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Diagrammes de Voronoi d’'Objets Convexes
en Dimension 2

Résumé : Ce rapport présente un algorithme dynamique pour constlaidiagramme de Voro-
noi Euclidien d'un ensemble d’'objets convexes en dimengiorNous considérons tout d’abord
la cas d'objets lisses et convexes constituant un ensengbjfeseudo-circles. Un ensemble de
pseudo-circles est un ensemble d’'objets bornés tels queoleteres de deux objets quelconques
de I'ensemble ont au plus deux points d’intersection. Nalgerithme est randomisé et dynamique.
Il n"utilise ni graphes de conflits ni structures sophiséquour détecter les conflits. De ce fait, il est
relativement facile de gérer les suppressions. Si lesobgett disjoints, le colt randommisé d’'une
insertion etO(log” n) et celui d’une suppresssion &tlog® n) Cet algorithme peut étre adaptée
aux ensembles de pseudo-circles formés d’objets convisges Ipar morceaux. Pour finir, il permet
aussi de calculer, pour tout ensemble d’objets convexesstection de leur diagramme de Voronoi
au complémentaire de leur union.

Mots-clés : diagramme de Voronoi; triangulation de Delaunay; distanedidienne; diagramme
de Voronoi abstrait; algorithme randomisés, algorithmeedyique
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1 Introduction

Given a set of sites and a distance function from a point ttea &iVoronoi diagram can be roughly
described as the partition of the space into cells that adattus of points closer to a given site
than to any other site. Voronoi diagrams have proven to bRiusguctures in various fields such
as astronomy, crystallography, biology etc. Voronoi déags have been extensively studied. See
for example the survey by Aurenhammielr [2] or the more receatty Aurenhammer and Kleinl[3]
or the book by Okabe, Boots, Sugihara and Chil [12]. The esddglies were mainly concerned
with point sites and the Euclidean distance. Subsequediestaonsidered extended sites such has
segments, lines, convex polytopes and various distancbsasil, or L, or any distance defined by
a convex polytope as unit ball. While the complexity and thated algorithmic issues of Voronoi
diagrams for extended sites in higher dimensions is stilcompletely understood, as witnessed in
the recent works by Koltun and Shalii [9]110], the planar s@se now rather well mastered, at least
for linear objects. The rising need for handling curved otgeriggered further works for the planar
cases. Klein et al. []71.18] set up a general frameworklagtract Voronoi diagramsvhich covers
a large class of planar Voronoi diagrams. They provided daarized incremental algorithm to
construct diagrams of this class. Alt and Schwarzkopf [Y{died the case of generic planar curves
and described an incremental randomized algorithm forctige too. Since they handle curves, they
cannot handle objects with non-empty interior, which is fmous. Their algorithm is incremental
but does not work in-line (it requires the construction of @dnay triangulation with one point
on each curve before the curve segments are really treatett)ther closely related work is that
by McAllister, Kirkpatrick and Snoeyink [11], which dealsttv the Voronoi diagrams of disjoint
convex polygons. The algorithm presented treats the cope®pgons as objects, rather than as
collections of segments; it follows the sweep-line paradithus it is not dynamic. Moreover, the
case of intersecting convex polygons is not considered pfésent papers deals with the Euclidean
Voronoi diagram of planar convex objects and generalizeg@igus work of the same authors on
the Voronoi diagram of circle§][6].

Let p be a point and4 be a bounded convex object in the Euclidean pBhe We define the
distanced(p, A) fromp to A to be:

ing - A
5(p, 4) = {mmleaup o, w¢

—mingeaallp—zl|, z€A

whered A denotes the boundary af and|| - | denotes the Euclidean norm.

Given the distancé(-, -) and a set of convex object$ = {A,,..., A}, theVoronoi diagram
V(A) is the planar partition into cells, edges and vertices ddfasefollows. The Voronoi cell of an
objectA; is the set of points which are closer4g than to any other object id. Voronoi edges are
maximal connected sets of points equidistant to two objects and closer to these objects than to
any other inA. Voronoi vertices are points equidistant to at least thigeais of.A and closer to
these objects than to any other objectdn

We first consider Voronoi diagrams for special collectiofissmooth convex objects called
pseudo-circles setsA pseudo-circles set is a set of bounded objects such teabtdhindaries of
any two objects in the set have at most two intersection poimtthe sequel, unless specified oth-
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Figure 1: Various configurations for two convex objects:(@) an sc-pseudo-circles set in general
position; (f)-(g): an sc-pseudo-circles set in degenepatstion; (h)-(j): a pseudo-circles set of
piecewise smooth convex objects; (k)-(l): not a pseudolasrset.

erwise, we consider pseudo-circles sets formed by smoatregmbjects, and we call thesmooth
convex pseudo-circles sets sc-pseudo-circles setsr short.

Let A be a convex object. A liné is asupporting lineof A if and only if A is included in one
of the closed half-planes bounded byanddA N L is not empty. Given two convex objects and
A;, alineL is a(common) supporting linef A; and A; if and only if L is a supporting line of4;
andA;, such that4; andA; are both included in the same half-plane bounded by

In this paper, we first deal with smooth bounded convex objErting pseudo-circles sets (cf.
Fig. ). Any two objects in such a set set have at most two comsupporting lines (cf. Fig.
). Two convex objects have no common supporting line if @niadluded in the other. They have
two common supporting lines if they are either disjoint oogmerly intersecting at two points (a
proper intersection point is a point where the boundariesiat only meeting but also crossing each
other) or externally tangent (which means that their iotarare disjoint and their boundaries share
a common tangent point). Two objects forming a pseudoasrskt may also be internally tangent,
meaning that one is included in the other and their bounglati@are one or two common points.

INRIA



Voronoi Diagram of Convex Objects 5

Then they have, respectively, one or two common supporitiegl A pseudo-circles set is said to be
in general positionif there is no pair of tangent objects. In fact, tangent oisj@chich are properly
intersecting at their common tangent point or externalhgent objects do not harm our algorithm
and we shall say that a pseudo-circles set is in generaligosihen there is no pair of internally
tangent objects.

The algorithm that we propose for the construction of theovoi diagram of sc-pseudo-circles
sets in general position is a dynamic one. It is a variant efititremental randomized algorithm
proposed by Klein et al.[]8]. The data structures used arplsinwvhich allows us perform not only
insertions but also deletions of sites in a relatively eaay.WWhen input sites are allowed to intersect
each other, it is possible for a site to have an empty Voroabi Such a site is called hidden
site, while a site with non-empty cell is said to Wisible. Our algorithm handles hidden sites. The
detection of the first conflict or the detection of a hiddee stperformed through closest site queries.
Such a query can be done by either a simple walk in the Voroiagirdm or using a hierarchy of
Voronoi diagrams, i.e., a data structure inspired from teé&Dnay hierarchy of Devillersi[5].

To analyze the complexity of the algorithm, we assume thett eaject has constant complexity,
which implies that each operation involving a constant nendf object is performed in constant
time (e.g., finding a circle tangent to three objects). Wewsttmat if sites do not intersect, the
randomized complexity of updating a Voronoi diagram witkites isO(log? n) for an insertion and
O(log® n) for a deletion. The complexities of insertions and deletiare more involved when sites
intersect.

We then extend our results by firstly dropping the hypothekigeneral position and secondly
by dealing with pseudo-circles sets formed by convex objettose boundaries are only piecewise
smooth. Using this extension, we can then build the Vororagmm of any se of convex objects
in the complement of the objects’ union (i.e., in free spadd)is done by constructing a new set
of objectsA’, which is a pseudo-circles set of piecewise smooth convgectband such that the
Voronoi diagrams/(A) andV(.A’) coincide in free space.

The rest of the paper is structured as follows. In Sedflon Ztudy the properties of the Eu-
clidean Voronoi diagram of sc-pseudo-circles sets in garmgsition. In particular we show that
such a diagram belongs to the class of abstract Voronoi aiagjidescribed by Klein et al.I[8]. In
Section[B we present the dynamic algorithm for the constroatf the Voronoi diagram of sc-
pseudo-circles sets in general position. Sedflon 4 destdlwsest site queries, whereas Sedflon 5
deals with the complexity analysis of insertions and deteti Finally, in Sectiofil6 we show how
our approach can be extended to handle sc-pseudo-cirtdegifedegeneracies, pseudo-circles sets
of convex objects with piecewise smooth boundaries andteaéiy any set of convex objects in the
plane.

2 The Voronoi diagram of sc-pseudo-circles sets

In this section we present the main properties of the Voraimgram of sc-pseudo-circles sets in
general position. Let us first make precise a few definitionsratations. Here and in the following,
we consider any bounded convex objetas closed and we not@A; and AY, respectively, the
boundary and the interior of;.
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6 Karavelas & Yvinec

Let A = {4,,...,A,} be an sc-pseudo-circles set. The Voronoi cell of an objeistdenoted
asV(A) and is considered a closed set. The interior and bounddry 4 are denoted by °(A)
andoV (A), respectively. We are going to consider maximal disks eithgduded in a given object
A; or disjoint from A7, where the term maximal refers to the inclusion relationr &wy pointz,
we denote byC;(z) the closed disk centered atwith radius|d(z, 4;)|. If & A;, Ci(x) is the
maximal disk centered at and disjoint fromAs. If = € A;, C;(z) is the maximal disk centered at
x and included in4;. In the latter case these is a unique maximal disk ingideontainingC;(z),
which we denote by, (z). Finally, themedial axisS(A4;) of a bounded convex objed; is defined
as the locus of points that are centers of maximal disks dealun A;.

Let 4; andA; be two smooth bounded convex objects. The set of ppirté&? that are at equal
distance from4; and A, is called the bisector;; of A; andA;. TheorenfR ensures that; is an
one-dimensional set if the two objects and A; form an sc-pseudo-circles set in general position
and justifies the definition of Voronoi edges given above.

Let us begin with a technical lemma.

Lemma 1l Let A; and A; be two bounded convex objects.

1 Ifz € A;, 0(x, A;) < §(x, Ay) if and only if C;(x) is not included ind; andd(x, A;) =
d(z, Aj;) ifand only if C; (x) is internally tangent tod ;.

(
2. Ifx & A, 6(z, 4;) < §(x, Aj) if and only if C;(z) does not intersectl;, andd(z, A;) =
d(z, A;) if and only if C; (x) is externally tangent ta.
Proof. Follows trivially from the definition of the distance. O
Theorem 2 Let A; and A; be two convex objects forming a pseudo-circles set in gépessition
and letr;; be the bisector ofl;, A; with respect to the Euclidean distanég, -). Then :
1. If A; and A; have no supporting line, ther}; = 0.
2. If A; and A; have two supporting lines, then; is a single curve homeomorphic to the open
interval (0, 1).
Proof.

1. Suppose thatl; and A; have no common supporting line. This implies that eitherC A7
or A; C AS. Letus assume that; C A9. Letz € E?. We consider the following cases for
x:

(a) = € A;. Any disk centered irx that does not intersect? does not intersect;. This is
in particular true foiC; () which implies that (z, A;) < 6(z, 4;).

(b) T € A; \ Aj. Thené(p, Al) <0< 5([), AJ)

(c) z € A;. The maximum dislC; (x) is tangent tad A; at at least one point and therefore
cannot be included inl;. Thus,d(p, 4;) < §(p, 4;).

INRIA
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Figure 2: The set of ray§(y), y € 0A;, covers the entire plane. The réyp) and the bisector;;
intersect in at most one point. Left: the casen A; = . Right: the casel; N A; # 0.

Thus any point: is closer toA4; thanA;, andr;; = 0.

2. Suppose now that;, A; have two common supporting lines. For a pgint 9A;, leto;(p)
be the point of the medial axi$(A;) which is the center of the maximal disk includedAn
and tangentt@A; atp. We denote by;(p) the half-line issued from; (p) and perpendicular
to 0A; atp. The set of rayg;(p) covers the whole plane and two such rays do not intersect
except if they share the same origin on the medial axis. (8ed2}. We first show that the
bisectorr;; intersects each rad(p) in at most one point.

For any pointz on ¢;(p), we consider as before the digk () centered at: with radius
|0(xz, A;)]. Ci(z) is tangent ta) A; at p. Whena moves fromo;(p) to p along?;(p), C;i(z)
decreases from the maximal di3k; (o (p)) to the diskC;(p) which is reduced to the poipt
Then, whernr moves beyongd on/;(p), the diskC;(z) increase fronp to the closed halfplane
H;(p) limited by the line tangent t0 A; atp and not containing;.

We denote by, ¢; the contact points of object; with the common supporting lines of;
andA;, andp;, ¢; the contact points of objeet; with those lines. We assume that the contact
pointsp;, ¢;, p; andg; are labeled in such a way that they are encountered in that atoing

a counterclockwise traversal of the boundary of the conudix@iH (A; U A4;). Leta; be the
open arc betweey, andp; along a counterclockwise traversal @f;, i.e. «; is the part of
0A; which does not appear GCH(A; U A;).

We will first assume that the contact points 4f and A; with their supporting lines are
distinct, Ie,pl 75 q; andqi 7& Dj-

If p & a;, thenfirst of allp ¢ A; (this would contradict the fact thatlies on0CH (A; U A;)).
We then claim that any point € ¢;(p) is closer toA; and/¢;(p) N m;; = 0. Indeed, for any
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pointz € o;(p)p, the diskC;(z) includesp and thus it is not included id; and for any point
x on{;(p) beyondp, C;(z) is included in the halfplanél;(p) which does not intersect;.

If p € a; butp ¢ A;, m;; intersectd;(p) at a single point. Indeed, any pointe o;(p)p is
closer toA4;, for the same reason as above. Let us consider now the pdivt&d beyond
p. Whenz moves beyong, C;(z) increases fron®;(p) = {p} which does not intersect,
to the halfplandd; (p) which does. There is a unique poirp) beyondp on¢;(p) for which
C;(z(p)) is externally tangent tal ;. This point is at equal distance froty and4;, and thus
belongs tor;;. Note that the uniqueness ofp) stems from the fact that; (y) C C;(y’) if
ly —pll < lly" —pll.

At last, whenA; andA; intersect there are pointan «; N A;. For such a poing, ¢;(p) N ;;
can be either empty or a single point. Indeed any poibeyondp on ¢;(p) is closer toA;,
because the disk;(x) includesp and thus intersectd;. Consider now points on ;(p)p.
Assume first thad/; (o;(p)) is included in4;. Then, for any: € o;(p)p, C;(x) is included in
A,z is closer toA; and?;(p) N m;; is empty. Assume now that; (o, (p)) is not included in
A;. Whenz moves fromo;(p) to p, C;(z) decreases from/;(o;(p)), which is not included
in A;, to {p} which is included in4;. There exists a unique poir{p) € o,(p)p such that
Ci(z(p)) istangentt@A;. This pointis at equal distance frofy andA; and thus belongs to
m;;. Again we can argue the uniqueness:g) using an arguments similar to the one above.

Thus if A; and A; are disjoint, then for any poini € «;, there is a unique point(p) in
¢;(p) N m;;. Reciprocally, any poiny in m;; is the center of a disk tangent to bath and
A;. This disk touche® A, in a pointp of ¢; such thaty = z(p). Thus the mapping from
«; to m;;, which mapsp € «; to the pointz(p) = ¢;(p) N m;; is an one-to-one and onto
mapping. The reverse mapping is well known to be continuoaistaereforer;; is a single
curve homeomorphic to the open arg i.e., to the open intervaD, 1).

Assume now thatl; and A; are not disjoint. From the pseudo-circles propérty; andoA;
intersect in two pointa andb. Assume that;, b, « andp; are encountered in that order on the
counterclockwise traversal of the arg. Leta! be the subarc af; joining ¢; to b. Any point
ponaj isona; \ A; and therefore the rag; (p) intersects the bisectar;; at a unique point
z(p). As above the mapping fromto z(p) is one-to-one and continuous and therefore the
bisectorr;; includes an unbounded simple azrb homeomorphic tex}, (i.e., homeomorphic
to the interval(0, 1]), and joiningb = ;; (b) with the image ofy; which is the infinite point
of the ray¢;(g;). In the same way, if} is the subarc ofy; joining a to p;, the bisectotr;;
includes an unbounded simple a'tfg homeomorphicte: (i.e., homeomorphic to the interval
[0,1)), and joininga = ;;(a) to the image op; which is the infinite point of the ray;(p; ).
These two arcs are disjoint, they are included in the comefgmf A4; U A; and are the only
components of the bisector in that region. Obviouslyhas no component id; \ A, and
A; \ A;. Letus show now that;; N A; N A; is a simple connected curve joiniago b. First

let us notice thatr;; has to include a connected componen#iyn A; joining a to b. Indeed
consider the continuous functigifx) = §(x, A;) — é(x, A;). Letz; be a pointoldA; N A;
andz; a point of0A; N A;. Assume that; andzx; are distinct froma andb. Then we have
f(z;) > 0, f(z;) < 0. Thus there exists at least one point whé¢fe) = 0, i.e. a point of

INRIA



Voronoi Diagram of Convex Objects 9

m;; on any path joining; to x; in A; N A;. Then we remark that any pointin; N A; N A;
belongs to the medial axis of the convex botlyn A;. The medial axis of this objectis a tree
and has a single path joinirgto b. This proves thatr;; N A; N A; is the path of the medial
axis joininga to b. Finally the concatenation of the three args, 77}, andr}; = m;; N A; N A;
yields a curve homeomorphic {0, 1).

To finish the proof we need to consider the case where thegoimmontact of the supporting
lines coincide. For convenience we will assume that otk ¢; andg; = p;. The remaining
cases are just combinations of what we describe below araftjusnents made above.

Note that in this case the common points of contact are als@adints of intersection of the
boundarie®A; anddA;. Moreover, the are} (resp.a?) is now a ray starting from (resp.

a), with direction perpendicular tdA; and0A;, that is contained in the closed halfspace
H,(b) (resp.H;(a)). As far as the portion of the bisector inside N A; is concerned we can
no longer claim that is it the portion of the medial asig4; N A;) connecting with a; this

is due to the fact that the poindsandb are no longer points of discontinuity on the boundary
0(A; N Aj) of A; N A; and thus they are not necessarily pointsSga; N A;). However, the
same argument works with minor modifications. keéandd’ be the points on the medial axis
S(A; N A;) corresponding ta andb, respectively. Clearly, there is a unique pattirom o’

to b’ in S(A; N A;) (recall that the medial axiS(A; N A;) is atree, sinced; N A; is a convex
object). Now consider the path’ U IT U a’a. This path connectisto o and all its points are
at equal distance from the two ar@d; N A; anddA; N A; on the boundary off; N A;. The
union of this path along with the two rays emanating fremndb constitute the bisector;;

of A; andA;. Clearly,m;; is homeomorphic to the intervéd, 1).

O

Theoreni¥ ensures that each cell in the Euclidean Vorongialia of an sc-pseudo-circles set in
general position is simply connected. We begin by a techigoama which generalizes Lemrih 1.

Lemma 3 LetA = {A4,,..., A, } be an sc-pseudo-circles set.

1. Ifz € A;, thenx belongs to the Voronoi cel (4;) of A; if and only ifC;(z) is not contained
in the interior A$ of any objectd; in A\ {A;}.

2. Ifx € A;, thenz belongs to the interiob °(A;) of the Voronoi celV (A4;) of A; if and only if
C;(z) is not contained in any object; in A\ {4;}.

3. Ifz ¢ A;, thenz belongs to the Voronoi celf ( 4;) of A; if and only ifC;(z) does not intersect
the interior A3 of any object4; in A\ {A;}.

4. Ifz ¢ A;, thenz belongs to the interiob °(A;) of the Voronoi cellV (A;) of 4, if and only if
C;(z) does not intersect any objedt; in A\ {4;}.

Proof. The proof follows trivially from Lemmall. O
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10 Karavelas & Yvinec

Theorem 4 Let A = {4,,..., A, } be an sc-pseudo-circles set in general position. For eagbaib
A;, we denote byV (4;) the locus of the centers of maximal disks included,ithat are not included

in the interior of any object ind \ {A4;}, and byN°(A;) the locus of the centers of maximal disks
included inA; that are notincluded in any object id \ {A;}. Then:

1. N(AZ) = S(Al) n V(Al) andNo(Ai) = S(AZ) N VO(AZ').
2. N(A;) andN°(A;) are simply connected sets.

3. The Voronoi celV (4;) is weakly star-shaped with respectAd A;), which means that any
point of V' (A;) can be connected to a point N (A;) by a segment included ¥ (4;). Anal-
ogously,V°(A4;) is weakly star-shaped with respectAt (4;).

4. V(A;) =0ifandonly if N(4;) = d andV°(4;) = (@ ifand only if N°(4;) = 0.

Proof. For any pointz € E2, we note as befor€;(z) the disk centered at with radius|d(z, A;)|
and byp;(x) the point where”;(x) toucheA;. If x € A; the diskC;(«x) is included in a unique
maximal disk insided; which is calledM;(z). If = ¢ A;, we still denote byM;(z) the maximal
disk included in4; and tangenttéA; atp;(z). In any case, we note; (x) the center of\/;(z).

1. Lety € N(A;). By definitiony € S(A;). Consider the circl€;(y) = M;(y). Since itis
not contained in the interiad? of any object inA \ {4;}, we have by Lemmi 3, CaEE 2, that
y € V(4;). Conversely, ify € S(4;)NV (A;), then we have by Lemnfid 3, Cd3e 2, th&{y)
is not contained in the interior of some other objdgtin .A. Hencey € N(A;). The proof of
the other assertion is analog.

2. Letu’ andv’ be two points inV(A4;). BecauseS(A;) is a tree, there is a unique pafhin
S(A;) connecting:’ tov’. Suppose that there exists a painE P such thatv ¢ N(A;). This
implies that)M; (w) is contained in the interioA; of some other object ixd. Consider the
subpath of? fromw tow’. SinceM;(w) is contained inA while M;(u’) is not, there must be
afirst pointu on this subpath (fronw to «’) such thatV; () is tangent tad ;. Similarly, there
exists a first poinv in the subpath of? from w to v such thatM;(v) is tangent ta4;. The
end of the proof amounts to show that this situation enfottte®xistence of more than two
intersection points betweend; anddA;, which contradicts with the fact; and A; belong

to a pseudo-circles set.

Let p,, andg, (resp.p, andg,) be the contact points betwedd; (u) (respM;(v)) anddA;
and letr, (resp. r,) be the contact point oM; (u) (respM;(v)) with 9A4;. (See Fig.[B).
Assumep,,, q., Pv, v are labeled in such a way that they are encountered in thet akoing a
counterclockwise traversal of the boundary of the convéx@f (M, (v) U M;(v)). Because
any maximal ball in4; centered betweem andv on P is included inA?, r, (resp. r,) is
encountered between, andg, (resp. betweep, andgq,) on dCH (M;(u) U M;(v)). Let~y
be the simple closed path which counterclockwisely follOsH (M;(u) U M;(v)) fromr,,
tor, anddA; fromr, tor,. ExceptifA; andA; are internally tangent, which contradicts
the general position assumption, andr, are in AY and ondA; while p,, qu, py, ¢, are in
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Voronoi Diagram of Convex Objects 11

Figure 3: The boundaries of; andA; have at least four intersection points.

A;? and ondA;. Thus+y which passes through,, ¢., p., 7, and enclosesg, andp,, has to
intersect 4; at least twice. This implies that the arc@fl; joining counterclockwisely, to
r,, intersects twicé4;. In the same way the arc 6f4; joining counterclockwisely., to r,
intersects twicé A4,. Since the two arcs ofi4; are disjoint (except for,, andr,,, of course),
we must have at least four intersection points betw@dn and9A;, which contradicts the
fact thatA is a pseudo-circle sets.

3. Consider a point € V(A;). We will show thato;(z) € N(A4;) and that any poing of the
segmentzo; (z) belongs toV (4;). If z € A;, we grow a circle tangent tdA; at p;(z) from
C;(x) to M;(z). Any pointy in zo;(z) is the center of a circl€’; (y) tangent td A; atp; (x)
and such tha€;(z) C C;(y) € M;(z). Because: € V(A4;), C;(z) is not contained in the
interior A$ of any other object of4, henceC;(y) and M;(x) are not included in the interior
Aj of any other object!;, which proves thay € V(4;) ando;(x) € N(4;). If z ¢ A;, we
first shrink a circle tangent tdA; atp;(z), from C;(z) to the pointp;(z), then grow a circle
tangent ta) A; atp;(x) from the pointp; (x) to M;(z). Any pointy in the subsegmentp; ()
is the center of a circl€;(y) tangent ta) A; atp; () and such tha€;(y) C C;(x). Because
x € V(4;), C;(z) does not intersect the interiﬂr;? of any other object of4, thus neither does
C;(y) andy € V(4;). Any pointy in subsegmeng;(z)o;(x) is the center of a circl€’;(y)
tangent to0A; at p;(z) and such thap;(z) C C;(y) C M;(z). Because,(xz) € V(A;),
pi(z) is not contained in the interiad; of any other objectd; of .4, and thus neither does
C;(y) nor M;(x). Thusy € V(4,;) ando;(z) € N(A4;).

We can apply an analogous argument to show thatdf17°(4;), then any poiny in zo; (x)
belongs tov°(A;).

4. Claim 4 is follows immediately from the proofs of the prews claims.

In the sequel we say that an objetts hiddenif N°(A) = §.
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12 Karavelas & Yvinec

In the framework of abstract Voronoi diagrams introducedisin [[7], the diagram is defined
by a set of bisecting curves; ;. In this framework, a set of bisectors is set todnnissiblef:

1. Each bisector is homeomorphic to a line.

2. The closures of the Voronoi regions covers the entireglan

3. Regions are path connected.

4. Two bisectors intersect in at most a finite number of cotatecomponents.

Let us consider the Euclidean Voronoi diagrams of an scgiseircles set in general position such
that any pair of objects has exactly two supporting linesedrbm4P anfll4 ensure, respectively,
that Condition§ll andl 3 are fulfilled. Conditibh 2 is granteddny diagram induced by a distance.
ConditiorT3 is a technical condition that we have not explligiroved. In our case this results indeed
from the assumption that the objects have constant contpl@ate that Conditiofil4 is used in the
theory of abstract Voronoi diagrams to prove that Vorondlscare simply connected, which in our
case is directly ensured by TheorEIn 4). The converse isralspif we have a set of convex objects
in general position, then their bisectors form an admissslgstem only if every pair of objects has
exactly two supporting lines. Indeed, if this is not the ¢asge of the following holds: (1) the
bisector is empty (e.g., if one object is contained in therior of another; cf. Figl_L{E)); (2) there
exist Voronoi cells that consist of more than one connectedponents (e.g., if two the boundaries
of two objects have four points of intersection; cf. Fig-J)(k

Theorem5 Let A = {A;,..., A, } be a set of smooth convex objects of constant complexity and
in general position. Then the set of bisectats is an admissible system of bisectors if and only if
every pair of objects has exactly two supporting lines.

3 The dynamic algorithm

The algorithm that we propose is a variant of the randominedeimental algorithm for abstract
Voronoi diagrams proposed by Klein and all [8]. Our algaritls fully dynamic and maintains the
Voronoi diagram when a site is either added to the currendisdeleted from it. To facilitate the

presentation of the algorithm we first define the compactifexdion of the diagram and introduce
the notion of conflict region.

The compactified diagram. We call 1-skeleton of the Voronoi diagram, the union of the Voronoi
vertices and Voronoi edges. Theskeleton of the Voronoi diagram of an sc-pseudo-circlésdse
may consist of more than one connected components. Howeawegn define a compactified version
of the diagram by adding t@l a spurious sited., called the infinite site. The bisector df,, and

A; € Ais aclosed curve at infinity, intersecting any unboundecdeearfghe original diagram (see
for example[[F]). In the sequel we consider such a compadtifeesion of the diagram, in which
case thd -skeleton is connected.

The conflict region. Each point: on a Voronoi edge incident g (A;) andV (A;) is the center of a
disk C;;(x) tangent to the boundariési; andd A;. This disk is called &oronoi bitangent diskand
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Voronoi Diagram of Convex Objects 13

more precisely an interior Voronoi bitangent disk if it i€iaded inA4; N A;, or an exterior Voronoi
bitangent disk if it lies in the complement afff U Aj. Similarly, a Voronoi vertex that belongs to
the cellsV(4;), V(A,) andV (Ay) is the center of a disK’; ;1 (z) tangent to the boundaries df,
A; andAy. Such a disk is called ®oronoi tritangent diskand more precisely an interior Voronoi
tritangent disk if it is included imM; N A; N Ay, or an exterior Voronoi tritangent disk if it is lies in
the complement ofl; U A5 U A}.

Suppose we want to add a new objectt .4 and update the Voronoi diagram frob(.A) to
V(AT) where AT = AU {A}. We assume thatl™ is also an sc-pseudo-circles set. The object
A is said to be in conflict with a point on thel-skeleton of the current diagram if the Voronoi
disk associated ta is either an internal Voronoi disk included i® or an exterior Voronoi disk
intersectingA®. We callconflict regionthe subset of thé-skeleton of)(A) that is in conflict with
the new objectd. A Voronoi edge of)(.A) is said to be in conflict withd if some part of this edge
is in conflict with A.

Our dynamic algorithm relies on the two following theorembjch can be proved as ihl[8].

Theorem 6 Let AT = AU {A} be an sc-pseudo-circles set such tHag 4. The conflict region of
A with respect td/(A) is a connected subset of theskeleton of(A).

Theorem 7 Let {A;, A;, Ay} be an sc-pseudo-circles set in general position. Then thiendd
diagram ofA4;, A; and A;, has at most two Voronoi vertices.

This theorem is equivalent to saying that two bisecting esty; andr;, relative to the same object
A; have at most two points of intersection. In particular, iplias that the conflict region of a new
objectA contains at most two connected subsets of each edgé4y.

The data structures. The Voronoi diagram¥(.A) of the current set of objects is maintained through
its dual graptD(A).

When a deletion is performed, a hidden site can reappeasievi Therefore, we have to keep
track of hidden sites. This is done through an additionah datucture that we call theovering
graphC(A). For each hidden object;, we callcovering sebf A; a setK (A4;) of objects such
that any maximal disk included iA; is included in the interior of at least one object/gf 4;). In
other words, in the Voronoi diagrat( K (4;) U {A;}) the Voronoi cellV (A;) of A; is empty. The
covering graph is a directed acyclic graph with a node fohedaject. A node associated to a visible
object is a root. The parents of a hidden objd¢tare objects that form a covering set4f. The
parents of a hidden object may be hidden or visible objects.

Note that if we perform only insertions or if it is known in ahce that all sites will have non-
empty Voronoi cells (e.g., this is the case for disjoint @b§@, it is not necessary to maintain a
covering graph.

The algorithm needs to perform closest site queries. Suakesydakes a point as input and
asks for the object in the current sétthat is closest ta:. The algorithm maintains a location data
structure to perform efficiently those queries. The locatiata structure that we present here is
called a Voronoi hierarchy and is described below in Seion
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14 Karavelas & Yvinec

3.1 The insertion procedure
The insertion of a new object in the current Voronoi diagraii(.A) involves the following steps:
1. Find a first conflict between an edgewfA) and A or detect thatd is hidden inA+.
2. Find the whole conflict region of.
3. Repair the dual graph.
4. Update the covering graph.
5. Update the location data structure if any.

StepdIl[H andl5 are discussed below. Sikps Zland 3 are pedfexaetly as in[[b] for the case of
disks. Briefly, in Step]2 we perform a depth-first search oritkkeleton of)(.A) starting from the
first conflict found in Stefl1. The boundary points of the cenfiegion of A with respect to)(.A)
are the Voronoi vertices of the Voronoi cell dfin 1V(A™). Once we have found the conflict region
of A, we can construct the Voronoi cell gfin V(A™) by connecting these boundary points in the
correct order. In the dual, St€p 2 corresponds to finding thebary of the star oft in D(A™).
This boundary represents a holet{.A), i.e., a sequence of edges®f.A) forming a topological
circle. StefB simply amounts to “staring” this hole frotnthat is to connect the vertex (.A™)
associated wittd to every vertex on the hole boundary.

Finding the first conflict or detecting a hidden object. The first crucial operation to perform when
inserting a new object is to determine if the inserted oligbidden or not. If the object is hidden
we need to find a covering set for this object. If the objectdshidden we need to find an edge of
the current diagram in conflict with the inserted object.

The detection of the first conflict is based on closest siteigsieSuch a query takes a poinas
input and asks for the object in the current gethat is closest ta:. If we don’t have any location
data structure, then we perform the followisighple walkon the Voronoi diagram to find the object
in A closest tox. The walk starts from any object; € .4 and compares the distanéér, A;)
with the distances(z, A) to the neighbors! of A4; in the Voronoi diagramV’(.A). Here and in the
following, two objects are said to be neighbors in the Voiatiagram if their Voronoi cells are
adjacent through an edge. If some neighlgiof A; is found closer ta: thanA;, the walk proceeds
to A;. If there is no neighbor off; that is closer tor than A4;, then 4; is the object closest to
among all objects ind. It is easy to see that this walk can take linear time. We mostuntil the
next section the description of the location data strucimethe way these queries can be answered
more efficiently.

Let us consider first the case of disjoint objects. In thigdhsre are no hidden objects and each
object is included in its own cell. We perform a closest siteny for any poinp of the objectA to
be inserted. Le#i; be the object of4 closest tgy. The cell ofA; will shrink in the Voronoi diagram
V(AT) and at least one edge 8% (A;) is in conflict with A. Hence, we only have to look at the
edges oDV (4;) until we find one in conflict withA.

When objects do intersect, we perform an operation cadledtion of the medial axjswhich
either provides an edge df(.A) that is in conflict withA, or returns a covering set of. To explain
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how this operation is performed, let us say that a ppioit the medial axisS(A) of A is coveredby
A; if the disk M (p), which is the maximal disk itd centered ap, is included in the interiof? of
some objectd; € A. Let us recall that the medial axi& A) of A is a tree embedded in the plane
and that, from the proof of Theordmh 4, we know that the paf(of) which is not covered by any
subset of objects il is connected. Roughly, the method consists in pruning saeely the parts of
S(A) covered by objects i until either: (1) the remaining part &f(A) is empty or (2) we have
found a point of S(A) whose maximal disk// (p) is not covered by the objeet; of A which is
closest to (if p is not covered by, it will not be covered by any other objecti \ {A;}). In the
first case A is hidden and the objects i which have been used to pru§éA) form a covering of
A. In the second case, the pojnts in the cell ofA; and at least one edge 81 (4;) is in conflict
with A.

Let us explain more precisely, how we select the object aovering parts o6 (A) or detect an
uncovered point 06 (A). We start from a leaf vertex of the medial axisS(A) and issue a closest
site query to find the object; closest top. If the maximal disk)M (p) is not covered byl; we are
done. Otherwise we prune the part$fA) covered byA; and start again with a new leaf poiplt
on the boundary of the pruned part®fA). There is no need to issue a new closest site query for
pointp’ or subsequent considered leaf pointst{). Indeed becausg is an endpoint of the part
of S(A) covered byA;, the maximal circleM (p’) of A centered ap’ is also internally tangent to
A;. therefore we just need to scan the neighbord pin the Voronoi diagramV(A) searching for
a neighbor covering/ (p’). If one is found, it becomes the next objetf used to prunes(A). If
none is found, we know that; is closest tqy’ among all objects ind and that one of the edge of
0V (4;) is in conflict with A.

Updating the covering graph. We now describe how Stép 4 of the insertion procedure is pred.
We start by creating a node farin the covering graph.

If A is hidden, the location of its medial axis yields a coveriag/s(A) of A. In the covering
graph we simply assign the objectsAf( A) as parents ofl.

If the inserted object is visible, some objects ipl can become hidden due to the insertion
of A. The set of objects that become hidden becausé afe provided by Stelg 2 of the insertion
procedure. They correspond to cycles in the conflict regfoA.oThe next lemma ensures that the
covering graph can be updated by looking at the neighbossinfthe new Voronoi diagram.

Lemma 8 Let.A4 be an sc-pseudo-circles set. Lét¢ A be an object such thad™ = AU {A} is
also an sc-pseudo-circles set adds visible inV(A™). If an objectA; € A becomes hidden upon
the insertion of4, then the neighbors of in V(A™) along with A is a covering set ofl;.

Proof. Let N(A;) andN°(A;) be the parts of the medial axi§ A;) relative to the diagrar®(.A) as
defined in Theorerfll4. Sincé; becomes hidden il ™, for everyy € N°(A4;), M;(y) is contained
in A. Letz be a point on the boundadyN (4;) = N(4;) \ N°(A;) of N(4;). ThenM;(z) is
tangent to some neighbdr; of 4; in V(.A) and included in4;. Moreover, we know from the proof
of TheorenTH that ift’ belongs to the same connected componerf(©f;) \ N(A;) asz, then
M;(z') is also contained izd;. Hence the neighbors of; in V(.A) along with A form a covering
set of4;. A neighbor4; of 4; in V(A) is either a neighbor oft in V(A™) or it becomes hidden in
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16 Karavelas & Yvinec

this diagram. Therefore the set of neighborsiah V(A™T), plus A is a covering set for any object
A, that becomes hidden upon the insertioniof O

Let A; be an object that becomes hidden upon the insertiod.ofBy Lemmal8 the set of
neighbors ofA in V(A™) along with A is a covering sef{(4;) of 4;. The only modification we
have to do in the covering graph is to assign all object& {;) as parents ofl;.

Updating the location data structure. The location data structure , if any, is updated as follows.
Let A be the object inserted. W is hidden we do nothing. Il is not hidden, we inse in the
location data structure, and delete from it all objects th@come hidden because of the insertion of
A.

3.2 The deletion procedure

Let A; be the object to be deleted andI€f(A;) be the set of all objects in the covering graphA)
that haved; as parent. The deletion ¢f; involves the following steps:

1. Removed; from the dual graph.

2. Remove4; from the covering graph.

3. Removed; from location data structure.
4. Reinsert the objects i, (A;).

Stef requires no actionf; is hidden. IfA; is visible, we first build an annex Voronoi diagram
for the neighbors off; in V(.A) and use this annex Voronoi diagram to fill in the cellqf(see [6]).
In Stepl2, we simply delete all edges/of.A) to and fromA;, as well as the node corresponding
to A;. In StedB, we simply deletd; from the location data structure. Finally, in Sfdp 4 we apply
the insertion procedure to all objectsA),(A;). Note, that if4; is hidden, this last step amounts to
finding a new covering set for all objects i, (A;).

4 Closest site queries

The location data structure is used to answer closest s@geu A closest site query takes as input
a pointz and asks for the object in the current sétthat is closest ta:. Such queries can be
answered through a simple walk in the Voronoi diagram (asrileed in the previous section) or
using a hierarchical data structure called the Voronoidnigry.

The Voronoi hierarchy. The hierarchical data structure used here, denoteH (%), is inspired
from the Delaunay hierarchy proposed by Devilléls [5].

The data structure consists in a sequence of Voronoi diag¥d,), £ = 0, ..., L, built for
subsets ofd forming a hierarchy,i.ed = Ao D A; D ... D Ar.

The hierarchy(.A) is built together with the Voronoi diagraim(.A) according to the following
rules. Any object of4 is inserted inV(Ay) = V(A). If A has been inserted M(.A,) and is visible,
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it is inserted inV (A1) with probability 3. If, upon the insertion off in V(.A), an object becomes
hidden it is deleted from all diagram¥.A4;), ¢ > 0, in which it has been inserted. Finally, when an
objectA; is deleted from the Voronoi diagra(.A), we deleted; from all diagrams/(A4,), ¢ > 0,

in which it has been inserted. Note that all diagransl,), ¢ > 0, do not contain any hidden objects
and that ifA € A, thenA € A, forall ¢/ < ¢.

The closest site query for a poimtis performed as follows. The query is first performed in
the top-most diagranw(.Ay,) using the simple walk. Then, fé&r= L — 1,...,0 a simple walk is
performed inV(A,) from A,y to A, where A, (resp. A;) is the object of4,,; (resp. ofA,)
closest tar.

It easy to show that the expected sizeMfA) is O(ﬁ n), and that the expected number of
levels in(A) is O(log; ;5 n). Moreover, the following lemma, proves that the expectetiver of
steps performed by the walk at each level is constant.

Lemma 9 Letz be a pointinE2. Let A, (resp. A, 1) be the object closest toin A, (resp.. 4.4 1).
Then the expected number of Voronoi cells (objects) visitethg the walk inV(A,) from A4 to
AgisO(1/5).

Proof. The objects visited at levélare closer tar than A, ; and their distances te are mono-
tonically decreasing. Consequently 4§, ; is, among the objects o4,, the k-th closest tar, the
walk at levell performs at mosk steps. The probability foA,,; to be, among the objects of,,
the k-th closest ta is just 3(1 — 3)*~! and therefore the expected numBérof objects visited at
level? is bounded as follows:

nyg ’ oo 1
Ne<) k(=B 'B<BY k(1-8)F" ==,
k=1 k=1 ﬁ
wheren, denotes the cardinality od,. O

We still have to bound the time spent in each one of the visigdls. Let A; be the site of a
visited cell inV(A,). Since the complexity of all cells in the Voronoi diagran4,) is only O(ny),
wheren, is the number of sites ind,, it is not efficient to simply compare the distaneés, A;)
andd(z, A) for each neighboA of A; in V(A,). This would only imply that the time spent at each
level ¢ of the hierarchy i$)(n;) = O(n), yielding a total ofO(n) time per insertion.

To remedy this we attach an additional balanced binary treath cell of each Voronoi diagram
in the hierarchy. The tree attached to the 8&[l4;) of A4; in the diagranmV(.A,) includes, for each
Voronoi vertexv of V;(A4;), the rayp;(p,) wherep, is the point ond A; closest tov, andp; (p,) is
defined as the ray starting from the center of the maximal #iglp,,) and passing through,. The
rays are sorted according to the (counter-clockwise) asfithre pointsp, on 9A;. WhenV;(4;) is
visited, the ray; (p,.) corresponding to the query poinis localized using the tree; hepg denotes
the point of tangency of the digK; (x) with the boundaryp A; of A;. Suppose that;(p,.) is found
to be between the rays of two verticesandv,. Then it suffices to compaz, A;) andd(z, A;),
whereA; is the neighbor of4; in V(A,) sharing the vertices, andv,. Thus the time spend in each
visited cell ofV(Ay) is O(logng) = O(logn), which (together with with the expected number of
visited nodes) yields the following lemma
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Lemma 10 Using a hierarchy of Voronoi diagrams with additional biyatrees for each cell, a
closest site query can be answered in ti@(em log®n).

5 Complexity analysis

In this section we deal with the cost of the basic operatidrmiodynamic algorithm. We consider
three scenarios. The first one assumes that objects do eatét. In the second scenario objects
may intersect but it is assumed that there are no hiddentsbj@te third scenario is the general
case where we allow intersecting and hidden objects.

In each of the above three cases, we consider the expectiedf tbs basic operations, namely
insertion and deletion. The expectation refers to the tiseprder, that is, all possible insertion
orders are considered to be equally likely and each deleticonsidered to deal equally likely with
any object in the current set.

Our results are summarized in the table below.

Disjoint | No hidden| General
objects objects case
Insertion || O(log” n) O(n) O(n)
Deletion || O(log® n) O(n) O(n?)

Disjoint objects. If the objects are disjoint, there are no hidden objects harkfore there is no need
to maintain a covering graph. In this case we use a Voronoafihy as location data structure and
therefore we have to take into account the cost for maintgittiis structure. Note that the Voronoi
hierarchy introduce another source of randomization, Wwiiéndependent from the randomization
in the order of insertion.

Let us first analyze the cost of an insertion.

« Using the Voronoi hierarchy a closest site query can beoperéd inO (log® n) time. Knowing
the objectA; closest to a poinp of the inserted object, the tree corresponding to Beélit,)
in the first level of the hierarchy can be used to find the firgteeaf1’(.A) in conflict with A
in time O(log n).

 Finding the whole conflict region at levébf the hierarchy and updating the Voronoi diagram
V(Ay) can be performed in tim@&(k,) wherek, is the number of changes occurring in the
diagram. The update of additional trees at lef/ef the hierarchy can be performed in time
O(kelognyg), wheren, is the number of sites it(Ay).

At each levell, we havelog n, = O(logn), and the expected value féy is constant. Because the
expected number of levels(log n), the expected cost for updating the diagram and the hieyarch
upon an insertion i©(log® n).

Let us now analyze the cost of a deletion.

» Updating the Voronoi diagram at levélinvolves computing a secondary Voronoi diagram
involving only thek, neighbors of the deleted site in the diagr&it4,). The neighbors are
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inserted in random order in the secondary diagram. From yetedes, the expected cost
for building this diagram i) (k, log® n¢), with the expectation here referring to the random
insertion order of the neighbors.

» The cost for updating the additional trees of the locatiamadstructure at level is still
O(kelogmny).

As above, the expected valuelof £ > 0, isO(1). Moreover, for all level, logn, = O(logn) and
the expected number of levelsi¥log n). Therefore the expected cost for a deletio®igog® n).

No hidden objects.Assume now that the objects may intersect but that therecahédaen objects.
In this case, we maintain neither a covering graph nor ailmcatata structure. Indeed, to find a first
conflict we need to perform a location of the medial axis opi@na Because this operation has a
linear complexity with respect to the number of sites, themo reason to maintain a location data
structure for fast closest site queries.

Then, the analysis of an insertion operation is as abovepéxbat finding the first conflict
now costsO(n) and, clearly, there is no cost associated with updatingdbation data structure.
Therefore, the expected cost of an insertio®(s).

The cost of a deletion reduces to the expected cost of bugilfiea secondary Voronoi diagram
involving the k neighbors of the deleted site. In view of the insertion asialyit takesO(k?) ex-
pected time to create this secondary Voronoi diagram, wigheixpectation referring to the random
insertion order of the neighbors of the site to be deletelintanto account that = O(n) and that
the expected value dfis O(1), we conclude that the expected cost of a deletidi(is).

General case. In the general case, objects may intersect and/or may besnidd/e maintain a
covering graph but no location data structure graph.
Let us analyze the cost of an insertion.

« If the inserted object is hidden, the location of the medisk provides a covering set for
this object, and updating the covering graph has a comglexiportional to the size of the
covering set, which i€ (n).

« If the inserted object is not hidden, it may induce the hidiri other objects. Objects hidden
on an insertion are detected while finding the whole conflictez In this case, the analysis of
the insertion cost is just as above except that we need tchadbst for updating the conflict
graph. This cost i®)(hk'), whereh is the number of objects that become hidden Ahthe
number of neighbors of the newly inserted object in the ugpdiabronoi diagram. Because,
h = O(n) andk’ has a constant expected value, the expected cost to updatertflict graph
isO(n).

Thus, in both cases, the expected cost of an insertioris.
Let us come to the analysis of a deletion.

« Because the expected cost of an insertion is linear, theof@&tepl (removal of the deleted
object from the dual graph) is stild(k?), wherek is the number of neighbors of the deleted
site. As above, this gives an expected contributio®6f).
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 Stepl2 (removal of the deleted object from the conflict gjaptobviously performed in no
more tharO(n) time.

 Sted B induces no cost since we do not maintain a locatiansdaicture.

» The cost of Stefl4 i®(nh’), whereh' is the number of sites covered (at least partially) by
the deleted site. Obviously, randomization cannot help kebound the expected number of
neighbors of these covered sites and the cost of[Step 4 cabemounded by (n?).

Hence, the overall expected cost of a deletiof@ {&?).

6 Extensions

In this section we consider several extensions of the pnoliscussed in the preceding sections.

Degenerate configurations.Degenerate configurations occur when the set contains qiaiinger-
nally tangent objects (cf. FigE_1|(f) apd J(9)). {et;, A;} be an sc-pseudo-circles set with and
A; internally tangent andl; C A;. The bisectorr;; is homeomorphic to a ray, il; and A; have a
single tangent point, or two, in general disconnected,, ifiy$; andA; have two tangent points. In
any case, the interidr°(A4;) of the Voronoi region of4; in V({4,, A,}) is empty and we consider
the objectA; as hidden. This point of view is consistent with the defimitiwe gave for hidden sites,
which is that an objecd is hidden if N°(A) = 0.

Let us discuss the algorithmic consequences of allowingegte configurations. When the
objectA is inserted in the diagram, the case whdris internally tangent to a visible objedt; € A
is detected at Stelf 1, during the location the medial axid.offhe case of an object; € A is
internally tangent toA is detected during Stdp 2, when the entire conflict regioeasched. In the
first caseA is hidden and its covering set {$4;}. In the second casd; becomes hidden and its
covering set is{A}. The complexity of insertions and deletions is not affedigdallowing these
degenerate configurations.

Pseudo-circles sets of piecewise smooth convex objedtsthe sections above we assumed that all
convex objects have smooth boundaries, i.e., their boigslare at least'!-continuous. In fact we
can handle quite easily the case of objects whose boundadesly piecewis€'-continuous. Let
us callverticesthe points on the boundary of an object where there i§'haontinuity. The main
problem of piecewis€'-continuous objects is that they can yield two-dimensidmisgctors when
two objects share the same vertex (cf. F[gs] 1(i)[and 1(jje femedy is similar to the commonly
used approach for the Voronoi diagram of segments (e.g[4pt. we consider the vertices on the
boundary of the objects as objects by themselves and slightinge the distance so that a point
whose closest point on objedt; is a vertex ofA; is considered to be closer to that vertex. All
two-dimensional bisectors, if any, then become the Voraets of these vertices.

As far as our basic operations are concerned, we proceedl@sdolLet A be the object to be
inserted or deleted. We denote Hy the set of vertices oft and A the objectd minus the points in
A,. When we want to insert in the current Voronoi diagram we at first insert all pointsdipand
then A. When we want to deletd we at first deleted and then all points im,,. During the latter
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Figure 4: The setsl (left) and.A’ (right). A’ is a generalized pseudo-circles set.

step we have to make sure that pointsdin are not vertices of other objects as well. This can be
done easily by looking at the neighbors in the Voronoi diagtd each point in4,,.

Generic convex objects.In the case of smooth convex objects which do not form pseimdtes
sets we can compute the Voronoi diagram in the complemeiieaf tinion (free space). The basic
idea is that the Voronoi diagram in free space depends onth@mrcs appearing on the boundary
of the union of the objects.

More precisely, letd be a set of convex objects and {@be a connected component of the union
of the objects in4. Along the boundaryC of C, there exists a sequence of poifits, ..., pm },
which are points of intersection of objects #u An arc «; on 9C joining p; to p;+1 belongs
to a single objectd € A. We form the piecewise smooth convex objegt,, whose boundary
is a; U pipi+1, Wherep;p;11 is the segment joining the poings andp;.;. Consider the se#’
consisting of all such object$,,,. A’ is a pseudo-circles set (consisting of disjoint piecewiseath
convex objects) and the Voronoi diagramg4) andV(A") coincide in free space.

The setd’ can be computed by performing a line-sweep on the4sahd keeping track of the
boundary of the connected components of the union of thectshie.4. This can be done in time
O(nlogn + k), wherek = O(n?) is the complexity of the boundary of the afore-mentioneaani
Since the objects inl’ are disjoint, we can then compute the Voronoi diagram in $ggece in total
expected time&((n + k) log” n).

7 Conclusion
We presented a dynamic algorithm for the construction oétieidean Voronoi diagram in the plane

for various classes of convex objects. In particular, wesabared pseudo-circles sets of piecewise
smooth convex objects, as well as generic smooth convextsbhja which case we can compute the

RR n° 5023



22 Karavelas & Yvinec

Voronoi diagram in free space. Our algorithm uses fairlypardata structures and enables us to
perform deletions easily.

We are currently working on extending the above results to-canvex objects, as well as un-
derstanding the relationship between the euclidean Vardiagram of such objects and abstract
Voronoi diagrams. We conjecture that, given a pseudoesrset (of possibly non-convex objects)
in general position, such that any pair of objects has exagth supporting lines, the corresponding
set of bisectors is an admissible system of bisectors.
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