
IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

THÈME 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Additively Weighted Voronoi Diagrams in
2D

Menelaos I. Karavelas — Mariette Yvinec

N° 4466

Mai 2002

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Dynamic Additively Weighted Voronoi Diagrams in 2D

Menelaos I. Karavelas ∗ , Mariette Yvinec †

Thème 2 — Génie logiciel
et calcul symbolique

Projet PRISME

Rapport de recherche n° 4466 — Mai 2002 — 26 pages

Abstract: In this paper we present a dynamic algorithm for the construction of the additively
weighted Voronoi diagram of a set of weighted points on the plane. The novelty in our approach is
that we use the dual of the additively weighted Voronoi diagram to represent it. This permits us to
perform both insertions and deletions of sites easily. Given a set B of n sites, among which h sites
have non-empty Voronoi cell, our algorithm constructs the additively weighted Voronoi diagram of
B in O(nT (h) + h log h) expected time, where T (k) is the time to locate the nearest neighbor of a
query site within a set of k sites with non-empty Voronoi cell. Deletions can be performed for all
sites whether or not their Voronoi cell is empty. The space requirements for the presented algorithm
is O(n). Our algorithm is simple to implement and experimental results suggest an O(n log h)
behavior.

Key-words: additively weighted Voronoi diagram; Delaunay graph; dual graph; dynamic algorithm

Work partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract
No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces).

∗ INRIA Sophia-Antipolis, Project PRISME, 2004 Route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France,
email: Menelaos.Karavelas@sophia.inria.fr

† INRIA Sophia-Antipolis, Project PRISME, 2004 Route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France,
email: Mariette.Yvinec@sophia.inria.fr

Diagrammes de Voronoi Additifs Dynamiques en 2D

Résumé : Ce rapport décrit un algorithme dynamique pour construire le diagramme de Voronoï
à poids additifs d’un ensemble de points pondérés du plan. L’algorithme proposé représente le
diagramme à poids additif à travers son dual. Il est incrémental et pleinement dynamique, c’est à
dire permet l’insertion ou la suppression de sites. Une analyse randomisée sur l’ordre d’insertion
montre que l’algorithme construit le le diagramme de Voronoï à poids additifs d’un ensemble de n
sites parmi lesquelles h ont une cellule de Voronoi non vide, en temps moyen O(nT (h)+h logh) où
T (k) est le temps nécessaire pour répondre à une requête de plus proche voisin (pour une distance à
poids additifs) sur un ensemble de k sites à cellules non vides. L’espace mémoire utilisé est O(n).
L’algorithme est simple à implémenter et une étude expérimentale laisse présumer un comportement
asymptotique en O(n log h).

Mots-clés : diagramme de Voronoï; triangulation de Delaunay; diagramme de Voronoï à poids
additifs; algorithme dynamique

Dynamic additively weighted Voronoi diagrams in 2D 3

1 Introduction

One of the most well studied structures in computational geometry is the Voronoi diagram for a set
of sites. Applications include retraction motion planning, collision detection, computer graphics or
even networking and communication networks. There have been various generalizations of the stan-
dard Euclidean Voronoi diagram, including generalizations to Lp metrics, convex distance functions,
the power distance, which yields the power diagram, and others. The sites considered include points,
convex polygons, line segments, circles and more general smooth convex objects.

In this paper we are interested in the Additively Weighted Voronoi diagram or, in short, AW-
Voronoi diagram. We are given a set of points and a set of weights associated with them. Let d(·, ·)
denote the Euclidean distance. We define the distance δ(p, B) between a point p on the Euclidean
plane E

2 and a weighted point B = {b, r} as

δ(p, B) = d(p, b)− r.

If the weights are positive, the additively weighted Voronoi diagram can be viewed geometrically as
the Voronoi diagram for a set of circles, the centers of which are the points and the radii of which
are the corresponding weights. Points outside a circle have positive distance with respect to the
circle, whereas points inside a circle have negative distance with respect to the circle. The Voronoi
diagram does not change if all the weights are translated by the same quantity. Hence, in the sequel
we assume that all the weights are positive. In the same context we use the term site to denote
interchangeably a weighted point or the corresponding circle. We also define the distance between
two sites B1 = {b1, r1}, B2 = {b2, r2} on the plane to be :

δ(B1, B2) = d(b1, b2)− r1 − r2. (1)

Note that δ(B1, B2) is negative if the two sites (circles) intersect at two points or if one is inside the
other.

If we assign every point on the plane to its closest site, we get a subdivision of the plane into
regions. The closures of these regions are called Voronoi cells. The one-dimensional connected
sets of points that belong to exactly two Voronoi cells are called Voronoi edges, whereas points that
belong to at least three Voronoi cells are called Voronoi vertices. The collection of cells, edges
and vertices is called the Voronoi diagram. A bisector between two sites is the locus of points that
are equidistant from both sites. Unlike the case of the Euclidean Voronoi diagram of points in an
AW-Voronoi diagram the cell of a given site may be empty. Such a site is called trivial. We can
actually fully characterize trivial sites: a site is trivial if it is fully contained inside another site. This
is equivalent to stating that a site is trivial if there exists another site such that the bisector of the two
sites does not exist.

The first algorithm for computing the AW-Voronoi diagram appeared in [6]. The running time
of the algorithm is O(nc

√
log n), where c is a constant, and it works only in the case of disjoint sites.

The same authors presented in [14] another algorithm for constructing the AW-Voronoi diagram,
which runs in O(n log2 n) time. This algorithm uses the divide-and-conquer paradigm and works
again only for disjoint sites. A detailed description of the geometric properties of the AW-Voronoi
diagram, as well as an algorithm that treats intersecting sites can be found in [17]. The algorithm

RR n° 4466

4 Karavelas & Yvinec

runs in O(n log2 n) time, and also uses the divide-and-conquer paradigm. A sweep-line algorithm
is described in [7] for solving the same problem. The set of sites is first transformed to a set of
points by means of a special transformation, and then a sweep-line method is applied to the point
set. The sweep-line algorithm runs in O(n log n). The predicates required in the last two algorithms
are rather complicated. Aurenhammer [2] suggests a lifting map of the two-dimensional problem to
three dimensions, and reduces the problem of computing the AW-Voronoi Voronoi diagram in 2D to
computing the power diagram of a set of spheres in 3D. More specifically, a weighted point Pi =
{(xi, yi), wi} is mapped to a sphere Σi with center (xi, yi, wi) and radius

√
2wi. Then the Voronoi

cell of Pi is the projection on the plane of the intersection of the power cell of Σi with the upper
nappe of the cone of angle π/4 whose apex is at (xi, yi,−wi). The algorithm runs in O(n2) time,
but it is the first algorithm for constructing the AW-Voronoi diagram that generalizes to dimension
d ≥ 3. If we do not have trivial sites, every pair of sites has a bisector. In this case, the AW-Voronoi
diagram is a concrete type of an Abstract Voronoi diagram [12], for which optimal divide-and-
conquer O(n log n) algorithms exist. Incremental algorithms that run in O(n log n) expected time
also exist for abstract Voronoi diagrams (see [15, 13]). The algorithm in [13] allows the insertion of
sites with empty Voronoi cell. However, it does not allow for deletions and the data structures used
are a bit involved. More specifically, the Voronoi diagram itself is represented as a planar map and a
history graph is used to find the conflicts of the new site with the existing Voronoi diagram. Finally,
an off-line algorithm that constructs the Delaunay triangulation of the centers of the sites and then
performs edge-flips in order to restore the AW-Delaunay graph is presented in [10, 11]. Again this
algorithm does not allow the deletion of sites, and moreover it does not handle the case of trivial
sites.

In this paper we present a fully dynamic algorithm for the construction of the AW-Voronoi di-
agram. Our algorithm resembles the algorithm in [13], but, it also has several differences. Firstly,
we do not represent the AW-Voronoi diagram, but rather its dual. The dual of the AW-Voronoi di-
agram is a planar graph of linear size [17], which we call the Additively Weighted Delaunay graph
or AW-Delaunay graph, for short. Moreover, under the non-degeneracy assumption that there are
no points in the plane equidistant to more than 3 sites, the AW-Delaunay graph has triangular faces.
Our algorithm requires no assumption about degeneracies. It implicitly uses a perturbation scheme
which simulates non-degeneracies and yields an AW-Delaunay graph with triangular faces. Hence,
representing the AW-Voronoi diagram can be done in a much simpler way compared to [13]. In [13]
the insertion is done in two stages. First the history graph is used to find the conflicts of the new site
with the existing AW-Voronoi diagram. Then both the planar map representation of the AW-Voronoi
diagram and the history graph are updated, in order to incorporate the Voronoi cell of the new site.
In our algorithm the insertion of the new site is done in three stages. The first stage is to find the
nearest neighbor of the new site in the existing AW-Voronoi diagram. Using the nearest neighbor we
can then determine easily if the new site is trivial; this is the second stage. If the new site is not trivial
we proceed in a way similar to that [13]. Starting from the nearest neighbor of the new site, we find
all the Voronoi edges in conflict and then we reconstruct the AW-Voronoi diagram. The search for
Voronoi edges in conflict, as well as the reconstruction of the AW-Voronoi diagram are done using
the dual graph. This is the third stage of our algorithm. Another novelty of our algorithm is that it
permits the deletion of sites, which is not the case in [13].

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 5

The remainder of the paper is structured as follows. In Section 2 we give formal definitions for
the AW-Voronoi diagram and its dual and review some of the known properties of the AW-Voronoi
diagram. We also provide various definitions used in the remainder of the paper. In Section 3 we
show how to insert a new site once we know its nearest neighbor in the existing AW-Voronoi. We
also discuss how we deal with trivial sites and perform a runtime analysis for our algorithm. In
Section 4 we describe how to locate the nearest neighbor of a query site. In Section 5 we describe
how to delete sites. In Section 6 we briefly discuss the predicates involved in our algorithm and
present experimental results. A more detailed analysis of the predicates and how to compute them
can be found in [9]. Section 7 is devoted to conclusions and directions for further research. In
Section A of the Appendix we describe a special embedding of the AW-Delaunay graph.

2 Preliminaries

Let B be a set of sites Bj , with centers bj and radii rj . For each j 6= i, let Hij = {y ∈ E
2 :

δ(y, Bi) ≤ δ(y, Bj)}. Then the (closed) Voronoi cell Vi of Bi is defined to be

Vi =
⋂

i6=j

Hij .

The connected set of points that belong to exactly two Voronoi cells are called Voronoi edges,
whereas points that belong to more than three Voronoi cells are called Voronoi vertices. The AW-
Voronoi diagram V(B) of B is defined as the collection of the Voronoi cells, edges and vertices. The
Voronoi skeleton V1(B) of B is defined as the union of the Voronoi edges and Voronoi vertices of
V(B). The AW-Voronoi diagram is a subdivision of the plane [17, Property 1]. It consists of straight
or hyperbolic arcs and each cell is star-shaped with respect to the center of the corresponding site
[17, Properties 3 and 4]).

In the case of the usual Euclidean Voronoi diagram for a set of points, every point has a non-
empty Voronoi cell. In AW-Voronoi diagrams there may exist sites, the Voronoi cells of which are
empty. In particular, the Voronoi cell Vi of a site Bi is empty if and only if Bi is contained in
another site Bj (see [17, Property 2]). A site whose Voronoi cell has empty interior is called trivial,
whereas a site whose Voronoi cell has non-empty interior is called non-trivial. Fig. 1(left) shows the
AW-Voronoi diagram for a set of 12 sites, among which 2 are trivial.

We call AW-Delaunay graph and note D(B) the dual graph of the AW-Voronoi diagram V(B).
There is a vertex inD(B) for each non trivial site Bi in B. Let Bi and Bj be two sites whose Voronoi
cells Vi and Vj are adjacent. We denote by αkl

ij the Voronoi edge in Vi ∩ Vj whose endpoints are
the Voronoi vertices equidistant to Bi, Bj , Bk and Bi, Bj , Bl, respectively. There exists an edge
ekl

ij in D(B) connecting Bi and Bj for each edge αkl
ij of V(B) in Vi ∩ Vj . The fact that we have a

planar embedding of linear size for the AW-Delaunay graph [17, Property 7] immediately implies
that the size of the AW-Voronoi diagram is O(n). The Voronoi skeleton may consist of more than
one connected component [17, Property 9], whereas the dual graph is always connected.

If we do not have any degeneracies, the AW-Delaunay graph has the property that all but its
outer face have exactly three edges. However, it may contain vertices of degree 2, i.e., we have

RR n° 4466

6 Karavelas & Yvinec

Figure 1: Left: the AW-Voronoi diagram for a set of 12 sites. Non-trivial sites are shown in gray.
Trivial sites are shown in light gray. The Voronoi skeleton is shown in black. Right: a planar
embedding of the AW-Delaunay graph of the same set of sites. The edges of the AW-Delaunay
graph are shown in black.

triangular faces with two edges in common. If the Voronoi skeleton consists of more than one
connected component the AW-Delaunay graph may also have vertices of degree 1, which are the
dual of Voronoi cells with no vertices (e.g., the Voronoi cell at the top left corner of Fig. 1(left)).
To simplify the representation of the AW-Delaunay graph we add a fictitious site called the site
at infinity. This amounts to adding a Voronoi vertex on each unbounded edge of V1(B) (such an
edge occurs for each pair of sites Bi and Bj that appear consecutively on the convex hull of B).
These additional vertices are then connected through Voronoi edges forming the boundary of the
infinite site cell. In this compactified version, the Voronoi skeleton consists of only one connected
component, and the previously non-connected components are now connected through the edges of
the Voronoi cell of the site at infinity. The compactified AW-Delaunay graph corresponds to the
original AW-Delaunay graph plus edges connecting the sites on the convex hull of B with the site
at infinity. In the absence of degeneracies, all faces of the compactified AW-Delaunay graph have
exactly three edges, but this graph may still have vertices of degree 2. Unless otherwise stated, from
now on when we refer to the AW-Voronoi diagram or the AW-Delaunay graph, we refer to their
compactified versions (see Fig. 1(right)).

Degenerate cases arise when there are points equidistant to more than three sites. Then, the AW-
Delaunay graph has faces with more than three edges. This is entirely analogous to the situation for
the usual Delaunay diagram for a set of points with subsets of more than three cocircular points. In
such a case, a graph with triangular faces can be obtained from the AW-Delaunay graph through an

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 7

arbitrary triangulation of the faces with more than three edges. We will show later that our algorithm,
using an implicit perturbation scheme, produces in fact such a triangulated AW-Delaunay graph.

Let Bi and Bj be two sites such that no one is contained inside the other. A circle tangent to
Bi and Bj that neither contains any of them nor is contained in any of them is called an exterior
bitangent Voronoi circle. A circle tangent to Bi and Bj that lies in Bi ∩ Bj is an interior bitangent
Voronoi circle. The following theorem couples the existence of edges in D(B) with exterior and
interior bitangent Voronoi circles of sites in B.

Theorem 1 (Global Property) There exists an edge connecting Bi and Bj in D(B) if and only if
one of the following holds:

1. There exists an exterior bitangent Voronoi circle of Bi and Bj which intersects no site Bk ∈ B,
k 6= i, j.

2. There exists an interior bitangent Voronoi circle of Bi and Bj , which is contained in no site
Bk ∈ B, k 6= i, j.

Proof. Let ekl
ij be an edge of D(B). Let αkl

ij ∈ V(B) be the dual edge of ekl
ij , which by assumption

has non-empty interior. Let y be a point in the interior of αkl
ij . Consider the circle C centered at y

with radius |δ(y, Bi)| = |δ(y, Bj)|. Clearly C is a bitangent Voronoi circle of Bi and Bj . Suppose
that C is an exterior bitangent Voronoi circle and suppose that C intersects with a third site Bm. If
C is not tangent to Bm, then δ(y, Bm) < δ(y, Bi) = δ(y, Bj), which contradicts the assumption
that y ∈ Vi ∩ Vj . If C is tangent to Bm then y belongs to Vm as well. But this contradicts the fact
that y is an interior point of αkl

ij . Suppose now that C is an interior bitangent Voronoi circle and
suppose it is contained in a third site Bk. If C is tangent to Bm, then y belongs to Vi ∩ Vj ∩ Vm,
which contradicts our assumption that y is an interior point of αkl

ij . If C is contained in the interior
of Bm, then δ(y, Bm) < δ(y, Bi) = δ(y, Bj), which implies that y ∈ Vm and contradicts the fact
that y ∈ Vi ∩ Vj . Hence, in both cases, C is the desired bitangent Voronoi circle.

Conversely, assume there exists an exterior bitangent Voronoi circle C of Bi and Bj , that inter-
sects no other site Bk. Let y be the center of C. Then y ∈ Vi ∩ Vj , since δ(y, Bi) = δ(y, Bj) and
δ(y, Bi) < δ(y, Bm), for all m 6= i, j. Suppose that y is an endpoint of an edge in V(B). Then
there exists a third site Bm that is tangent to C; this contradicts the assumption that C intersects
only Bi and Bj . Hence y has to be in the interior of some edge αkl

ij of V(B). But then there exists
an edge between Bi and Bj in D(B). Assume now that C is an interior bitangent Voronoi circle
of Bi and Bj , which is contained inside no other site Bm, m 6= i, j. Let y be the center of C.
Then δ(y, Bi) = δ(y, Bj) and since C is contained inside no other site Bm, m 6= i, j, we have that
δ(y, Bm) > δ(y, Bi). Hence y ∈ Vi ∩ Vj . If y was an endpoint of Vi ∩ Vj , then there would be a
third site Bm, m 6= i, j, with δ(y, Bm) = δ(y, Bi). But then C would be contained in Bm, which
contradicts our assumption. Hence y is an interior point of Vi ∩ Vj , which implies that there exists
an edge connecting Bi and Bj in D(B). �

Let Bi, Bj and Bk be three sites, such that no one is contained inside the others. A circle that
is tangent to all three of them, that does not contain any of them and is not included in any of them
is called an exterior tritangent Voronoi circle. A circle that is tangent to all three of them and lies

RR n° 4466

8 Karavelas & Yvinec

in Bi ∩ Bj ∩ Bk is called an interior tritangent Voronoi circle. A triple of sites Bi, Bj and Bk can
have up to two tritangent Voronoi circles, either exterior or interior. This is equivalent to stating that
the AW-Voronoi diagram of three sites can have up to two Voronoi vertices (see [17, Property 5]).

Let Pi, Pj , Pk be the points of tangency of the sites Bi, Bj , Bk with one of their tritan-
gent Voronoi circles. Let also CCW(·, ·, ·) denote the usual orientation test of three points. If
CCW(Pi, Pj , Pk) > 0 we say that the tritangent Voronoi circle is a CCW-Voronoi circle of the triple
Bi, Bj , Bk. If CCW(Pi, Pj , Pk) < 0, we say that the tritangent Voronoi circle is a CW-Voronoi circle
of the triple Bi, Bj , Bk. It can be shown that three sites in a given order can have at most one CCW-
or CW-Voronoi circle, which can be either exterior or interior (cf. [9]).

Let πij denote the bisector of the sites Bi and Bj . As we already mentioned πij can be a line or
a hyperbola. We define the orientation of πij to be such that bi is always to the left of πij . Clearly,
the orientation of πij defines an ordering on the points of πij , which we denote by ≺ij . Let oij be
the intersection of πij with the segment bibj . We can parameterize πij as follows: if oij ≺ij p then
ζij(p) = δ(p, Bi)− δ(oij , Bi); otherwise ζij(p) = −(δ(p, Bi)− δ(oij , Bi)). The function ζij(·) is
a 1–1 and onto mapping from πij to R. Given a bitangent Voronoi circle C of Bi and Bj , we define
ζij(C) to be the parameter value ζij(c), where c ∈ πij is the center of C. In addition, given a point
c ∈ πij , we denote the bitangent Voronoi circle of Bi and Bj centered at c as Wij(c).

The shadow region Sij(B) of a site B with respect to the bisector πij of Bi and Bj is the locus
of points c on πij such that δ(B, Wij(c)) < 0. Let S̃ij(B) denote the set of parameter values ζij(c),
where c ∈ Sij(B). It is easy to verify that S̃ij(B) can be of the form ∅, (−∞,∞), (−∞, a), (b,∞),
(a, b) and (−∞, a) ∪ (b,∞), where a, b ∈ R.

Let ekl
ij be an edge of D(B) that is the dual of an edge αkl

ij of V(B). Let Cijk and Cijl be the
tritangent Voronoi circles associated with the endpoints of αkl

ij . We denote by cijk (resp. cijl) the
center of Cijk (resp. Cijl) and call cijk (resp. cijl) the ijk-endpoint or ijk-vertex (resp. ijl-endpoint
or ijl-vertex) of αkl

ij . Under the mapping ζij(·), αkl
ij maps to the interval α̃kl

ij = [ξijl, ξijk] ⊂ R. We
define the conflict region Rkl

ij (B) of B with respect to the edge αkl
ij to be the intersection Rkl

ij (B) =

αkl
ij ∩Sij(B). We say that B is in conflict with αkl

ij if Rkl
ij (B) 6= ∅. Under the mapping by ζij(·), the

conflict region Rkl
ij (B) maps to the intersection R̃kl

ij (B) = α̃kl
ij ∩ S̃ij(B). R̃kl

ij (B) can be one of the
following types :

1. R̃kl
ij (B) = ∅, in which case we say that B is not in conflict with αkl

ij .

2. R̃kl
ij (B) consists of a single connected interval, in which case we further distinguish between

the following cases :

(a) α̃kl
ij = R̃kl

ij (B), in which case we say that B is in conflict with the entire edge αkl
ij .

(b) R̃kl
ij (B) contains ξijk , but not ξijl, in which case we say that B is in conflict with the

ijk-vertex of αkl
ij .

(c) R̃kl
ij (B) contains ξijl, but not ξijk , in which case we say that B is in conflict with the

ijl-vertex of αkl
ij .

(d) R̃kl
ij (B) contains neither ξijk nor ξijl, in which case we say that B is in conflict with the

interior of αkl
ij .

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 9

3. R̃kl
ij (B) consists of a two disjoint intervals, including respectively ξijk and ξijl , in which case

we say that B is in conflict with both vertices of αkl
ij .

Finally we define the conflict region RB(B) of B with respect to B as the union

RB(B) =
⋃

αkl
ij
∈V(B)

Rkl
ij (B).

It is easy to verify that RB(B) = VB∪{B}(B) ∩ V1(B), where VB∪{B}(B) denotes the Voronoi cell
of B in V(B ∪ {B}).

3 Inserting a site incrementally

In this section we present the incremental algorithm and show its correctness. Let again B be our set
of n sites and let us assume that we have already constructed the AW-Voronoi diagram for a subset
Bm of B. Here m denotes the number of sites in Bm. We now want to insert a site B 6∈ Bm. The
insertion is done in the following steps :

1. Locate the nearest neighbor NN(B) of B in Bm, with respect to the distance function (1).

2. Test if B is trivial.

3. Find the conflict region of B and repair the AW-Delaunay graph.

We postpone the discussion on the location of the nearest neighbor until Section 4. The remaining
phases of the insertion procedure are discussed in the sequel.

3.1 Triviality test

The first test we have to do is to determine whether B is trivial or not. The following lemma gives
an answer to this question.

Lemma 1 B is trivial if and only if B ⊂ NN(B).

Proof. Clearly, if B ⊂ NN(B), B is trivial. Suppose now that B is trivial but B 6⊂ NN(B). Since
B is trivial, there exists a non-trivial site B′ ∈ Bm, such that B ⊂ B′. This is equivalent to requiring
that

δ(B, B′) < −2r,

where r is the radius of B. Since NN(B) is the nearest neighbor of B we also have that

δ(B, NN(B)) < δ(B, B′),

which gives
δ(B, NN(B)) < −2r.

But the last relation implies that B is contained in NN(B), i.e., we have a contradiction. �

Hence once we have found the nearest neighbor of the new site B we can test in O(1) time
whether it is trivial or not.

RR n° 4466

10 Karavelas & Yvinec

3.2 Finding the conflict region

Let Rm(B) be the conflict region of B with respect to Bm. Let ∂Rm(B) denote the boundary of
Rm(B). Rm(B) is a subset of V1(B) and ∂Rm(B) is a set of points on edges of V1(B). Points
in ∂Rm(B) are the vertices of the Voronoi cell VB of B in V(Bm+1), where Bm+1 = Bm ∪ {B}.
It has been shown in [13, Lemma 1] that Rm(B) is connected. Thus, the aim is to discover the
boundary ∂Rm(B) of Rm(B), since then we can repair the AW-Voronoi diagram in exactly the
same way as in [13]. The idea is to perform a depth first search (DFS) on V1(B) to discover Rm(B)
and ∂Rm(B), starting from a point on the skeleton that is known to be in conflict with B. Let L
denote the boundary of the currently discovered portion of Rm(B). Initially L = ∅. We are going
to represent points in L by the Voronoi edges that contain them. We want the points of ∂Rm(B)
to appear in L in the order that they appear on the boundary of the Voronoi region VB of B in
V(Bm+1). Without loss of generality we can choose this order to be the counter-clockwise ordering
of the vertices on the boundary of VB .

As we mentioned in the previous paragraph, we need to find a first point on the Voronoi skeleton
V1(Bm), that is in conflict with B. This point is going to serve as the starting point for the DFS. The
following lemma suggests a way to do this.

Lemma 2 Let B be a non-trivial site in B \ Bm. Let NN(B) be the nearest neighbor of B in Bm

and let VNN(B) be the Voronoi cell of NN(B) in V(Bm). Then B has to be in conflict with at least
one of the edges of VNN(B).

Proof. Since NN(B) is the nearest neighbor of B in Bm, the center b of B must lie in the Voronoi
cell VNN(B) of NN(B) in V(Bm). Suppose that b lies on one of the Voronoi edges α on the
boundary of VNN(B). Since, b is contained in the Voronoi cell VB of B in V(Bm+1), we immediately
get that α is in conflict with B. Suppose that b lies in the interior of VNN(B) and assume that B is
not in conflict with any of the Voronoi edges on the boundary of VNN(B). Then VB must lie in the
interior of VNN(B). This however contradicts the fact that VNN(B) is simply connected. Thus, the
assumption that B is not in conflict with any of the edges on the boundary of VNN(B) is false. �

Since B has to be in conflict with at least one of the edges of the Voronoi cell VNN(B) of
NN(B), we simply walk on the boundary of VNN(B), until we find a Voronoi edge in conflict with
B. Let α be the first edge, of the boundary of VNN(B) that we found to be in conflict with B. If
B is in conflict with the interior of α, we have discovered the entire conflict region Rm(B). In this
case L consists of two copies of α with different orientations. Otherwise, B has to be in conflict
with at least one of the two Voronoi vertices of α. In this case we set L to be the edges adjacent to
that Voronoi vertex in counter-clockwise order. The DFS will then recursively visit all vertices in
conflict with B. Suppose that we have arrived at a Voronoi vertex v (which is a node on the Voronoi
skeleton). Firstly, we mark it. Then we look at all the Voronoi edges α adjacent to it. Let v ′ be the
Voronoi vertex of α that is different from v. We consider the following cases :

• v′ has not been marked. We distinguish between the following two cases.

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 11

– B is in conflict with the entire edge α :
We replace α in L by the remaining Voronoi edges adjacent to v′, in counter-clockwise
order. We then continue recursively on v′.

– B is not in conflict with the entire edge α :
We have reached a Voronoi edge adjacent to ∂Rm(B). The list L remains unchanged
and the DFS backtracks.

• v′ has already been marked. We distinguish between the following two cases.

– B is in conflict with the entire edge α :
This means that have found a cycle in Rm(B), or equivalently, B contains a site in Bm,
which will become trivial. Since α belongs to L, but it does not contain any points of
∂Rm(B), we remove it from L. The DFS then backtracks.

– B is not in conflict with the entire edge α :
We have that B is in conflict with both vertices of α. Hence α contains two points of
∂Rm(B) in its interior. The list L remains unchanged and the DFS backtracks. Note
that in this case α appears twice in L, once per point in ∂Rm(B) that it contains.

Fig. 2(top left) shows an example of a conflict region which triggers all the possible cases of the
above search algorithm.

Lemma 3 The search algorithm described above finds the boundary ∂Rm(B) of the conflict region
Rm(B), i.e., at the end of the algorithm L = ∂Rm(B).

Proof. If Rm(B) is the interior of an edge of V(Bm), then we discover ∂Rm(B) once we find the
first conflict of B with the Voronoi edges of the boundary of VNN(B). If Rm(B) is not the interior
of some edge of V(Bm), every point w on ∂Rm(B) has to be contained in a Voronoi edge adjacent
to a Voronoi vertex v that belongs to Rm(B). Suppose that our algorithm did not find a vertex w
in ∂Rm(B). This implies that it did not reach the vertex v associated with w. Since Rm(B) is
connected (cf. [13, Lemma 1]), our DFS search algorithm will discover all vertices of Rm(B). This
contradicts the fact that v was not reached. �

In our case, the AW-Voronoi diagram is represented through its dual AW-Delaunay graph. It
is thus convenient to restate the algorithm for finding the boundary ∂Rm(B) of the conflict region
Rm(B) in terms of the AW-Delaunay graph. This can be done by using the duality between the
AW-Voronoi diagram and the AW-Delaunay graph. This duality maps vertices to faces and edges to
edges. A Voronoi vertex is mapped to a triangle in the AW-Delaunay graph and a Voronoi edge to a
Delaunay edge in the dual graph. In this context, when we say that B is in conflict with a Delaunay
edge e we mean that B is in conflict with its dual Voronoi edge α. The type of conflict of B with
e is the type of conflict of B with α. Similarly, when we say that B is in conflict with a triangle
t in D(Bm), we mean that B is in conflict with its dual Voronoi vertex v in V(Bm). Under the
duality mapping a point on ∂Rm(B) can be represented by the dual edge e of the Voronoi edge α
that contains it. We call ∂∗Rm(B) the set of all Delaunay edges whose dual edge contains a point
in ∂Rm(B). The list L is now a list of Delaunay edges. At the end of the search algorithm L will

RR n° 4466

12 Karavelas & Yvinec

Figure 2: Top left: The AW-Voronoi diagram for a set of sites (gray) and the conflict region (black)
of a new site (also black). The portion of the Voronoi skeleton that does not belong to the conflict
region of the new site is shown in light gray. Top right: The AW-Delaunay graph for the same set
of sites and the set ∂∗R of the new site (black). Although ∂∗R is a simple polygon, it contains an
edge twice and two vertices twice. Bottom left: The AW-Voronoi diagram after the insertion of the
new site. Non-trivial sites, including the new site, are shown in gray. The site in light gray is inside
the new site and has become trivial. The Voronoi skeleton is shown in black. Bottom right: The
AW-Delaunay graph after the insertion of the new site.

be equal to ∂∗Rm(B), which is in fact the boundary of the star of B in D(Bm+1). Inserting B in
D(Bm) then reduces to computing L and staring the hole represented by L using B. The search

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 13

algorithm in terms of the dual graph can be stated as follows. To find the first conflict of B with
the Voronoi edges of VNN(B), we look at the Delaunay edges adjacent to NN(B) in D(Bm). Let
e be the first Delaunay edge found to be in conflict with B. If B is in conflict with the interior of e
we have found ∂∗Rm(B) and L contains two copies of e with different orientations. If B is not in
conflict with the interior of e, it has to be in conflict with at least one of the two triangles in D(Bm)
adjacent to e. Let t be this triangle. We put all three Delaunay edges of t in L in counter-clockwise
order. The DFS will then visit recursively all triangles in D(Bm) in conflict with B. Suppose that
we have arrived at a triangle t. At first, we mark t. Then we look at all the triangles t′ adjacent to t.
Let e be the common edge of t and t′. We distinguish between the following cases :

• t′ has not been marked. Then consider the following two cases.

– B is in conflict with the entire edge e :
We replace e in L by the remaining two edges of t′ in counter-clockwise order. We then
continue recursively on t′.

– B is not in conflict with the entire edge e :
We have reached one of the edges of ∂∗Rm(B). The list L remains unchanged and the
DFS backtracks.

• t′ has been marked. Then consider the following two cases.

– B is in conflict with the entire edge e :
We remove e from L and the DFS backtracks.

– B is not in conflict with the entire edge e :
Then e ∈ ∂∗Rm(B) and the DFS backtracks. In this case, B is conflict with both vertices
of e, i.e., e appears in ∂∗Rm(B) twice (with different orientations).

The set ∂∗Rm(B) of a site B is shown in Fig. 2(top right). Note, that ∂∗Rm(B) is a simple polygon
that can contain both a vertex or an edge multiple times. Multiple vertices appear in ∂∗Rm(B) when
there exist multiple Voronoi edges between the new site and an old one. Multiple edges appear in
∂∗Rm(B), when the new site is adjacent to an old site that has degree 2 in D(Bm+1).

Remark: In case of degeneracies, the algorithm uses a perturbation scheme described by the fol-
lowing lazy strategy. Any new site which is found tangent to a tritangent Voronoi circle is considered
as not being in conflict with the corresponding Voronoi vertex. Then any Voronoi vertex remains a
degree 3 vertex and the dual AW-Delaunay graph is always triangular. This graph, however, is not
canonical, but depends on the insertion order of the sites.

The pseudo-code for the recursive procedure that constructs ∂∗Rm(B) by performing a DFS on
the dual AW-Delaunay graph is given below.

EXPANDCONFLICTREGION(t, L, B)
1: Mark t
2: for all edges eα of t do
3: t′ ← triangle adjacent to t through eα

RR n° 4466

14 Karavelas & Yvinec

4: if t′ has not been marked then
5: if B is in conflict with the entire Voronoi edge α then
6: replace eα in L by the other two edges of t′

7: EXPANDCONFLICTREGION(t′, L, B)
8: end if
9: else {t′ has been marked}

10: if B is in conflict with the entire edge α then
11: remove eα from L
12: end if
13: end if
14: end for

3.3 Storing the trivial sites

During the insertion procedure trivial sites can appear in two possible ways. Either the new site B to
be inserted is trivial, or B contains existing sites, which after the insertion of B will become trivial.
One approach to treat trivial sites is to totally discard of them. However, when deletion of sites is
allowed, B may contain other sites which will become non-trivial if B is deleted. For this reason we
need to keep track of trivial sites. Since a site is trivial if and only if it is contained inside some other
site, there exists a natural parent-child relationship between trivial and non-trivial sites. In particular,
we can associate every trivial site to a non-trivial site that contains it. If a trivial site is contained
in more than one non-trivial sites, we can choose the parent of the trivial site arbitrarily. A natural
choice for storing trivial sites is to maintain a list for every non-trivial site, which contains all trivial
sites that have the non-trivial site as their parent. In the sequel of this subsection, we describe how
to maintain these lists as we insert new sites.

Let B+
m be the subset of non-trivial sites of Bm, and let B−

m = Bm \B+
m. For some B′ ∈ B+

m, we
define Ltr(B

′) to be the list of trivial sites in B−
m that have B′ as their parent. We note by Lm the set

of all lists Ltr(B
′) for B′ ∈ B+

m, and correspondinglyLm+1 the set of all Ltr(B
′) for B′ ∈ B+

m+1.
When a new site B is inserted and B is found to be trivial, we simply add B to Ltr(NN(B)). In
this case Lm+1 is constructed in constant time from Lm. If B is non-trivial, let B−

m(B) be the set
of sites in B+

m that are contained in B. Since after the insertion of B all sites in B−
m(B) become

trivial, we add every B′′ ∈ B−
m(B) to Ltr(B). Moreover, for every B′′ ∈ B−

m(B) we move all sites
in Ltr(B

′′) to Ltr(B).

3.4 Runtime analysis

If we implement the lists Ltr(·) as doubly-linked lists, moving all sites in Ltr(B1) to Ltr(B2) for
some non-trivial sites B1, B2 can be done by simply appending Ltr(B1) to Ltr(B2); this in turn can
be done in constant time. Therefore, the time to construct Lm+1 from Lm is O(|B−

m(B)|). Since
|B−

m(B)| = O(|Rm(B)|) we conclude that the time to construct Lm+1 is O(|Rm(B)|).
Therefore, the running time for constructing the AW-Voronoi diagram V(Bm+1) and the set

Lm+1, once we have found the first conflict, is proportional to the complexity |Rm(B)| of Rm(B).

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 15

Finding the first conflict can be done in time O(log dNN(B)), where dNN(B) is the degree of NN(B)
in Bm. Consider the set of directions with respect to the center of NN(B) defined by Voronoi
vertices of the cell of NN(B). These directions subdivide the interval [0, 2π) in O(dNN(B)) angular
sections. We can perform a binary search to determine which sector contains b. If B is non-trivial, is
has to be in conflict with the edge corresponding to the angular section in which b resides. Therefore,
the time to locate the first conflict is O(log dNN(B)). Hence,

Lemma 4 Let Bm be a subset of B for which we have constructed the AW-Voronoi diagram. Let B
a site in B \ Bm and let Bm+1 = Bm ∪ {B}. Given the nearest neighbor NN(B) of B in Bm :

1. We can determine if B is trivial in time O(1).

2. We can find the first conflict of B with V1(Bm) in time O(log dNN(B)).

3. We can construct V(Bm+1) and Lm+1 in time O(|Rm(B)|).

Suppose thatB consists of n sites among which h are non-trivial. Let T (k) denote the time to find
the nearest neighbor of a query site within a set of non-trivial sites of size k. The total time for the
construction of the AW-Voronoi diagram is the time T1(n, h) to find the nearest neighbors and detect
the trivial sites plus the time T2(h) to find the first conflicts plus the time T3(h) to update the AW-
Voronoi diagram. Clearly, T1(n, h) = O(nT (h)) worst case and, by Lemma 4, T2(h) = O(h log h)
worst case. By Lemma 4 again, the cost of adding a new site is proportional to the number of Voronoi
edges destroyed by the new site. Hence, T3(h) is proportional to the total number of Voronoi edges
destroyed during the course of our algorithm. Applying a randomized analysis similar to that in [3,
Chapter 5], we can easily deduce that T3(h) = O(h) in the expected sense, where the expectation is
on the insertion order of sites. Hence the total expected running time of the algorithm presented is
O(nT (h) + h log h). Thus,

Theorem 2 Let B be a set of n sites among which h are non-trivial. The total expected running time
for constructing the AW-Voronoi diagram with the incremental algorithm presented is O(nT (h) +
h log h).

4 Nearest neighbor location

The nearest neighbor location of B in fact reduces to the location of the center b of B in V(Bm).
We can do that as follows. Select a site B′ ∈ Bm at random. Look at all the neighbors of B′ in
the AW-Delaunay graph. If there exists a B′′ such that δ(B, B′′) < δ(B, B′), then B′ cannot be
the nearest neighbor of B. In this case we replace B ′ by B′′ and restart our procedure. If none of
the neighbors of B′ is closer to B than B′, then NN(B) = B′. The pseudo-code for the nearest
neighbor procedure just described is presented below.

NEARESTNEIGHBOR(B,Bm)
1: Select a site B′ ∈ Bm arbitrarily
2: repeat

RR n° 4466

16 Karavelas & Yvinec

3: f2 ← false
4: for all neighbors B′′ of B′ in D(Bm) do
5: if δ(B, B′′) < δ(B, B′) then
6: B′ ← B′′

7: f2 ← true
8: break
9: end if

10: end for
11: until f2 6= true
12: return B′

Lemma 5 The procedure NEARESTNEIGHBOR(B,Bm) finds the nearest neighbor of B in Bm.

Proof. Let B′ be the site returned as the nearest neighbor of B by the procedure described above.
Let B′

m be the set of all neighbors of B′ in D(Bm). By construction we have that

δ(b, Bi) ≥ δ(b, B′), ∀Bi ∈ B′
m. (2)

Consider the AW-Voronoi diagram of the set B′′
m = B′

m ∪ {B′}. Clearly, the Voronoi cells of B′ in
V(Bm) and V(B′′

m) coincide.
Suppose that B′ 6= NN(B). This implies that b is not inside the Voronoi cell of B ′ in V(Bm),

and thus b is not inside the Voronoi cell of B′ in V(B′′
m). In turn, this implies that b belongs to the

Voronoi cell in V(B′′
m) of some site B′′ ∈ B′

m, i.e., δ(b, B′′) < δ(b, B′). This, however, contradicts
relation (2). Hence, B′ = NN(B). �

The time to find the nearest neighbor using the above procedure is trivially O(h), where h is
the number of non-trivial sites in B. However, we can speed-up the nearest-neighbor location by
maintaining a hierarchy of AW-Delaunay graphs as is done in [5] for the Delaunay triangulation for
points. The method consists of building a hierarchical set of AW-Delaunay graphs {Di}Ki=0. The
graph D0 is the AW-Delaunay graph of the whole set of sites. Then, each site inserted in the graph
Di is inserted in the graph Di+1 with probability 1/β, where β > 0 is a parameter. Thus, each site
B ∈ B belongs to all Dj , for i ≤ j with probability 1/βi, which implies that the expected height of
the AW-Delaunay hierarchy is O(logβ h). The location of the nearest neighbor of a query site Bq is
done successively at each level using the procedure NEARESTNEIGHBOR. However, at each level
(except the highest one) instead of using an arbitrary site as a starting point for the nearest neighbor
search, we use the nearest neighbor found at level i + 1. Once we have located NN(Bq), we can
check if Bq is trivial and perform the insertion of Bq as usual in the AW-Delaunay graph D0. The
level i of Bq is then randomly chosen and Bq is inserted in all Dj for 0 < j ≤ i. There is one final
detail we need to take care of. It is possible that Bq includes sites that appear in levels larger than i.
In this case we must remove all such sites from all levels they appear in.

The randomized time analysis for the location and insertion of a point in the Delaunay hierarchy
has been given in [5]. Unfortunately, this analysis does not generalize to the AW-Delaunay hierarchy.
Our experimental results, however, show that we do get a speed-up and that in practice the nearest-
neighbor location is done in time O(log h), which gives a total running time of O(n log h) (see
Section 6).

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 17

5 Deleting a site

Suppose that we have been given a set B of sites for which we have already constructed the AW-
Voronoi diagram V(B). Let also B ∈ B be a site that we want to delete from V(B). In this section
we describe how to perform the deletion. We distinguish between the cases where B is non-trivial
or trivial.

5.1 Deleting a non-trivial site

Suppose that B is non-trivial. Let Bγ be the set of neighbors of VB in D(B). Let also L+
tr(B) be

the set of sites in Ltr(B) that become non-trivial after the deletion of B. Finally, let L−
tr(B) =

Ltr \L+
tr(B), Bs = Bγ ∪Ltr(B) and B+

s = Bγ ∪ L+
tr(B). The main idea is given by the following

lemma.

Lemma 6 The second nearest neighbor of each point in VB is one of the sites in B+
s . Moreover,

every site in L−
tr(B) is inside one of the sites in B+

s .

Proof. Consider a point p ∈ VB . If Ltr(B) = ∅, then the second nearest neighbor of p is one of
the sites in Bγ (p is contained in the Voronoi cell of one of the sites in Bγ). If Ltr(B) 6= ∅, then
the second nearest neighbor of B can only be influenced by the sites in L+

tr(B). Hence, the second
nearest neighbor of p has to be one of the sites in B+

s .
Let Bt ∈ L−

tr(B). If Bt is inside one of the sites in L+
tr(B) we are done. Otherwise, let B′ be the

subset of non-trivial sites of B\ ({B}∪L+
tr(B)) that contain Bt. For each site B′ ∈ B′, consider the

interior bitangent Voronoi circle CB,B′ that contains Bt, whose radius rB,B′ is maximal. Among
all sites in B′, let B′

max be the one for which rB,B′ is maximized. If B′
max is a neighbor of B in

V(B) we are done. Otherwise, there must exist a non-trivial site B ′′ ∈ B \ ({B} ∪ L+
tr(B)) such

that CB,B′ ⊂ B′′. Clearly, Bt ⊂ B′′, i.e., B′′ ∈ B′. It is also easy to verify that rB,B′′ > rB,B′

max
,

which contradicts the fact that rB,B′

max
is maximal. �

Consequently, the AW-Voronoi diagram after the deletion of B can be found by constructing
the AW-Voronoi diagram of Bγ ∪ Ltr(B). More precisely, if b is a degree 3 vertex in D(B) and
|Ltr(B)| = 0, we simply remove fromD(B) the vertex corresponding to B as well as all its incident
edges. If b is a degree 2 vertex in D(B) and |Ltr(B)| = 0, we again remove from D(B) the vertex
vB corresponding to B as well as all its incident edges. In addition, we collapse the edges e and e′,
where e and e′ are the two edges of the star of vB that are not incident to vB . If the degree of b in
D(B) is at least 4 or if |Ltr(B)| > 0, we construct V(Bs) and then we find the nearest neighbor of
B in Bs. Once the nearest neighbor has been found we compute the conflict region of B in Bs by
means of the procedure described in Subsection 3.2. Let ∂∗Rs be the representation, by means of
the dual edges, of the conflict region of B in Bs. The triangles inside ∂∗Rs are the triangles that
must appear in the interior of the boundary of the star of B when B is deleted fromD(B). Therefore
we can use these triangles to constructD(B \ {B}), or equivalently V(B \ {B}). Finally, all lists in
L(B+

s) must be merged with their corresponding lists in L(B \ {B}).

RR n° 4466

18 Karavelas & Yvinec

5.2 Deleting a trivial site

Suppose that B is trivial. In this case we have to find the non-trivial site B ′ such that B ∈ Ltr(B
′)

and then delete B from Ltr(B
′). By Lemma 1, B ⊂ NN(B). Hence B must be in the list Ltr(B

′)
of some B′, which is in the same connected component of the union of sites as NN(B). It has been
shown that the subgraph K(B) of D(B) that consists of all edges of D(B) connecting intersecting
sites, is a spanning subgraph of the connectivity graph of the set of sites [8, Chapter 5]. Hence the
deletion of a trivial site can be done as follows :

1. Find the nearest neighbor NN(B) of B;

2. Walk on the connected component C of NN(B) in the graph K(B) and for every site B ′ ∈ C
that contains B, test if B ∈ Ltr(B

′);

3. Once the site B′, such that B ∈ Ltr(B
′), is found, delete B from Ltr(B

′).

5.3 Runtime analysis

In the case where B is non-trivial, the cost of the deletion procedure is the cost to construct V(Bs)
plus the cost to retriangulate the star of B in D(B) plus the cost to create L(B \ {B}) from L(B).
By Theorem 2, it takes O(|Bs|T (|B+

s |) + |B+
s | log |B+

s |) expected time to construct V(Bs). We can
also retriangulate the star of B and constructL(B\{B}) fromL(B) in time linear to the complexity
of V(Bs), i.e., in time O(|B+

s |).
If B is trivial, then we need to find NN(B), which takes T (h) time. Then we need to search the

connected component C in which NN(B) belongs and search all the lists Ltr(B
′) for all B′ ∈ C

that contain B. This clearly takes O(n) time, in the worst case. The deletion of B from the correct
list takes O(1) time. Hence the total time to delete a trivial site B is O(n). Summarizing :

Theorem 3 Let B be a set of n sites, among which h are non-trivial. Let B ∈ B, and let Ltr(B) be
the list of trivial sites whose parent is B. Then :

1. If B is non-trivial, it can be deleted from V(B) in expected time O((d + t)T (d + t′) + (d +
t′) log(d+ t′)), where d is the degree of B inD(B), t is the cardinality of Ltr(B) and t′ is the
number of sites in Ltr(B) that become non-trivial after the deletion of B.

2. If B is trivial and B ∈ Ltr(B
′), for some B′ ∈ B, B can be deleted from L(B) in worst case

time O(n).

Remark: Although the bound O(n) for the time to delete a trivial site is tight in the worst case, it is
a very pessimistic one and it is attained for very specific input sets and under very specific insertion
orders.

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 19

6 Predicates and implementation

6.1 Predicates

For the purposes of computing the algebraic degree of the predicates used in our algorithm, we as-
sume that each site is given by its center and its radius. The predicates that we use are the following :

1. Given two sites B1 and B2, and a query site B, determine if B is closer to B1 or B2. This is
equivalent to comparing the distances δ(b, B1) and δ(b, B2). This predicate is used during the
nearest neighbor location phase and it is of algebraic degree 4 in the input quantities.

2. Given a site B1 and a query site B, determine if B ⊂ B1. This is equivalent to the expression
δ(B, B1) < −2r, where r is the radius of B. This predicate is used during the insertion
procedure in order to determine whether the query site is trivial. The algebraic degree of the
predicate is 2.

3. Given two sites B1 and B2 and a tritangent Voronoi circle C345 determine the result of the
orientation test CCW(b1, b2, c345), where b1, b2 and c345 are the centers of B1, B2 and C345,
respectively. This predicate is used in order to find the first conflict of a new site B given its
nearest neighbor NN(B). The evaluation of this predicate is discussed in [9], where is it also
shown that its algebraic degree is 12.

4. Given a Voronoi edge α and a query site B, determine the type of the conflict region of B
with α. This predicate is used in order to discover the conflict region of B with respect to
the existing AW-Voronoi diagram. A method for evaluating this predicate is presented in [9].
The corresponding algebraic degree is shown to be 16 in the input quantities, using techniques
from Sturm sequences theory.

6.2 Implementation

We have implemented two versions of our algorithm, which differ only on how the nearest neighbor
location is done. The first one does the nearest neighbor location using the procedure NEAREST-
NEIGHBOR. (see beginning of Section 4). The second implementation maintains a hierarchy of
AW-Delaunay graphs. The nearest neighbor location is done successively at each level, by means of
the procedure NEARESTNEIGHBOR, using as starting point the nearest neighbor found at the previ-
ous level. The predicates are evaluated exactly and they have been implemented using two scenarios.
The first one is adapted to number types that support the operations +,−, ×, / and

√
exactly. The

second one requires that only the operations +, − and × are done exactly. Both algorithms were
implemented in C++, following the design of the library CGAL [4]. The implementations of both
algorithms are expected to become part of the CGAL distribution in the near future.

6.3 Benchmarks

Computations with inexact number types such as double of C++ can often produce undesired be-
havior in geometric algorithms due to wrong results in the computation of the geometric predicates

RR n° 4466

20 Karavelas & Yvinec

of the algorithm. These results are caused by the accumulation of rounding errors during the evalu-
ation of the predicates. Exact numbers types on the other hand provide the necessary robustness but
are very costly. A trade-off between the two solutions is to use filtering techniques, the discussion
of which is beyond the scope of this paper. In this context, we chose to perform the benchmarks
using the interval arithmetic package of CGAL [16], which performs dynamic filtering. The interval
arithmetic package is parameterized by an inexact and an exact number type. If the inexact number
type is not sufficient in order to compute the predicate correctly, computations are done using the
exact number type. In our experiments we use as inexact number type the double of C++ and
as exact number type MP_Float of CGAL [4]. We also chose to use the implementations of our
algorithms that do not use square roots for the computations of the predicates.

The two algorithms were tested on random circle sets of size n ∈ {103, 104, 105, 106}. The
centers were uniformly distributed in the square [−M, M]× [−M, M], where M = 106. The radii
of the circles were uniformly distributed in the interval [0, R], were R was chosen appropriately so
as to achieve different ratios h/n. In particular, we chose R so that the ratio h/n is approximately
equal to one of the values in the set {1.00, 0.95, 0.80, 0.50}. T1 denotes the running time of the
algorithm that uses only one level of the AW-Delaunay graph, and T2 denotes the running time of
the algorithm that uses the AW-Delaunay hierarchy. The last two columns of Table 1 have been
added for convenience. They show the ratios of the running times of the two algorithms over the
quantity n logh. For our experiments we used a PC with Pentium-III 1GHz running Linux.

It is clear from the last two columns that our algorithm runs in time O(n log h) if we use the
AW-Delaunay hierarchy. The algorithm with one level of the AW-Delaunay graph performs well for
small inputs, but it is definitely not a good choice for data sets where n is large and h = Θ(n).

7 Conclusion

This paper proposes a dynamic algorithm to compute the additively weighted Voronoi diagram for
a set of weighted points in the plane. The algorithm represents the AW-Voronoi diagram through its
dual graph, the AW-Delaunay graph and allows the user to perform dynamically insertions and dele-
tions of sites. Given a set of n sites, among which h have non-empty cell, our algorithm constructs
the AW-Voronoi diagram in expected time O(nT (h) + h logh), where T (k) is the time to locate
the nearest neighbor of a site within a set of k sites with non-empty Voronoi cell. Two methods are
proposed to locate the nearest neighbor of a given site. The first one uses no additional data struc-
ture, performs a simple walk in the AW-Delaunay graph and locate the nearest neighbor in O(h)
worst case time. The second method maintains a hierarchy of AW-Delaunay graphs, analog to the
Delaunay hierarchy, and uses this hierarchy to perform the nearest neighbor location. Although the
analysis of the Delaunay hierarchy does not extend to the case of AW-Delaunay hierarchy, experi-
mental results suggest that such a hierarchy allows to answer a nearest neighbor query in O(log h)
time.

Our algorithm performs deletions of non-trivial sites in almost optimal time. However, deletions
of trivial sites are not done very efficiently and this point should be improved in further studies.

Further works also include generalization of our method to more general classes of objects,
such as convex objects. More generally, one can think of characterizing classes of abstract Voronoi

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 21

n h h/n T1 T2 T1/(n log h) T2/(n log h)

1 000 1 000 1.00 0.33 0.33 1.10× 10−4 1.10× 10−4

1 000 949 0.95 0.35 0.35 1.18× 10−4 1.24× 10−4

1 000 797 0.80 0.33 0.37 1.14× 10−4 1.27× 10−4

1 000 504 0.50 0.26 0.29 0.96× 10−4 1.07× 10−4

10 000 10 000 1.00 4.75 3.59 1.18× 10−4 0.90× 10−4

10 000 9 454 0.95 4.63 3.77 1.16× 10−4 0.95× 10−4

10 000 7 973 0.80 4.46 3.65 1.14× 10−4 0.94× 10−4

10 000 5 017 0.50 3.64 3.02 0.98× 10−4 0.82× 10−4

100 000 99 995 1.00 85.17 38.42 1.70× 10−4 0.77× 10−4

100 000 94 570 0.95 87.29 40.11 1.75× 10−4 0.81× 10−4

100 000 79 861 0.80 83.37 38.52 1.70× 10−4 0.79× 10−4

100 000 49 614 0.50 67.15 32.19 1.43× 10−4 0.68× 10−4

1 000 000 999 351 1.00 > 36 min 425.38 − 0.71× 10−4

1 000 000 950 008 0.95 > 36 min 446.28 − 0.75× 10−4

1 000 000 800 290 0.80 2 130.49 445.58 3.61× 10−4 0.75× 10−4

1 000 000 497 866 0.50 1 715.94 386.47 3.01× 10−4 0.68× 10−4

Table 1: The running times of the two algorithms as a function of the size n of the input set and
the number of non-trivial sites h. T1 indicates the time for the algorithm with one level of the
AW-Voronoi diagram and T2 indicates the running time for an hierarchy of AW-Voronoi diagrams.
Unless otherwise indicated, both T1 and T2 are given in seconds. The experiments were performed
on a Pentium-III 1GHz running Linux.

diagrams that can be computed using the method proposed here, i.e., without using a history or
conflict graph. Another natural direction of future research is the generalization of the presented
algorithm for the construction of AW-Voronoi diagrams in higher dimensions.

Acknowledgments

The authors would like to thank Jean-Daniel Boissonat for fruitful discussions.

References

[1] N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis
transform. Comput. Geom. Theory Appl., 19:127–153, 2001.

[2] F. Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM J. Comput.,
16:78–96, 1987.

RR n° 4466

22 Karavelas & Yvinec

[3] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cambridge University
Press, UK, 1998. Translated by Hervé Brönnimann.

[4] The CGAL Reference Manual, 2.3 edition, 2001. http://www.cgal.org.

[5] Olivier Devillers. Improved incremental randomized Delaunay triangulation. In Proc. 14th
Annu. ACM Sympos. Comput. Geom., pages 106–115, 1998.

[6] R. L. Drysdale, III and D. T. Lee. Generalized Voronoi diagrams in the plane. In Proc. 16th
Allerton Conf. Commun. Control Comput., pages 833–842, 1978.

[7] S. Fortune. A sweepline algorithm for Voronoi diagrams. In Proc. 2nd Annu. ACM Sympos.
Comput. Geom., pages 313–322, 1986.

[8] Menelaos Karavelas. Proximity Structures for Moving Objects in Constrained and Uncon-
strained Environments. PhD thesis, Stanford University, 2001.

[9] Menelaos I. Karavelas and Ioannis Z. Emiris. Predicates for the planar additively weighted
Voronoi diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-Antipolis, 2002.

[10] D.-S. Kim, D. Kim, and K. Sugihara. Voronoi diagram of a circle set constructed from Voronoi
diagram of a point set. In D. T. Lee and S.-H. Teng, editors, Proc. 11th Inter. Conf. ISAAC 2000,
volume 1969 of LNCS, pages 432–443. Springer-Verlag, 2000.

[11] D.-S. Kim, D. Kim, K. Sugihara, and J. Ryu. Robust and fast algorithm for a circle set
Voronoi diagram in a plane. In V. N. Alexandrov et al., editor, Proceedings of the 2001 In-
ternational Conference on Computational Science, volume 2073 of LNCS, pages 718–727.
Springer-Verlag, 2001.

[12] Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes Comput.
Sci. Springer-Verlag, 1989.

[13] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental construction of ab-
stract Voronoi diagrams. Comput. Geom. Theory Appl., 3(3):157–184, 1993.

[14] D. T. Lee and R. L. Drysdale, III. Generalization of Voronoi diagrams in the plane. SIAM J.
Comput., 10:73–87, 1981.

[15] K. Mehlhorn, S. Meiser, and C. Ó’Dúnlaing. On the construction of abstract Voronoi diagrams.
Discrete Comput. Geom., 6:211–224, 1991.

[16] Sylvain Pion. Interval arithmetic: An efficient implementation and an application to compu-
tational geometry. In Workshop on Applications of Interval Analysis to systems and Control,
pages 99–110, 1999.

[17] Micha Sharir. Intersection and closest-pair problems for a set of planar discs. SIAM J. Comput.,
14:448–468, 1985.

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 23

A The dual graph

In this section we present a planar embedding for the AW-Delaunay graph, which is an alternative to
the embedding presented in [17]. In particular, what we show in this section is that the AW-Voronoi
diagram of the tritangent Voronoi circles, augmented with some additional vertices is an embedding
of the AW-Delaunay graph of the given set of site. Our result is similar in nature to that in [1]
connecting the Euclidean Voronoi diagram and the Delaunay triangulation of a point set through the
power diagram of the Voronoi circles of the point set. Our embedding is canonical in contrast to the
embedding in [17]. Since trivial sites do not contribute to the AW-Voronoi diagram we assume in
this section that we only have non-trivial sites.

As previously, we note B the set of sites, V(B) the AW-Voronoi diagram of B andD(B) the dual
AW-Delaunay graph. As usual we consider here the compatifeid version of the AW-Voronoi diagram
and AW-Delaunay graph. Let C be the set of tritangent Voronoi circles associated with the vertices
of V(B). We consider exterior tritangent circles in C as weighted points with a positive weight, equal
to their radius, whereas interior tritangent Voronoi circles are considered as weigthed points with a
negative weight, with absolute value equal to their radius. Consider the AW-Voronoi diagram V(C)
of C. The following lemma relates the centers of sites in B with the Voronoi diagram of C.

Lemma 7 Let B be a non-trivial site in B, and let Cγ(B) be the set of tritangent Voronoi circles of
the faces of D(B) adjacent to B. Then, the center b of B lies on the the boundary of the Voronoi
cells in V(C) of all the Ci’s in Cγ(B). Moreover the cardinality of Cγ(B) is at least 2.

1. If |Cγ(B)| = 2, then b lies in the interior of a Voronoi edge in V(C).
2. If |Cγ(B)| > 2, then b is a Voronoi vertex in V(C).

Proof. The cardinality of Cγ(B) is at least 2 because, as explained in section sec:prelim, each vertex
in the compatified version D(B) of the AW-Delaunay graph has degree at least two. Consider the
Voronoi circles Ci ∈ Cγ(B). Clearly :

δ(B, Ci) = 0, ∀Ci ∈ Cγ(B),

and
δ(B, Ci) > 0, ∀Ci ∈ C \ Cγ(B).

We deduce that b of B lies on the boundary of the Voronoi cells in V(C) of all the Ci’s in Cγ(B). If
the cardinality of Cγ(B) is 2 then b is contained in the interior of an edge of V(C). If |Cγ(B)| > 2,
then b lies on the boundary of at least three Voronoi cells in V(C), thus it is a Voronoi vertex in V(C).
�

Let S2(B) be the set of centers of all the vertices of degree 2 in D(B). By Lemma 7, the points
in S2(B) lie in the interior of Voronoi edges of V(C). We note V∗(C) the diagram obtained from
V(C) when edges of V(C) are splitted with additionnal vertices located at points of S2(B).

Theorem 4 Let B be a set of sites and C the set of tritangent Voronoi circles of V(B). Let S2(B) be
the set of vertices of D(B) of degree 2 and let V∗(C) be the AW-Voronoi diagram of C augmented by
the vertices in S2(B). Then V∗(C) is a valid embedding of the AW-Delaunay graphD(B) of B.

RR n° 4466

24 Karavelas & Yvinec

Proof. Let B be a site in B and consider the set Cγ(B) of Voronoi circles corresponding to the faces
of D(B) adjacent to B. By Lemma 7, if |Cγ | = 2, then b is contained in the interior of an edge of
V(C). However, by means of the construction of V∗(C), b is a vertex in V∗(C). If |Cγ | > 2 is greater
than 2, then b is a Voronoi vertex in V(C) and thus b is also a Voronoi vertex in V∗(C). Hence, all
the centers of sites in B are vertices in V∗(C).

Consider an edge ekl
ij in D(B) that is the dual of a Voronoi edge αkl

ij in V(B). Let πij denote
the bisector of the sites Bi and Bj . Let Cijk and Cijl be the tritangent Voronoi circles associated
with the endpoints of ekl

ij . Consider the quad Qijkl defined by the centers bi, bj , cijk , cijl of Bi, Bj ,
Cijk , Cijl. Qijkl is contained in the union Vi ∪ Vj of the Voronoi cells of Bi and Bj in V(B), but
also in the union V ∗

ijk ∪ V ∗
ijl of the Voronoi cells of Cijk and Cijl in V∗(C). Since Voronoi cells

are star-shaped, Qijkl does not contain any centers of sites in B or centers of circles in C, except bi,
bj , cijk and cijl. In particular, the set Q of all quads defined this way forms a partition of the entire
plane. Let σijkl be the bisector of Cijk and Cijl. Clearly, σijkl passes through the centers bi and bj

of Bi and Bj . Let β be the arc of σijkl delimited by bi and bj . Since Voronoi cells are star-shaped, β
is contained in Qijkl. Suppose that β is not an edge of V∗(C). This implies that β contains a vertex
v of V∗(C). Let V ∗ be the Voronoi cell in V∗(C), distinct from V ∗

ijk and V ∗
ijl, to which v belongs.

Since the Voronoi cells are connected, the Voronoi cell V ∗ must be entirely contained in Qijkl. This
implies that the center c of the tritangent Voronoi circle C to which V ∗ corresponds has to be inside
Qijkl as well. This is, however, impossible since Qijkl is empty of centers of both the original sites
as well as the tritangent Voronoi circles. Hence β corresponds to an edge of V∗(C).

Suppose now that there exists a vertex v of V∗(C) that does not belong in B. Since the set Q of
quads forms a partition of the plane, v has to be inside a quad Qijkl. But we have just proved that
Qijkl corresponds to an edge of V∗(C) and thus is it empty of vertices of V∗(C). Similarly, there
cannot exist an edge e of V∗(C) other than the ones we have already discovered, since such an edge
would have to cut at least one of the quads Qijkl inQ, which are also empty of edges of V∗(C).

Hence there exists an 1–1 correspondence between the vertices and edges in D(B) and V ∗(C).
Therefore, V∗(C) is isomorphic to D(B), and in particular, it is a planar embedding ofD(B). �

A special case of the above theorem is when the set B consists of points. In this case the set
S2(B) is empty, and we get the following corollary :

Corollary 1 Let B be a set of points and C be the set of Voronoi circles of V(B). Then V(C) is a
planar graph isomorphic to the Delaunay triangulation of the point set B.

The following lemma describes the geometry of the edges ofD(B).

Lemma 8 Let e be an edge of D(B). Then e is one of the following :

1. A line segment connecting the centers of two sites in B.

2. A hyperbolic segment connecting the centers of two sites in B.

3. A parabolic segment connecting the centers of two sites in B.

4. A ray originating from the a center of a site in B.

INRIA

Dynamic additively weighted Voronoi diagrams in 2D 25

Proof. Let ekl
ij be an edge of D(B) and let αkl

ij be the dual edge of ekl
ij in V(B). Finally, we denote

the site at infinity as B∞. Let also Rijk and Rijl denote the weights of the Voronoi circles Cijk and
Cijl, the centers of which are the two endpoints of αkl

ij .
Consider the following cases, where we assume, without loss of generality that ri ≤ rj and that

Rijk ≤ Rijl :

1. Bi, Bj 6= B∞ and Rijk = Rijl. Then the bisector of Cijk and Cijl is a line and thus ekl
ij is a

line segment connecting bi and bj . Note that this holds true even if Cijk and Cijl are circles
that go through B∞, since then Cijk and Cijl are lines and the bisector of two lines is also a
line.

2. Bi, Bj 6= B∞ and Rijk 6= Rijl < ∞. Then the bisector of Cijk and Cijl is a hyperbola and
in this case ekl

ij is section of hyperbola connecting bi and bj .

3. Bi, Bj 6= B∞ and Rijk <∞, Rijl =∞. In this case Cijl is a circle that passes from the site
at infinity B∞. On the Euclidean plane Cijl is a line tangent to Bi and Bj , and the bisector of
Cijk and Cijl is the locus of points equidistant from a circle and a line, which is a parabola.
Hence in this case ekl

ij is a section of parabola delimited by bi and bj .

4. Bi 6= B∞ and Bj ≡ B∞. In this case both Cijk and Cijl are circles that go through B∞, i.e.,
they are lines tangent to Bi. Their bisector is a also line. Since one of the endpoints of e is the
point at infinity we have that in this case ekl

ij is a ray originating from bi.

�

Remark: The results of Lemma 8 are not restricted to the dual of the AW-Voronoi diagram of a set
of circles. In fact, Lemma 8 describes the geometry of the AW-Voronoi diagram of a set of sites,
where the sites can either be circles, with positive or negative weights, or half-planes.

RR n° 4466

26 Karavelas & Yvinec

Contents

1 Introduction 3

2 Preliminaries 5

3 Inserting a site incrementally 9
3.1 Triviality test . 9
3.2 Finding the conflict region . 10
3.3 Storing the trivial sites . 14
3.4 Runtime analysis . 14

4 Nearest neighbor location 15

5 Deleting a site 17
5.1 Deleting a non-trivial site . 17
5.2 Deleting a trivial site . 18
5.3 Runtime analysis . 18

6 Predicates and implementation 19
6.1 Predicates . 19
6.2 Implementation . 19
6.3 Benchmarks . 19

7 Conclusion 20

A The dual graph 23

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

