Homework #2

Due date: November 16, 2006

Notes:

- 1. Please write your name on the homework you are going to hand in.
- 2. Homeworks are to be solved and written individually. Any form of copying or plagiarism is prohibited.
- 3. This homework is to be handed in the latest by the beginning of the class on November 16th, that is by 13:15. Late homework will not be accepted.
- 4. In case you have any questions send email to the class mailing list: em201-list@tem.uoc.gr

Problem 1 [20 points] A relation over a set that is reflexive and symmetric is called a *compatibility relation*.

Let R_1 and R_2 two compatibility relations over a set A.

- (a) [10 points] Is $R_1 \cap R_2$ a compatibility relation?
- (b) [10 points] Is $R_1 \cup R_2$ a compatibility relation?

Problem 2 [20 points] Is the transitive closure of an antisymmetric relation always antisymmetric?

Problem 3 [20 points] Consider the set $A = \{a, b, c, d, e, f, g, h\}$, and the relation R over A, defined by the table below. The rows indicate the first element of the ordered pairs in R, whereas columns indicate the second element of the ordered pairs in R (as a result, $(a, c) \in R$, but $(c, a) \notin R$).

	a	b	С	d	e	f	g	h
a	\checkmark		\checkmark			\checkmark	\checkmark	
b		\checkmark						
С			\checkmark			\checkmark	\checkmark	
d				\checkmark		\checkmark	\checkmark	\checkmark
e					\checkmark			\checkmark
f						\checkmark		
g							\checkmark	
h								\checkmark

- (a) [5 points] Prove that *R* is a partial order.
- (b) [5 points] Construct the Hasse diagram of *R*.
- (c) [2 points] Which are the minimums and maximums of *R*?
- (d) [3 points] Is *R* a lattice?
- (e) [2 points] What is the length of the longest chain in *R*?
- (f) [3 points] If μ is the length of the longest chain in R, find a partition of R into μ anti-chains.
- **Problem 4 [20 points]** Among the integers 1–200, 101 of them are chosen arbitrarily. Show that among the chosen integers there exist two, such that one divides the other.

Hint: Let $A = \{1, 2, 3, 4, ..., 199, 200\}$ and let *C* the subset of the elements of *A* that we choose arbitrarily. Consider the sets A_i , $1 \le i \le 100$, that are defined as follows:

$$A_i = \{2^{k_i} (2i-1) \mid k_i \ge 0 \ 2^{k_i} (2i-1) \le 200\}$$

i.e., k_i takes all values between 0 and $\lfloor \log_2(\frac{200}{2i-1}) \rfloor$.

Prove that the set of sets A, where $A = \{A_1, A_2, ..., A_{100}\}$, forms a partition of A. Then define a function f from C to A, to be used along with the pigeonhole principle, in order to give you the wanted result.

Problem 5 [20 points] Show that among n + 1 arbitrarily chosen integers there exist two, the difference of which is divisible by n.

Total points: 100