ (ξ).

Proof : Let us fix ξ ∈ S2n−1. We apply formula (2.2.4) with H = Hξ, k =

2, m = 0. We get

Vol2n−2(K ∩Hξ) = AK,Hξ(0) =
1

8π2(n− 1)

∫
S2n−1∩H⊥ξ

(
‖x‖−2n+2

K

)∧ (η) dη.

By Lemma 2.3.1, the function under the integral in the right hand side is

constant on the circle S2n−1 ∩ H⊥ξ . Since ξ ∈ H⊥ξ , the integral is equal to

2π
(
‖x‖−2n+2

K

)∧ (ξ).

The connection between the complex Busemann-Petty problem and in-

tersection bodies is as follows:
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Theorem 2.3.2. The answer to the complex Busemann-Petty problem in

Cn is affirmative if and only if every origin symmetric invariant with respect

to all Rθ convex body in R2n is a 2-intersection body.

This theorem will follow from the next two lemmas. Note that, since we

can approximate the body K in the radial metric from inside by infinitely

smooth convex bodies invariant with respect to all Rθ, and also approximate

L from outside in the same way, we can argue that if the answer to the

complex Busemann-Petty problem is affirmative for infinitely smooth bodies

K and L then it is affirmative in general.

Lemma 2.3.2. Let K and L be infinitely smooth origin symmetric invariant

with respect to Rθ convex bodies in R2n so that K is a 2-intersection body

and, for every ξ ∈ S2n−1,

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L ∩Hξ).

Then

Vol2n(K) ≤ Vol2n(L).

Proof : By Proposition 1.4.2, the Fourier transforms of the distributions

‖x‖−2n+2
K , ‖x‖−2n+2

L and ‖x‖−2
K are continuous functions outside of the origin

in R2n. By Theorem 2.3.1 and Proposition 1.4.4, the conditions of the lemma
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imply that for every ξ ∈ S2n−1,

(
‖x‖−2n+2

K

)∧ (ξ) ≤
(
‖x‖−2n+2

L

)∧ (ξ)

and (
‖x‖−2

K

)∧ (ξ) ≥ 0.

Therefore, ∫
S2n−1

(
‖x‖−2n+2

K

)∧ (ξ)
(
‖x‖−2

K

)∧ (ξ) dξ

≤
∫
S2n−1

(
‖x‖−2n+2

L

)∧ (ξ)
(
‖x‖−2

K

)∧ (ξ) dξ.

Now we apply Parseval’s formula on the sphere, Proposition 1.4.3, to remove

the Fourier transforms in the latter inequality and then use the polar formula

for the volume and Hölder’s inequality:

2n Vol2n(K) =
∫
S2n−1

‖x‖−2n
K dx ≤

∫
S2n−1

‖x‖−2n+2
L ‖x‖−2

K dx

≤
(∫

S2n−1

‖x‖−2n
L dx

)n−1
n
(∫

S2n−1

‖x‖−2n
K dx

) 1
n

= (2n Vol2n(L))
n−1
n (2n Vol2n(K))

1
n ,

which gives the result.

Lemma 2.3.3. Suppose that there exists an origin symmetric invariant with

respect to all Rθ convex body L in R2n which is not a 2-intersection body.

Then one can perturb L twice to construct other origin symmetric invariant
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with respect to Rθ convex bodies L
′

and K in R2n such that for every ξ ∈

S2n−1,

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L
′ ∩Hξ),

but

Vol2n(K) > Vol2n(L
′
).

Proof : We can assume that the body L is infinitely smooth and has strictly

positive curvature. In fact, approximating L in the radial metric by infinitely

smooth invariant with respect to all Rθ convex bodies with strictly positive

curvature, we get by Lemma 2.2.2 that the approximating bodies cannot all

be 2-intersection bodies. So there exists an infinitely smooth invariant with

respect to all Rθ convex body L
′

with strictly positive curvature that is not

a 2-intersection body. In the following we write L instead of L
′
.

Now as L is infinitely smooth, by Proposition 1.4.2, the Fourier trans-

form of ‖x‖−2
L is a continuous function outside of the origin in R2n. The

body L is not a 2-intersection body, so by Proposition 1.4.4, the Fourier

transform
(
‖x‖−2

L

)∧ is negative on some open subset Ω of the sphere S2n−1.

Since L is invariant with respect to rotations Rθ, we can assume that

the set Ω is also invariant with respect to rotations Rθ. This allows us to

choose an even non-negative invariant with respect to rotations Rθ function
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f ∈ C∞(S2n−1) which is supported in Ω. Extend f to an even homogeneous

function f(x/|x|2)|x|−2
2 of degree -2 on R2n. By Proposition 1.4.2, the Fourier

transform of this extension is an even homogeneous function of degree -2n+2

on R2n, whose restriction to the sphere is infinitely smooth:

(
f(x/|x|2)|x|−2

2

)∧ (y) = g(y/|y|2)|y|−2n+2
2 ,

where g ∈ C∞(S2n−1). By the connection between the Fourier transform

and linear transformations, the function g is also invariant with respect to

rotations Rθ.

Define a body K in R2n by

‖x‖−2n+2
K = ‖x‖−2n+2

L − εg(x/|x|2)|x|−2n+2
2 . (2.3.1)

For small enough ε > 0 the body K is convex. This essentially follows from

a simple two-dimensional argument: if h is a strictly concave function on an

interval [a, b] and u is a twice differentiable function on [a, b], then for small

ε the function h + εu is also concave. Note that here we use the condition

that L has strictly positive curvature. Besides that, the body K is invariant

with respect to rotations Rθ because so are the body L and the function

g. We can now choose ε so that K is an origin symmetric invariant with

respect to all Rθ convex body in R2n.
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Let us prove that the bodies K and L provide the necessary counterex-

ample. We apply the Fourier transform to both sides of (2.3.1). By definition

of the function g and since f is non-negative, we get that for every ξ ∈ S2n−1

(
‖x‖−2n+2

K

)∧ (ξ) =
(
‖x‖−2n+2

L

)∧ (ξ)− (2π)2nεf(ξ) ≤
(
‖x‖−2n+2

L

)∧ (ξ).

By Theorem 2.3.1, this means that for every ξ ∈ S2n−1

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L ∩Hξ).

On the other hand, the function f is positive only where
(
‖x‖−2

L

)∧ is nega-

tive, so ∫
S2n−1

(
‖x‖−2n+2

K

)∧ (ξ)
(
‖x‖−2

L

)∧ (ξ) dξ

=
∫
S2n−1

(
‖x‖−2n+2

L

)∧ (ξ)
(
‖x‖−2

L

)∧ (ξ) dξ

−(2π)2nε

∫
S2n−1

(
‖x‖−2

L

)∧ (ξ)f(ξ) dξ

>

∫
S2n−1

(
‖x‖−2n+2

L

)∧ (ξ)
(
‖x‖−2

L

)∧ (ξ) dξ.

The end of the proof is similar to that of the previous lemma - we apply Par-

seval’s formula to remove Fourier transforms and then use Hölder’s inequal-

ity and the polar formula for the volume to get Vol2n(K) > Vol2n(L).
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2.4 The solution of the problem

It is known (see [K6] or [K9 Corollary 4.9] plus Proposition 1.4.4) that for

every origin symmetric convex body K in R2n, n ≥ 2 the space (R2n, ‖ ·

‖K) embeds in L−p for each p ∈ [2n − 3, 2n), or, in other words, every

origin symmetric convex body in R2n is a (2n− 3)-, (2n− 2)- and (2n− 1)-

intersection body. On the other hand, for q > 2 the unit ball of the real

space `2nq is not a (2n− 4)-intersection body , and, moreover, R2n provided

with the norm of this space does not embed in L−p with p < 2n − 3 (see

[K3] or [K9 Th. 4.13]).

Now we have to find out what happens if we consider convex bodies

invariant with respect to all Rθ. As it is proved in Chapter 6, for q > 2 the

complex space `nq does not embed in L−p with p < 2n−4, which means that

the unit ball Bn
q (Cn) of this space (which is invariant with respect to all Rθ)

is not a k-intersection body with k < 2n− 4.

Recall that we denote Bq(Cn) the unit ball of the complex space `nq

considered as a subset of R2n, (see Section 1.3 for definition).

Theorem 2.4.1. If q > 2 then the space (R2n, ‖ · ‖q) does not embed in L−p

with 0 < p < 2n− 4. In particular, the body Bq(Cn) is not a k-intersection

body for any 1 ≤ k < 2n− 4.
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We postpone the proof for Chapter 6.

The only question that remains open is what happens in the interval

p ∈ [2n− 4, 2n− 3). The following result answers this question.

Theorem 2.4.2. Let n ≥ 3. Every origin symmetric invariant with respect

to Rθ convex body K in R2n is a (2n− 4)-intersection body. Moreover, the

space (R2n, ‖ · ‖K) embeds in L−p for every p ∈ [2n− 4, 2n).

If n = 2 the space (R2n, ‖ · ‖K) embeds in L−p for every p ∈ (0, 4).

Proof : By Lemma 2.2.2, it is enough to prove the result in the case where

K is infinitely smooth. Fix ξ ∈ S2n−1.

Let n ≥ 3. Applying formula (2.2.4) and then Lemma 2.3.1 with H =

Hξ, m = 1 and k = 2, we get

∆AK,Hξ(0) =
−1

8π2(n− 2)

∫
Sn−1∩H⊥ξ

(‖x‖−2n+4
K )∧(η) dη

=
−2π

8π2(n− 2)
(
‖x‖−2n+4

K

)∧ (ξ).

By Brunn’s theorem (see Lemma 2.2.1),
(
‖x‖−2n+4

K

)∧ (ξ) ≥ 0 for every ξ ∈

S2n−1, so ‖x‖−2n+4
K is a positive definite distribution on R2n. By Proposition

1.4.4, K is a (2n− 4)-intersection body.

Now let n ≥ 2. For 0 < q < 2, formula (2.2.3) and Lemma 2.2.1 imply

that
(
‖x‖−2n+q+2

K

)∧
(ξ) ≥ 0. By Proposition 1.4.4, the space (R2n, ‖ · ‖K)
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embeds in L−2n+q+2, and, using the range of q, every such space embeds in

L−p, p ∈ (2n− 4, 2n− 2). As mentioned before, these spaces also embed in

L−p, p ∈ [2n−3, 2n), because so does any 2n-dimensional normed space.

We are now ready to prove the main result of this article:

Theorem 2.4.3. The solution to the complex Busemann-Petty problem in

Cn is affirmative if n ≤ 3 and it is negative if n ≥ 4.

Proof : By Theorem 2.4.2, every origin symmetric invariant with respect

to Rθ convex body in R6 (where n = 3) is a 2n − 4 = 2-intersection body,

and in R4 (where n = 2) it is a 2n−2 = 2-intersection body. The affirmative

answers for n = 3 and n = 2 follow now from Theorem 2.3.2.

If n ≥ 4 then 2n − 4 > 2, so by Theorem 2.4.1 the body Bn
q is not a

2-intersection body. The negative answer follows from Theorem 2.3.2.

Remark 1. The transition between the dimensions n = 3 and n = 4 is

due to the fact that convexity controls only derivatives of the second order.

To see this let us look again at formula (2.2.4), which we apply with k = 2.

We want to get information about the Fourier transform of ‖x‖−2
D , so we need

to choose m so that −2n+2m+2 = −2. If n = 3 then m = 1, but when n = 4

we need m = 2. This means that for n = 3 we consider ∆AK,H(0), which is

always negative by convexity, but when n = 4 we look at ∆2AK,H(0), which
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is not controlled by convexity and can be sign-changing. One can construct

a counterexample in dimension n = 4 using this argument, similarly to how

it was done for the “real” Busemann-Petty problem; see [K9 Corollary 4.4].

Remark 2. Applying Theorem 2.4.2 to n = 2 we get that every two-

dimensional complex normed space (which is a 4-dimensional real normed

space) embeds in L−p for every p ∈ (−4, 0). By [KKYY Th. 6.4], this implies

that every such space embeds isometrically in L0. The concept of embedding

in L0 was introduced in [KKYY]: a normed space (Rn, ‖ · ‖) embeds in L0

if there exist a probability measure µ on Sn−1 and a constant C so that for

every x ∈ Rn, x 6= 0

log ‖x‖ =
∫
Sn−1

log |(x, ξ)| dµ(ξ) + C.

We have

Theorem 2.4.4. Every two-dimensional complex normed space embeds in

L0. On the other hand, there exist two-dimensional complex normed spaces

that do not embed isometrically in any Lp, p > 0.

An example supporting the second claim is the complex space `2q with

q > 2. This follows from a version of the second derivative test proved in

[KL] (see also [K9 Theorem 6.11]). Recall that every two-dimensional real
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normed space embeds isometrically in L1 (see [Fe], [He], [Li] or [K9 p.120]),

but the real space `2q does not embed isometrically in any Lp, 1 < p ≤ 2, as

proved by Dor [Do]; see also [K9 p.124].
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Chapter 3

The modified complex
Busemann-Petty problem

3.1 Introductory

As it is proved in [KKZ] the answer to the complex Busemann-Petty problem

is affirmative if n ≤ 3 and negative if n ≥ 4. In this article our aim is to

extend [KYY] to the complex case.

Let D be an origin symmetric convex body in Cn. For every ξ ∈ Cn, |ξ| =

1 we define the section function by

SCD(ξ) = Vol2n−2(D ∩Hξ), ∀ξ ∈ S2n−1. (3.1.1)

Extending SCD to the whole R2n as a homogeneous function of degree −2

we prove the following:

Main Theorem. Suppose K and L are two origin symmetric invariant with

respect to all Rθ convex bodies in R2n. Suppose that α ∈ [2n−6, 2n−2), n ≥
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3. If (
−∆

)α/2
SCK(ξ) ≤

(
−∆

)α/2
SCL(ξ), (3.1.2)

for every ξ ∈ S2n−1. Then

Vol2n(K) ≤ Vol2n(L).

If α ∈ (2n − 7, 2n − 6) then one can construct two convex bodies K and L

that satisfy (3.1.2), but Vol2n(K) > Vol2n(L).

This means that one needs to differentiate the section functions at least

2n − 6 times and compare them in order to obtain the same inequality for

the volume of the original bodies. Note that if α = 0 the problem coincides

with the original complex Busemann-Petty problem.

3.2 The Fourier analytic approach

Let H be an (2n − 2)−dimensional subspace of R2n and p ≤ 2n − 2. We

fix an orthonormal basis , {e1, e2}, in the orthogonal subspace H⊥. For any

convex body D in R2n we define the function AD,H,p as a function on R2

such that

AD,H,p(u) =
∫
D∩Hu

|x|−p2 dx, u ∈ R2, (3.2.1)

where Hu = {x ∈ R2n : (x, e1) = u1, (x, e2) = u2}.
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If the body D is infinitely smooth and 0 ≤ p < 2n−m− 2, then AD,H,p

is m-times continuously differentiable near the origin. To see this we need

to observe that the function can be written in the form

AD,H,p(u) =
∫
S2n−3
u

(∫ ‖θ‖−1
D∩Hu

0
r2n−3(r2 + |u|22)−p/2dr

)
dθ, (3.2.2)

where S2n−3
u is the unit sphere of the subspace Hu and then follow similar

steps as in [K9, Lemma 2.4]. Note that AD,H,p ∈ Cm near the origin since

differentiating the inner integral in (3.2.2) more than m times, it is no longer

convergent for t = 0.

In addition, we can consider the action of the distribution |u|−q−k2 /Γ(−q/2),

u ∈ Rk on AD,H,p and apply Proposition 1.4.5 for A = AD,H,p.

For q ∈ C with <q ≤ 2n − p − 3 the function is an analytic function of

q. Also, equations (1.4.3) and (1.4.13) hold for AD,H,p.

If the body D is origin symmetric the function AD,H,p is even and for 0 <

q < 2 we use equation (1.4.13) for AD,H,p to get〈
|u|−q−2

2

Γ(− q
2)
, AD,H,p(u)

〉

=
1

Γ(− q
2)

∫ 2π

0

(∫ ∞
0

AD,H,p(tθ)−AD,H,p(0)
t1+q

dt
)
dθ. (3.2.3)

The following proposition is a generalization of Proposition 2.2.1 with

k = 2. We prove it using a well-known formula (see for example [GS, p.76]):
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for any v ∈ R2 and q < −1,

(v2
1 + v2

2)
−q−2

2 =
Γ(−q/2)

2Γ((−q − 1)/2)π1/2

∫ 2π

0
|(v, u)|−q−2 du. (3.2.4)

Proposition 3.2.1. Let D be an infinitely smooth origin symmetric convex

body in R2n. If −2 < q < 2n − 2, 0 ≤ p ≤ 2n − q − 3. Then for every

(2n− 2)-dimensional subspace H of R2n

〈
|u|−q−2

2

Γ(− q
2)
, AD,H,p(u)

〉

=
2−q−2

πΓ
( q+2

2

)
(2n− q − p− 2)

∫
S2n−1∩H⊥

(
‖x‖−2n+q+p+2

D |x|−p2

)∧
(θ)dθ. (3.2.5)

Also, for every d ∈ N ∪ 0, d < n− 1

∆dAD,H,p(0) =
(−1)d

8π2(n− d− 1)

∫
S2n−1∩H⊥

(
‖x‖−2n+2d+p+2

D |x|−p2

)∧
(η)dη.

(3.2.6)

Proof. First we assume that q ∈ (−2,−1). Then〈
|u|−q−2

2

Γ(− q
2)
, AD,H,p(u)

〉
=

1
Γ(−q/2)

∫
R2

|u|−q−2
2 AD,H,p(u)du

Using the expression (3.2.1) for the function AD,H,p, writing the integral in

polar coordinates and then using (3.2.4), we see that the right-hand side of

the latter equation is equal to

1
Γ(−q2 )

∫
Rn

(
(x, e1)2 + (x, e2)2)

−q−2
2 |x|−p2 χ(‖x‖D) dx
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=
1

Γ(−q2 )(n− q − p− 2)

∫
Sn−1

(
(θ, e1)2 + (θ, e2)2

)−q−2
2 ‖θ‖−n+q+2

D dθ

=
1

2Γ(−q−1
2 )π

1
2 (n− q − p− 2)

×

∫
Sn−1

‖θ‖−n+q+p+2
D

(∫ 2π

0

∣∣(u1e1 + u1e2, θ)
∣∣−q−2

du

)
dθ

=
1

2Γ(−q−1
2 )π

1
2 (n− q − p− 2)

×

∫ 2π

0

(∫
Sn−1

‖θ‖−n+q+p+2
D

∣∣(u1e1 + u2e2, θ)
∣∣−q−2

dθ

)
du. (3.2.7)

Let us show that the function under the integral over [0, 2π] is the Fourier

transform of ‖x‖−n+q+p+2
D |x|−p2 at the point u1e1 + u2e2. For any even test

function φ ∈ S(Rn), using the well-known connection between the Fourier

and Radon transforms (see [K9, p.27]) and the expression for the Fourier

transform of the distribution |z|q−1
2 (see [K9, p.38]), we get

〈(‖x‖−n+q+p+2
D |x|−p2 )∧, φ〉 =

∫
Rn
‖x‖−n+q+p+2

D |x|−p2 φ̂(x) dx

=
∫
Sn−1

‖θ‖−n+q+p+2
D

(∫ ∞
0

rq+1φ̂(rθ) dr
)
dθ

=
1
2

∫
Sn−1

‖θ‖−n+q+p+2
D

〈
|r|q+1, φ̂(rθ)

〉
dθ

=
2q+2√π Γ((q + 2)/2)

2Γ((−q − 1)/2)

∫
Sn−1

‖θ‖−n+q+p+2
D

〈
|t|−q−2,

∫
(y,θ)=t

φ(y) dy
〉
dθ

=
2q+1√πΓ((q + 2)/2)

2Γ((−q − 1)/2)

∫
Rn

(∫
Sn−1

|(θ, y)|−q−2‖θ‖−n+q+p+2
D dθ

)
φ(y) dy.
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Since φ is an arbitrary test function, this proves that, for every y ∈ Rn \{0},

(
‖x‖−n+q+p+2

D |x|−p2

)∧(y)

=
2q+2√πΓ((q + 2)/2)

2Γ((−q − 1)/2)

∫
Sn−1

|(θ, y)|−q−2‖θ‖−n+q+p+2
D dθ.

Together with (3.2.7), the latter equality shows that

〈 |u|−q−2
2

Γ(−q/2)
, AD,H,p(u)

〉

=
2−q−2π−1

Γ((q + 2)/2)(n− q − p− 2)

∫
Sn−1∩H⊥

(
‖x‖−n+q+p+2

D |x|−p2

)∧(θ) dθ,

(3.2.8)

because in our notation Sn−1 ∩H⊥ = [0, 2π].

We have proved (3.2.8) under the assumption that q ∈ (−2,−1). How-

ever, both sides of (3.2.8) are analytic functions of q ∈ C in the domain where

−2 < <q < 2n − 2. This implies that the equality (3.2.8) holds for every q

from this domain (see [K9, p.61] for the details of a similar argument).

Putting q = 2m, m ∈ N ∪ {0}, m < n− 1 in (3.2.8) and applying (??)

and the fact that Γ(x+ 1) = xΓ(x), we get the second formula.

The following proposition is a generalization of Brunn’s theorem (see

Section 1.2), proved in Chapter 2, Proposition 2.2.1 for p = 0.

Proposition 3.2.2. Suppose D is a 2-smooth origin symmetric convex body
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in R2n, then the function AD,H,p is twice differentiable at the origin and

∆AD,H,p(0) ≤ 0.

Moreover, for any q ∈ (0, 2),〈
|u|−q−2

2

Γ(− q
2)
, AD,H,p(u)

〉
≥ 0.

Proof. Since D is 2-smooth, it is not difficult to see that the function

∫ ‖θ‖−1
D∩Hu

0
r2n−3(r2 + |u|22)−p/2dr

is twice differentiable in a neighborhood of 0. By equation (3.2.2) this proves

the differentiability of AD,H,p at the origin.

The body D is origin symmetric and convex, so to prove the first in-

equality we need to observe that the function u 7−→ AD,H,p(u), u ∈ R2,

attains its maximum at the origin:

If p = 0 then it follows immediately from Brunn’s theorem (see Lemma

2.2.1, or [K9, Theorem 2.3]). Let p > 0. Since |x|−p2 = p
∫∞

0 χ(z|x|2)zq−1dz,

we have that for any u ∈ R2

AD,H,p(u) =
∫
D∩Hu

|x|−p2 dx = p

∫
D∩Hu

∫ ∞
0

χ(z|x|2)zq−1dzdx

= p

∫ ∞
0

zq−1

∫
D∩Hu

χ(z|x|2)dxdz

= p

∫ ∞
0

zq−1

∫
B(1/z)∩Hu

χ(‖x‖D)dxdz,
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where B(1/z) is the unit ball of radius 1/z, . Applying Brunn’s theorem to

the body B(1/z) ∩D, we have that the latter integral is

≤ p
∫ ∞

0
zq−1

∫
H
χ(‖x‖B(1/z)∩D)dxdz = AD,H,p(0).

If q ∈ (0, 2) then Γ(−q/2) < 0. Hence, for the second inequality we use

(3.2.3) to get that 〈
|u|−q−2

2

Γ(− q
2)
, AD,H,p(u)

〉

=
1

Γ(− q
2)

∫ 2π

0

(∫ ∞
0

AD,H,p(tθ)−AD,H,p(0)
t1+q

dt
)
dθ ≥ 0,

since AD,H,p(u) ≤ AD,H,p(0), for every u ∈ R2.

3.3 Distributions of the form |x|−β2 ‖x‖−γ

As in the modified real Busemann-Petty problem the solution is closely

related to distributions of the form |x|−β2 ‖x‖−γ .

First, we need a simple observation. The following lemma is crucial for

the solution of the problem.

Lemma 3.3.1. For every infinitely smooth origin symmetric invariant with

respect to all Rθ convex body D in R2n and every ξ ∈ S2n−1, the Fourier

transform of the distribution |x|−β2 ‖x‖
−γ
D , 0 < β, γ < 2n is a constant func-

tion on S2n−1 ∩H⊥ξ .
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Proof : The proof (see also Lemma 2.3.1 in Chapter 2, when β = 0) is

based on the following observation:

The body D is invariant with respect to all Rθ. So, because of the connec-

tion between the Fourier transform and linear transformations, the Fourier

transform of |x|−β2 ‖x‖
−γ
D is also invariant with respect to all Rθ. This im-

plies that it is a constant function on S2n−1 ∩ H⊥ξ because this circle can

be represented as the set of all the rotations Rθ, θ ∈ [0, 2π], of the vector

ξ ∈ S2n−1.

As a consequence of the above we have that

∫
S2n−1∩H⊥ξ

(
|x|−β2 ‖x‖

−γ
D

)∧
(θ)dθ = 2π

(
|x|−β2 ‖x‖

−α
D

)∧
(ξ). (3.3.1)

Lemma 3.3.2. Let D be an origin symmetric invariant with respect to all

Rθ convex body in R2n, n ≥ 3. If q ∈ (−2, 2] and 0 ≤ p < 2n− q − 3 then

|x|−p2 ‖x‖
−2n+p+q+2
D

is a positive definite distribution.

Proof.

If p = 0 then by Theorem 2.4.2,
(
‖x‖−2n+q+2

D

)∧ ≥ 0, since 2n− q − 2 ∈

[2n− 4, 2n).
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Let p > 0. If q ∈ (−2, 0) then by equation (1.4.3) for AD,H,p and Propo-

sition 3.2.1 (formula (3.2.5)) we have that

2−q−2

πΓ
( q+2

2

)
(2n− q − p− 2)

∫
S2n−1∩H⊥

(
‖x‖−2n+q+p+2

D |x|−p2

)∧
(θ)dθ

=
1

Γ(−q/2)

∫
R2

|u|−q−2
2 AD,H,p(u)du ≥ 0.

By Lemma 3.3.1, the Fourier transform of the distribution |x|−p2 ‖x‖
−2n+p+q+2
D

is a constant function on S2n−1 ∩H⊥ξ (equation (3.3.1)). So,

(
|x|−p2 ‖x‖

−2n+p+q+2
D

)∧
≥ 0,

since Γ( q+2
2 ) > 0, Γ(− q

2) > 0 and q < 2n− p− 2.

Now, if q = 0, (3.2.6) and (3.3.1) give that

AD,H,p(0) =
1

4π(n− 1)

(
|x|−p2 ‖x‖

−2n+p+q+2
D

)∧
(ξ) ≥ 0.

For the case where q ∈ (0, 2) we use Proposition 3.2.1 and Lemma 3.3.1

to get that 〈
|u|−q−2

2

Γ(− q
2)
, AD,H,p(u)

〉

=
2−q−1

Γ
( q+2

2

)
(2n− q − p− 2)

(
‖x‖−2n+q+p+2

D |x|−p2

)∧
(ξ).

Then, by the generalization of Brunn’s theorem, Proposition 3.2.2, the de-

sired follows.
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Lastly, if q = 2, (3.2.6) and (3.3.1) imply that

∆AD,H,p(0) =
−1

4π(n− 2)

(
‖x‖−2n+p+4

D |x|−p2

)∧
(ξ).

Combining this with Brunn’s generalization, since the Laplacian of the func-

tion AD,H,p at 0 is non-positive, we have that

(
|x|−p2 ‖x‖

−2n+p+4
D

)∧
(ξ) ≥ 0.

Before we prove the main result of this article, we also need the following:

Lemma 3.3.3. Let D be an infinitely smooth origin symmetric invariant

with respect to all Rθ convex body in R2n and α ∈ R. Then

(
−∆

)α/2
SCD(ξ) =

1
4π(n− 1)

(
|x|α2 ‖x‖−2n+2

D

)∧(ξ) (3.3.2)

Proof. Let ξ ∈ S2n−1. As proved in Theorem 2.3.1, using the same idea as

in Lemma 3.3.1 (with r = 0)

Vol2n−2(D ∩Hξ) =
1

4π(n− 1)

(
‖x‖−2n+2

D

)∧
(ξ). (3.3.3)

By the definition of the section function of D, and equation (3.3.3) we

obtain the following formula:

SCD(ξ) =
1

4π(n− 1)

(
‖x‖−2n+2

D

)∧
(ξ). (3.3.4)
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We extend SCD to the whole R2n as a homogeneous function of degree

−2 and apply the definition of the fractional powers of the Laplacian. Then,

since ‖x‖−2n+2
D is an even distribution, equation (3.3.2) immediately follows.

3.4 The solution of the problem.

We consider the affirmative and negative part of the main result separately.

The proof follows by the next two theorems.

Theorem 3.4.1. (AFFIRMATIVE PART) Let K and L be two infinitely

smooth origin symmetric invariant with respect to all Rθ convex bodies in

R2n. Suppose that α ∈ [2n− 6, 2n− 2), n ≥ 3. Then for every ξ ∈ S2n−1

(
−∆

)α/2
SCK(ξ) ≤

(
−∆

)α/2
SCL(ξ) (3.4.1)

implies that

Voln(K) ≤ Voln(L).

Proof. The bodies K and L are infinitely smooth and invariant with respect

to all Rθ convex bodies. So by equation (3.3.2) the condition in (3.4.1) can

be written as (
|x|α2 ‖x‖−2n+2

K

)∧
≤
(
|x|α2 ‖x‖−2n+2

L

)∧
. (3.4.2)
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We apply Lemma 3.3.2 with p = α and q = 2n−α−4 so that the distri-

bution |x|α2 ‖x‖
−2
K is positive definite. By Bochner’s theorem this implies that

its Fourier transform is a non-negative function on R2n\{0}. By Proposition

1.4.2, it is also continuous, since K is infinitely smooth. Multiply both sides

in (3.4.2) by
(
|x|−α2 ‖x‖

−2
K

)∧ and integrate over the unit sphere S2n−1. Then

we can apply Parseval’s spherical version, Proposition 1.4.3, to get that

∫
S2n−1

‖x‖−2n
K dx ≤

∫
S2n−1

‖x‖−2
K ‖x‖

−2n+2
L . (3.4.3)

Then, by a simple application of Hölder’s inequality to formula (3.4.3) and

the polar formula of the bodies (see equation (1.2.1), we obtain the affirma-

tive answer to the problem, since

2n Vol2n(K) ≤
(

2n Vol2n(K)
)1/n(

2n Vol2n(L)
)(n−1)/n

.

To prove the negative part we need the following lemma.

Lemma 3.4.1. Let α ∈ (2n − 7, 2n − 6). There exists an infinitely smooth

origin symmetric convex body L with positive curvature, so that

|x|−α2 ‖x‖
−2
L

is not a positive definite distribution.
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We postpone the proof of Lemma 3.4.1 until the end of this section

to show that the existence of such a body gives a negative answer to the

problem.

Theorem 3.4.2. (NEGATIVE PART) Suppose there exists an infinitely

smooth origin symmetric convex body L for which |x|−α2 ‖x‖
−2
L is not a posi-

tive definite distribution. Then one can construct an origin symmetric con-

vex body K in R2n, n ≥ 3, so that together with L they satisfy (3.4.1), for

every ξ ∈ S2n−1 but

Vol2n(K) > Vol2n(L).

Proof. The body L is infinitely smooth, so by Proposition 1.4.2, the Fourier

transform of the distribution |x|−α2 ‖x‖
−2
L is a continuous function on the unit

sphere S2n−1. Moreover there exists an open subset Ω of S2n−1 in which(
|x|−α2 ‖x‖

−2
L

)∧
< 0. Since L is invariant with respect to all Rθ we may

assume that Ω is also invariant we respect to rotations Rθ.

We use a standard perturbation procedure for convex bodies, see for

example [K9, p.96] (similar argument was used in Section 2, Lemma 2.3.3).

Consider a non-negative infinitely differentiable even function g supported

on Ω that is also invariant with respect to rotations Rθ. We extend it to a ho-

mogeneous function of degree −α−2 on R2n. By Proposition 1.4.2 its Fourier
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transform is an even homogeneous function of degree −2n + α + 2 on R2n,

whose restriction to the sphere is infinitely smooth:
(
g(x/|x|2)|x|−α−2

2

)∧(y) =

h(y/|y|2)|y|−2n+α+2
2 , where h ∈ C∞(S2n−1).

We define a body K so that

‖x‖−2n+2
K = ‖x‖−2n+2

L + ε|x|−2n+2
2 h

( x

|x|2
)
,

for small enough ε > 0 so that the body K is strictly convex. Note that K is

also invariant with respect to all Rθ. We multiply both sides by 1
4π(n−1) |x|

α
2

and apply Fourier transform. Then

(
−∆

)α/2
SCK(ξ) =

(
−∆

)α/2
SCL(ξ) +

ε(2π)2n

4π(n− 1)
|x|−α−2

2 g
( x

|x|2
)

(3.4.4)

≤
(
−∆

)α/2
SCL(ξ),

since g is non-negative.

On the other hand, we multiply both sides of (3.4.4) by
(
|x|−α2 ‖x‖

−2
L

)∧
and integrate over the sphere,

∫
S2n−1

(
|x|−α2 ‖x‖

−2
L

)∧
(θ)
(
−∆

)α/2
SCK(θ)dθ
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=
∫
S2n−1

(
|x|−α2 ‖x‖

−2
L

)∧
(θ)
(
−∆

)α/2
SCL(θ)dθ

+ ε
(2π)2n

4π(n− 1)

∫
S2n−1

(
|x|−α2 ‖x‖

−2
L

)∧
(θ)g(θ)dθ

>

∫
S2n−1

(
|x|−α2 ‖x‖

−2
L

)∧
(θ)
(
−∆

)α/2
SCL(θ)dθ,

since
(
|x|−α2 ‖x‖

−2
L

)∧
< 0 on the support of g. Using equation (3.3.2) and

the spherical version of Parseval’s identity, the latter becomes

∫
S2n−1

‖x‖−2
L ‖x‖

−2n+2
K >

∫
S2n−1

‖x‖−2n
L dx.

As in Theorem 3.4.1, we apply Hölder’s inequality and the polar represen-

tation of the volume to obtain the desired inequality for the volumes of the

bodies.

Proof of Lemma 3.4.1. The construction of the body follows similar steps

as in [KYY]. We put q = 2n−α− 4, so q ∈ (2, 3). From the definition of the

fractional derivatives, Proposition 3.2.1 and Lemma 3.3.1, we see that for a

ξ ∈ S2n−1 we need to construct a convex body D so that

∫ 2π

0

∫ ∞
0

t−q−1
(
AD,Hξ,α(tθ)−AD,Hξ,α(0)−∆AD,Hξ,α(0)

t2

2

)
dtdθ < 0

since Γ(− q
2) > 0 for q ∈ (2, 3).
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We define the function

f(|u|) = (1− |u|22 −N |u|42)
1

2n−α−2 , u ∈ R2

and consider the body D in R2n as

D =
{

(x11, x12, . . . , xn1, xn2) ∈ R2n : |x̄|2 = |(xn1, xn2)|2 ∈ [−αN , αN ],

( n−1∑
i=1
j=1,2

x2
ij

)1/2 ≤ f(|x̄|2)
}
,

where aN is the first positive root of the equation f(t) = 0. From its defini-

tion, the body D is strictly convex with an infinitely smooth boundary. We

choose ξ ∈ S2n−1 in the direction of x̄. Then for u ∈ R2 with |u|2 ∈ [0, aN ],

equation (3.2.2) gives that

AD,Hξ,α(u) =
∫
S2n−3
u

∫ f(|u|2)

0
(r2 + |u|22)−

α
2 r2n−3drdθ

= |S2n−3
u |

∫ f(|u|2)

0
(r2 + |u|22)−

α
2 r2n−3dr,

where |S2n−3
u | is the volume of the (2n − 3)-dimensional unit sphere. Note

that if |u|2 > αN then AD,Hξ,α(u) = 0. Moreover, if u = tθ, t ∈ [0,∞) and

θ ∈ S1, the parallel section function AD,Hξ,α(tθ) is independent of θ since

AD,Hξ,α(tθ) = |S2n−3
t |

∫ f(t)

0
(r2 + t2)−

α
2 r2n−3dr. (3.4.5)

Hence, we need to prove that the above construction of the body D gives
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that

∫ ∞
0

t−q−1
(
AD,Hξ,α(tθ)−AD,Hξ,α(0)−∆AD,Hξ,α(0)

t2

2

)
dt < 0. (3.4.6)

Note that the condition |u|2 ∈ [0, αN ] is now equivalent to t ∈ [0, αN ]. In

order to prove the above we first compute

AD,Hξ,α(0) =
|S2n−3|

2n− α− 2

and

∆AD,Hξ,α(0) = −|S2n−3|
[ 1

2n− α− 2
+

α

2n− α− 4

]
.

Let βN be the positive root of the equation 1− t2−Nt4 = tq+1. We split

the integral in (3.4.6) in three parts: [0, βN ], [βN , αN ] and [αN ,∞) and work

separately. It is not difficult to see that for large N, αN , βN ' N−
1
4 . Also,

for every t ∈ [0, αN ], f(t) > 0 and f(t) ≥ t if and only if t ∈ [0, βN ].

For the first part, the interval [0, βN ], since f(t) ≥ t, the 2-dimensional

parallel section function AD,Hξ,α can be easily estimated if we split it into two

integrals. For the second we use the inequality (1+x)−γ ≤ 1−γx+ γ(γ+1)
2 x2,

for γ > 0 and 0 < x < 1. Then

∫ t

0
(r2 + t2)−

α
2 r2n−3dr ≤

∫ t

0
r−α+2n−3dr =

t

2n− α− 2
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and

∫ f(t)

t
(r2 + t2)−

α
2 r2n−3dr ≤

∫ f(t)

t

[
1− α

2
t2

r2
+
α(α+ 2)

4
t4

r4

]
r2n−α−3dr

=
r2n−α−2

2n− α− 2
− α

2
t2

r2n−α−4

2n− α− 4
+
α(α+ 2)

4
t4

r2n−α−6

2n− α− 6

∣∣∣∣∣
f(t)

t

=
f2n−α−2(t)
2n− α− 2

− α

2
t2
f2n−α−4(t)
2n− α− 4

+
α(α+ 2)

4
t4
f2n−α−6(t)
2n− α− 6

− Ct2n−α−2,

where C = 1
2n−α−2 −

p
2(2n−α−4) + α(α+2)

4(2n−α−6) > 0, since n ≥ 3 and α ∈

(2n− 7, 2n− 6).

We now use the definition of the function f and the inequality (1 − x)γ ≥

1− γx(1− x)γ−1, for 0 < γ < 1 and 0 < x < 1. We then write

=
1− t2 −Nt4

2n− α− 2
− α

2
t2(1− t2 −Nt4)

2n−α−4
2n−α−2

2n− α− 4

+
α(α+ 2)

4
t4(1− t2 −Nt4)

2n−α−6
2n−α−2

2n− α− 6
− Ct2n−α−2

≤ 1− t2 −Nt4

2n− α− 2
− αt2

2(2n− α− 4)
+

αt2(t2 +Nt4)

2(2n− α− 2)(1− t2 −Nt4)
2

2n−α−2

+
α(α+ 2)t4

4(2n− α− 6)
− α(α+ 2)

4(2n− α− 2)
t4(t2 +Nt4)

(1− t2 −Nt4)
4

2n−α−2

− Ct2n−α−2.

Hence, we have that

∫ βN

0
t−q−1

(
AD,Hξ,α(tθ)−AD,Hξ,α(0)−∆AD,Hξ,α(0)

t2

2

)
dt
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=
∫ βN

0
t−q−1

(
Ct2n−α−2 −Dt4 + E

t2(t2 +Nt4)

(1− t2 −Nt4)
2

2n−α−2

−F t4(t2 +Nt4)

(1− t2 −Nt4)
4

2n−α−2

)
dt, (3.4.7)

where E = α
2(2n−α−2) > 0, F = α(α+2)

2n−α−2 > 0 and D = N
2n−α−2 −

α(α+2)
4(2n−α−6) > 0, for N large enough.

Now, in order to obtain an upper bound for (3.4.7) we need to estimate

four different integrals. The first one simply gives C
2 β

2
N ' C1N

− 1
2 , and the

second D
4−qβ

−q+4
N ' D1N

q−4
4 , for large N. For the third one, we make a

change of variables, u = N
1
4 t and get

E

∫ βN

0

t−q+1(t2 +Nt4)

(1− t2 −Nt4)
2

2n−α−2

dt = EN
q−2
4

βNN
1
4∫

0

u−q+3(N−
1
2 + u2)

(1− u2N−
1
2 − u4)

2
2n−α−2

du

≤ E1N
q−2
4 ,

since βNN
1
4 −→ 1 as N →∞ and the integral

∫ 1
0

u−q+5

(1−u4)
2

2n−α−2
du converges.

We apply the same change of variables, u = N
1
4 t, for the last integral

and find that it is comparable to N
q
4
−1.

F

∫ βN

0

t−q+3(t2 +Nt4)

(1− t2 −Nt4)
4

2n−α−2

dt = FN
q
4
−1

βNN
1
4∫

0

u−q+3(u2N−
1
2 + u4)

(1− u2N−
1
2 − u4)

4
2n−α−2

du.

(3.4.8)

The integrand in the latter is a positive increasing function of u and βNN
1
4 −→

1 as N →∞. So, we can roughly bound the integral from below by a posi-
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tive constant and have that equation (3.4.8) is greater than F1N
q
4
−1, where

F1 > 0.

In the second interval, we use the fact that AD,H,α(tθ) ≤ AD,H,α(0) since

central sections have maximum volume. Then, since t << 1, we have that

∫ αN

βN

t−q−1
(
AD,Hξ,α(tθ)−AD,Hξ,α(0)−∆AD,Hξ,α(0)

t2

2

)
dt

≤
∫ αN

βN

t−q−1
( 1

2n− α− 2
+

α

2(2n− α− 4)

)
t2dt < A

∫ αN

βN

t−q−1dt.

Recall that αN and βN are the positive solutions of the equations f(t) = 0

and 1 − t2 − Nt4 = tq+1 respectively, and that for large N, αN ' N−
1
4 .

Then, it is not difficult to see that

A

∫ αN

βN

t−q−1dt ≤ A

(αN + βN )(1 +N(α2
N + β2

N ))
' AN−

1
4 ,

see [KYY, p.204] for details.

Lastly, for the interval [αN ,∞), we use the fact that AD,Hξ,α(tθ) = 0.

Then, we have that

∫ ∞
αN

t−q−1
(
−AD,Hξ,α(0)−∆AD,Hξ,α(0)

t2

2

)
dt

=
∫ ∞
αN

[
− t−q−1

2n− α− 2
+
( 2

2n− α− 2
+

α

2n− α− 4

) t−q+1

2

]
dt

= −A1α
−q
N +A2α

−q+2 ' −A1N
q
4 +A2N

q−2
4 ,

where A1, A2 > 0.
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Combining all the above estimations, for N large enough, we obtain the

following upper bound for the integral in (3.4.6),

∫ ∞
0

t−q−1
(
AD,Hξ,α(tθ)−AD,Hξ,α(0)−∆AD,Hξ,α(0)

t2

2

)
dtdθ

< C1N
− 1

2 +D1N
q−4
4 + E1N

q−2
4 − F1N

q
4
−1 +AN−

1
4 −A1N

q
4 +A2N

q−2
4 ,

which clearly shows that it is negative since all the constants are positive

and q ∈ (2, 3).
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Chapter 4

The complex
Busemann-Petty problem for
arbitrary measures

4.1 Introductory

In this chapter we present a generalization of the complex Busemann-Petty

problem where the volume is replaced by an “almost” arbitrary measure with

positive continuous density. Surprisingly, the answer remains the same. The

result can be considered as the complex analogue to Zvavitch’s generaliza-

tion, the Busemann-Petty problem for arbitrary measures [Zv].

Let f be an even positive and continuous function on R2n. We define a

measure µ with density f, so that

µ(D) =
∫
D f(x)dx and µ(D ∩H) =

∫
D∩H f(x)dx

for every closed bounded invariant with respect to all Rθ set D in R2n and
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every (2n− 2)-dimensional subspace H of R2n.

As it is proved in Section 4.3, (Lemma 4.3.1), one may assume that

the density is also invariant with respect to all rotations Rθ. We shall call

this function Rθ-invariant. Then, the complex Busemann-Petty problem

for arbitrary measures is stated as follows: Suppose K and L are origin

symmetric invariant with respect to all Rθ convex bodies in R2n so that for

every ξ ∈ S2n−1

µ(K ∩Hξ) ≤ µ(L ∩Hξ),

does it follow that

µ(K) ≤ µ(L) ?

Note that the problem is stated for any measure with positive continuous

density. The positivity assumption on f is necessary, because otherwise one

may assume that the density is identically zero where the affirmative answer

to the problem holds trivially in all dimensions.

4.2 The Fourier analytic connection to the prob-
lem

Let 1 ≤ k < 2n and let H be an (2n − k)−dimensional subspace of R2n.

As it is done for the complex Busemann-Petty problem and the modified
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Busemann-Petty problem, we define a lower-dimensional section function.

We fix an orthonormal basis e1, . . . , ek in the orthogonal subspace H⊥. For

any convex body D in R2n and any even positive continuous function f on

R2n we define the (2n− k)−dimensional parallel section function Af,D,H as

a function on Rk such that

Af,D,H(u) =
∫

{x∈R2n:(x,e1)=u1,...,(x,ek)=uk}

χ(‖x‖D)f(x)dx, u ∈ Rk. (4.2.1)

The original lower-dimensional parallel section function that corresponds

to the (n − k)-dimensional volume of the section of D with a subspace H

(put n instead of 2n and f = 1), was defined in [K8]. Note that at 0 the

function Af,D,H measures the central section of the body D by the subspace

H. Passing to polar coordinates on H we have that

Af,D,H(0) = µ(D ∩H) =
∫
H
χ(‖x‖D)f(x)dx

=
∫

S2n−1∩H

(∫ ‖θ‖−1
D

0
r2n−3f(rθ)dr

)
dθ. (4.2.2)

If D is infinitely smooth and f ∈ C∞(R2n), the function Af,D,H is in-

finitely differentiable at the origin (see [K9, Lemma 2.4]). So, we consider the

distribution |u|−q−k2 /Γ(−q/2) and replace A by Af,D,H in the regularization

argument, described in Section 1.4. Then the function
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q 7−→

〈
|u|−q−k2

Γ(− q
2)
, Af,D,H(u)

〉
(4.2.3)

is an entire function of q ∈ C. If q = 2m, m ∈ N ∪ {0}, then〈
|u|−q−k2

Γ(− q
2)

∣∣∣
q=2m

, Af,D,H(u)

〉

=
(−1)m|Sk−1|

2m+1k(k + 2) · · · (k + 2m− 2)
∆mAf,D,H(0),

Remark. If a body D is m-smooth (or infinitely) and f ∈ Cm(R2n), or

C∞(R2n)) it is easy for one to see that the function x 7→ |x|−m2

∫ |x|2
‖x‖K

0 r2n−3f
(
r x
|x|
)
dr

is also m-times, (infinitely) continuously differentiable on R2n \ {0}.

The proof of following proposition is similar to that of Proposition 2.2.1

in Chapter 2.

Proposition 4.2.1. Let D be an infinitely smooth origin symmetric con-

vex body in R2n, f ∈ C∞(R2n), and 1 ≤ k < 2n. Then for every (2n −

k)−dimensional subspace H of R2n and any q ∈ R, −k < q < 2n− k,

〈
|u|−q−k2

Γ(− q
2)
, Af,D,H(u)

〉

=
2−q−kπ−

k
2

Γ
( q+k

2

) ∫
S2n−1∩H⊥

(
|x|−2n+k+q

2

∫ |x|2
‖x‖D

0
r2n−k−1−qf

(
r
x

|x|2
)
dr
)∧

(θ)dθ.

(4.2.4)
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Now, if m ∈ N ∪ {0},

∆mAf,D,H(0)

=
(−1)m

(2π)k

∫
S2n−1∩H⊥

(
|x|−2n+k+2m

2

∫ |x|2
‖x‖D

0
r2n−k−1−2mf

(
r
x

|x|2
)
dr
)∧

(θ)dθ

(4.2.5)

The following (elementary) inequality is similar to Lemma 1 in [Zv].

Lemma 4.2.1. Let a, b > 0 and let α be a non-negative function on (0,max{a, b}]

so that the integrals below converge. Then

∫ a

0
t2n−1α(t)dt− a2

∫ a

0
t2n−3α(t)dt ≤

∫ b

0
t2n−1α(t)dt− a2

∫ b

0
t2n−3α(t)dt.

(4.2.6)

4.3 Measure of sections and k-intersection bodies

As mentioned in Section 4.1, we can assume that the density function is Rθ-

invariant. This simple observation plays an important role to the solution

of the problem.

Lemma 4.3.1. Suppose f is an even non-negative continuous function on

R2n and µ is a measure with density f. Then there exists an even non-
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negative continuous function f̃ that is invariant with respect to all rotations

Rθ such that

µ(D) =
∫
D f̃(x)dx and µ(D ∩Hξ) =

∫
D∩Hξ f̃(x)dx,

for every closed bounded invariant with respect to all Rθ set D in R2n and

ξ ∈ S2n−1.

Proof. We define f̃(x) = 1
2π

∫ 2π
0 f(Rθx)dθ, for every x ∈ R2n. Then for

every compact invariant with respect to all Rθ set D in R2n,

∫
D
f̃(x)dx =

1
2π

∫
D

∫ 2π

0
f(Rθx)dθdx

=
1

2π

∫ 2π

0

∫
R−1
θ D

f(y)dydθ = µ(D),

since R−1
θ D = D, for all θ ∈ [0, 2π].

Moreover, since central sections of complex convex bodies by complex

hyperplanes correspond to convex bodies in R2n−2 that are also invariant

with respect to the Rθ rotations, we similarly get that for every ξ ∈ S2n−1,

µ(D ∩Hξ) =
∫
D∩Hξ

f̃(x)dx.

Now, we are ready to express the measure of the central sections in terms

of the Fourier transform.
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Theorem 4.3.1. Suppose K is an infinitely smooth origin symmetric in-

variant with respect to all Rθ convex body in R2n, n ≥ 2, and f is an in-

finitely differentiable even positive and Rθ-invariant function on R2n. Then

for every ξ ∈ S2n−1

µ(K ∩Hξ) =
1

2π

(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ) (4.3.1)

In order to prove Theorem 4.3.1 we need the following:

Lemma 4.3.2. Let K and f as in Theorem 4.3.1. Then for every ξ ∈ S2n−1

the Fourier transform of the distribution |x|−2n+2
2

∫ |x|2
‖x‖K

0 r2n−3f(r x
|x|2 )dr is

a constant function on S2n−1 ∩H⊥ξ .

Proof. The function ‖x‖−1
K is invariant with respect to all Rθ (see Section

1.3), so, since f is Rθ-invariant it is easy to see that the function

|x|−2n+2
2

∫ |x|2
‖x‖K

0
r2n−3f(r

x

|x|2
)dr

is a continuous function which is also invariant with respect to all rotations

Rθ. By the connection between the Fourier transform of distributions and

linear transformations, its Fourier transform is also invariant with respect

to all Rθ. As mentioned in the Introduction, the space H⊥ξ is spanned by
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the vectors ξ and ξ⊥. So every vector in S2n−1 ∩ H⊥ξ is a rotation Rθ, for

some θ ∈ [0, 2π], of ξ and hence the Fourier transform of

|x|−2n+2
2

∫ |x|2
‖x‖K

0
r2n−3f(r

x

|x|2
)dr

is a constant function on S2n−1 ∩H⊥ξ .

Proof of Theorem 4.3.1. Let ξ ∈ S2n−1. In formula (4.2.5) we put Hξ =

H, k = 2 and m = 0. Then, by the definition of the lower-dimensional

section function Af,D,H(0), equation (4.2.2), we have that

µ(K ∩Hξ) =
1

(2π)2

∫
S2n−1∩H⊥ξ

(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(η)dη.

By Lemma 4.3.2, the function under the integral is constant on the circle

S2n−1 ∩H⊥ξ . Since ξ ∈ H⊥ξ we have that

µ(K ∩Hξ) =
1

(2π)2
2π
(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)

which proves the theorem.

As in the case of the complex Busemann-Petty problem, the property of

a body to be a 2-intersection body is closely related to the solution of the

complex Busemann-Petty problem for arbitrary measures.
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Theorem 4.3.2. The solution of the complex Busemann-Petty problem for

arbitrary measures in Cn has an affirmative answer if and only if every

origin symmetric invariant with respect to all Rθ convex body in R2n is a

2-intersection body.

The proof of Theorem 4.3.2 will follow from the Remarks and the next

lemmas.

Remark 1. To prove the affirmative part of the problem it is enough to

consider infinitely smooth origin symmetric invariant with respect to all Rθ

bodies. This is true because one can approximate, in the radial metric, from

inside the body K and from outside the body L by infinitely smooth convex

invariant with respect to all Rθ bodies. Then if the affirmative answer holds

for infinitely smooth bodies it also holds in the general case.

Remark 2. Let D be an origin symmetric convex body which is not a k-

intersection body. Then, there exists a sequence of infinitely smooth convex

bodies with strictly positive curvature which are not k-intersection bodies

that converges in the radial metric to D, (see [K9, Lemma 4.10]). If, in

addition, D is invariant with respect to all Rθ, one can choose a sequence of

bodies with the same property.
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Remark 3. A simple approximation argument allows us to prove Theo-

rem 4.3.2 only for measures whose density is an infinitely differentiable even

positive and Rθ-invariant function on R2n. Let f be the even positive con-

tinuous Rθ-invariant density function of a measure µ, as it is defined in the

Introduction. Then there exists an increasing sequence gn of even positive

functions in C∞(R2n) such that gn(x)χ(‖x‖D)→ f(x)χ(‖x‖D), a.e., for ev-

ery compact set D. Then by the Monotone Convergence Theorem we have

that

∫
R2n gn(x)χ(‖x‖D)dx→ µ(D) and

∫
H gn(x)χ(‖x‖D)dx→ µ(H ∩D),

as n → ∞, for every subspace H of R2n. In addition, by Lemma 4.3.1, we

may assume that every gn is also Rθ-invariant.

Now we are ready to prove the affirmative part of the complex Busemann-

Petty problem for arbitrary measures.

Lemma 4.3.3. Suppose K and L are infinitely smooth origin symmetric

invariant with respect to all Rθ convex bodies in R2n so that K is a 2-

intersection body and let f be an infinitely differentiable even positive Rθ-

invariant function on R2n. Then, if for every ξ ∈ S2n−1

µ(K ∩Hξ) ≤ µ(L ∩Hξ) (4.3.2)

82



then

µ(K) ≤ µ(L).

Proof. By the Remark before Proposition 4.2.1 and Proposition 1.4.2, the

Fourier transform of the distributions

|x|−2n+2
2

∫ |x|2
‖x‖K

0 r2n−3f
(
r x
|x|2

)
dr and |x|−2n+2

2

∫ |x|2‖x‖L
0 r2n−3f

(
r x
|x|2

)
dr

are homogeneous of degree −2 and continuous functions on R2n \ {0}. So,

by Theorem 4.3.1, the inequality (4.3.2) becomes

(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)

≤
(
|x|−2n+2

2

∫ |x|2
‖x‖L

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ).

Since K is an infinitely smooth 2-intersection body, by Proposition 1.4.4

and Proposition 1.4.2, the Fourier transform of the distribution ‖x‖−2
K is a

non-negative continuous, outside the origin, function on R2n. Multiplying

both sides of the latter inequality by
(
‖x‖−2

K

)∧ and applying the spherical

version of Parseval, we have that

∫
S2n−1

(
‖x‖−2

K

)∧(ξ)
(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)dξ

≤
∫
S2n−1

(
‖x‖−2

K

)∧(ξ)
(
|x|−2n+2

2

∫ |x|2
‖x‖L

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)dξ,
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which gives

∫
S2n−1

‖x‖−2
K

∫ ‖x‖−1
K

0
r2n−3f(rx)drdx

≤
∫
S2n−1

‖x‖−2
K

∫ ‖x‖−1
L

0
r2n−3f(rx)drdx. (4.3.3)

We use the elementary inequality, equation (4.2.6), with a = ‖x‖−1
K , b =

‖x‖−1
L and α(r) = f(rx) and integrate over S2n−1. Then

∫
S2n−1

(∫ ‖x‖−1
K

0
r2n−1f(rx)dr

)
dx−

∫
S2n−1

‖x‖−2
K

(∫ ‖x‖−1
K

0
r2n−3f(rx)dr

)
dx

≤
∫
S2n−1

(∫ ‖x‖−1
L

0
r2n−1f(rx)dr

)
dx−

∫
S2n−1

‖x‖−2
K

(∫ ‖x‖−1
L

0
r2n−3f(rx)dr

)
dx

(4.3.4)

We add (4.3.3) and (4.3.4) and have that

∫
S2n−1

(∫ ‖x‖−1
K

0
r2n−1f(rx)dr

)
dx ≤

∫
S2n−1

(∫ ‖x‖−1
K

0
r2n−1f(rx)dr

)
dx

which immediately implies that

µ(K) ≤ µ(L).

For the negative part we need a perturbation argument to construct a

body that will give a counter-example to the problem. The following lemma

(without the assumption of invariance with respect to Rθ rotations) was

84



proved in [Zv, Proposition 2], (see also [K9, Lemma 5.16]). The new body

immediately inherits the additional property of invariance with respect to

all Rθ of the original convex body.

Lemma 4.3.4. Let L be an infinitely smooth origin symmetric convex body

with positive curvature and let f, g ∈ C2(R2n), such that f is strictly positive

on R2n. For ε > 0 we define a star body K so that

∫ ‖x‖−1
K

0
t2n−3f(tx)dt =

∫ ‖x‖−1
L

0
t2n−3f(tx)dt− εg(x), ∀x ∈ S2n−1.

Then, if ε is small enough the body K is convex. Moreover, if L is invariant

with respect to all Rθ, and f, g are Rθ-invariant then K is also invariant

with respect to all Rθ.

Lemma 4.3.5. Let f ∈ C∞(R2n) is an even positive Rθ-invariant func-

tion. Suppose L is an infinitely smooth origin symmetric invariant with

respect to all Rθ convex body in R2n with positive curvature which is not a

2-intersection body. Then there exists an origin symmetric invariant with

respect to all Rθ convex body K in R2n so that for every ξ ∈ S2n−1

µ(K ∩Hξ) ≤ µ(L ∩Hξ)

but

µ(K) > µ(L).
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Proof. The body L is infinitely smooth, so, by Proposition 1.4.2, the

Fourier transform of ‖x‖−2
L is a continuous function on R2n. Since L is not a

2-intersection body, by Proposition 1.4.4 there exists an open set Ω ⊂ S2n−1

where the Fourier transform of ‖x‖−2
L is negative. We can assume that Ω is

invariant with respect to rotations Rθ since L is.

We define an even non-negative invariant with respect to all Rθ function

h ∈ C∞(S2n−1) whose support is in Ω. We extend h to an even homo-

geneous function h( x
|x|2 )|x|−2

2 of degree −2 on R2n. Then, by Proposition

1.4.2, the Fourier transform of h( x
|x|2 )|x|−2

2 is an even homogeneous function

g( x
|x|2 )|x|−2n+2

2 of degree −2n + 2 on R2n, with g ∈ C∞(S2n−1). Moreover,

g is also invariant with respect to rotations Rθ, since the Fourier transform

preserves linear transformations.

The assumptions for the body L allow us to apply Lemma 4.3.4 and take

ε > 0 small enough to define a convex body K by

|x|−2n+2
2

∫ |x|2
‖x‖K

0
t2n−3f

(
t
x

|x|2
)
dt

= |x|−2n+2
2

∫ |x|2
‖x‖L

0
t2n−3f

(
t
x

|x|2
)
dt− εg

( x

|x|2
)
|x|−2n+2

2 .

We apply Fourier transform to both sides of the latter inequality. Then,

by Theorem 4.3.1, since h ≥ 0, we obtain the following inequality for the
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measures of the central sections of K and L by the subspace Hξ,

µ(K ∩Hξ) =
1

2π

(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)

=
1

2π

(
|x|−2n+2

2

∫ |x|2
‖x‖L

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)− (2π)2n−1εh(ξ)

≤ µ(L ∩Hξ)

On the other hand, the function h is positive only where
(
‖·‖−2

L

)∧ is negative.

So, for every ξ ∈ S2n−1,

(
‖ · ‖−2

L

)∧(ξ)
(
|x|−2n+2

2

∫ |x|2
‖x‖K

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)

=
(
‖ · ‖−2

L

)∧(ξ)
(
|x|−2n+2

2

∫ |x|2
‖x‖L

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ)

−(2π)2n
(
‖ · ‖−2

L

)∧(ξ)εh(ξ)

>
(
‖ · ‖−2

L

)∧(ξ)
(
|x|−2n+2

2

∫ |x|2
‖x‖L

0
r2n−3f

(
r
x

|x|2
)
dr
)∧

(ξ),

Now, we integrate the latter inequality over S2n−1 and apply the spherical

version of Parseval’s identity. Then similarly to Lemma 4.3.3, we apply the

elementary inequality for integrals, Lemma 4.2.1, and conclude that

µ(K) > µ(L).
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4.4 The solution of the problem

To prove the main result of this paper we need to determine the dimensions

in which an origin symmetric invariant with respect to all Rθ convex body

in R2n is a 2-intersection body.

Theorem 4.4.1. The solution to the complex Busemann-Petty problem for

arbitrary measures is affirmative if n ≤ 3 and negative if n ≥ 4.

Proof : It is known that an origin symmetric invariant with respect to

Rθ, convex body in R2n, n ≥ 3, is a k-intersection body if k ≥ 2n − 4 (see

Theorem 2.4.2). Hence, we obtain an affirmative answer to the complex

Busemann-Petty problem for arbitrary measures if n ≤ 3.

Now, suppose that n ≥ 4. The unit ball Bn
q (Cn) of the complex space

`nq , q > 2, considered as a subset of R2n :

Bn
q (Cn) = {x ∈ R2n : ‖x‖q =

(
(x2

11 + x2
12)q/2 + · · ·+ (x2

n1 + x2
n2)q/2

)1/q ≤ 1}

provides a counter-example for the Lebegue measure (f = 1), of a body that

is not a k-intersection body for k < 2n − 4 (see Chapter 6). By Proposi-

tion 1.4.4 this implies that for n ≥ 4 the distribution ‖x‖−2
q is not positive

definite. Then the result follows by Theorem 4.3.2.
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Chapter 5

Extremal sections of complex
`p-balls, 0 < p ≤ 2

5.1 The complex volume of sections

In this chapter we present a continuation to the study of extremal sections of

`p−balls. We characterize the extremal sections of complex `p-balls Bp(Cn),

for 0 < p ≤ 2, (see Section 1.1 for the history).

Theorem 5.1.1. Let 0 < p ≤ 2. For ξ = (ξ1, . . . , ξn) ∈ Cn, ξ 6= 0. The

(n − 1)−dimensional complex volume of Bp(Cn) ∩ Hξ is minimal if |ξ1| =

. . . = |ξn|, and it is maximal if ξ has only one non-zero coordinate.

The part of this theorem related to the maximal sections was established

earlier by Meyer and Pajor [MP], Corollary 2.5 for 1 ≤ p ≤ 2, and by Barthe

[Bar] for 0 < p < 1. In fact, these papers cover a more general case of the

unit balls of the real spaces `np (lm2 ) and show that, for every integer k, the
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”standard” sections of these balls of dimension km are minimal for p ≥ 2

and maximal for 0 < p ≤ 2.

We prove Theorem 5.1.1 by generalizing the method of [K2] to the com-

plex case. Like in the real case in [K2], the minimal and maximal sections

are identified simultaneously.

Recall that we identify `p(Cn) with the real 2n-dimensional space equipped

with the norm

‖x‖p =
[
(x2

11 + x2
12)

p
2 + . . .+ (x2

n1 + x2
n2)

p
2

] 1
p (5.1.1)

where

Cn 3 x = (x11 + ix12, . . . , , xn1 + ixn2) 7→ (x11, x12, . . . , xn1, xn2) ∈ R2n.

As mentioned in the Section 1.3, for every ξ ∈ Cn, this mapping identifies

the complex hyperplane Hξ perpendicular to ξ ∈ Cn with the (2n − 2)-

dimensional subspace orthogonal to the vectors

ξ = (ξ11, ξ12, . . . , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, . . . ,−ξn2, ξn1).

We use the same notation Hξ for this subspace and for the unit ball of the

complex `p space when viewed as a subset of R2n. Then

Volcn−1

(
Bp(Cn) ∩Hξ

)
= Vol2n−2

(
Bp(Cn) ∩Hξ

)
,
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with

Bp(Cn) = {(x11 + ix12, . . . xn1 + ixn2) ∈ Cn :
n∑
j=1

(x2
j1 + x2

j2)
p
2 ≤ 1}

= {(x11, . . . xn1, xn2) ∈ R2n :
n∑
j=1

(x2
j1 + x2

j2)
p
2 ≤ 1}. (5.1.2)

5.2 The Fourier transform formula for sections of
Bp(Cn).

For every origin symmetric star body K and every (2n − 2)-dimensional

subspace H, the polar formula for the volume of the central section of K by

H, (see equation (1.2.1)), is given by

Vol2n−2(K ∩H) =
1

(2n− 2)

∫
Sn−1∩H

‖x‖−2n+2dx. (5.2.1)

On the other hand, if K is infinitely smooth, then using Theorem 2.2.1,

with k = 2 and m = 0, we have that

Vol2n−2(K ∩H) =
1

(2π)2

1
(2n− 2)

∫
Sn−1∩H⊥

(
‖x‖−2n+2

K

)∧(θ)dθ. (5.2.2)

Although the bodies Bp(Cn) are not always smooth, we assume that

formula (5.2.2) holds for the norm ‖ ·‖p introduced in (5.1.1). In Section 5.4

we present a simple approximation argument proving this assumption.

Lemma 5.2.1. Let 0 < p < ∞, y = (y11, y12 . . . yn1, yn2) ∈ R2n. Then the

Fourier transform of ‖ · ‖−2n+2
p , in the sense of distributions in R2n, is equal
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to a locally integrable function on R2n

(
‖ · ‖−2n+2

p

)∧(y)

=
p

Γ
(

2n−2
p

) ∫ ∞
0

t
( n∏
j=1

∫
R2

e−it(yj1xj1+yj2xj2)e−(x2
j1+x2

j2)p/2dxj1 dxj2

)
dt.

Proof : From the definition of the Gamma function, equation (1.2.7), we

have that

‖x‖−2n+2
p =

p

Γ
(

2n−2
p

) ∫ ∞
0

t2n−3e−t
p‖x‖ppdt. (5.2.3)

We first fix t > 0 and compute the Fourier transform of the function x 7−→

e−t
p‖x‖pp : for any y ∈ R2n, making a change of variables tx = z we get

(
e−t

p‖x‖pp
)∧(y) =

∫
R2n

e−i(y,x)e−t
p‖x‖ppdx =

∫
R2n

e−i(y,z/t)e−‖z‖
p
pt−2ndz

= t−2n
n∏
j=1

∫
R2

e−i(
yj1
t
zj1+

yj2
t
zj2)e−(z2j1+z2j2)

p
2
dzj1dzj2.(5.2.4)

The function ‖x‖−2n+2
p is locally integrable on R2n. Using (5.2.3), (5.2.4),

Fubini and the change of variables 1
t = s, we get that for any even test

function φ, 〈(
‖ · ‖−2n+2

p

)∧
, φ
〉

=
〈
‖x‖−2n+2

p , φ̂
〉

=
∫

R2n

‖x‖−2n+2
p φ̂(x)dx =

p

Γ
(

2n−2
p

) ∫
R2n

(∫ ∞
0

t2n−3e−t
p‖x‖ppdt

)
φ̂(x)dx

=
p

Γ
(

2n−2
p

) ∫ ∞
0

t2n−3

∫
R2n

e−t
p‖x‖pp φ̂(x)dx dt
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=
p

Γ
(

2n−2
p

) ∫ ∞
0

t2n−3

∫
R2n

(
e−t

p‖x‖pp
)∧(y)φ(y)dy dt

=
p

Γ
(

2n−2
p

) ∫ ∞
0

t−3
(∫
R2n

φ(y)×

n∏
j=1

∫
R2

e−i(
yj1
t
zj1+

yj2
t
zj2)e−(z2j1+z2j2)

p
2
dzj1dzj2 dy

)
dt

=
p

Γ
(

2n−2
p

) ∫
R2n

φ(y)×

∫ ∞
0

s
( n∏
j=1

∫
R2

e−is(yj1zj1+yj2zj2)e−(z2j1+z2j2)p/2dzj1dzj2

)
dsdy.

Since φ is an arbitrary even test function, the result follows.

Remark. We define a function g on R2 by

g
(
yj1, yj2

)
:=
∫
R2

e−i(yj1zj2+yj2zj2)e−(z2j1+z2j2)
p
2
dzj1dzj2.

The function
(
zj1, zj2

)
7−→ e−(z2j1+z2j2)

p
2 is a radial function on R2, so is its

Fourier transform. Therefore,

g
(
tyj1, tyj2

)
= g(t

√
y2
j1 + y2

j2, 0)

f
(
t(y2

j1 + y2
j2)1/2

)
=

∫
R2

e−it(y
2
j1+y2j2)

1
2 zj1e−(z2j1+z2j2)

p
2
dzj1dzj2.

The latter formula defines a function f on R that we are going to use

throughout this chapter:

f(u) =
∫
R2

e−iuzj1e−(z2j1+z2j2)
p
2
dzj1dzj2, u ∈ R. (5.2.5)
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The following simple observation has played an important role in the

current study. Here we only state it as a lemma, (see for example Chapter

2, Lemma 2.3.1).

Lemma 5.2.2. Let f defined in (5.2.5) and ξ ∈ S2n−1. Then, the function

ξ 7−→
n∏
j=1

f
(
t(ξ2

j1 + ξ2
j2)1/2

)
is constant on S2n−1 ∩H⊥ξ .

Now, we are ready to obtain the (2n − 2)-dimensional volume of the

sections in terms of the Fourier transform.

Theorem 5.2.1. Let 0 < p ≤ 2. For every ξ ∈ S2n−1

Vol2n−2

(
Bp(Cn) ∩Hξ

)
=

1
2π

1
(2n− 2)

p

Γ
(

2n−2
p

) ∫ ∞
0

t
n∏
j=1

f
(
t(ξ2

j1 + ξ2
j2)1/2

)
dt

(5.2.6)

Proof: Fix ξ ∈ S2n−1. We apply formula (5.2.2) with K = Bp(Cn) and

H = Hξ, (via the approximation argument of Section 5.4). Then

Vol2n−2

(
Bp(Cn) ∩Hξ

)
=

1
(2π)2

1
(2n− 2)

∫
S2n−1∩H⊥ξ

(
‖x‖−2n+2

p

)∧(y)dy

By Lemma 5.2.1, the Remark and Fubini’s theorem, the latter quantity is

equal to

1
(2π)2

1
(2n− 2)

p

Γ
(

2n−2
p

) ∫
S2n−1∩H⊥ξ

∫ ∞
0

t

n∏
j=1

f
(
t(y2

j1 + y2
j2)1/2

)
dt dy
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=
1

(2π)2

1
(2n− 2)

p

Γ
(

2n−2
p

) ∫ ∞
0

t

∫
S2n−1∩H⊥ξ

n∏
j=1

f
(
t(y2

j1 + y2
j2)1/2

)
dy dt.

(5.2.7)

Now, by Lemma 5.2.2, the function under the inner integral is constant on

the circle S2n−1 ∩H⊥ξ .

Hence, the inner integral in (5.2.7) is equal to

∫
S2n−1∩H⊥ξ

n∏
j=1

f
(
t(y2

j1 + y2
j2)1/2

)
dy =

∫
S2n−1∩E⊥ξ

n∏
j=1

f
(
t(ξ2

j1 + ξ2
j2)1/2

)
dy

= 2π
n∏
j=1

f
(
t(ξ2

j1 + ξ2
j2)1/2

)
.

The latter equality and (5.2.7) imply (5.2.6).

5.3 Extremal sections

The proof of the main result of this chapter, Theorem 5.1.1, immediately

follows from Theorem 5.2.1 and the next lemma.

Lemma 5.3.1. If 0 < p ≤ 2 then the function f(
√
·) is log-convex on

[0,+∞).

Proof: For every 0 < p ≤ 2, the function exp(−| · |p/2) is completely mono-

tone, so by Bernstein’s Theorem (see [W]), there exists a measure µp on

[0,+∞) so that, for every t ∈ R,
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e−|t|
p
2 =

∫ ∞
0

e−utdµp(u)⇒ e−|t|
p

=
∫ ∞

0
e−ut

2
dµp(u)

⇒ e−(x2
1+x2

2)
p
2 =

∫ ∞
0

e−u(x2
1+x2

2)dµp(u), x1, x2 ∈ R.

Therefore, by Fubini’s theorem,

∫
R
e−isx1e−(x2

1+x2
2)
p
2 dx1 =

∫
R
e−isx1

∫ ∞
0

e−u(x2
1+x2

2)dµp(u)dx1

=
∫ ∞

0
e−ux

2
2

∫
R
e−isx1e−ux

2
1dx1dµp(u)

=
√
π

∫ ∞
0

e−ux
2
2

1√
u
e−

s2

4udµp(u).

Now integrate the latter by x2 over R. Using Fubini and the well-known

identity
∫

R e
−t2dt =

√
π, we get the following expression for the function f :

f(s) =
∫

R

∫
R
e−isx1e−(x2

1+x2
2)
p
2 dx1dx2

=
√
π

∫
R

∫ ∞
0

e−ux
2
2

1√
u
e−s

2/4udµp(u)dx2

=
√
π

∫ ∞
0

1√
u
e−s

2/4u
(∫

R
e−ux

2
2dx2

)
dµp(u)

⇒ f(s) = π

∫ ∞
0

1
u
e−s

2/4udµp(u).

For any α1, α2 > 0, using the latter formula and the Cauchy-Schwartz in-

equality, we get
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(
f
(√a1 + a2

2

))2

= π2
[∫ ∞

0

1√
u
e−a1/8ue−a2/8u 1√

u
dµp(u)

]2

≤ π2
(∫ ∞

0

1
u
e−a1/4udµp(u)

)(∫ ∞
0

1
u
e−a2/4udµp(u)

)
= f(

√
a1)f(

√
a2)

which implies that f(
√
·) is log-convex.

Now, to prove Theorem 5.1.1, note that the log-convexity of f immedi-

ately implies that for any 0 < α1 < β1 < β2 < α2, α
2
1 + α2

2 = β2
1 + β2

2 = 1,

we have

f(tβ1)f(tβ2) ≤ f(tα1)f(tα2), ∀t > 0.

Therefore, the integrand in the formula of Theorem 5.2.1 decreases point-

wise when we change the vector ξ = (ξ1, ..., ξn) ∈ Cn so that it remains a

unit vector but the absolute values of any two coordinates become closer

to each other. In particular, the integrand is maximal when only one of

the coordinates is non-zero, and minimal when the absolute values of the

coordinates are equal. The latter property immediately implies the result of

Theorem 5.2.1.
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5.4 An approximation argument for Bp(Cn)

In this section we prove that formula (5.2.2) can be applied to the bodies

Bp(Cn) and subspaces Hξ in spite of the fact that these bodies are not always

smooth. This will give a formally correct proof of the formula of Theorem

5.2.1.

For ε > 0, we introduce a star body Bp,ε(Cn) defined as the unit ball of

the norm

‖x‖p,ε =
[(

(x2
11 + x2

12) + ε(x2
21 + · · ·+ x2

n2)
) p

2 + · · ·

· · ·+
(
(x2
n1 + x2

n2) + ε(x2
11 + · · ·+ x2

(n−1)2)
) p

2

] 1
p
.

Clearly, ‖x‖p,ε is a continuous function of ε, and ‖ · ‖p,ε ∈ C∞(S2n−1).

Moreover, ‖x‖p,ε −→ ‖x‖p, as ε→ 0+, uniformly with respect to x ∈ S2n−1.

Combining (5.2.1) and (5.2.2), with K = Bp,ε(Cn) and H = Hξ, we get

that

∫
S2n−1∩Hξ

‖x‖−2n+2
p,ε dx =

1
(2π)2

∫
S2n−1∩H⊥ξ

(
‖x‖−2n+2

p,ε

)∧(θ)dθ. (5.4.1)

Obviously, the left-hand side of the latter equality converges to the same

integral with ‖x‖p in place of ‖x‖p,ε, as ε→ 0. Therefore, it suffices to prove

that the same happens in the right-hand side.
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Recall that the measure µp, 0 < p ≤ 2 introduced in Section 5.3, has

the property that, for any x1, x2, . . . x2n ∈ R and ε > 0,

e−
(
x2
1+x2

2+ε(x2
3+···+x2

2n)
) p

2

=
∫ ∞

0
e−v
(
x2
1+x2

2+ε(x2
3+···+x2

2n)
)
dµp(v) (5.4.2)

where ε > 0. Let u = (u1, . . . , un) ∈ Rn
+ = [0,∞) × · · · × [0,∞). We shall

use the same notation µp to denote the product measure on Rn
+, µp(u) =

µp(u1) · · ·µp(un).

Following the steps of Lemma 5.2.1 and using formula (5.4.2), one can

easily show that the Fourier transform of ‖ · ‖−2n+2
p,ε (in the sense of distri-

butions) is given by the formula

(
‖ · ‖−2n+2

p,ε

)∧(y)

=
p

Γ
(

2n−2
p

) ∫ ∞
0

t−3

∫
Rn+

n∏
j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(y2j1+y2j2)

dµp(u) dt, (5.4.3)

where Uj(u) = uj +ε
n∑
i=1
i 6=j

ui. Therefore, the right-hand side of (5.4.2) is equal

to

1
(2π)2

p

Γ
(

2n−2
p

) ×
∫ ∞

0
t−3

∫
Rn+

∫
S2n−1∩H⊥ξ

n∏
j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(y2j1+y2j2)

dy dµp(u) dt. (5.4.4)
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In the same way, as in the proof of Theorem 5.2.6, one can show that

for every y ∈ S2n−1 ∩H⊥ξ

n∏
j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(y2j1+y2j2)

=
n∏
j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(ξ2j1+ξ2j2)

,

so the inner integral in (5.4.4) equals to

2π
n∏
j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(ξ2j1+ξ2j2)

,

and the expression in (5.4.4) equals to

1
2π

p

Γ
(

2n−2
p

) ∫ ∞
0

t−3

∫
Rn+

n∏
j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(ξ2j1+ξ2j2)

dµp(u) dt. (5.4.5)

It remains to prove that the latter quantity converges to

1
2π

p

Γ
(

2n−2
p

) ∫ ∞
0

t−3

∫
Rn+

n∏
j=1

π

uj
e
− 1

4ujt
2 (ξ2j1+ξ2j2)

dµp(u) dt, (5.4.6)

as ε→ 0, because (5.4.6) is equal to

1
(2π)2

∫
Sn−1∩E⊥ξ

(
‖x‖−2n+2

p

)∧(θ)dθ,

which follows from Lemma 5.2.1 and (5.4.2), in the same way as it was done

for the norm ‖ · ‖p,ε.

The pointwise convergence of functions under the integral in (5.4.4) is

obvious, so we can apply the dominated convergence theorem to finish our

argument. To do that, recall the properties of the measure µp on R (see
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for example [Z]). The measure µp has density that decreases at infinity like

|v|−1−p/2. Besides,
∫∞

0
1
v dµp(v) < ∞. Now, break the integral over dt in

(10) into two integrals: from 1 to ∞ and from 0 to 1. To find a dominating

function in the integral from 1 to ∞, just estimate the exponential by 1.

In the integral from 0 to 1, use the fact that exp(−1/x2) ≤ kx1+p/8 for

every x ∈ [0,∞) and some fixed k > 0. The integrability of the dominating

function follows from the order of decay of the density of the measure µp.
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Chapter 6

Bp(Cn), p > 2, is not a
k−intersection body for
k ∈ (0, 2n− 4).

6.1 Introductory

In this chapter, we prove that the complex `p-ball with p > 2 is not a

k-intersection body, if 1 ≤ k < 2n − 4. In a more general concept, if we

consider the body Bp(Cn) as a subset of R2n with norm ‖ · ‖p, (introduced

in Section 1.3), we prove that the normed space
(
R2n, ‖ ·‖p

)
does not embed

isometrically to any L−q, q > 0, if q < 2n− 4. This proves Theorem 2.4.1.

The proof is based on investigating the moments of the Fourier transform

of the function e−|·|
p
. This method was used in [K1], (see also [K3] or [K9,

Lemma 4.12]), proving the real version of this problem.

For x = (x11, x12, . . . , xn1, xn2) ∈ R2n, the norm of the complex `p-ball

102



is defined as

‖x‖p =
[
(x2

11 + x2
12)

p
2 + · · ·+ (x2

n1 + x2
n2)

p
2
] 1
p .

6.2 Moments

For any p > 0 we define the function δp as the Fourier transform of the

function R2 3 (x1, x2) 7−→ 1
4e
−(x2

1+x2
2)
p
2 . This is clearly a radial function,

so, by the well-known connection between the Fourier transform and linear

transformations, δp will also be a radial function.

Lemma 6.2.1. Let p > 0. Then, for every (ξ1, ξ2) ∈ R2, the Fourier trans-

form of the function 1
4e
−|·|p2 is given by

δp(ξ) =
∫ ∞

0
re−r

p
J0(ξr)dr,

where ξ = (ξ2
1 + ξ2)

1
2 and J0 is the Bessel function of the first kind of order

0.

Proof : For every (ξ1, ξ2) ∈ R2, we compute the Fourier transform of

1
4e
−(x2

1+x2
2)
p
2 .
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(1
4
e−(x2

1+x2
2)
p
2
)∧

(ξ1, ξ2) =
1
4

∫
R2

e−i(x1ξ1+x2ξ2)e−(x2
1+x2

2)
p
2 dx1dx2

=
1
4

∫
R2

e−ix1(ξ21+ξ22)1/2e−(x2
1+x2

2)
p
2 dx1dx2

=
∫ ∞

0

∫ ∞
0

cos(x1(ξ2
1 + ξ2

2)1/2)e−(x2
1+x2

2)
p
2 dx1dx2.

We write ξ = (ξ2
1 + ξ2

2)1/2, and make a change of variables into polar coor-

dinates. Then, the latter is equal to

∫ ∞
0

∫ π
2

0
cos(ξr cos θ)re−r

p
dθdr =

∫ ∞
0

re−r
p
(∫ π

2

0
cos(ξr cos θ)dθ

)
dr

=
∫ ∞

0
re−r

p
J0(ξr)dr = δp(ξ), (6.2.1)

where J0 is the Bessel function of the first kind of order 0.

As mentioned in Section 6.1, we want to compute the moments of δp. If

p is not an even integer, δp(t) behaves like t−p−2 at infinity. In particular,

lim
t→∞

tp+2δp(t) = 2p+2

[
Γ
(p+ 2

2

)]2

sin
πp

2
,

see [Rb2, Lemma 7.2] for details. If p is an even integer, then the function

decreases exponentially at infinity.

We consider the integral

Mp(α) =
∫

R
|t|αδp(t)dt. (6.2.2)
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By the properties of the Bessel functions of the first kind, J0 ∼ 1 near 0

and J0 ∼ 1√
t
, for t large enough. Therefore, the integral in (6.2.2) converges

absolutely for every α ∈ (−1, p+ 1).

Lemma 6.2.2. Let p > 2. Then, for every α ∈ (−1, p + 1), with α /∈

{0, 1, 3, . . . , 2[p2 ] + 1}.

Mp(α) =
4π3/2

p

Γ(α)Γ(−α+1
p )

Γ(−α+1
2 )Γ(α2 )

. (6.2.3)

In particular, Mp(α) > 0, if α ∈ (−1, 0) ∪ (0, 3) and Mp(α) < 0, if α ∈

(3,min{5, p+ 1}).

Proof : First we assume that α ∈ (−1,−1
2). We apply Fubini’s theorem

and a change of variables tr = s. Then formula (6.2.2) becomes

Mp(α) =
∫ ∞

0
r−αe−r

p
dr

∫
R
|s|αJ0(s)ds.

We use Parseval’s identity and formula (1.4.2). Then, by the definition of

the Bessel function of order 0 and the Beta function, the latter is equal to

−2Γ(α+ 1) sin
πα

2

∫ ∞
0

r−αe−r
p
dr

∫ 1

−1
|y|−1−α(1− y2)−1/2dy

= −2Γ(α+ 1) sin
πα

2
B
(−α

2
,
1
2

)∫ ∞
0

r−αe−r
p
dr. (6.2.4)
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Applying a change of variables, rp = s, we conclude that (6.2.4) is equal to

4π3/2

p

Γ(α)Γ(−α+1
p )

Γ(−α+1
2 )Γ(α2 )

, (6.2.5)

since Γ(x)Γ(1− x) = π
sinπx , for x ∈ C \ Z.

Let α ∈ C. The functions in (6.2.5) are analytic in the domain {−1 <

Reα < p+ 1, α 6= 0, 1, 3, . . . , 2[p2 ] + 1}. We apply analytic continuation from

the interval (−1,−1
2). Then, (6.2.5) remains valid for all α ∈ (−1, p + 1),

with α /∈ {0, 1, 3, . . . , 2[p2 ] + 1}.

To complete the proof, we only need to observe that Γ(x) > 0, if x > 0

or if x ∈ (−2k,−2k + 1), k ∈ N.

Now, let us compute the Fourier transform of the distribution ‖ · ‖−qp .

Lemma 6.2.3. Let p > 2 and ξ = (ξ11, ξ12, . . . , ξn1, ξn2) ∈ R2n. For −np <

q < 2n, the Fourier transform of the function ‖ · ‖−qp , in the sense of distri-

butions, is given by

(
‖ · ‖−qp

)∧(ξ) =
4np

Γ
( q
p

) ∫ ∞
0

s2n−q−1
n∏
j=1

δp(sξj)ds, (6.2.6)

where ξj = (ξ2
ji + ξ2

j2)
1
2 .

Proof : First we assume that 0 < q < 1. Let x = (x11, x12, . . . , xn1, xn2) ∈
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R2n, then by the definition of the Γ-function (see section 1.2), we have that

‖x‖−qp =
p

Γ
( q
p

) ∫ ∞
0

tq−1et
p‖x‖ppdt

=
p

Γ
( q
p

) ∫ ∞
0

tq−1
n∏
j=1

et
p(x2

j1+x2
j2)

p
2
dt. (6.2.7)

Now, we compute the Fourier transform. For every ξ = (ξ11, ξ12, . . . , ξn1, ξn2) ∈

R2n, we can apply Fubini’s theorem to (6.2.7) and have that

(
‖ · ‖−qp

)∧(ξ) =
p

Γ
( q
p

) ∫
R2n

e−ix·ξ
(∫ ∞

0
tq−1et

p‖x‖ppdt
)
dx

=
p

Γ
( q
p

) ∫ ∞
0

tq−1
(∫

R2n

(
et
p‖x‖pp

)∧(ξ)dξ
)
dt. (6.2.8)

We use the linearity of the Fourier transform and apply the change of vari-

ables y = tx. Then by Lemma 6.2.1, equation (6.2.8) is equal to

p

Γ
( q
p

) ∫ ∞
0

tq−1
(∫

R2n

n∏
j=1

(
e−t

p(x2
1j+x

2
2j)

p
2
)∧(ξ1j , ξ2j)dξ

)
dt

=
4np

Γ
( q
p

) ∫ ∞
0

t−2n+q−1
n∏
j=1

δp(ξj/t)dt.

Now, we make another change of variables, t−1 = s, and use Fubini’s theo-

rem, to have that the latter integral is equal to

4np
Γ
( q
p

) ∫ ∞
0

s2n−q−1
n∏
j=1

δp(ξjs)ds,

where ξj = (ξ2
1j + ξ2

2j)
1/2. The latter integral converges since −np < q < 2n.

This is because the function t 7→
n∏
j=1

δp(ξjs) behaves like t−np−2n at infinity,
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(see comments before Lemma 6.2.2). For q ∈ C with −np < q < 2n,

both sides in (6.2.6) are analytic functions in the domain {−np < Req <

2n}. We can apply analytic continuation from the interval (−1,−1
2). Then

(6.2.6) remains valid for all q ∈ (−np, 2n), (see [GS] for details on analytic

continuation).

Now, we are ready to prove the main result of this section.

Theorem 6.2.1. Let p > 2, n ≥ 4. Then, if q ∈ (0, 2n − 4), then the

distribution ‖x‖−qp is not positive definite.

Proof : Let p > 2, n ∈ N and q ∈ (−np, 2n). For ξ = (ξ1, ξ2, . . . , ξn−1, 1) ∈

Rn−1
+ with ξj = (ξ2

j1 + ξ2
j2)1/2, we consider the integral

I(α1, α2, . . . , αn−1) =
∫

Rn−1

|ξ1|α1 · · · |ξn−1|αn−1
(
‖x‖−qp

)∧(ξ1, . . . , ξn−1, 1)dξ.

We substitute equation (6.2.6), apply Fubini’s theorem and make a change

of variables sξi = ηi. Then the latter integral is equal to

C

∫
Rn−1

|ξ1|α1 · · · |ξn−1|αn−1

∫ ∞
0

s2n−q−1
n−1∏
j=1

δp(sξj)δp(s)dsdξ

= C

∫ ∞
0

sn−q−α1···−αn−1Mp(α1) · · ·Mp(αn−1)δp(s)ds

= CMp(n− q − α1 · · · − αn−1)Mp(α1) · · ·Mp(αn−1). (6.2.9)

where C =
[

4np

Γ
(
q
p

)]n .
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The integrals in (6.2.9) converge absolutely, if all the numbers α1, . . . , an−1,

n − q − α1 · · · − αn−1 ∈ (−1, p + 1). We choose αk ∈ (−1,−1
2), for k =

1, . . . , n− 1, so that all the moments Mp(αk), k = 1, . . . , n− 1 are positive.

Then, n− q − α1 · · · − αn−1 ∈ (3
2n− q −

1
2 , 2n− q − 1) ∩ (−1, p+ 1). Since

0 < q < 2n − 4, these intervals contain a neighborhood of 3. Recall that

the moments Mp(α) change sign at 3. This means that for different choices

of the numbers αk, k = 1, . . . , n − 1, the integral I(α1, α2, . . . , αn−1) can

become both positive or negative. In other words, the Fourier transform of

the distribution ‖ · ‖−qp is sign-changing, and thus, by Bohner’s theorem it is

not positive definite.
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