Homework \#4

Due date: December 19, 2006

Notes:

1. Please write your name on the homework you are going to hand in.
2. Homeworks are to be solved and written individually. Any form of copying or plagiarism is prohibited.
3. This homework is to be handed in the latest by the beginning of the class on December 19th, that is by 15:15. Late homework will not be accepted.
4. In case you have any questions send email to the class mailing list:
```
em201-list@tem.uoc.gr
```

Problem 1 [30 points] Determine the discrete arithmetic function that corresponds to each one of the following generating functions:
(a) [10 points]

$$
A(z)=\frac{1+z^{2}}{4-4 z-z^{2}}
$$

(b) [10 points]

$$
A(z)=\frac{1}{1-z^{3}}
$$

(c) [10 points]

$$
A(z)=\frac{1}{(1-z)\left(1-z^{2}\right)\left(1-z^{3}\right)}
$$

Problem 2 [10 points] Let

$$
a_{n}=\sum_{i=0}^{n} i^{2}
$$

(a) [5 points] Show that a_{n} is $O\left(n^{3}\right)$.
(b) [5 points] Show that a_{n} is $n^{3} / 3+O\left(n^{2}\right)$.

Problem 3 [20 points] Solve the following recurrence relation

$$
a_{n}-5 a_{n-1}=3^{n}+45^{n}, \quad n \geq 1
$$

given that $a_{0}=2$.

Problem 4 [20 points] Solve the following recurrence relation

$$
a_{n}-28 a_{n-1}+187 a_{n-2}=f(n), \quad n \geq 2
$$

where

$$
f(n)= \begin{cases}11, & n=11 \\ 17, & n=17 \\ 0, & \text { otherwise }\end{cases}
$$

and given that $a_{0}=11, a_{1}=17$.

Problem 5 [20 points] Solve the following recurrence relation

$$
3 a_{n}^{2}-a_{n-1} a_{n-2}=0, \quad n \geq 2
$$

given that $a_{0}=9, a_{1}=81$.

