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Diagrammes de Voronoï d’Objets Convexes
en Dimension 2

Résumé : Ce rapport présente un algorithme dynamique pour construire le diagramme de Voro-
noi Euclidien d’un ensemble d’objets convexes en dimension2. Nous considérons tout d’abord
la cas d’objets lisses et convexes constituant un ensemble de pseudo-circles. Un ensemble de
pseudo-circles est un ensemble d’objets bornés tels que lesfrontières de deux objets quelconques
de l’ensemble ont au plus deux points d’intersection. Notrealgorithme est randomisé et dynamique.
Il n’utilise ni graphes de conflits ni structures sophistiquée pour détecter les conflits. De ce fait, il est
relativement facile de gérer les suppressions. Si les objets sont disjoints, le coût randommisé d’une
insertion etO(log2 n) et celui d’une suppresssion estO(log3 n) Cet algorithme peut être adaptée
aux ensembles de pseudo-circles formés d’objets convexes lisses par morceaux. Pour finir, il permet
aussi de calculer, pour tout ensemble d’objets convexes, larestriction de leur diagramme de Voronoï
au complémentaire de leur union.

Mots-clés : diagramme de Voronoï; triangulation de Delaunay; distanceeuclidienne; diagramme
de Voronoï abstrait; algorithme randomisés, algorithme dynamique
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1 Introduction

Given a set of sites and a distance function from a point to a site, a Voronoi diagram can be roughly
described as the partition of the space into cells that are the locus of points closer to a given site
than to any other site. Voronoi diagrams have proven to be useful structures in various fields such
as astronomy, crystallography, biology etc. Voronoi diagrams have been extensively studied. See
for example the survey by Aurenhammer [2] or the more recent one by Aurenhammer and Klein [3]
or the book by Okabe, Boots, Sugihara and Chiu [12]. The earlystudies were mainly concerned
with point sites and the Euclidean distance. Subsequent studies considered extended sites such has
segments, lines, convex polytopes and various distances such asL1 or L∞ or any distance defined by
a convex polytope as unit ball. While the complexity and the related algorithmic issues of Voronoi
diagrams for extended sites in higher dimensions is still not completely understood, as witnessed in
the recent works by Koltun and Sharir [9, 10], the planar cases are now rather well mastered, at least
for linear objects. The rising need for handling curved objects triggered further works for the planar
cases. Klein et al. [7, 8] set up a general framework ofabstract Voronoi diagramswhich covers
a large class of planar Voronoi diagrams. They provided a randomized incremental algorithm to
construct diagrams of this class. Alt and Schwarzkopf [1] handled the case of generic planar curves
and described an incremental randomized algorithm for thiscase too. Since they handle curves, they
cannot handle objects with non-empty interior, which is ourfocus. Their algorithm is incremental
but does not work in-line (it requires the construction of a Delaunay triangulation with one point
on each curve before the curve segments are really treated).Another closely related work is that
by McAllister, Kirkpatrick and Snoeyink [11], which deals with the Voronoi diagrams of disjoint
convex polygons. The algorithm presented treats the convexpolygons as objects, rather than as
collections of segments; it follows the sweep-line paradigm, thus it is not dynamic. Moreover, the
case of intersecting convex polygons is not considered. Thepresent papers deals with the Euclidean
Voronoi diagram of planar convex objects and generalizes a previous work of the same authors on
the Voronoi diagram of circles [6].

Let p be a point andA be a bounded convex object in the Euclidean planeE
2. We define the

distanceδ(p, A) from p to A to be:

δ(p, A) =

{

minx∈∂A ‖p − x‖, x 6∈ A

−minx∈∂A ‖p − x‖, x ∈ A

where∂A denotes the boundary ofA and‖ · ‖ denotes the Euclidean norm.
Given the distanceδ(·, ·) and a set of convex objectsA = {A1, . . . , An}, theVoronoi diagram

V(A) is the planar partition into cells, edges and vertices defined as follows. The Voronoi cell of an
objectAi is the set of points which are closer toAi than to any other object inA. Voronoi edges are
maximal connected sets of points equidistant to two objectsin A and closer to these objects than to
any other inA. Voronoi vertices are points equidistant to at least three objects ofA and closer to
these objects than to any other object inA.

We first consider Voronoi diagrams for special collections of smooth convex objects called
pseudo-circles sets. A pseudo-circles set is a set of bounded objects such that the boundaries of
any two objects in the set have at most two intersection points. In the sequel, unless specified oth-
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4 Karavelas & Yvinec

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Various configurations for two convex objects. (a)-(e): an sc-pseudo-circles set in general
position; (f)-(g): an sc-pseudo-circles set in degenerateposition; (h)-(j): a pseudo-circles set of
piecewise smooth convex objects; (k)-(l): not a pseudo-circles set.

erwise, we consider pseudo-circles sets formed by smooth convex objects, and we call themsmooth
convex pseudo-circles sets, or sc-pseudo-circles setsfor short.

Let A be a convex object. A lineL is asupporting lineof A if and only if A is included in one
of the closed half-planes bounded byL, and∂A∩L is not empty. Given two convex objectsAi and
Aj , a lineL is a(common) supporting lineof Ai andAj if and only if L is a supporting line ofAi

andAj , such thatAi andAj are both included in the same half-plane bounded byL.
In this paper, we first deal with smooth bounded convex objects forming pseudo-circles sets (cf.

Fig. 1). Any two objects in such a set set have at most two common supporting lines (cf. Fig.
1). Two convex objects have no common supporting line if one is included in the other. They have
two common supporting lines if they are either disjoint or properly intersecting at two points (a
proper intersection point is a point where the boundaries are not only meeting but also crossing each
other) or externally tangent (which means that their interiors are disjoint and their boundaries share
a common tangent point). Two objects forming a pseudo-circles set may also be internally tangent,
meaning that one is included in the other and their boundaries share one or two common points.

INRIA



Voronoi Diagram of Convex Objects 5

Then they have, respectively, one or two common supporting lines. A pseudo-circles set is said to be
in general positionif there is no pair of tangent objects. In fact, tangent objects which are properly
intersecting at their common tangent point or externally tangent objects do not harm our algorithm
and we shall say that a pseudo-circles set is in general position when there is no pair of internally
tangent objects.

The algorithm that we propose for the construction of the Voronoi diagram of sc-pseudo-circles
sets in general position is a dynamic one. It is a variant of the incremental randomized algorithm
proposed by Klein et al. [8]. The data structures used are simple, which allows us perform not only
insertions but also deletions of sites in a relatively easy way. When input sites are allowed to intersect
each other, it is possible for a site to have an empty Voronoi cell. Such a site is called ahidden
site, while a site with non-empty cell is said to bevisible. Our algorithm handles hidden sites. The
detection of the first conflict or the detection of a hidden site is performed through closest site queries.
Such a query can be done by either a simple walk in the Voronoi diagram or using a hierarchy of
Voronoi diagrams, i.e., a data structure inspired from the Delaunay hierarchy of Devillers [5].

To analyze the complexity of the algorithm, we assume that each object has constant complexity,
which implies that each operation involving a constant number of object is performed in constant
time (e.g., finding a circle tangent to three objects). We show that if sites do not intersect, the
randomized complexity of updating a Voronoi diagram withn sites isO(log2 n) for an insertion and
O(log3 n) for a deletion. The complexities of insertions and deletions are more involved when sites
intersect.

We then extend our results by firstly dropping the hypothesisof general position and secondly
by dealing with pseudo-circles sets formed by convex objects whose boundaries are only piecewise
smooth. Using this extension, we can then build the Voronoi diagram of any setA of convex objects
in the complement of the objects’ union (i.e., in free space). This done by constructing a new set
of objectsA′, which is a pseudo-circles set of piecewise smooth convex objects and such that the
Voronoi diagramsV(A) andV(A′) coincide in free space.

The rest of the paper is structured as follows. In Section 2 westudy the properties of the Eu-
clidean Voronoi diagram of sc-pseudo-circles sets in general position. In particular we show that
such a diagram belongs to the class of abstract Voronoi diagrams described by Klein et al. [8]. In
Section 3 we present the dynamic algorithm for the construction of the Voronoi diagram of sc-
pseudo-circles sets in general position. Section 4 describes closest site queries, whereas Section 5
deals with the complexity analysis of insertions and deletions. Finally, in Section 6 we show how
our approach can be extended to handle sc-pseudo-circles sets with degeneracies, pseudo-circles sets
of convex objects with piecewise smooth boundaries and eventually any set of convex objects in the
plane.

2 The Voronoi diagram of sc-pseudo-circles sets

In this section we present the main properties of the Voronoidiagram of sc-pseudo-circles sets in
general position. Let us first make precise a few definitions and notations. Here and in the following,
we consider any bounded convex objectAi as closed and we note∂Ai andA◦

i , respectively, the
boundary and the interior ofAi.

RR n° 5023



6 Karavelas & Yvinec

Let A = {A1, . . . , An} be an sc-pseudo-circles set. The Voronoi cell of an objectA is denoted
asV (A) and is considered a closed set. The interior and boundary ofV (A) are denoted byV ◦(A)
and∂V (A), respectively. We are going to consider maximal disks either included in a given object
Ai or disjoint fromA◦

i , where the term maximal refers to the inclusion relation. For any pointx,
we denote byCi(x) the closed disk centered atx with radius|δ(x, Ai)|. If x 6∈ Ai, Ci(x) is the
maximal disk centered atx and disjoint fromA◦

i . If x ∈ Ai, Ci(x) is the maximal disk centered at
x and included inAi. In the latter case these is a unique maximal disk insideAi containingCi(x),
which we denote byMi(x). Finally, themedial axisS(Ai) of a bounded convex objectAi is defined
as the locus of points that are centers of maximal disks included inAi.

Let Ai andAj be two smooth bounded convex objects. The set of pointsp ∈ E
2 that are at equal

distance fromAi andAj is called the bisectorπij of Ai andAj . Theorem 2 ensures thatπij is an
one-dimensional set if the two objectsAi andAj form an sc-pseudo-circles set in general position
and justifies the definition of Voronoi edges given above.

Let us begin with a technical lemma.

Lemma 1 LetAi andAj be two bounded convex objects.

1. If x ∈ Ai, δ(x, Ai) < δ(x, Aj) if and only if Ci(x) is not included inAj and δ(x, Ai) =
δ(x, Aj) if and only ifCi(x) is internally tangent toAj .

2. If x 6∈ Ai, δ(x, Ai) < δ(x, Aj) if and only if Ci(x) does not intersectAj , andδ(x, Ai) =
δ(x, Aj) if and only ifCi(x) is externally tangent toAj .

Proof. Follows trivially from the definition of the distance. �

Theorem 2 Let Ai andAj be two convex objects forming a pseudo-circles set in general position
and letπij be the bisector ofAi, Aj with respect to the Euclidean distanceδ(·, ·). Then :

1. If Ai andAj have no supporting line, thenπij = ∅.

2. If Ai andAj have two supporting lines, thenπij is a single curve homeomorphic to the open
interval (0, 1).

Proof.

1. Suppose thatAi andAj have no common supporting line. This implies that eitherAi ⊂ A◦

j

or Aj ⊂ A◦

i . Let us assume thatAj ⊂ A◦

i . Let x ∈ E
2. We consider the following cases for

x :

(a) x 6∈ Ai. Any disk centered inx that does not intersectA◦

i does not intersectAj . This is
in particular true forCi(x) which implies thatδ(x, Ai) < δ(x, Aj).

(b) x ∈ Ai \ Aj . Thenδ(p, Ai) ≤ 0 < δ(p, Aj).

(c) x ∈ Aj . The maximum diskCi(x) is tangent to∂Ai at at least one point and therefore
cannot be included inAj . Thus,δ(p, Ai) < δ(p, Aj).

INRIA
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πij

Ai

Aj

x(p)

Ci(x(p))

ℓi(p)

S(Ai)

p

πij

Ai

Aj

x(p)

Ci(x(p))

ℓi(p)

S(Ai)

p

a

b

pi

qi

Figure 2: The set of raysℓi(y), y ∈ ∂Ai, covers the entire plane. The rayℓi(p) and the bisectorπij

intersect in at most one point. Left: the caseAi ∩ Aj = ∅. Right: the caseAi ∩ Aj 6= ∅.

Thus any pointx is closer toAi thanAj , andπij = ∅.

2. Suppose now thatAi, Aj have two common supporting lines. For a pointp ∈ ∂Ai, let σi(p)
be the point of the medial axisS(Ai) which is the center of the maximal disk included inAi

and tangent to∂Ai atp. We denote byℓi(p) the half-line issued fromσi(p) and perpendicular
to ∂Ai at p. The set of raysℓi(p) covers the whole plane and two such rays do not intersect
except if they share the same origin on the medial axis. (See Fig. 2). We first show that the
bisectorπij intersects each rayℓi(p) in at most one point.

For any pointx on ℓi(p), we consider as before the diskCi(x) centered atx with radius
|δ(x, Ai)|. Ci(x) is tangent to∂Ai at p. Whenx moves fromσi(p) to p alongℓi(p), Ci(x)
decreases from the maximal diskMi(σ(p)) to the diskCi(p) which is reduced to the pointp.
Then, whenx moves beyondp onℓi(p), the diskCi(x) increase fromp to the closed halfplane
Hi(p) limited by the line tangent to∂Ai atp and not containingAi.

We denote bypi, qi the contact points of objectAi with the common supporting lines ofAi

andAj , andpj , qj the contact points of objectAj with those lines. We assume that the contact
pointspi, qi, pj andqj are labeled in such a way that they are encountered in that order along
a counterclockwise traversal of the boundary of the convex hull CH(Ai ∪ Aj). Let αi be the
open arc betweenqi andpi along a counterclockwise traversal of∂Ai, i.e. αi is the part of
∂Ai which does not appear on∂CH(Ai ∪ Aj).

We will first assume that the contact points ofAi and Aj with their supporting lines are
distinct, i.e.,pi 6= qj andqi 6= pj .

If p 6∈ αi, then first of allp 6∈ Aj (this would contradict the fact thatp lies on∂CH(Ai∪Aj)).
We then claim that any pointx ∈ ℓi(p) is closer toAi andℓi(p) ∩ πij = ∅. Indeed, for any

RR n° 5023



8 Karavelas & Yvinec

pointx ∈ σi(p)p, the diskCi(x) includesp and thus it is not included inAj and for any point
x onℓi(p) beyondp, Ci(x) is included in the halfplaneHi(p) which does not intersectAj .

If p ∈ αi but p 6∈ Aj , πij intersectsℓi(p) at a single point. Indeed, any pointx ∈ σi(p)p is
closer toAi, for the same reason as above. Let us consider now the points of ℓi(p) beyond
p. Whenx moves beyondp, Ci(x) increases fromCi(p) = {p} which does not intersectAj

to the halfplaneHi(p) which does. There is a unique pointx(p) beyondp on ℓi(p) for which
Ci(x(p)) is externally tangent toAj . This point is at equal distance fromAi andAj , and thus
belongs toπij . Note that the uniqueness ofx(p) stems from the fact thatCi(y) ⊆ Ci(y

′) if
‖y − p‖ ≤ ‖y′ − p‖.

At last, whenAi andAj intersect there are pointsp in αi ∩Aj . For such a pointp, ℓi(p)∩πij

can be either empty or a single point. Indeed any pointx beyondp on ℓi(p) is closer toAj ,
because the diskCi(x) includesp and thus intersectsAj . Consider now pointsx on σi(p)p.
Assume first thatMi(σi(p)) is included inAj . Then, for anyx ∈ σi(p)p, Ci(x) is included in
Aj , x is closer toAj andℓi(p) ∩ πij is empty. Assume now thatMi(σi(p)) is not included in
Aj . Whenx moves fromσi(p) to p, Ci(x) decreases fromMi(σi(p)), which is not included
in Aj , to {p} which is included inAj . There exists a unique pointx(p) ∈ σi(p)p such that
Ci(x(p)) is tangent to∂Aj . This point is at equal distance fromAi andAj and thus belongs to
πij . Again we can argue the uniqueness ofx(p) using an arguments similar to the one above.

Thus if Ai andAj are disjoint, then for any pointp ∈ αi, there is a unique pointx(p) in
ℓi(p) ∩ πij . Reciprocally, any pointy in πij is the center of a disk tangent to bothAi and
Aj . This disk touches∂Ai in a pointp of αi such thaty = x(p). Thus the mapping from
αi to πij , which mapsp ∈ αi to the pointx(p) = ℓi(p) ∩ πij is an one-to-one and onto
mapping. The reverse mapping is well known to be continuous and thereforeπij is a single
curve homeomorphic to the open arcαi, i.e., to the open interval(0, 1).

Assume now thatAi andAj are not disjoint. From the pseudo-circles property∂Ai and∂Aj

intersect in two pointsa andb. Assume thatqi, b, a andpi are encountered in that order on the
counterclockwise traversal of the arcαi. Let α1

i be the subarc ofαi joining qi to b. Any point
p on α1

i is onαi \ Aj and therefore the rayℓi(p) intersects the bisectorπij at a unique point
x(p). As above the mapping fromp to x(p) is one-to-one and continuous and therefore the
bisectorπij includes an unbounded simple arcπ1

ij homeomorphic toα1
i , (i.e., homeomorphic

to the interval(0, 1]), and joiningb = πij(b) with the image ofqi which is the infinite point
of the rayℓi(qi). In the same way, ifα3

i is the subarc ofαi joining a to pi, the bisectorπij

includes an unbounded simple arcπ3
ij homeomorphic toα3

i (i.e., homeomorphic to the interval
[0, 1)), and joininga = πij(a) to the image ofpi which is the infinite point of the rayℓi(pi).
These two arcs are disjoint, they are included in the complement ofAi ∪ Aj and are the only
components of the bisector in that region. Obviouslyπij has no component inAi \ Aj and
Aj \Ai. Let us show now thatπij ∩Ai ∩Aj is a simple connected curve joininga to b. First
let us notice thatπij has to include a connected component inAi ∩ Aj joining a to b. Indeed
consider the continuous functionf(x) = δ(x, Ai) − δ(x, Aj). Let xi be a point of∂Ai ∩ Aj

andxj a point of∂Aj ∩ Ai. Assume thatxi andxj are distinct froma andb. Then we have
f(xi) > 0, f(xj) < 0. Thus there exists at least one point wheref(x) = 0, i.e. a point of

INRIA



Voronoi Diagram of Convex Objects 9

πij on any path joiningxi to xj in Ai ∩ Aj . Then we remark that any point inπij ∩ Ai ∩ Aj

belongs to the medial axis of the convex bodyAi ∩Aj . The medial axis of this object is a tree
and has a single path joininga to b. This proves thatπij ∩ Ai ∩ Aj is the path of the medial
axis joininga to b. Finally the concatenation of the three arcsπ1

ij , π3
ij andπ2

ij = πij ∩Ai∩Aj

yields a curve homeomorphic to(0, 1).

To finish the proof we need to consider the case where the points of contact of the supporting
lines coincide. For convenience we will assume that bothpi ≡ qj andqi ≡ pj . The remaining
cases are just combinations of what we describe below and thearguments made above.

Note that in this case the common points of contact are also the points of intersection of the
boundaries∂Ai and∂Aj . Moreover, the arcα1

i (resp.α3
i ) is now a ray starting fromb (resp.

a), with direction perpendicular to∂Ai and∂Aj , that is contained in the closed halfspace
Hi(b) (resp.Hi(a)). As far as the portion of the bisector insideAi ∩ Aj is concerned we can
no longer claim that is it the portion of the medial axisS(Ai ∩ Aj) connectingb with a; this
is due to the fact that the pointsa andb are no longer points of discontinuity on the boundary
∂(Ai ∩Aj) of Ai ∩Aj and thus they are not necessarily points onS(Ai ∩Aj). However, the
same argument works with minor modifications. Leta′ andb′ be the points on the medial axis
S(Ai ∩ Aj) corresponding toa andb, respectively. Clearly, there is a unique pathΠ from a′

to b′ in S(Ai ∩Aj) (recall that the medial axisS(Ai ∩Aj) is a tree, sinceAi ∩Aj is a convex
object). Now consider the pathbb′ ∪ Π ∪ a′a. This path connectsb to a and all its points are
at equal distance from the two arcs∂Ai ∩Aj and∂Aj ∩Ai on the boundary ofAi ∩Aj . The
union of this path along with the two rays emanating froma andb constitute the bisectorπij

of Ai andAj . Clearly,πij is homeomorphic to the interval(0, 1).

�

Theorem 4 ensures that each cell in the Euclidean Voronoi diagram of an sc-pseudo-circles set in
general position is simply connected. We begin by a technical lemma which generalizes Lemma 1.

Lemma 3 LetA = {A1, . . . , An} be an sc-pseudo-circles set.

1. If x ∈ Ai, thenx belongs to the Voronoi cellV (Ai) of Ai if and only ifCi(x) is not contained
in the interiorA◦

j of any objectAj in A \ {Ai}.

2. If x ∈ Ai, thenx belongs to the interiorV ◦(Ai) of the Voronoi cellV (Ai) of Ai if and only if
Ci(x) is not contained in any objectAj in A \ {Ai}.

3. If x 6∈ Ai, thenx belongs to the Voronoi cellV (Ai) ofAi if and only ifCi(x) does not intersect
the interiorA◦

j of any objectAj in A \ {Ai}.

4. If x 6∈ Ai, thenx belongs to the interiorV ◦(Ai) of the Voronoi cellV (Ai) of Ai if and only if
Ci(x) does not intersect any objectAj in A \ {Ai}.

Proof. The proof follows trivially from Lemma 1. �

RR n° 5023



10 Karavelas & Yvinec

Theorem 4 LetA = {A1, . . . , An} be an sc-pseudo-circles set in general position. For each object
Ai, we denote byN(Ai) the locus of the centers of maximal disks included inAi that are not included
in the interior of any object inA \ {Ai}, and byN◦(Ai) the locus of the centers of maximal disks
included inAi that are not included in any object inA \ {Ai}. Then:

1. N(Ai) = S(Ai) ∩ V (Ai) andN◦(Ai) = S(Ai) ∩ V ◦(Ai).

2. N(Ai) andN◦(Ai) are simply connected sets.

3. The Voronoi cellV (Ai) is weakly star-shaped with respect toN(Ai), which means that any
point ofV (Ai) can be connected to a point inN(Ai) by a segment included inV (Ai). Anal-
ogously,V ◦(Ai) is weakly star-shaped with respect toN◦(Ai).

4. V (Ai) = ∅ if and only ifN(Ai) = ∅ andV ◦(Ai) = ∅ if and only ifN◦(Ai) = ∅.

Proof. For any pointx ∈ E
2, we note as beforeCi(x) the disk centered atx with radius|δ(x, Ai)|

and bypi(x) the point whereCi(x) touches∂Ai. If x ∈ Ai the diskCi(x) is included in a unique
maximal disk insideAi which is calledMi(x). If x 6∈ Ai, we still denote byMi(x) the maximal
disk included inAi and tangent to∂Ai atpi(x). In any case, we noteσi(x) the center ofMi(x).

1. Let y ∈ N(Ai). By definitiony ∈ S(Ai). Consider the circleCi(y) = Mi(y). Since it is
not contained in the interiorA◦

j of any object inA \ {Ai}, we have by Lemma 3, Case 2, that
y ∈ V (Ai). Conversely, ify ∈ S(Ai)∩V (Ai), then we have by Lemma 3, Case 2, thatMi(y)
is not contained in the interior of some other objectAj in A. Hencey ∈ N(Ai). The proof of
the other assertion is analog.

2. Let u′ andv′ be two points inN(Ai). BecauseS(Ai) is a tree, there is a unique pathP in
S(Ai) connectingu′ to v′. Suppose that there exists a pointw ∈ P such thatw 6∈ N(Ai). This
implies thatMi(w) is contained in the interiorA◦

j of some other object inA. Consider the
subpath ofP from w to u′. SinceMi(w) is contained inA◦

j whileMi(u
′) is not, there must be

a first pointu on this subpath (fromw to u′) such thatMi(u) is tangent toAj . Similarly, there
exists a first pointv in the subpath ofP from w to v′ such thatMi(v) is tangent toAj . The
end of the proof amounts to show that this situation enforcesthe existence of more than two
intersection points between∂Ai and∂Aj , which contradicts with the factAi andAj belong
to a pseudo-circles set.

Let pu andqu (resp.pv andqv) be the contact points betweenMi(u) (respMi(v)) and∂Ai

and letru (resp. rv) be the contact point ofMi(u) (respMi(v)) with ∂Aj . (See Fig. 3).
Assumepu, qu, pv, qv are labeled in such a way that they are encountered in that order along a
counterclockwise traversal of the boundary of the convex hull CH(Mi(u)∪Mi(v)). Because
any maximal ball inAi centered betweenu andv on P is included inA◦

j , ru (resp. rv) is
encountered betweenpu andqu (resp. betweenpv andqv) on ∂CH(Mi(u) ∪ Mi(v)). Let γ
be the simple closed path which counterclockwisely follows∂CH(Mi(u) ∪ Mi(v)) from ru

to rv and∂Aj from rv to ru. Except ifAi andAj are internally tangent, which contradicts
the general position assumption,ru andrv are inA◦

i and on∂Aj while pu, qu, pv, qv are in
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Mi(u) Mi(v)

Ai

Aj

pu

qu

ru

pv

qv

rv

Figure 3: The boundaries ofAi andAj have at least four intersection points.

A◦

j and on∂Ai. Thusγ which passes throughru, qu, pv, rv and enclosesqv andpu has to
intersect∂Ai at least twice. This implies that the arc of∂Aj joining counterclockwiselyrv to
ru intersects twice∂Ai. In the same way the arc of∂Aj joining counterclockwiselyru to rv

intersects twice∂Ai. Since the two arcs on∂Aj are disjoint (except forru andrv, of course),
we must have at least four intersection points between∂Aj and∂Ai, which contradicts the
fact thatA is a pseudo-circle sets.

3. Consider a pointx ∈ V (Ai). We will show thatσi(x) ∈ N(Ai) and that any pointy of the
segmentxσi(x) belongs toV (Ai). If x ∈ Ai, we grow a circle tangent to∂Ai at pi(x) from
Ci(x) to Mi(x). Any pointy in xσi(x) is the center of a circleCi(y) tangent to∂Ai atpi(x)
and such thatCi(x) ⊆ Ci(y) ⊆ Mi(x). Becausex ∈ V (Ai), Ci(x) is not contained in the
interior A◦

j of any other object ofA, henceCi(y) andMi(x) are not included in the interior
A◦

j of any other objectAj , which proves thaty ∈ V (Ai) andσi(x) ∈ N(Ai). If x 6∈ Ai, we
first shrink a circle tangent to∂Ai at pi(x), from Ci(x) to the pointpi(x), then grow a circle
tangent to∂Ai atpi(x) from the pointpi(x) to Mi(x). Any pointy in the subsegmentxpi(x)
is the center of a circleCi(y) tangent to∂Ai at pi(x) and such thatCi(y) ⊆ Ci(x). Because
x ∈ V (Ai), Ci(x) does not intersect the interiorA◦

j of any other object ofA, thus neither does
Ci(y) andy ∈ V (Ai). Any pointy in subsegmentpi(x)σi(x) is the center of a circleCi(y)
tangent to∂Ai at pi(x) and such thatpi(x) ⊆ Ci(y) ⊆ Mi(x). Becausepi(x) ∈ V (Ai),
pi(x) is not contained in the interiorA◦

j of any other objectAj of A, and thus neither does
Ci(y) norMi(x). Thusy ∈ V (Ai) andσi(x) ∈ N(Ai).

We can apply an analogous argument to show that ifx ∈ V ◦(Ai), then any pointy in xσi(x)
belongs toV ◦(Ai).

4. Claim 4 is follows immediately from the proofs of the previous claims.

�

In the sequel we say that an objectA is hiddenif N◦(A) = ∅.
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12 Karavelas & Yvinec

In the framework of abstract Voronoi diagrams introduced byKlein [7], the diagram is defined
by a set of bisecting curvesBi,j . In this framework, a set of bisectors is set to beadmissibleif:

1. Each bisector is homeomorphic to a line.

2. The closures of the Voronoi regions covers the entire plane.

3. Regions are path connected.

4. Two bisectors intersect in at most a finite number of connected components.

Let us consider the Euclidean Voronoi diagrams of an sc-pseudo-circles set in general position such
that any pair of objects has exactly two supporting lines. Theorems 2 and 4 ensure, respectively,
that Conditions 1 and 3 are fulfilled. Condition 2 is granted for any diagram induced by a distance.
Condition 4 is a technical condition that we have not explicitly proved. In our case this results indeed
from the assumption that the objects have constant complexity (note that Condition 4 is used in the
theory of abstract Voronoi diagrams to prove that Voronoi cells are simply connected, which in our
case is directly ensured by Theorem 4). The converse is also true: if we have a set of convex objects
in general position, then their bisectors form an admissible system only if every pair of objects has
exactly two supporting lines. Indeed, if this is not the case, one of the following holds: (1) the
bisector is empty (e.g., if one object is contained in the interior of another; cf. Fig. 1(e)); (2) there
exist Voronoi cells that consist of more than one connected components (e.g., if two the boundaries
of two objects have four points of intersection; cf. Fig. 1(k)).

Theorem 5 Let A = {A1, . . . , An} be a set of smooth convex objects of constant complexity and
in general position. Then the set of bisectorsπij is an admissible system of bisectors if and only if
every pair of objects has exactly two supporting lines.

3 The dynamic algorithm

The algorithm that we propose is a variant of the randomized incremental algorithm for abstract
Voronoi diagrams proposed by Klein and al. [8]. Our algorithm is fully dynamic and maintains the
Voronoi diagram when a site is either added to the current setor deleted from it. To facilitate the
presentation of the algorithm we first define the compactifiedversion of the diagram and introduce
the notion of conflict region.

The compactified diagram. We call1-skeleton of the Voronoi diagram, the union of the Voronoi
vertices and Voronoi edges. The1-skeleton of the Voronoi diagram of an sc-pseudo-circles set A
may consist of more than one connected components. However,we can define a compactified version
of the diagram by adding toA a spurious site,A∞ called the infinite site. The bisector ofA∞ and
Ai ∈ A is a closed curve at infinity, intersecting any unbounded edge of the original diagram (see
for example [7]). In the sequel we consider such a compactified version of the diagram, in which
case the1-skeleton is connected.

The conflict region.Each pointx on a Voronoi edge incident toV (Ai) andV (Aj) is the center of a
diskCij(x) tangent to the boundaries∂Ai and∂Aj. This disk is called aVoronoi bitangent disk, and
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Voronoi Diagram of Convex Objects 13

more precisely an interior Voronoi bitangent disk if it is included inAi ∩ Aj , or an exterior Voronoi
bitangent disk if it lies in the complement ofA◦

i ∪ A◦

j . Similarly, a Voronoi vertex that belongs to
the cellsV (Ai), V (Aj) andV (Ak) is the center of a diskCijk(x) tangent to the boundaries ofAi,
Aj andAk. Such a disk is called aVoronoi tritangent disk, and more precisely an interior Voronoi
tritangent disk if it is included inAi ∩ Aj ∩ Ak, or an exterior Voronoi tritangent disk if it is lies in
the complement ofA◦

i ∪ A◦

j ∪ A◦

k.
Suppose we want to add a new objectA /∈ A and update the Voronoi diagram fromV(A) to

V(A+) whereA+ = A ∪ {A}. We assume thatA+ is also an sc-pseudo-circles set. The object
A is said to be in conflict with a pointx on the1-skeleton of the current diagram if the Voronoi
disk associated tox is either an internal Voronoi disk included inA◦ or an exterior Voronoi disk
intersectingA◦. We callconflict regionthe subset of the1-skeleton ofV(A) that is in conflict with
the new objectA. A Voronoi edge ofV(A) is said to be in conflict withA if some part of this edge
is in conflict withA.

Our dynamic algorithm relies on the two following theorems,which can be proved as in [8].

Theorem 6 LetA+ = A∪{A} be an sc-pseudo-circles set such thatA /∈ A. The conflict region of
A with respect toV(A) is a connected subset of the1-skeleton ofV(A).

Theorem 7 Let {Ai, Aj , Ak} be an sc-pseudo-circles set in general position. Then the Voronoi
diagram ofAi, Aj andAk has at most two Voronoi vertices.

This theorem is equivalent to saying that two bisecting curvesπij andπik relative to the same object
Ai have at most two points of intersection. In particular, it implies that the conflict region of a new
objectA contains at most two connected subsets of each edge ofV(A).

The data structures.The Voronoi diagramV(A) of the current set of objects is maintained through
its dual graphD(A).

When a deletion is performed, a hidden site can reappear as visible. Therefore, we have to keep
track of hidden sites. This is done through an additional data structure that we call thecovering
graphK(A). For each hidden objectAi, we callcovering setof Ai a setK(Ai) of objects such
that any maximal disk included inAi is included in the interior of at least one object ofK(Ai). In
other words, in the Voronoi diagramV(K(Ai) ∪ {Ai}) the Voronoi cellV (Ai) of Ai is empty. The
covering graph is a directed acyclic graph with a node for each object. A node associated to a visible
object is a root. The parents of a hidden objectAi are objects that form a covering set ofAi. The
parents of a hidden object may be hidden or visible objects.

Note that if we perform only insertions or if it is known in advance that all sites will have non-
empty Voronoi cells (e.g., this is the case for disjoint objects), it is not necessary to maintain a
covering graph.

The algorithm needs to perform closest site queries. Such a query takes a pointx as input and
asks for the object in the current setA that is closest tox. The algorithm maintains a location data
structure to perform efficiently those queries. The location data structure that we present here is
called a Voronoi hierarchy and is described below in Section4.
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14 Karavelas & Yvinec

3.1 The insertion procedure

The insertion of a new objectA in the current Voronoi diagramV(A) involves the following steps:

1. Find a first conflict between an edge ofV(A) andA or detect thatA is hidden inA+.

2. Find the whole conflict region ofA.

3. Repair the dual graph.

4. Update the covering graph.

5. Update the location data structure if any.

Steps 1, 4 and 5 are discussed below. Steps 2 and 3 are performed exactly as in [6] for the case of
disks. Briefly, in Step 2 we perform a depth-first search on the1-skeleton ofV(A) starting from the
first conflict found in Step 1. The boundary points of the conflict region ofA with respect toV(A)
are the Voronoi vertices of the Voronoi cell ofA in V(A+). Once we have found the conflict region
of A , we can construct the Voronoi cell ofA in V(A+) by connecting these boundary points in the
correct order. In the dual, Step 2 corresponds to finding the boundary of the star ofA in D(A+).
This boundary represents a hole inD(A), i.e., a sequence of edges ofD(A) forming a topological
circle. Step 3 simply amounts to “staring” this hole fromA, that is to connect the vertex inD(A+)
associated withA to every vertex on the hole boundary.

Finding the first conflict or detecting a hidden object.The first crucial operation to perform when
inserting a new object is to determine if the inserted objectis hidden or not. If the object is hidden
we need to find a covering set for this object. If the object is not hidden we need to find an edge of
the current diagram in conflict with the inserted object.

The detection of the first conflict is based on closest site queries. Such a query takes a pointx as
input and asks for the object in the current setA that is closest tox. If we don’t have any location
data structure, then we perform the followingsimple walkon the Voronoi diagram to find the object
in A closest tox. The walk starts from any objectAi ∈ A and compares the distanceδ(x, Ai)
with the distancesδ(x, A) to the neighborsA of Ai in the Voronoi diagramV(A). Here and in the
following, two objects are said to be neighbors in the Voronoi diagram if their Voronoi cells are
adjacent through an edge. If some neighborAj of Ai is found closer tox thanAi, the walk proceeds
to Aj . If there is no neighbor ofAi that is closer tox thanAi, thenAi is the object closest tox
among all objects inA. It is easy to see that this walk can take linear time. We postpone until the
next section the description of the location data structureand the way these queries can be answered
more efficiently.

Let us consider first the case of disjoint objects. In this case there are no hidden objects and each
object is included in its own cell. We perform a closest site query for any pointp of the objectA to
be inserted. LetAi be the object ofA closest top. The cell ofAi will shrink in the Voronoi diagram
V(A+) and at least one edge of∂V (Ai) is in conflict withA. Hence, we only have to look at the
edges of∂V (Ai) until we find one in conflict withA.

When objects do intersect, we perform an operation calledlocation of the medial axis, which
either provides an edge ofV(A) that is in conflict withA, or returns a covering set ofA. To explain
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Voronoi Diagram of Convex Objects 15

how this operation is performed, let us say that a pointp of the medial axisS(A) of A is coveredby
Ai if the diskM(p), which is the maximal disk inA centered atp, is included in the interiorA◦

i of
some objectAi ∈ A. Let us recall that the medial axisS(A) of A is a tree embedded in the plane
and that, from the proof of Theorem 4, we know that the part ofS(A) which is not covered by any
subset of objects inA is connected. Roughly, the method consists in pruning recursively the parts of
S(A) covered by objects inA until either: (1) the remaining part ofS(A) is empty or (2) we have
found a pointp of S(A) whose maximal diskM(p) is not covered by the objectAi of A which is
closest top (if p is not covered byAi it will not be covered by any other object inA \ {Ai}). In the
first case,A is hidden and the objects inA which have been used to pruneS(A) form a covering of
A. In the second case, the pointp is in the cell ofAi and at least one edge of∂V (Ai) is in conflict
with A.

Let us explain more precisely, how we select the objects inA covering parts ofS(A) or detect an
uncovered point ofS(A). We start from a leaf vertexp of the medial axisS(A) and issue a closest
site query to find the objectAi closest top. If the maximal diskM(p) is not covered byAi we are
done. Otherwise we prune the part ofS(A) covered byAi and start again with a new leaf pointp′,
on the boundary of the pruned part ofS(A). There is no need to issue a new closest site query for
pointp′ or subsequent considered leaf points onS(A). Indeed becausep′ is an endpoint of the part
of S(A) covered byAi, the maximal circleM(p′) of A centered atp′ is also internally tangent to
Ai. therefore we just need to scan the neighbors ofAi in the Voronoi diagramV(A) searching for
a neighbor coveringM(p′). If one is found, it becomes the next objectAj used to pruneS(A). If
none is found, we know thatAi is closest top′ among all objects inA and that one of the edge of
∂V (Ai) is in conflict withA.

Updating the covering graph.We now describe how Step 4 of the insertion procedure is performed.
We start by creating a node forA in the covering graph.

If A is hidden, the location of its medial axis yields a covering set K(A) of A. In the covering
graph we simply assign the objects inK(A) as parents ofA.

If the inserted objectA is visible, some objects inA can become hidden due to the insertion
of A. The set of objects that become hidden because ofA are provided by Step 2 of the insertion
procedure. They correspond to cycles in the conflict region of A. The next lemma ensures that the
covering graph can be updated by looking at the neighbors ofA in the new Voronoi diagram.

Lemma 8 LetA be an sc-pseudo-circles set. LetA /∈ A be an object such thatA+ = A ∪ {A} is
also an sc-pseudo-circles set andA is visible inV(A+). If an objectAi ∈ A becomes hidden upon
the insertion ofA, then the neighbors ofA in V(A+) along withA is a covering set ofAi.

Proof. LetN(Ai) andN◦(Ai) be the parts of the medial axisS(Ai) relative to the diagramV(A) as
defined in Theorem 4. SinceAi becomes hidden inA+, for everyy ∈ N◦(Ai), Mi(y) is contained
in A. Let x be a point on the boundary∂N(Ai) = N(Ai) \ N◦(Ai) of N(Ai). ThenMi(x) is
tangent to some neighborAj of Ai in V(A) and included inAj . Moreover, we know from the proof
of Theorem 4 that ifx′ belongs to the same connected component ofS(Ai) \ N(Ai) asx, then
Mi(x

′) is also contained inAj . Hence the neighbors ofAi in V(A) along withA form a covering
set ofAi. A neighborAj of Ai in V(A) is either a neighbor ofA in V(A+) or it becomes hidden in
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16 Karavelas & Yvinec

this diagram. Therefore the set of neighbors ofA in V(A+), plusA is a covering set for any object
Ai that becomes hidden upon the insertion ofA. �

Let Ai be an object that becomes hidden upon the insertion ofA. By Lemma 8 the set of
neighbors ofA in V(A+) along withA is a covering setK(Ai) of Ai. The only modification we
have to do in the covering graph is to assign all objects inK(Ai) as parents ofAi.

Updating the location data structure. The location data structure , if any, is updated as follows.
Let A be the object inserted. IfA is hidden we do nothing. IfA is not hidden, we insertA in the
location data structure, and delete from it all objects thanbecome hidden because of the insertion of
A.

3.2 The deletion procedure

LetAi be the object to be deleted and letKp(Ai) be the set of all objects in the covering graphK(A)
that haveAi as parent. The deletion ofAi involves the following steps:

1. RemoveAi from the dual graph.

2. RemoveAi from the covering graph.

3. RemoveAi from location data structure.

4. Reinsert the objects inKp(Ai).

Step 1 requires no action ifAi is hidden. IfAi is visible, we first build an annex Voronoi diagram
for the neighbors ofAi in V(A) and use this annex Voronoi diagram to fill in the cell ofAi (see [6]).
In Step 2, we simply delete all edges ofK(A) to and fromAi, as well as the node corresponding
to Ai. In Step 3, we simply deleteAi from the location data structure. Finally, in Step 4 we apply
the insertion procedure to all objects inKp(Ai). Note, that ifAi is hidden, this last step amounts to
finding a new covering set for all objects inKp(Ai).

4 Closest site queries

The location data structure is used to answer closest site queries. A closest site query takes as input
a pointx and asks for the object in the current setA that is closest tox. Such queries can be
answered through a simple walk in the Voronoi diagram (as described in the previous section) or
using a hierarchical data structure called the Voronoi hierarchy.

The Voronoi hierarchy. The hierarchical data structure used here, denoted byH(A), is inspired
from the Delaunay hierarchy proposed by Devillers [5].

The data structure consists in a sequence of Voronoi diagrams V(Aℓ), ℓ = 0, . . . , L, built for
subsets ofA forming a hierarchy, i.e,A = A0 ⊇ A1 ⊇ . . . ⊇ AL.

The hierarchyH(A) is built together with the Voronoi diagramV(A) according to the following
rules. Any object ofA is inserted inV(A0) = V(A). If A has been inserted inV(Aℓ) and is visible,
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it is inserted inV(Aℓ+1) with probabilityβ. If, upon the insertion ofA in V(A), an object becomes
hidden it is deleted from all diagramsV(Aℓ), ℓ > 0, in which it has been inserted. Finally, when an
objectAi is deleted from the Voronoi diagramV(A), we deleteAi from all diagramsV(Aℓ), ℓ ≥ 0,
in which it has been inserted. Note that all diagramsV(Aℓ), ℓ > 0, do not contain any hidden objects
and that ifA ∈ Aℓ, thenA ∈ Aℓ′ , for all ℓ′ < ℓ.

The closest site query for a pointx is performed as follows. The query is first performed in
the top-most diagramV(AL) using the simple walk. Then, forℓ = L − 1, . . . , 0 a simple walk is
performed inV(Aℓ) from Aℓ+1 to Aℓ whereAℓ+1 (resp. Aℓ) is the object ofAℓ+1 (resp. ofAℓ)
closest tox.

It easy to show that the expected size ofH(A) is O( 1
1−β n), and that the expected number of

levels inH(A) is O(log1/β n). Moreover, the following lemma, proves that the expected number of
steps performed by the walk at each level is constant.

Lemma 9 Letx be a point inE
2. LetAℓ (resp.Aℓ+1) be the object closest tox in Aℓ (resp.Aℓ+1).

Then the expected number of Voronoi cells (objects) visitedduring the walk inV(Aℓ) from Aℓ+1 to
Aℓ is O(1/β).

Proof. The objects visited at levelℓ are closer tox thanAℓ+1 and their distances tox are mono-
tonically decreasing. Consequently, ifAℓ+1 is, among the objects ofAℓ, thek-th closest tox, the
walk at levelℓ performs at mostk steps. The probability forAℓ+1 to be, among the objects ofAℓ,
thek-th closest tox is justβ(1 − β)k−1 and therefore the expected numberNℓ of objects visited at
level ℓ is bounded as follows:

Nℓ ≤
nℓ
∑

k=1

k(1 − β)k−1β < β

∞
∑

k=1

k(1 − β)k−1 =
1

β
,

wherenℓ denotes the cardinality ofAℓ. �

We still have to bound the time spent in each one of the visitedcells. LetAi be the site of a
visited cell inV(Aℓ). Since the complexity of all cells in the Voronoi diagramV (Aℓ) is onlyO(nℓ),
wherenℓ is the number of sites inAℓ, it is not efficient to simply compare the distancesδ(x, Ai)
andδ(x, A) for each neighborA of Ai in V(Aℓ). This would only imply that the time spent at each
level ℓ of the hierarchy isO(nℓ) = O(n), yielding a total ofO(n) time per insertion.

To remedy this we attach an additional balanced binary tree to each cell of each Voronoi diagram
in the hierarchy. The tree attached to the cellVℓ(Ai) of Ai in the diagramV(Aℓ) includes, for each
Voronoi vertexv of Vℓ(Ai), the rayρi(pv) wherepv is the point on∂Ai closest tov, andρi(pv) is
defined as the ray starting from the center of the maximal diskMi(pv) and passing throughpv. The
rays are sorted according to the (counter-clockwise) orderof the pointspv on∂Ai. WhenVℓ(Ai) is
visited, the rayρi(px) corresponding to the query pointx is localized using the tree; herepx denotes
the point of tangency of the diskCi(x) with the boundary∂Ai of Ai. Suppose thatρi(px) is found
to be between the rays of two verticesv1 andv2. Then it suffices to compareδ(x, Ai) andδ(x, Aj),
whereAj is the neighbor ofAi in V(Aℓ) sharing the verticesv1 andv2. Thus the time spend in each
visited cell ofV(Aℓ) is O(log nℓ) = O(log n), which (together with with the expected number of
visited nodes) yields the following lemma
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Lemma 10 Using a hierarchy of Voronoi diagrams with additional binary trees for each cell, a
closest site query can be answered in timeO( 1

β log(1/β) log2 n).

5 Complexity analysis

In this section we deal with the cost of the basic operations of our dynamic algorithm. We consider
three scenarios. The first one assumes that objects do not intersect. In the second scenario objects
may intersect but it is assumed that there are no hidden objects. The third scenario is the general
case where we allow intersecting and hidden objects.

In each of the above three cases, we consider the expected cost of the basic operations, namely
insertion and deletion. The expectation refers to the insertion order, that is, all possible insertion
orders are considered to be equally likely and each deletionis considered to deal equally likely with
any object in the current set.

Our results are summarized in the table below.

Disjoint No hidden General
objects objects case

Insertion O(log2 n) O(n) O(n)

Deletion O(log3 n) O(n) O(n2)

Disjoint objects. If the objects are disjoint, there are no hidden objects and therefore there is no need
to maintain a covering graph. In this case we use a Voronoi hierarchy as location data structure and
therefore we have to take into account the cost for maintaining this structure. Note that the Voronoi
hierarchy introduce another source of randomization, which is independent from the randomization
in the order of insertion.

Let us first analyze the cost of an insertion.

• Using the Voronoi hierarchy a closest site query can be performed inO(log2 n) time. Knowing
the objectAi closest to a pointp of the inserted object, the tree corresponding to cellV (Ai)
in the first level of the hierarchy can be used to find the first edge ofV(A) in conflict with A
in timeO(log n).

• Finding the whole conflict region at levelℓ of the hierarchy and updating the Voronoi diagram
V(Aℓ) can be performed in timeO(kℓ) wherekℓ is the number of changes occurring in the
diagram. The update of additional trees at levelℓ of the hierarchy can be performed in time
O(kℓ log nℓ), wherenℓ is the number of sites inV(Aℓ).

At each levelℓ, we havelog nℓ = O(log n), and the expected value forkℓ is constant. Because the
expected number of levels isO(log n), the expected cost for updating the diagram and the hierarchy
upon an insertion isO(log2 n).

Let us now analyze the cost of a deletion.

• Updating the Voronoi diagram at levelℓ involves computing a secondary Voronoi diagram
involving only thekℓ neighbors of the deleted site in the diagramV (Aℓ). The neighbors are
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inserted in random order in the secondary diagram. From whatprecedes, the expected cost
for building this diagram isO(kℓ log2 nℓ), with the expectation here referring to the random
insertion order of the neighbors.

• The cost for updating the additional trees of the location data structure at levelℓ is still
O(kℓ log nℓ).

As above, the expected value ofkℓ, ℓ ≥ 0, isO(1). Moreover, for all levelsℓ, log nℓ = O(log n) and
the expected number of levels isO(log n). Therefore the expected cost for a deletion isO(log3 n).

No hidden objects.Assume now that the objects may intersect but that there are no hidden objects.
In this case, we maintain neither a covering graph nor a location data structure. Indeed, to find a first
conflict we need to perform a location of the medial axis operation. Because this operation has a
linear complexity with respect to the number of sites, thereis no reason to maintain a location data
structure for fast closest site queries.

Then, the analysis of an insertion operation is as above except that finding the first conflict
now costsO(n) and, clearly, there is no cost associated with updating the location data structure.
Therefore, the expected cost of an insertion isO(n).

The cost of a deletion reduces to the expected cost of building the secondary Voronoi diagram
involving thek neighbors of the deleted site. In view of the insertion analysis, it takesO(k2) ex-
pected time to create this secondary Voronoi diagram, with the expectation referring to the random
insertion order of the neighbors of the site to be deleted. Taking into account thatk = O(n) and that
the expected value ofk is O(1), we conclude that the expected cost of a deletion isO(n).

General case. In the general case, objects may intersect and/or may be hidden. We maintain a
covering graph but no location data structure graph.

Let us analyze the cost of an insertion.

• If the inserted object is hidden, the location of the medialaxis provides a covering set for
this object, and updating the covering graph has a complexity proportional to the size of the
covering set, which isO(n).

• If the inserted object is not hidden, it may induce the hiding of other objects. Objects hidden
on an insertion are detected while finding the whole conflict zone. In this case, the analysis of
the insertion cost is just as above except that we need to add the cost for updating the conflict
graph. This cost isO(hk′), whereh is the number of objects that become hidden andk′ the
number of neighbors of the newly inserted object in the updated Voronoi diagram. Because,
h = O(n) andk′ has a constant expected value, the expected cost to update the conflict graph
is O(n).

Thus, in both cases, the expected cost of an insertion isO(n).
Let us come to the analysis of a deletion.

• Because the expected cost of an insertion is linear, the cost of Step 1 (removal of the deleted
object from the dual graph) is stillO(k2), wherek is the number of neighbors of the deleted
site. As above, this gives an expected contribution ofO(n).
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• Step 2 (removal of the deleted object from the conflict graph) is obviously performed in no
more thanO(n) time.

• Step 3 induces no cost since we do not maintain a location data structure.

• The cost of Step 4 isO(nh′), whereh′ is the number of sites covered (at least partially) by
the deleted site. Obviously, randomization cannot help here to bound the expected number of
neighbors of these covered sites and the cost of Step 4 can only be bounded byO(n2).

Hence, the overall expected cost of a deletion isO(n2).

6 Extensions

In this section we consider several extensions of the problem discussed in the preceding sections.

Degenerate configurations.Degenerate configurations occur when the set contains pairsof inter-
nally tangent objects (cf. Figs. 1(f) and 1(g)). Let{Ai, Aj} be an sc-pseudo-circles set withAi and
Aj internally tangent andAi ⊆ Aj . The bisectorπij is homeomorphic to a ray, ifAi andAj have a
single tangent point, or two, in general disconnected, rays, if Ai andAj have two tangent points. In
any case, the interiorV ◦(Ai) of the Voronoi region ofAi in V({Ai, Aj}) is empty and we consider
the objectAi as hidden. This point of view is consistent with the definition we gave for hidden sites,
which is that an objectA is hidden ifN◦(A) = ∅.

Let us discuss the algorithmic consequences of allowing degenerate configurations. When the
objectA is inserted in the diagram, the case whereA is internally tangent to a visible objectAi ∈ A
is detected at Step 1, during the location the medial axis ofA. The case of an objectAj ∈ A is
internally tangent toA is detected during Step 2, when the entire conflict region is searched. In the
first caseA is hidden and its covering set is{Ai}. In the second caseAi becomes hidden and its
covering set is{A}. The complexity of insertions and deletions is not affectedby allowing these
degenerate configurations.

Pseudo-circles sets of piecewise smooth convex objects.In the sections above we assumed that all
convex objects have smooth boundaries, i.e., their boundaries are at leastC1-continuous. In fact we
can handle quite easily the case of objects whose boundariesare only piecewiseC1-continuous. Let
us callverticesthe points on the boundary of an object where there is noC1-continuity. The main
problem of piecewiseC1-continuous objects is that they can yield two-dimensionalbisectors when
two objects share the same vertex (cf. Figs. 1(i) and 1(j)). The remedy is similar to the commonly
used approach for the Voronoi diagram of segments (e.g., cf.[4]): we consider the vertices on the
boundary of the objects as objects by themselves and slightly change the distance so that a point
whose closest point on objectAi is a vertex ofAi is considered to be closer to that vertex. All
two-dimensional bisectors, if any, then become the Voronoicells of these vertices.

As far as our basic operations are concerned, we proceed as follows. LetA be the object to be
inserted or deleted. We denote byAv the set of vertices ofA andÂ the objectA minus the points in
Av. When we want to insertA in the current Voronoi diagram we at first insert all points inAv and
thenÂ. When we want to deleteA we at first deleteÂ and then all points inAv. During the latter
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Figure 4: The setsA (left) andA′ (right). A′ is a generalized pseudo-circles set.

step we have to make sure that points inAv are not vertices of other objects as well. This can be
done easily by looking at the neighbors in the Voronoi diagram of each point inAv.

Generic convex objects.In the case of smooth convex objects which do not form pseudo-circles
sets we can compute the Voronoi diagram in the complement of their union (free space). The basic
idea is that the Voronoi diagram in free space depends only onthe arcs appearing on the boundary
of the union of the objects.

More precisely, letA be a set of convex objects and letC be a connected component of the union
of the objects inA. Along the boundary∂C of C, there exists a sequence of points{p1, . . . , pm},
which are points of intersection of objects inA. An arc αi on ∂C joining pi to pi+1 belongs
to a single objectA ∈ A. We form the piecewise smooth convex objectAαi

, whose boundary
is αi ∪ pipi+1, wherepipi+1 is the segment joining the pointspi andpi+1. Consider the setA′

consisting of all such objectsAαi
. A′ is a pseudo-circles set (consisting of disjoint piecewise smooth

convex objects) and the Voronoi diagramsV(A) andV(A′) coincide in free space.
The setA′ can be computed by performing a line-sweep on the setA and keeping track of the

boundary of the connected components of the union of the objects inA. This can be done in time
O(n log n + k), wherek = O(n2) is the complexity of the boundary of the afore-mentioned union.
Since the objects inA′ are disjoint, we can then compute the Voronoi diagram in freespace in total
expected timeO((n + k) log2 n).

7 Conclusion

We presented a dynamic algorithm for the construction of theeuclidean Voronoi diagram in the plane
for various classes of convex objects. In particular, we considered pseudo-circles sets of piecewise
smooth convex objects, as well as generic smooth convex objects, in which case we can compute the
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Voronoi diagram in free space. Our algorithm uses fairly simple data structures and enables us to
perform deletions easily.

We are currently working on extending the above results to non-convex objects, as well as un-
derstanding the relationship between the euclidean Voronoi diagram of such objects and abstract
Voronoi diagrams. We conjecture that, given a pseudo-circles set (of possibly non-convex objects)
in general position, such that any pair of objects has exactly two supporting lines, the corresponding
set of bisectors is an admissible system of bisectors.
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