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Abstract: One of the earliest and most well known problems in computational geometry is the
so-calledart gallery problem. The goal is to compute the minimum possible number guards placed
on the vertices of a simple polygon in such a way that they cover the interior of the polygon. We
consider the problem of guarding an art gallery which is modeled as a polygon with curvilinear walls.
Our main focus is on polygons the edges of which are convex arcs pointing towards the exterior or
interior of the polygon (but not both), named piecewise-convex and piecewise-concave polygons.
We prove that, in the case of piecewise-convex polygons, if we only allow vertex guards,⌊ 4n

7 ⌋ − 1
guards are sometimes necessary, and⌊ 2n

3 ⌋ guards are always sufficient. Moreover, anO(n log n)
time andO(n) space algorithm is described that produces a vertex guarding set of size at most⌊ 2n

3 ⌋.
When we allow point guards the afore-mentioned lower bound drops down to⌊n

2 ⌋. In the special
case of monotone piecewise-convex polygons we can show that⌊n

2 ⌋+ 1 vertex or⌊n
2 ⌋ point guards

are always sufficient and sometimes necessary. In the case ofpiecewise-concave polygons, we show
that 2n − 4 point guards are always sufficient and sometimes necessary,whereas it might not be
possible to guard such polygons by vertex guards. We conclude with bounds for other types of
curvilinear polygons and future work.

Key-words: art gallery, curvilinear polygons, vertex guards, point guards, piecewise-convex poly-
gons, piecewise-concave polygons
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Garder les galeries d’art curvilignes avec des gardes de sommet
ou de point

Résumé : Un des plus anciens et plus célèbres problèmes en géométrie algorithmique est le prob-
lème dit degalerie d’artqui consiste à calculer le nombre minimal des gardians qui sont nécessaires
afin de couvrir l’intérieur d’un polygone simple s’ils sont placés sur ses sommets.

Dans cet article, nous considérons le problème de garde d’une galerie d’art qui est modélisée
par un polygone avec des murs courbés. En particulier, nous considérons des polygones dont les
bords sont des arcs convexes qui se dirigent vers l’extérieur ou l’intérieur du polygone (mais pas les
deux au même temps), appelés polygones par morceaux convexes ou concaves respectivement. Nous
montrons que, dans le cas de polygones par morceaux convexes, si nous permettons seulement des
gardians de sommets, alors⌊ 4n

7 ⌋−1 gardians sont parfois nécessaires, et⌊ 2n
3 ⌋ gardians sont toujours

suffisants. D’ailleurs, nous décrivons un algorithme,O(n log n) en temps etO(n) en espace, qui
produit l’ensemble des sommets de garde de taille au plus⌊ 2n

3 ⌋. Dans le cas particulier de polygones
monotones et par morceaux convexes nous pouvons montrer que⌊n

2 ⌋ + 1 gardians de sommets ou
⌊n

2 ⌋ gardians de points sont toujours suffisants et parfois nécessaires.
Dans le cas des polygones par morceaux concaves, nous prouvons que2n− 4 gardians de points

sont toujours suffisantes et parfois nécessaires, tandis qu’il ne peut être possible de garder de tels
polygones par des gardians de sommets. Nous concluons avec des limites pour d’autres types de
polygones courbés et perspectives pour le futur.

Mots-clés : galerie d’art; polygones courbés, gardians de sommet, gardians de point, polygones par
morceau convexes, polygones par morceau concaves
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Guarding curvilinear art galleries with vertex or point guards 3

1 Introduction

Consider a simple polygonP with n vertices. How many points with omnidirectional visibilityare
required in order to see every point in the interior ofP? This problem, known as theart gallery
problemhas been one of the earliest problems in Computational Geometry. Applications areas
include robotics [21, 36], motion planning [24, 28], computer vision and pattern recognition [32,
37, 2, 33], graphics [26, 7], CAD/CAM [4, 15] and wireless networks [16]. In the late 1980’s to
mid 1990’s interest moved from linear polygonal objects to curvilinear objects [35, 9, 11, 10] — see
also the paper by Dobkin and Souvaine [13] that extends linear polygon algorithms to curvilinear
polygons, as well as the recent book by Boissonnat and Teillaud [3] for a collection of results on
non-linear computational geometry beyond art gallery related problems. In this context this paper
addresses the classical art gallery problem for various classes of polygonal regions the edges of
which are arcs of curves. To the best of our knowledge this is the first time that the art gallery
problem is considered in this context.

The first results on the art gallery problem or its variationsdate back to the 1970’s. Chvátal [8]
was the first to prove that a simple polygon withn vertices can be always guarded with⌊n

3 ⌋ vertices;
this bound is tight in the worst case. The proof by Chvátal wasquite tedious and Fisk [18] gave a
much simpler proof by means of triangulating the polygon andcoloring its vertices using three colors
in such a way so that every triangle in the triangulation of the polygon does not contain two vertices
of the same color. The algorithm proposed by Fisk runs inO(T (n) + n) time, whereT (n) is the
time to triangulate a simple polygon. Following Chazelle’slinear-time algorithm for triangulating a
simple polygon [5, 6], the algorithm proposed by Fisk runs inO(n) time. Lee and Lin [22] showed
that computing the minimum number of vertex guards for a simple polygon is NP-hard, which was
extended to point guards by Aggarwal [1]. Soon afterwards other types of polygons were considered.
Kahn, Klawe and Kleitman [19] showed that orthogonal polygons of sizen, i.e., polygons with axes-
aligned edges, can be guarded with⌊n

4 ⌋ vertex guards, which is also a lower bound. SeveralO(n)
algorithms have been proposed for this variation of the problem, notably by Sack [30], who gave
the first such algorithm, and later on by Lubiw [25]. Edelsbrunner, O’Rourke and Welzl [14] gave a
linear time algorithm for guarding orthogonal polygons with ⌊n

4 ⌋ point guards.
Beside simple polygons and simple orthogonal polygons, polygons with holes, and orthogonal

polygons with holes have been investigated. As far as the type of guards is concerned,edge guards
andmobile guardshave been considered. An edge guard is an edge of the polygon,and a point
is visible from it if it is visible from at least one point on the edge; mobile guards are essentially
either edges of the polygon, or diagonals of the polygon. Other types of guarding problems have
also been studied in the literature, notably, thefortress problem(guard the exterior of the polygon
against enemy raids) and theprison yard problem(guard both the interior and the exterior of the
polygon which represents a prison: prisoners must be guarded in the interior of the prison and
should not be allowed to escape out of the prison). For a detailed discussion of these variations and
the corresponding results the interested reader should refer to the book by O’Rourke [29], the survey
paper by Shermer [31] and the book chapter by Urrutia [34].

In this paper we consider the original problem, that is the problem of guarding a simple polygon.
We are primarily interested in the case of vertex guards, although results about point guards are also
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4 Karavelas and Tsigaridas

described. In our case, polygons are not required to have linear edges. On the contrary we consider
polygons that have smooth curvilinear edges. Clearly, these problems are NP-hard, since they are
direct generalizations of the corresponding original art gallery problems. In the most general setting
where we impose no restriction on the type of edges of the polygon, it is very easy to see that there
exist curvilinear polygons that cannot be guarded with vertex guards, or require an infinite number
of point guards (see Fig. 23(b)). Restricting the edges of the polygon to be locally convex curves,
pointing towards the exterior of the polygon (i.e., the polygon is a locally convex set, except possibly
at the vertices) we can construct polygons that require a minimum ofn vertex or point guards, where
n is the number of vertices of the polygon (see Fig. 23(a)); in fact such polygons can always be
guarded with theirn vertices. The main focus of this paper is the class of polygons that are either
locally convex or locally concave (except possibly at the vertices), the edges of which are convex
arcs; we call such polygonspiecewise-convexandpiecewise-concave polygons, respectively.

For the first class of polygons we show that it is always possible to guard them with⌊ 2n
3 ⌋ ver-

tex guards, wheren is the number of polygon vertices. On the other hand we describe families of
piecewise-convex polygons that require a minimum of⌊ 4n

7 ⌋−1 vertex guards and⌊n
2 ⌋ point guards.

Aside from the combinatorial complexity type of results, wedescribe anO(n log n) time andO(n)
space algorithm which, given a piecewise-convex polygon, computes a guarding set of size at most
⌊ 2n

3 ⌋. Our algorithm should be viewed as a generalization of Fisk’s algorithm [18]; in fact, when ap-
plied to polygons with linear edges, it produces a guarding set of size at most⌊n

3 ⌋. For the purposes
of our complexity analysis and results, we assume, throughout the paper, that the curvilinear edges of
our polygons are arcs of algebraic curves of constant degree; as a result all predicates required by the
algorithms described in this paper takeO(1) time in the Real RAM computation model. The central
idea for both obtaining the upper bound as well as for designing our algorithm is to approximate the
piecewise-convex polygon by a linear polygon (a polygon with line segments as edges). Additional
auxiliary vertices are added on the boundary of the curvilinear polygon in order to achieve this. The
resulting linear polygon has the same topology as the original polygon and captures the essentials of
the geometry of the piecewise-convex polygon; for obvious reasons we term this linear polygon the
polygonal approximation. Once the polygonal approximation has been constructed, wecompute a
guarding set for it by applying a slight modification of Fisk’s algorithm [18]. The guarding set just
computed for the polygonal approximation turns out to be a guarding set for the original curvilinear
polygon. The final step of both the proof and our algorithm consists in mapping the guarding set
of the polygonal approximation to another vertex guarding set consisting of vertices of the original
polygon only.

If we further restrict ourselves tomonotone piecewise-convex polygons, i.e., piecewise-convex
polygons that have the property that there exists a lineL, such that any lineL⊥ perpendicular toL
intersects the polygon at most twice, we can show that⌊n

2 ⌋+1 vertex or⌊n
2 ⌋ point guards are always

sufficient and sometimes necessary. Such a lineL can be computed inO(n) time (cf. [13]). Given
L, it is very easy to compute a vertex guarding set of size⌊n

2 ⌋+1, or a point guarding set of size⌊n
2 ⌋:

the problem of computing such a guarding set essentially reduces to merging two sorted arrays, thus
takingO(n) time andO(n) space. This result should be contrasted against the case of monotone
linear polygons where the corresponding upper and lower bound on the number of vertex or point
guards required to guard the polygon matches that of general(i.e., not necessarily monotone) linear
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Guarding curvilinear art galleries with vertex or point guards 5

polygons. In other words, monotonicity seems to play a crucial role in the case of piecewise-convex
polygons, which is not the case for linear polygons.

For the second class of polygons, i.e., the class of piecewise-concave polygons, vertex guards
may not be sufficient in order to guard the interior of the polygon (see Fig. 22(a)). We thus turn
our attention to point guards, and we show that2n − 4 point guards are always sufficient and some-
times necessary. Our method for showing the sufficiency result is similar to the technique used to
illuminate sets of disjoint convex objects on the plane [17]. Given a piecewise-concave polygonP ,
we construct a new locally concave polygonQ, contained insideP , and such that the tangencies
between edges ofQ are maximized. The problem of guardingP then reduces to the problem of
guardingQ, which essentially consists of a number of faces with pairwise disjoint interiors. The
faces ofQ require, each, two point guards in order to be guarded, and are in 1–1 correspondence
with the triangles of an appropriately defined triangulation graphT (R) of a polygonR with n ver-
tices. Thus the number point guards required to guardP is at most two times the number of faces of
T (R), i.e.,2n − 4.

The rest of the paper is structured as follows. In Section 2 weintroduce some notation and
provide various definitions. In Section 3 we present our algorithm for computing a guarding set, of
size⌊ 2n

3 ⌋, for a piecewise-convex polygon withn vertices. Section 3 is further subdivided into five
subsections. In Subsection 3.1 we define the polygonal approximation of our curvilinear polygon
and prove some geometric and combinatorial properties. In Subsection 3.2 we show how to construct
a, properly chosen,constrainedtriangulation of the polygonal approximation. In Subsection 3.3 we
describe how to compute the guarding set for the original curvilinear polygon from the guarding set
of the polygonal approximation due to Fisk’s algorithm and prove the upper bound on the cardinality
of the guarding set. In Subsection 3.4 we show how to compute the guarding set inO(n log n) time
andO(n) space. Finally, in Subsection 3.5 is devoted to the presentation of the family of polygons
that attains the lower bound of⌊ 4n

7 ⌋ − 1 vertex guards. The special case of guarding monotone
piecewise-convex polygons is discussed in Section 4. We show that⌊n

2 ⌋ + 1 vertex (or⌊n
2 ⌋ point)

guards are always necessary and sometimes sufficient, and present anO(n) time andO(n) space
algorithm for computing such a guarding set. In Section 5 we present our results for piecewise-
concave polygons, namely, that2n − 4 point guards are always necessary and sometimes sufficient
for this class of polygons. Section 6 contains further results. More precisely, we present bounds for
locally convex polygons, monotone locally convex polygonsand general polygons. The final section
of the paper, Section 7, summarizes our results and discusses open problems.

2 Definitions

Curvilinear arcs. Let S be a sequence of pointsv1, . . . , vn and E a set of curvilinear arcs
a1, . . . , an, such thatai has as endpoints the pointsvi andvi+1

1. We will assume that the arcs
ai andaj , i 6= j, do not intersect, except whenj = i − 1 or j = i + 1, in which case they intersect
only at the pointsvi andvi+1, respectively . We define acurvilinear polygonP to be the closed
region delimited by the arcsai. The pointsvi are called the vertices ofP . An arcai is aconvex arc

1Indices are considered to be evaluated modulon.
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6 Karavelas and Tsigaridas

(a) (b) (c)

(d) (e) (f)

Figure 1: Different types of curvilinear polygons: (a) a linear polygon, (b) a convex polygon, (c) a
piecewise-convex polygon, (d) a locally convex polygon, (e) a piecewise-concave polygon and (f) a
general polygon.

if every line on the plane intersectsai at either at most two points or along a linear segment. Ifq is a
point in the interior ofai, anε-neighborhoodnε(q) of q is defined to be the intersection ofai with a
disk centered atq with radiusε. An arcai is alocally convex arcif for every pointq in the interior of
ai, there exists anεq such that for every0 < ε ≤ εq, theε-neighborhood ofq lies entirely in one of
the two halfspaces defined by the lineℓ tangent toai at q; note that ifℓ is not uniquely defined, then
the containment-in-halfspace property mentioned just above has to hold for any such lineℓ. Finally,
note that a convex arc is also a locally convex arc.

Our definition does not really require that the arcsai are smooth. In fact the arcsai can be
polylines, in which case the results presented in this paperare still valid. What might be different,
however, is our complexity analyses, since we have assumed that theai’s have constant complexity.
In the remainder of this paper, and unless otherwise stated,we will assume that the arcsai are
G1-continuous and have constant complexity.
Curvilinear polygons. A polygonP is a linear polygonif its edges are line segments (see Fig.
1(a)). A polygonP consisting of curvilinear arcs as edges is called aconvex polygonif every line on
the plane intersects its boundary at either at most two points or along a line segment (see Fig. 1(b)).
A polygon is called apiecewise-convex polygon, if every arc is a convex arc and for every pointq in
the interior of an arcai of the polygon, the interior of the polygon is locally on the same side as the
arcai with respect to the line tangent toai at q (see Fig. 1(c)). A polygon is called alocally convex
polygonif the boundary of the polygon is a locally convex curve, except possibly at its vertices (see
Fig. 1(d)). Note that a convex polygon is a piecewise-convexpolygon and that a piecewise-convex
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Guarding curvilinear art galleries with vertex or point guards 7

polygon is also a locally convex polygon. A polygonP is called apiecewise-concave polygon, if
every arc ofP is convex and for every pointq in the interior of a non-linear arcai, the interior ofP
lies locally on both sides of the line tangent toai at q (see Fig. 1(e)). Finally, a polygon is said to
be ageneral polygonif we impose no restrictions on the type of its edges (see Fig.1(f)). We will
use the termcurvilinear polygonto refer to a polygon the edges of which are either line or curve
segments.
Guards and guarding sets. In our setting, aguardor point guardis a point in the interior or on
the boundary of a curvilinear polygonP . A guard ofP that is also a vertex ofP is called avertex
guard. We say that a curvilinear polygonP is guardedby a setG of guards if every point inP is
visible from at least one point inG. The setG that has this property is called aguarding setfor P .
A guarding set that consists solely of vertices ofP is called avertex guarding set.

3 Piecewise-convex polygons

In this section we present an algorithm which, given a piecewise-convex polygonP of sizen, it
computes a vertex guarding setG of size⌊ 2n

3 ⌋. The basic steps of the algorithm are as follows:

1. Compute the polygonal approximatioñP of P .

2. Compute a constrained triangulationT (P̃ ) of P̃ .

3. Compute a guarding setGP̃ for P̃ , by coloring the vertices ofT (P̃ ) using three colors.

4. Compute a guarding setGP for P from the guarding setGP̃ .

3.1 Polygonalization of a piecewise-convex polygon

Let ai be a convex arc with endpointsvi andvi+1. We call the convex regionri delimited byai

and the line segmentvivi+1 a room. A room is called degenerate if the arcai is a line segment. A
line segmentpq, wherep, q ∈ ai is called achord, and the region delimited by the chordpq and
ai is called asector. The chord of a roomri is defined to be the line segmentvivi+1 connecting
the endpoints of the corresponding arcai. A degenerate sector is a sector with empty interior. We
distinguish between two types of rooms (see Fig. 2):

1. empty rooms: these are non-degenerate rooms that do not contain any vertex of P in the
interior of ri or in the interior of the chordvivi+1.

2. non-empty rooms: these are non-degenerate rooms that contain at least one vertex ofP in the
interior of ri or in the interior of the chordvivi+1.

In order to polygonalizeP we are going to add new vertices in the interior of non-linearconvex
arcs. To distinguish between the two types of vertices, then vertices ofP will be calledoriginal
vertices, whereas the additional vertices will be calledauxiliary vertices.

More specifically, for each empty roomri we add a vertexwi,1 (anywhere) in the interior of the
arcai (see Fig. 3). For each non-empty roomri, let Xi be the set of vertices ofP that lie in the
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8 Karavelas and Tsigaridas

r′ne

r′e

r′′ne

r′′e

Figure 2: The two types of rooms in a piecewise-convex polygon: r′e and r′′e are empty rooms,
whereasr′ne andr′′ne are non-empty rooms.

v1

v2

v3

v4

v5

v6
v7

m5

a3

a5

r3

r5

w3,1

w5,1

w5,2

Figure 3: The auxiliary vertices (white points) for roomsr3 (empty) andr5 (non-empty). w3,1

is a point in the interior ofa3. m5 is the midpoint ofv5 andv6, whereasw5,1 andw5,2 are the
intersections of the linesm5v2 and m5v1 with the arca5, respectively. In this exampleR5 =
{v1, v2, v7}, whereasC∗

5 = {v1, v2}.

interior of the chordvivi+1 of ri, andRi be the set of vertices ofP that are contained in the interior
of ri or belong toXi (by assumptionRi 6= ∅). If Ri 6= Xi, letCi be the set of vertices on the convex
hull of the vertex set(Ri \ Xi) ∪ {vi, vi+1}; if Ri = Xi, let Ci = Xi ∪ {vi, vi+1}. Finally, let
C∗

i = Ci \ {vi, vi+1}. Clearly,vi andvi+1 belong to the setCi and, furthermore,C∗
i 6= ∅.

Let mi be the midpoint ofvivi+1 andℓ⊥i (p) the line perpendicular tovivi+1 passing through a
point p. If C∗

i 6= Xi, then, for eachvk ∈ C∗
i , let wi,jk

, 1 ≤ jk ≤ |C∗
i |, be the (unique) intersection

INRIA

in
ria

-0
01

32
98

8,
 v

er
si

on
 8

 - 
18

 F
eb

 2
00

8



Guarding curvilinear art galleries with vertex or point guards 9

v1

v2

v3
v4

v5

v6

v7

w1,1

w2,1

w3,1

w5,1

w5,2

(a)

v1

v2

v3
v4

v5

v6

v7

w1,1

w2,1

w3,1

w5,1

w5,2

(b)

Figure 4: (a) The polygonal approximatioñP , shown in gray, of the piecewise-convex polygonP

with verticesvi, i = 1, . . . , 7. (b) The constrained triangulationT (P̃ ) of P̃ . The dark gray triangles
are the constrained triangles. The polygonal regionv5w5,1w5,2v6v1v2v5 is a crescent. The triangles
w5,1v2v5 andv1w5,2v6 are boundary crescent triangles. The trianglev2w5,2v1 is an upper crescent
triangle, whereas the trianglev2w5,1w5,2 is a lower crescent triangle.

of the linemivk with the arcai; if C∗
i = Xi, then, for eachvk ∈ C∗

i , let wi,jk
, 1 ≤ jk ≤ |C∗

i |, be
the (unique) intersection of the lineℓ⊥i (vk) with the arcai.

Now consider the sequencẽS of the original vertices ofP augmented by the auxiliary vertices
added to empty and non-empty rooms; the order of the verticesin S̃ is the order in which we en-
counter them as we traverse the boundary ofP in the counterclockwise order. The linear polygon
defined by the sequencẽS of vertices is denoted bỹP (see Fig. 4(a)). It is easy to show that:

Lemma 1 The linear polygoñP is a simple polygon.

Proof. It suffices show that the line segments replacing the curvilinear segments ofP do not intersect
other edges ofP or P̃ .

Let ri be an empty room, and letwi,1 be the point added in the interior ofai. The interior
of the line segmentsviwi,1 andwi,1vi+1 lie in the interior ofri. SinceP is a piecewise-convex
polygon, andri is an empty room, no edge ofP could potentially intersectviwi,1 or wi,1vi+1.
Hence replacingai by the polylineviwi,1vi+1 gives us a new piecewise-convex polygon.

Let ri be a non-empty room. Letwi,1, . . . , wi,Ki
be the points added onai, whereKi is the

cardinality ofC∗
i . By construction, every pointwi,k is visible fromwi,k+1, k = 1, . . . Ki − 1, and

every pointwi,k is visible fromwi,k−1, k = 2, . . . Ki. Moreover,wi,1 is visible fromvi andwi,Ki

is visible fromvi+1. Therefore, the interior of the segments in the polylineviwi,1 . . . wi,Ki
vi+1
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10 Karavelas and Tsigaridas

lie in the interior ofri and do not intersect any arc inP . Hence, substitutingai by the polyline
viwi,1 . . . wi,Ki

vi+1 gives us a new piecewise-convex polygon.
As a result, the linear polygoñP is a simple polygon. 2

We call the linear polygoñP , defined byS̃, thestraight-line polygonal approximationof P , or
simply thepolygonal approximationof P . An obvious result for̃P is the following:

Corollary 2 If P is a piecewise-convex polygon the polygonal approximationP̃ of P is a linear
polygon that is contained insideP .

We end this section by proving a tight upper bound on the size of the polygonal approximation
of a piecewise-convex polygon. We start by stating and proving an intermediate result, namely that
the setsC∗

i are pairwise disjoint.

Lemma 3 Let i, j, with 1 ≤ i < j ≤ n. ThenC∗
i ∩ C∗

j = ∅.

Proof. If one of the roomsri andrj is a degenerate or an empty room, the result is obvious.
Consider two non-empty roomsri andrj . For simplicity of presentation we assume thatRi 6=

Xi andRj 6= Xj ; the proof easily carries on to the caseRi = Xi or Rj = Xj .
Suppose that there exists a vertexu ∈ P that is contained inC∗

i ∩ C∗
j . Let vi, vi+1, and

vj , vj+1 be the endpoints of the arcsai andaj , andmi, mj the midpoints of the chordsvivi+1,
vjvj+1, respectively. Letui be the intersection of the linemiu with the convex arcai anduj be the
intersection of the linemju with the convex arcaj , respectively. Consider the following cases.

vj, vj+1 6∈ Ri, vi, vi+1 6∈ Rj . This is the easy case (see Fig. 5). Sinceu ∈ C∗
i ∩ C∗

j we have
that ri ∩ rj 6= ∅. Moreover, it is either the case thataj intersects the chordvivi+1 or ai

intersects the chordvjvj+1. Without loss of generality we can assume thataj intersects the
chordvivi+1. In this case the boundary ofri ∩ rj that lies in the interior ofri is a subarc of
aj . But then the segmentuui has to intersectaj , which contradicts the fact thatu ∈ C∗

i .

ai

aj

vi
vi+1

vj

vj+1

u

ui

mi

Figure 5: Proof of Lemma 3. The casevj , vj+1 6∈ Ri, vi, vi+1 6∈ Rj .
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Guarding curvilinear art galleries with vertex or point guards 11

ai

aj

vi
vi+1

vj

vj+1

u

ui

mi

(a)

ai

aj

vi
vi+1

vj

vj+1

u

ui

mi

(b)

ai

aj

vi
vi+1

vj

v′

j

vj+1

v′

j+1

u

ui

mi

(c)

Figure 6: Proof of Lemma 3. The casevj , vj+1 ∈ Ri. (a) the chordvjvj+1 intersects the interior
of uui andu is contained inside the trianglevivi+1vj . (b) the chordvjvj+1 intersects the interior of
uui andu is contained inside the convex quadrilateralvivi+1vjvj+1. (c) the chordvjvj+1 intersects
uui atu.

vj, vj+1 ∈ Ri. Sinceu belongs toC∗
i , the line segmentuui cannot contain any vertices ofP and

it cannot intersect any edge ofP (since otherwiseu would not belong toC∗
i ). For this reason,

and sinceu belongs toC∗
j , uui has to intersect the chord ofrj . We distinguish between the

following two cases (see Fig. 6):

1. The chordvjvj+1 intersects the interior ofuui. Depending on whether the supporting
line of vjvj+1 intersects the chordvivi+1 of ri or not,u will be either contained in the
interior of one of the trianglesvivi+1vj andvivi+1vj+1 (this happens if the supporting
line of vjvj+1 intersectsvivi+1 — see Fig. 6(a)), or inside the convex quadrilateral
vivi+1vjvj+1 (this happens if the supporting line ofvjvj+1 does not intersectvivi+1 —
see Fig. 6(b)). In either case,u is in the interior of a convex polygon, the vertices of
which are inRi ∪ {vi, vi+1}, and, thus, it cannot belong toC∗

i , hence a contradiction.

2. The chordvjvj+1 intersectsuui at u. We can assume without loss of generality that
vi+1, vj are to the right andvi, vj+1 to the left of the oriented lineuiu (see Fig. 6(c)).
Notice that bothvj andvj+1 have to belong toC∗

i , since otherwiseu would not belong to
C∗

i . Letv′
j andv′

j+1 be the intersections of the linesmivj andmivj+1 with ai. Consider
the pathπ from u to vi on the boundary∂P of P , that does not contain the edgeaj .
π has to intersect either the interior of the line segmentvjv

′
j or the interior of the line

segmentvj+1v
′
j+1; either case yields a contradiction with the fact that bothvj andvj+1

belong toC∗
i .

vi, vi+1 ∈ Rj . This case is symmetric to the previous one.

|{vj, vj+1} ∩ Ri| = 1. Without loss of generality we may assume thatvj ∈ Ri andvj+1 6∈ Ri.
Consider the following two cases (see Fig. 7):
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12 Karavelas and Tsigaridas

ai

aj

vi
vi+1

vj

vj+1

u

ui

mi

(a)

ai

aj

vi

vi+1

vj

vj+1 v′

i

v′

j

u

ui

mi

(b)

ai

aj

vi vi+1

vj

vj+1

v′

i+1

v′

j+1

u

mi

mj

(c)

Figure 7: Proof of Lemma 3. The case|{vj , vj+1} ∩ Ri| = 1. (a) the chordvjvj+1 intersects the
chordvivi+1 andvjvj+1 intersects the interior ofvivi+1. (b) the chordvjvj+1 intersects the chord
vivi+1 andvjvj+1 intersectsvivi+1 atvi. (c) the chordvjvj+1 intersectsai.

1. The chordvjvj+1 intersects the chordvivi+1. If vjvj+1 intersects the interior ofvivi+1

(see Fig. 7(a)), thenu has to lie in the interior of the trianglevivi+1vj , which contradicts
the fact thatu ∈ C∗

i .

Suppose now thatvjvj+1 intersects one of the endpoints ofvivi+1, and let us assume
that this endpoint isvi (see Fig. 7(b)).u has to lie in the interior ofvivj , since otherwise
it would have been in the interior of the trianglevivi+1vj , which contradicts the fact that
u ∈ C∗

i . Moreover,vi (resp.,vj) has to belong toRj (resp.,Ri), since otherwiseu 6∈ C∗
j

(resp.,u 6∈ C∗
i ). Let v′

j be the intersection ofmivj with ai andv′
i be the intersection

with aj of the line perpendicular tovjvj+1 at vi. Consider the pathsπ1 andπ2 on ∂P

from u to vi+1 andvj+1, respectively. One of these two paths has to intersect either the
interior of the line segmentviv

′
i or the interior of line segmentvjv

′
j ; either case yields a

contradiction with the fact thatvi belongs toC∗
j andvj belongs toC∗

i .

2. The chordvjvj+1 intersects the edgeai. In this case we also have that eithervi ∈ Rj

or vi+1 ∈ Rj , but not both. Without loss of generality we may assume thatvi+1 ∈ Rj

(see Fig. 7(c)). Sinceu belongs to bothC∗
i andC∗

j , it has to lie on the line segment
vi+1vj+1. Moreover,vj+1 (resp.,vi+1) has to belong toC∗

i (resp.,C∗
j ), since otherwise

u would not belong toC∗
i (resp.,C∗

j ). Let v′
i+1 andv′

j+1 be the intersections of the lines
mjvi+1 andmivj+1 with the arcsaj andai, respectively. Consider the pathsπ1 andπ2

on ∂P from u to vi andvj , respectively. One of these two paths has to intersect either
the interior of the line segmentvi+1v

′
i+1 or the interior of the line segmentvj+1v

′
j+1. In

the former case, we get a contradiction with the fact thatvi+1 belongs toC∗
j ; in the latter

case we get a contradiction with the fact thatvj+1 belongs toC∗
i .

|{vi, vi+1} ∩ Rj| = 1. This case is symmetric to the previous one. 2

An immediate consequence of Lemma 3 is the following corollary that gives us a tight bound on
the size of the polygonal approximatioñP of P .
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Guarding curvilinear art galleries with vertex or point guards 13

m1
v1 v2

v3
v4v5v6vn−3

vn−2
vn−1

vn

Figure 8: A piecewise-convex polygonP of sizen (solid curve), the polygonal approximatioñP of
which consists of3n − 3 vertices (dashed polyline).

Corollary 4 If n is the size of a piecewise-convex polygonP , the size of its polygonal approximation
P̃ is at most3n. This bound is tight (up to a constant).

Proof. Letai be a convex arc ofP , and letri be the corresponding room. Ifai is an empty room, then
P̃ contains one auxiliary vertex due toai. HenceP̃ contains at mostn auxiliary vertices attributed to
empty rooms inP . If ai is a non-empty room, theñP contains|C∗

i | auxiliary vertices due toai. By
Lemma 3 the setsC∗

i , i = 1, . . . , n are pairwise disjoint, which implies that
∑n

i=1 |C
∗
i | ≤ |P | = n.

ThereforeP̃ contains then vertices ofP , contains at mostn vertices due to empty rooms inP and
at mostn vertices due to non-empty rooms inP . We thus conclude that the size ofP̃ is at most3n.

The upper bound of the paragraph above is tight up to a constant. Consider the piecewise-convex
polygonP of Fig. 8. It consists ofn − 1 empty rooms and one non-empty roomr1, such that
|C∗

1 | = n − 2. It is easy to see that|P̃ | = 3n − 3. 2

3.2 Triangulating the polygonal approximation

Let P be a piecewise-convex polygon and̃P is its polygonal approximation. We are going to con-
struct aconstrained triangulationof P̃ , i.e., we are going to triangulatẽP , while enforcing some
triangles to be part of this triangulation. LetPα = P̃ \ P be the set of auxiliary vertices iñP . The
main idea behind the way this particular triangulation is constructed is to enforce that:

1. all triangles ofT (P̃ ), that contain a vertex inPα, also contain at least one vertex ofP , i.e.,
no triangles contain only auxiliary vertices,

2. every vertex inPα belongs to at least one triangle inT (P̃ ) the other two vertices of which are
both vertices ofP , and

3. the triangles ofT (P̃ ) that contain vertices of̃P can be guarded by vertices ofP .

These properties are going to be exploited in Step 4 of the algorithm presented in Section 3.
More precisely, we are going to enforce the way the trianglesof T (P̃ ) are created in the neigh-

borhoods of the vertices inPα. By enforcing the triangles in these neighborhoods, we effectively

RR n° 6132

in
ria

-0
01

32
98

8,
 v

er
si

on
 8

 - 
18

 F
eb

 2
00

8



14 Karavelas and Tsigaridas

triangulate parts of̃P . The remaining untriangulated parts ofP̃ consist of one of more disjoint poly-
gons, which can then be triangulated by means of anyO(n log n) polygon triangulation algorithm.
In other words, the triangulation of̃P that we want to construct is a constrained triangulation, inthe
sense that we pre-specify some of the edges of the triangulation. In fact, as we will see below we
pre-specify triangles, rather than edges, which are going to be referred to asconstrained triangles.

Let us proceed to define the constrained triangles inT (P̃ ). If ri is an empty room, andwi,1 is
the point added onai, add the edgesvivi+1, viwi,1 andwi,1vi+1, thus formulating the constrained
triangleviwi,1vi+1 (see Fig. 4(b)). Ifri is a non-empty room,{c1, . . . , cKi

} the vertices inC∗
i ,

Ki = |C∗
i |, and{wi,1, . . . , wi,Ki

} the vertices added onai, add the following edges, if they do not
already exist:

1. ck, ck+1, k = 1, . . . ,Ki − 1; vic1; cKi
vi+1;

2. ciwi,k, k = 1, . . . ,Ki;

3. ciwi,k+1, k = 1, . . . ,Ki − 1;

4. wi,k, wi,k+1, k = 1, . . . ,Ki − 1; viwi,1; wi,Ki
vi+1.

These edges formulate2Ki constrained triangles, namely,ckck+1wi,k+1, k = 1, . . . ,Ki − 1,
ckwi,kwi,k+1, k = 1, . . . ,Ki − 1, vic1wi,1 andvi+1cKi

wi,Ki
. We call the polygonal region de-

limited by these triangles acrescent. The trianglesvic1wi,1 andvi+1cKi
wi,Ki

are calledboundary
crescent triangles, the trianglesckck+1wi,k+1, k = 1, . . . ,Ki−1 are calledupper crescent triangles
and the trianglesckwi,kwi,k+1, k = 1, . . . ,Ki − 1 are calledlower crescent triangles.

Note that almost all points inPα belong to exactly one triangle the other two points of which are
in P ; the only exception are the pointswi,Ki

which belong to exactly two such triangles.
As we have already mentioned, having created the constrained triangles mentioned above, there

may exist additional possibly disjoint polygonal non-triangulated regions of̃P . The triangula-
tion procedure continues by triangulating these additional polygonal non-triangulated regions; any
O(n log n) polygon triangulation algorithm may be used.

3.3 Computing a guarding set for the original polygon

To compute a guarding set forP we will perform the following two steps:

1. Compute a guarding setGP̃ for P̃ .

2. From the guarding setGP̃ for P̃ compute a guarding setGP for P of size at most⌊ 2n
3 ⌋,

consisting of vertices ofP only.

Assume that we have colored the vertices ofP̃ with three colors, so that every triangle inT (P̃ )
does not contain two vertices of the same color. This can be easily done by the standard three-
coloring algorithm for linear polygons presented in [27, 18]. Let red, green and blue be the three
colors, and letKA be the set of vertices of red color,ΠA be the set of vertices of green color and
MA be the set of vertices of blue color in a subsetA of P̃ . Clearly, all three setsKP̃ , ΠP̃ andMP̃

are guarding sets for̃P . In fact, they are also guarding sets forP , as the following theorem suggests
(see also Fig. 9).
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Guarding curvilinear art galleries with vertex or point guards 15

v1

v2

v3

v4

v5

v6

v7

w1,1

w2,1

w3,1

w5,1

w5,2

Figure 9: The three guarding sets forP̃ , are also guarding sets forP , as Theorem 5 suggests.

Theorem 5 Each one of the setsKP̃ , ΠP̃ andMP̃ is a guarding set forP .

Proof. Let GP̃ be one ofKP̃ , ΠP̃ andMP̃ . By construction,GP̃ guards all triangles inT (P̃ ). To
show thatGP̃ is a guarding set forP , it suffices to show thatGP̃ also guards the non-degenerate
sectors defined by the edges ofP̃ and the corresponding convex subarcs ofP .

Let si be a non-degenerate sector associated with the convex arcai. We consider the following
two cases:

1. The roomri is an empty room. Thensi is adjacent to the triangleviwi,1vi+1 of T (P̃ ). Note
that sinceai is a convex arc, all three pointsvi, vi+1 andwi,1 guardsi. Since one of them has
to be inGP̃ , we conclude thatGP̃ guardssi.

2. The roomri is a non-empty room. Thensi is adjacent to either a boundary crescent triangle
or a lower crescent triangle inT (P̃ ) . Let T be this triangle, and letx, y andz be its vertices.
Sinceai is a convex arc, all threex, y andz guardsi. Therefore, since one of the three vertices
x, y andz is in GP̃ , we conclude thatGP̃ guardssi.

Therefore every non-degenerate sector inPα is guarded by at least one vertex inGP̃ , which implies
thatGP̃ is a guarding set forP . 2

Let as now assume, without loss of generality that, amongKP , ΠP andMP , KP has the smallest
cardinality and thatΠP has the second smallest cardinality, i.e.,|KP | ≤ |ΠP | ≤ |MP |. We are going
to define a mappingf from KP α to the power set2ΠP of ΠP . Intuitively, f maps a vertexx in KP α

to all the neighboring vertices ofx in T (P̃ ) that belong toΠP . We are going to give a more precise
definition off below (consult Fig. 10). Letx ∈ KP α . We distinguish between the following cases:
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16 Karavelas and Tsigaridas

1. x is an auxiliary vertex added to an empty roomri (see Fig. 10(a)). Thenx is one of the
vertices of the constrained trianglevivi+1x contained insideri. One ofvi, vi+1 must be a
vertex inΠP , sayvi+1. Then we setf(x) = {vi+1}.

2. x is an auxiliary vertex added to a non-empty roomri. Consider the following subcases:

(a) x is not the last auxiliary vertex onai, as we walk alongai in the counterclockwise sense
(see Fig. 10(b)). Thenx is incident to a single triangle inT (P̃ ) the other two vertices of
which are vertices inP . Let y andz be these other two vertices. One ofy andz has to
be a green vertex, sayy. Then we setf(x) = {y}.

(b) x is the last auxiliary vertex onai as we walk alongai in the counterclockwise sense
(see Figs. 10(c) and 10(d)). Thenx is incident to a boundary crescent triangle and an
upper crescent triangle. Letxvi+1y be the boundary crescent triangle andxyz the upper
crescent triangle. Clearly, all three verticesvi+1, y andz are vertices ofP . If y ∈ ΠP

(this is the case in Fig. 10(c)), then we setf(x) = {y}. Otherwise (this is the case in Fig.
10(d)), bothvi+1 andz have to be green vertices, in which case we setf(x) = {vi+1, z}.

Now define the setGP = KP ∪
(

⋃

x∈KP α
f(x)

)

. We claim thatGP is a guarding set forP .

Lemma 6 The setGP = KP ∪
(

⋃

x∈KP α
f(x)

)

is a guarding set forP .

Proof. Let us consider the triangulationT (P̃ ) of P̃ . The regions inPα are sectors defined by
a curvilinear arc, which is a subarc of an edge ofP and the corresponding chord connecting the
endpoints of this subarc. Let us consider the set of triangles inT (P̃ ) and the setS(P ) of sectors in
Pα. To show thatGP is a guarding set forP , it suffices show that every triangle inT (P̃ ) and every
sector inS(P ) is guarded by at least one vertex inGP .

If T is a triangle inT (P̃ ) that is defined over vertices ofP , one of its vertices is colored red and
belongs toKP ⊆ GP . Hence,T is guarded.

Consider now a triangleT that is defined inside an empty roomri. If the auxiliary vertex ofT
is not red, then one of the two endpoints ofai has to be red, and thus it belongs toGP . Hence both
T and the two sectors adjacent to it inri are guarded. If the auxiliary vertex is red, then one of the
other two vertices ofT is green and belongs toGP ; again,T is guarded.

Suppose now thatT is a boundary crescent triangle, and lets be the sector adjacent to it (consult
Fig. 11(a)). Letx be the endpoint ofai contained inT , y be the second point ofT that belongs toP
andz the point inPα. Note that all three vertices guard the sectors. If x (resp.,y) is a red vertex it
will also be a vertex inGP . Hence, in this case bothT ands are guarded byx (resp.,y). If z is the
red vertex inT , eitherx or y has to be a green vertex. Hence eitherx or y will be in GP , and thus
again bothT ands will be guarded.

If T is a lower crescent triangle, lets be the sector adjacent to it (consult Fig. 11(b)). Letx, y

be the endpoints of the chord ofs on ai and letz be the point ofP in T . Let us also assume we
encounterx andy in that order as we walk alongai in the counterclockwise sense, which implies
thatx is the intersection of the linezmi and the arcai. Finally, letT ′ be the upper crescent triangle
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Guarding curvilinear art galleries with vertex or point guards 17

x

vi

vi+1

(a)

x

y

z

(b)

x

y

z

vi+1

(c)

x

y

z

vi+1

(d)

Figure 10: The three cases in the definition of the mappingf . Case (a):x is a auxiliary vertex in
an empty room. Case (b):x is an auxiliary vertex in a non-empty room and is not the last auxiliary
vertex added on the curvilinear arc. Cases (c) and (d):x is the last auxiliary vertex added on the
curvilinear arc of a non-empty room (in (c) only one of its neighbors inP is green, whereas in (d)
two of its neighbors inP are green).

incident to the edgeyz, and letw be the third vertex ofT ′, beyondy andz. It is interesting to note
that all four verticesx, y, z andw guardT , T ′ ands. Moreover,x andw have to be of the same
color. In order to show thatT ands are guarded byGP , it suffices to show that one ofx, y, z andw

belongs toGP . Consider the following cases:

1. z is a red vertex. Sincez ∈ KP , we get thatz ∈ GP .

2. x is a red vertex. But thenw is also a red vertex. Sincew ∈ KP , we conclude thatw belongs
to GP as well.

3. y is a red vertex. Then eitherz is a green vertex or bothx andw are green vertices. Ifz is a
green vertex, then{z} ⊆ f(y), which implies thatz ∈ GP . If z is a blue vertex, then bothx
andw are green vertices, and in particular{w} ⊆ f(y). Hencew ∈ GP .
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18 Karavelas and Tsigaridas

x

y

z

s T

ai

(a)

x

y

z

w

s
T

T ′

ai

mi

(b)

x
y

z

T

ai

mi

(c)

Figure 11: Three of the five cases in the proof of Lemma 6: (a) the triangleT is a boundary crescent
triangle; (b) the triangleT is a lower crescent triangle; (c) the triangleT is an upper crescent triangle.

Finally, consider the case thatT is an upper crescent triangle, letx andy be the vertices ofP in
T and letz be the vertex ofT in Pα (consult Fig. 11(c)). Let us also assume thatz is the intersection
of the lineymi with ai. To show thatT is guarded byGP , it suffices to show that one ofx andy

belongs toGP . Consider the following cases:

1. x is red vertex. Sincex ∈ KP we have thatx ∈ GP .

2. y is red vertex. Sincey ∈ KP we have thaty ∈ GP .

3. z is a red vertex. Ifx is a green vertex, then{x} ⊆ f(z). Hencex ∈ GP . If x is blue vertex,
theny has to be a green vertex, and{y} ⊆ f(z). Therefore,y ∈ GP . 2

Sincef(x) ⊆ ΠP for everyx in KP α we get that
⋃

x∈KP α
f(x) ⊆ ΠP . But this, in turn implies

thatGP ⊆ KP ∪ΠP . SinceKP andΠP are the two sets of smallest cardinality amongKP , ΠP and
MP , we can easily verify that|KP | + |ΠP | ≤ ⌊ 2n

3 ⌋. Hence,|GP | ≤ |KP | + |ΠP | ≤ ⌊ 2n
3 ⌋, which

yields the following theorem.

Theorem 7 Let P be a piecewise-convex polygon withn ≥ 2 vertices.P can be guarded with at
most⌊ 2n

3 ⌋ vertex guards.

We close this subsection by making two remarks:

Remark 1 The bound on the size of the vertex guarding set in Theorem 7 istight: our algorithm will
produce a vertex guarding set of size exactly⌊ 2n

3 ⌋ when applied to the piecewise-convex polygon of
Fig. 8 or the crescent-like piecewise-convex polygon of Fig. 15.

Remark 2 When the input to our algorithm is a linear polygon all rooms are degenerate; conse-
quently, no auxiliary vertices are created, and the guarding set computed corresponds to the set
of colored vertices of smallest cardinality, hence producing a vertex guarding set of size at most
⌊n

3 ⌋. In that respect, it can be considered as a generalization ofFisk’s algorithm [18] to the class of
piecewise-convex polygons.
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Guarding curvilinear art galleries with vertex or point guards 19

3.4 Time and space complexity

In this section we will show how to compute a vertex guarding setGP , of size at most⌊ 2n
3 ⌋, for P ,

in O(n log n) time andO(n) space. The algorithm presented at the beginning of this section consists
of four phases:

1. The computation of the polygonal approximationP̃ of P .

2. The computation of the constrained triangulationT (P̃ ) of P̃ .

3. The computation of a guarding setGP̃ for P̃ .

4. The computation of a guarding setGP for P from the guarding setGP̃ .

Step 2 of the algorithm presented above can be done inO(T (n)) time andO(n) space, where
T (n) is the time complexity of anyO(n log n) polygon triangulation algorithm: we need linear time
and space to create the constrained triangles ofT (P̃ ), whereas the subpolygons created after the
introduction of the constrained triangles may be triangulated inO(T (n)) time and linear space.

Step 3 of the algorithm takes also linear time and space with respect to the size of the polygon
P̃ . By Corollary 4,|P̃ | ≤ 3n, which implies that the guarding setGP̃ can be computed inO(n)
time and space.

Step 4 also requiresO(n) time. ComputingGP from GP̃ requires determining for each vertex
v of KP α all the vertices ofΠP adjacent to it. This takes time proportional to the degreedeg(v)
of v in T (P̃ ), i.e., a total of

∑

v∈KP α
deg(v) = O(|P̃ |) = O(n) time. The space requirements for

performing Step 4 isO(n).
To complete our time and space complexity analysis, we need to show how to compute the

polygonal approximatioñP of P in O(n log n) time and linear space. In order to compute the
polygonal approximatioñP or P , it suffices to compute for each roomri the set of verticesC∗

i .
If C∗

i = ∅, thenri is empty, otherwise we have the set of vertices we wanted. From C∗
i we can

compute the pointswi,k and the linear polygoñP in O(n) time and space.
The underlying idea is to splitP into y-monotone piecewise-convex subpolygons. For each

roomri within each suchy-monotone subpolygon, corresponding to a convex arcai with endpoints
vi andvi+1, we will then compute the corresponding setC∗

i . This will be done by first computing
a subsetSi of the setRi of the points inside the roomri, such thatSi ⊇ C∗

i , and then apply an
optimal time and space convex hull algorithm to the setSi ∪ {vi, vi+1} in order to computeCi, and
subsequently from thatC∗

i . In the discussion that follows, we assume that for each convex arcai of
P we associate a setSi, which is initialized to be the empty set. The setsSi will be progressively
filled with vertices ofP , so that in the end they fulfill the containment property mentioned above.

SplittingP into y-monotone piecewise-convex subpolygons can be done in two steps:

1. First we need to split each convex arcai into y-monotone pieces. LetP ′ be the piecewise-
convex polygon we get by introducing they-extremal points for eachai. Since eachai can
yield up to threey-monotone convex pieces, we conclude that|P ′| ≤ 3n. Obviously splitting
the convex arcsai into y-monotone pieces takesO(n) time and space. A vertex added to split
a convex arc intoy-monotone pieces will be called anadded extremal vertex.
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20 Karavelas and Tsigaridas

Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q8

Q9Q10

Figure 12: Decomposition of a piecewise-convex polygon into teny-monotone subpolygons. The
white points are added extremal vertices that have been added in order to split non-y-monotone arcs
to y-monotone pieces. The bridges are shown as dashed segments.

2. Second, we need to apply the standard algorithm for computing y-monotone subpolygons out
of a linear polygon toP ′ (cf. [23] or [12]). The algorithm in [23] (or [12]) is valid not only for
line segments, but also for piecewise-convex polygons consisting ofy-monotone arcs (such as
P ′). Since|P ′| ≤ 3n, we conclude that computing they-monotone subpolygons ofP ′ takes
O(n log n) time and requiresO(n) space.

Note that a non-split arc ofP belongs to exactly oney-monotone subpolygon.y-monotone pieces
of a split arc ofP may belong to at most threey-monotone subpolygons (see Fig. 12).

At the beginning of our algorithm we associate to each arcai of P a set of verticesSi, which is
initialized to the empty set. Suppose now that we have ay-monotone polygonQ. The edges ofQ
are either convex arcs ofP , or pieces of convex arcs ofP , or line segments between mutually visible
vertices ofP , added in order to form they-monotone subpolygons ofP ; we call these line segments
bridges(see Fig. 12). For each non-bridge edgeei of Q, we want to compute the setC∗

i . This can be
done by sweepingQ in the negativey-direction (i.e., by moving the sweep line from+∞ to −∞).
The events of the sweep correspond to they coordinates of the vertices ofQ, which are all known
before-hand and can be put in a decreasing sorted list. The first event of the sweep corresponds to
the top-most vertex ofQ: sinceQ consists ofy-monotone convex arcs, they-maximal point ofQ is
necessarily a vertex. The last event of the sweep corresponds to the bottom-most vertex ofQ, which
is also they-minimal point ofQ. We distinguish between four different types of events:

1. the first event: corresponds to the top-most vertex ofQ,

2. the last event: corresponds to the bottom-most vertex ofQ,
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Guarding curvilinear art galleries with vertex or point guards 21

3. a left event: corresponds to a vertex of the lefty-monotone chain ofQ, and

4. a right event: corresponds to a vertex of the righty-monotone chain ofQ.

Our sweep algorithm proceeds as follows. Letℓ be the sweep line parallel to thex-axis at somey.
For eachy in between they-maximal andy-minimal values ofQ, ℓ intersectsQ at two points which
belong to either a left edgeel (i.e., an edge on the lefty-monotone chain ofQ) or is a left vertex
vl (i.e., a vertex on the lefty-monotone chain ofQ), and either a right edgeer (i.e., an arc on the
right y-monotone chain ofQ) or a right vertexvr (i.e., a vertex on the righty-monotone chain of
Q). We are going to associate the current left edgeel at positiony to a point setSL and the current
right edge at positiony to a point setSR. If the edgeel (resp.,er) is a non-bridge edge, the setSL

(resp.,SR) will contain vertices ofQ that are inside the room of the convex arc ofP corresponding
el (resp.,er).

When they-maximal vertexvmax is encountered, i.e., during the first event, we initializeSL

andSR to be the empty set. When a left event is encountered due a vertex v, let el,up be the left
edge abovev andel,down be the left edge belowv and leter be the current right edge (i.e., the right
edge at they-position ofv). If el,up is an non-bridge edge, andai is the corresponding convex arc
of P , we augment the setSi by the vertices inSL. Then, irrespectively of whether or notel,up is
a bridge edge, we re-initializeSL to be the empty set. Finally, ifer is a non-bridge edge, andak

is the corresponding convex arc inP , we check ifv is inside the roomrk or lies in the interior of
the chord ofrk; if this is the case we addv to SR. When a right event is encountered our sweep
algorithm behaves symmetrically. If the right event is due to a vertexv, let er,up be right edge ofQ
abovev ander,down be the right edge ofQ belowv and letel be the current left edge ofQ. If el,up

is a non-bridge edge, andai is the corresponding convex arc ofP , we augmentSi by the vertices
in SR. Then, irrespectively of whether or noter,up is a bridge edge or not, we re-initializeSR to be
the empty set. Finally, Ifel is a non-bridge edge, andak is the corresponding convex arc ofP , we
check ifv is inside the roomrk or lies in the interior of the chord ofrk; if this is the case we addv
to SL. When the last event is encountered due to they-minimal vertexvmin, let el ander be the left
and right edges ofQ abovevmin, respectively. Ifel is a non-bridge edge, letai be the corresponding
convex arc inP . In this case we simply augmentSi by the vertices inSL. Symmetrically, ifer is
a non-bridge edge, letaj be the corresponding convex arc inP . In this case we simply augmentSj

by the vertices inSR.
We claim that our sweep-line algorithm computes a setSi such thatSi ⊇ C∗

i . To prove this we
need the following intermediate result:

Lemma 8 Given a non-empty roomri ofP , withai the corresponding convex arc, the vertices of the
setC∗

i belong to they-monotone subpolygons ofP ′ computed via the algorithm in [23] (or [12]),
which either contain the entire arcai or y-monotone pieces ofai.

Proof. Let ri be a non-empty room,ai the corresponding convex arc and letu be a vertex ofP in C∗
i

that is not a vertex of any of they-monotone subpolygons ofP ′ (computed by the algorithm in [23]
or [12]) that contain either the entire arcai or y-monotone pieces ofai. Letvmax (resp.,vmin) be the
vertex ofP of maximum (resp., minimum)y-coordinate inCi (ties are broken lexicographically).
Let ℓu be the line parallel to thex-axis passing throughu. Consider the following cases:
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22 Karavelas and Tsigaridas

vi

vi+1

ai

ℓu

ℓ+

ℓ−

u

u′

u+

u− w+

s

(a)

vi

vi+1

ai

ℓu

ℓ+

ℓ−

u

u′

u+

u−

w+

w−

s

(b)

vi

vi+1

ai

ℓu u u′
w+

w−

v′

max

(c)

Figure 13: Proof of Lemma 8. (a) The caseu ∈ C∗
i \ {vmin, vmax}, with w+ ∈ s. (b) The case

u ∈ C∗
i \ {vmin, vmax}, with w+, w− 6∈ s. (c) The caseu ≡ vmax.

1. u ∈ C∗
i \ {vmin, vmax}. In this caseu will be a vertex in either the lefty-monotone chain of

Ci or a vertex in the righty-monotone chain ofCi. Without loss of generality we can assume
thatu is a vertex in the righty-monotone chain ofCi (see Figs. 13(a) and 13(b)). Letu′ be the
intersection ofℓu with ai. LetQ (resp.,Q′) be they-monotone subpolygon ofP ′ that contains
u (resp.,u′); by our assumptionQ 6= Q′. Finally, letu+ (resp.,u−) be the vertex ofCi above
(resp., below)u in the righty-monotone chain ofCi.

The line segmentuu′ cannot intersect any edges ofP , since this would contradict the fact
that u ∈ C∗

i . Similarly, uu′ cannot contain any vertices ofP ′: if v is a vertex ofP in the
interior ofuu′, u would be inside the trianglevu+u−, which contradicts the fact thatu ∈ C∗

i ,
whereas ifv is a vertex ofP ′ \ P in the interior ofuu′, P would not be locally convex at
v, a contradiction with the fact thatP is a piecewise-convex polygon. As a result, and since
Q 6= Q′, there exists a bridge edgee intersectinguu′. Let w+, w− be the two endpoints ofe
in P ′, wherew+ lies above the lineℓu andw− lies below the lineℓu. In fact neitherw+ nor
w− can be a vertex inP ′ \ P , since the algorithm in [23] (or [12]) will connect a vertex in
P ′ \ P inside a roomrk with either they-maximal or they-minimal vertex ofCk only. Let
ℓ+ (resp.,ℓ−) be the line passing through the verticesu andu+ (resp.,u andu−). Finally, let
s be the sector delimited by the linesℓ+, ℓ− andai. Now, if w+ lies insides, thenu will be
inside the trianglew+u+u− (see Fig. 13(a)). Analogously, ifw− lies insides, thenu will be
inside the trianglew−u+u−. In both cases we get a contradiction with the fact thatu ∈ C∗

i .
If neither w+ nor w− lie insides, then bothw+ andw− have to be vertices insideri, and
moreoveru will lie inside the convex quadrilateralw+u+u−w−; again this contradicts the
fact thatu ∈ C∗

i (see Fig. 13(b)).

2. u ≡ vmax. By the maximality of they-coordinate ofu in Ci, we have that they-coordinate
of u is larger than or equal to they-coordinates of bothvi andvi+1. Therefore, the lineℓu

intersects the arcai exactly twice, and, moreover,ai has ay-maximal vertex ofP ′ \ P in
its interior, which we denote byv′

max (see Fig. 13(c)). Letu′ be the intersection ofℓu with
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Guarding curvilinear art galleries with vertex or point guards 23

ai that lies to the right ofu, and letQ (resp.,Q′) be they-monotone subpolygon ofP ′ that
containsu (resp.,u′). By assumptionQ 6= Q′, which implies that there exists a bridge edgee

intersecting the line segmentuu′. Notice, that, as in the caseu ∈ C∗
i \ {vmin, vmax}, the line

segmentuu′ cannot intersect any edges ofP , or cannot contain any vertexv of P ′ \ P ; the
former would contradict the fact thatu ∈ C∗

i , whereas as the latter would contradict the fact
thatP is piecewise-convex. Furthermore,uu′ cannot contain vertices ofP since this would
contradict the maximality of they-coordinate ofu in Ci.

Let w+ andw− be the endpoints ofe above and belowℓu, respectively. Notice thate cannot
havev′

max as endpoint, since the only bridge edge that hasv′
max as endpoint is the bridge edge

v′
maxu. But thenw+ must be a vertex ofP lying insideri; this contradicts the maximality of

they-coordinate ofu among the vertices inCi.

3. u ≡ vmin. This case is entirely symmetric to the caseu ≡ vmax. 2

An immediate corollary of the above lemma is the following:

Corollary 9 For each convex arcai of P , the setSi computed by the sweep algorithm described
above is a superset of the setC∗

i .

Let us now analyze the time and space complexity of Step 1 of the algorithm sketched at the
beginning of this subsection. Computing the polygonal approximationP̃ of P requires subdividing
P into y-monotone subpolygons. This subdivision takesO(n log n) time andO(n) space. Once we
have the subdivision ofP into y-monotone subpolygons we need to compute the setsSi for each
convex arcai of P . The setsSi can be implemented as red-black trees. Inserting an elementin
someSi takesO(log n) time. During the course of our algorithm we perform only insertions on the
Si’s. A vertexv of P is inserted at mostdeg(v) times in someSi, wheredeg(v) is the degree of
v in they-monotone decomposition ofP . Since the sum of the degrees of the vertices ofP in the
y-monotone decomposition ofP is O(n), we conclude that the total size of theSi’s is O(n) and
that we performO(n) insertions on theSi’s. Therefore we needO(n log n) time andO(n) space
to compute theSi’s. Finally, since

∑n
i=1 |Si| = O(n), the setsC∗

i can also be computed in total
O(n log n) time andO(n) space. The analysis above thus yields the following:

Theorem 10 LetP be a piecewise-convex polygon withn ≥ 2 vertices. We can compute a guarding
set forP of size at most⌊ 2n

3 ⌋ in O(n log n) time andO(n) space.

3.5 The lower bound construction

In this section we are going to present a piecewise-convex polygon which requires a minimum of
⌊ 4n

7 ⌋ − 1 vertex guards in order to be guarded.
Let us first consider the windmill-like piecewise-convex polygon W with seven vertices of Fig.

14(a), a detail of which is shown in Fig. 14(b). Thedouble eardefined by the verticesv3, v4 and
v5 and the convex arcsa3 anda4 is constructed in such a way so that neitherv3 nor v5 can guard
both roomsr3 andr4 by itself. This is achieved by ensuring thata3 (resp.,a4) intersects the line

RR n° 6132

in
ria

-0
01

32
98

8,
 v

er
si

on
 8

 - 
18

 F
eb

 2
00

8



24 Karavelas and Tsigaridas

v4v5 (resp.,v3v4) twice. Note that botha3 anda4 intersect the linemv4 only at v4, wherem is
the midpoint of the line segmentv3v5. The double ear defined by the verticesv5, v6 andv7 and the
convex arcsa5 anda6 is constructed in an analogous way. Moreover, the verticesv1, v2, v4 andv6

are placed in such a way so that they do not (collectively) guard the interior of the trianglev3v5v7

(for example the lengths of the edgesv1v7 andv2v3 are considered to be big enough, so thatv2 does
not see too much of the trianglev3v5v7). As a result of this construction,W cannot be guarded by
two vertex guards, but can be guarded with three. There are actually only five possible guarding
triplets: {v3, v4, v6}, {v3, v5, v6}, {v3, v5, v7}, {v4, v5, v7} and{v4, v6, v7}. Any guarding set that
contains eitherv1 or v2 has cardinality at least four. The verticesv1 andv2 will be referred to as
base vertices.

Consider now the crescent-like polygonC with n vertices of Fig. 15. The vertices ofC are in
strictly convex position. This fact has the following implication: if vi, vi+1, vi+2 andvi+3 are four
consecutive vertices ofC, andu is the point of intersection of the linesvivi+1 andvi+2vi+3, then
the trianglevi+1uvi+2 is guarded if and only if eithervi+1 or vi+2 is in the guarding set ofC. As a
result, it is easy to see thatC cannot be guarded with less than⌊n

2 ⌋ vertices, since in this case there
will be at least one edge both endpoints of which would not be in the guarding set forC.

In order to construct the piecewise-convex polygon that gives us the lower bound mentioned at
the beginning of this section, we are going to merge several copies ofW with C. More precisely,
consider the piecewise-convex polygonP of Fig. 16 withn = 7k vertices. It consists of copies of
the polygonW merged withC at every other linear edge ofC, through the base points of theW ’s.

In order to guard any of the windmill-like subpolygons, we need at least three vertices per such
polygon, none which can be a base point. This gives a total of3k vertices. On the other hand, in
order to guard the crescent-like part ofP we need at leastk − 1 guards among the base points. To

v1 v2

v3

v4

v5

v6

v7

(a)

v3

v4

v5

m

a3

a4

(b)

Figure 14: The windmill-like piecewise-convex polygonW that requires at least three vertex guards
in order to be guarded. The only triplets of guards that guardW are {v3, v4, v6}, {v3, v5, v6},
{v3, v5, v7}, {v4, v5, v7} and{v4, v6, v7}.
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Guarding curvilinear art galleries with vertex or point guards 25

vi

vi+1 vi+2 vi+3

u

Figure 15: The crescent-like piecewise-convex polygonC, that requires a guarding set of at least
⌊n

2 ⌋ vertex guards.

Figure 16: The lower bound construction.

see that, notice that there arek − 1 linear segments connecting base points; if we were to use less
thank − 1 guards, we would have at least one such line segmente, both endpoints of which would
not participate in the guarding set ofG. But then, as in the case ofC, there would be a triangle,
adjacent toe, which would not be guarded. Therefore, in order to guardP we need a minimum of
4k − 1 = ⌊ 4n

7 ⌋ − 1 guards, which yields the following theorem.
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26 Karavelas and Tsigaridas

Theorem 11 There exists a family of piecewise-convex polygons withn vertices any vertex guarding
set of which has cardinality at least⌊ 4n

7 ⌋ − 1.

4 Monotone piecewise-convex polygons

In this section we focus on the subclass of piecewise-convexpolygons that are monotone. Let
us recall the definition of monotone polygons from Section 1:a curvilinear polygonP is called
monotone if there exists a lineL such that any lineL⊥ perpendicular toL intersectsP at most
twice.

In the case of linear polygons monotonicity does not yield better bounds on the worst case num-
ber of point or vertex guards needed in order to guard the polygon. In both cases, monotone or possi-
bly non-monotone linear polygons,⌊n

3 ⌋ point or vertex guards are always sufficient and sometimes
necessary. In the context of piecewise-convex polygons thesituation is different. Unlike general
(i.e., not necessarily monotone) piecewise-convex polygons, which require at least⌊ 4n

7 ⌋ − 1 vertex
guards and can always be guarded with⌊ 2n

3 ⌋ vertex guards, monotone piecewise-convex polygons
can always be guarded with⌊n

2 ⌋+ 1 vertex or⌊n
2 ⌋ point guards. These bounds are tight, since there

exist monotone piecewise-convex polygons that require that many vertex (see Figs. 18 and 19) or
point guards (see Fig. 20). This section is devoted to the presentation of these tight bounds.
Vertex guards. Let us consider a monotone piecewise-convex polygonP , and let us assume
without loss of generality thatP is monotone with respect to thex-axis (see also Fig. 17). Letuj ,
1 ≤ j ≤ n, be thej-th vertex ofP when considered in the list of vertices sorted with respect to their
x-coordinate (ties are broken lexicographically). Let alsou0 (resp.,un+1) be the left-most (resp.,
right-most) point ofP . Let ℓj , 0 ≤ j ≤ n + 1 be the vertical line passing through the pointuj of
P , and letL = {ℓ0, ℓ1, ℓ2, . . . , ℓn+1} be the collection of these lines. An immediate consequence of
the fact thatP is monotone and piecewise-convex is the following corollary:

Corollary 12 The collection of linesL decomposes the interior ofP into at mostn + 1 convex
regionsκj , j = 0, . . . , n, that are free of vertices or edges ofP .

In addition to the fact that the regionκj , 1 ≤ j ≤ n − 1, is convex,κj has on its boundary both
verticesuj anduj+1. This immediately implies that bothuj anduj+1 see the entire regionκj . As
far asκ0 andκn are concerned, they haveu1 andun on their boundary, respectively. As a result,u1

seesκ0, whereasun seesκn. Hence, in order to guardP it suffices to take every other vertexuj ,
starting fromu1, plusun (if not already taken). The setG = {u2m−1, 1 ≤ m ≤ ⌊n

2 ⌋} ∪ {un} is,
thus, a vertex guarding set forP of size⌊n

2 ⌋ + 1.
A line L with respect to whichP is monotone can be computed inO(n) time if it exists [13].

GivenL, we can compute the vertex guarding setG for P in O(n) time andO(n) space: project the
vertices ofP onL and merge the two sorted (with respect to their ordering onL) lists of vertices in
the upper and lower chain ofP ; then report every other vertex in the merged sorted list starting from
the first vertex, plus the last vertex ofP , if it has not already been reported.

The polygonsM1 andM2 yielding the lower bound are shown in Figs. 18 and 19.M1 has an odd
number of vertices, whereasM2 has an even number of vertices. LetG1 (resp.,G2) be the vertex
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Guarding curvilinear art galleries with vertex or point guards 27

u0
u′

2

u10v1

v2

v3 v4
v5

v6

v7
v8v9

Figure 17: A monotone piecewise-convex polygonP with n = 9 vertices and its vertical decompo-
sition into four-sided convex slabs. The pointsu0 andu10 are the left-most and right-most points of
P ; u′

2 is the projection ofu2 ≡ v9, alongℓ2, on the opposite chain ofP . P can be either guarded
with: (1) ⌊n

2 ⌋ + 1 = 5 vertices, namely the vertex set{u1, u3, u5, u7, u9} ≡ {v1, v8, v3, v7, v6}, or
⌊n

2 ⌋ = 4 points, namely the point set{u′
2, u4, u6, u8} ≡ {u′

2, v2, v4, v5}.

Figure 18: A monotone piecewise-convex polygonM1 with an odd number of vertices that requires
⌊n

2 ⌋+ 1 vertex guards in order to be guarded: the shaded regions require that at least one of the two
endpoints of the bottom-most edge of the polygon to be in the guarding set.

guarding set forM1 (resp.,M2). Let us first considerM1 (see Fig. 18). Notice that each prong of
M1 is fully guarded by either of its two endpoints; the other vertices ofM1 can only partially guard
the prongs that they are not adjacent to. Moreover, the shaded regions ofM1 can only be guarded
by u1 or un. Suppose, now, we can guardM1 with less than⌊n

2 ⌋+ 1 vertex guards. Then either two
consecutive verticesui andui+1 of M1, 1 ≤ i ≤ n − 1, will not belong toG1, or u1 andun will
not belong toG1. In the former case, the prong that hasui andui+1 as endpoints is only partially
guarded by the vertices inG1, a contradiction. In the latter case, the shaded regions ofM1 are not
guarded by the vertices inG1, again a contradiction.
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28 Karavelas and Tsigaridas

s1

s2 s3

s4

s5

x1

x2

x3

x4 x5

x6
x7

x8

Figure 19: A monotone piecewise-convex polygonM2 with an even number of vertices that requires
⌊n

2 ⌋ + 1 vertex guards in order to be guarded.

Consider now the polygonM2 (see Fig. 19). The number of vertices ofM2 betweenx1 and
x2 is equal to the number of vertices betweenx7 andx8, and even in number. Every prong ofM2

betweenx1 andx2 (resp., betweenx7 andx8) can be guarded by its two endpoints only; all other
vertices ofM2 guard each such prong only partially. The shaded regions1 (resp.,s5) is guarded
only if eitherx1 or x3 (resp., eitherx6 or x8) belongs toG2. The prong with endpointsx2 andx4

can be guarded by either bothx2 andx4, or by x3. If x2 is the only vertex inG2 amongx2, x3

andx4, then the shaded regions4 is not guarded. Similarly, ifx4 is the only vertex inG2 among
x2, x3 andx4, then the shaded regions2 is not guarded. Finally, if neitherx4 nor x5 belong toG2,
then the shaded prongs3 is not guarded. Let us suppose now thatM2 can be guarded by less than
⌊n

2 ⌋ + 1 vertex guards. By our observations above, it is not possiblethat two consecutive vertices
ui andui+1 of M2, 1 ≤ i ≤ n − 1, do not belong toG2. HenceG2 will be a subset of the set
G′

2 = {u2m−1, 1 ≤ m ≤ ⌊n
2 ⌋} or a subset of the setG′′

2 = {u2m, 1 ≤ m ≤ ⌊n
2 ⌋}. In the former

case, i.e., ifG2 ⊆ G′
2, neitherx6 nor x8 belong toG2, and thus the regions5 is not guarded, a

contradiction. Similarly, ifG2 ⊆ G′′
2 , neitherx1 nor x3 belong toG2, and thus the regions1 is not

guarded, again a contradiction. We thus conclude that|G2| ≥ ⌊n
2 ⌋ + 1.

Point guards. We now turn our attention to guardingP with point guards (refer again to Fig. 17).
DefineGeven to be the vertex setGeven = {u2m, 1 ≤ m ≤ ⌊n

2 ⌋}. If u0 6= u1, i.e., if κ0 6= ∅, let
ef be the first (left-most) edge ofP , anduµ, µ > 1, the right-most endpoint ofef (the left-most
endpoint ofef is necessarilyu1). If un+1 6= un, i.e., if κn+1 6= ∅, let el be the last (right-most) edge
of P , anduν , ν < n, the left-most endpoint ofel (the right-most endpoint ofel is necessarilyun).
Finally, letu′

i, 2 ≤ i ≤ n − 1 be the projection alongL⊥ of ui on the opposite monotone chain of
P . Define the setG according to the following procedure:

1. SetG equal toGeven.

2. If u0 6= u1 andµ > 2, replaceu2 in G by u′
2.

3. If un+1 6= un andn is odd andν < n − 1, replaceu2⌊n
2
⌋ by u′

2⌊n
2
⌋.
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Guarding curvilinear art galleries with vertex or point guards 29

Figure 20: A comb-like monotone piecewise-convex polygon that requires⌊n
2 ⌋ point guards in order

to be guarded: one point guard is required per prong.

As in the case of vertex guards, the setG can be computed in linear time and space:Geven can
be computed in linear time and space, whereas determining ifu2 (resp.,u2⌊n

2
⌋) is to be replaced in

G by u′
2 (resp.,u′

2⌊n
2
⌋) takesO(1) time. The following lemma establishes thatG is indeed a point

guarding set forP .

Lemma 13 The setG defined according to the procedure above is a point guarding set forP .

Proof. Every convex regionκi, 3 ≤ i ≤ n − 3 is guarded by eitherui or ui+1, since one of the two
is in G.

Now consider the convex regionsκ0, κ1 andκ2. Bothu2 andu′
2 lie on the common boundary

of κ1 andκ2. Since eitheru2 or u′
2 is in G, we conclude thatκ1 andκ2 are guarded. Ifκ0 = ∅,

i.e., if u0 ≡ u1, κ0 is vacuously guarded. Supposeκ0 6= ∅, i.e.,u0 6= u1. Let rf be the room ofP
corresponding to the edgeef . Clearly,κ0 ⊆ rf . We distinguish between the casesµ = 2 andµ > 2.
If µ = 2, thenu2 ∈ G guardsrf and thusκ0. If µ > 2, the pointu′

2 ∈ G is a point onef . Therefore,
u′

2 guardsrf and thusκ0.
Finally, we consider the convex regionsκn−2, κn−1 andκn. If κn = ∅, i.e., un+1 ≡ un, κn

is vacuously guarded. Suppose, now, thatκn 6= ∅, i.e., un+1 6= un. Let rl be the room ofP
corresponding to the edgeel. Clearly,κn ⊆ rl. We distinguish between the cases “n even” and “n
odd”. If n is even, then bothun−2 ≡ u2⌊n

2
⌋−2 andun ≡ u2⌊n

2
⌋ belong toG. This immediately

implies that all threeκn−2, κn−1 andκn are guarded:κn−2 is guarded byun−2, whereasκn−1 and
κn are guarded byun. If n is odd, eitherun−1 ≡ u2⌊n

2
⌋ or u′

n−1 ≡ u′
2⌊n

2
⌋ belongs toG. Since both

un−1 andu′
n−1 lie on the common boundary ofκn−2 andκn−1, we conclude that bothκn−2 and

κn−1 are guarded. To prove thatκn is guarded, we further distinguish between the casesν = n − 1
andν < n− 1. If ν = n− 1, thenun−1 ∈ G is an endpoint ofrl, and thus guardsκn. If ν < n− 1,
the pointu′

n−1 ∈ G is a point onel. Therefore,u′
n−1 guardsrl and thusκn. 2

As far as the minimum number of point guards required to guarda monotone piecewise-convex
polygon is concerned, the polygonM , shown in Fig. 20, yields the sought for lower bound. Notice
that is very similar to the well known comb-like linear polygon that establishes the lower bound on
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30 Karavelas and Tsigaridas

the number of point or vertex guards required to guard a linear polygon. In our case it is easy to see
that we need at least one point guard per prong of the polygon,and since there are⌊n

2 ⌋ prongs we
conclude that we need at least⌊n

2 ⌋ point guards in order to guardM .
We are now ready to state the following theorem that summarizes the results of this section.

Theorem 14 Given a monotone piecewise-convex polygonP with n ≥ 2 vertices,⌊n
2 ⌋ + 1 vertex

(resp.,⌊n
2 ⌋ point) guards are always sufficient and sometimes necessaryin order to guardP . More-

over, we can compute a vertex (resp., point) guarding set forP of size⌊n
2 ⌋ + 1 (resp.,⌊n

2 ⌋) in O(n)
time andO(n) space.

5 Piecewise-concave polygons

In this section we deal with the problem of guarding piecewise-concave polygons using point guards.
Guarding a piecewise-concave polygon with vertex guards may be impossible even for very simple
configurations (see Fig. 22(a)). In particular we prove the following:

Theorem 15 LetP be a piecewise-concave polygon withn vertices.2n−4 point guards are always
sufficient and sometimes necessary in order to guardP .

Proof. To prove the sufficiency of2n − 4 point guards we essentially apply the technique in [17]
for illuminating disjoint compact convex sets — please refer to Fig. 21. We denote byAi the
convex object delimited byai and the chordvivi+1 of ai. Let ti(vj) be the tangent line toai at vj ,
j = i, i + 1, and letbi+1 be the bisecting ray ofti(vi+1), ti+1(vi+1) pointing towards the interior of
P .

Construct a set of locally convex arcsK = {κ1, κ2, . . . , κn} that lie entirely insideP as such
that (cf. [17]):

(a) the endpoints ofκi arevi, vi+1,

(b) κi is tangent tobi (resp.,bi+1) atvi (resp.,vi+1),

(c) if Si is the locally convex object defined byκi and its chordvivi+1, thenAi ⊆ Si, 1 ≤ i ≤ n,

(d) the arcsκi are pairwise non-crossing, and

(e) the number of tangencies between the elements ofK is maximized.

Let Q be the piecewise-concave polygon defined by the sequence of the arcs inK.
Suppose now thatκi andκσ(j) are tangent,1 ≤ j ≤ m, and letℓi,σ(j) be the common tangent to

κi andκσ(j). Let si,σ(j) be the line segment onℓi,σ(j) between the points of intersection ofℓi,σ(j)

with ℓi,σ(j−1) andℓi,σ(j+1). Let Πi be the polygonal region defined by the chordvivi+1 and the
line segmentssi,σ(j). Πi is a linear polygon with at most two reflex vertices (atvi and/orvi+1).
It is easy to see that placing guards on the vertices of theΠi’s guards bothP andQ. Let GQ be
the guard set ofP constructed this way. Construct, now, a planar graphΓ with vertex setK. Two
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Guarding curvilinear art galleries with vertex or point guards 31

v1

v2

v3

v4

v5

v6

v7

v8v9

v10

v11

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

Figure 21: The proof for the upper bound of Theorem 15. The polygonP is shown with thick solid
curvilinear arcs. The arcsκi are shown as thin solid arcs. The dotted rays are the bisecting raysbi,
whereas the dashed ray is the rayr8(v9). The regionsA8, S8 \A8 andΠ8 \S8 are also shown using
three levels of gray; note thatΠ8 has one reflex vertex atv9. The graphΓ (i.e., the triangulation
graphT (R)) is shown in red: the nodeui corresponds to the arcai and the polygonR is depicted
via thick segments.

verticesκi andκj of Γ are connected via an edge ifκi andκj are tangent. The graphΓ is a planar
graph combinatorially equivalent to the triangulation graph T (R) of a polygonR with n vertices.
The edges ofΓ connecting the arcsκi, κi+1, 1 ≤ i ≤ n, are the boundary edges ofR, whereas
all other edges ofΓ correspond to diagonals inT (R). Let Q◦ denote the interior ofQ. Observing
thatQ◦ consists of a number of faces that are in 1–1 correspondence with the triangles inT (R), we
conclude thatQ◦ consists ofn − 2 faces, each containing three guards ofGQ. It fact, each face of
Q◦ can actually be guarded by only two of the three guards it contains and thus we can eliminate
one of them per face ofQ◦. The new guard setG of Q constructed above is also a guard set forP

and contains2(n − 2) point guards.
To prove the necessity, refer to the piecewise-concave polygon P in Fig. 22(b). Each one of

the pseudo-triangular regions in the interior ofP requires exactly two point guards in order to be
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32 Karavelas and Tsigaridas

(a)

l1 l2

l3

(b)

Figure 22: (a) A piecewise-concave polygonP that cannot be guarded solely by vertex guards.
Two consecutive edges ofP have a common tangent at the common vertex and as a result the three
vertices ofP see only the points along the dashed segments. (b) A piecewise-concave polygonP
that requires2n − 4 point guards in order to be guarded.

guarded. Consider for example the pseudo-triangleτ shown in gray in Fig. 22(b). We need one
point along each one of the linesl1, l2 and l3 in order to guard the regions near the corners ofτ ,
which implies that we need at least two points in order to guard τ (two out of the three points of
intersection of the linesl1, l2 andl3). The number of such pseudo-triangular regions is exactlyn−2,
thus we need a total of2n − 4 point guards to guardP . 2

6 Locally convex and general polygons

We have so far been dealing with the cases of piecewise-convex and piecewise-concave polygons.
In this section we will present results about locally convex, monotone locally convex and general
polygons.
Locally convex polygons. The situation for locally convex polygons is much less interesting, as
compared to piecewise-convex polygons, in the sense that there exist locally convex polygons that
requiren vertex guards in order to be guarded. Consider for example the locally convex polygon of
Fig. 23(a). Every room in this polygon cannot be guarded by a single guard, but rather it requires
both vertices of every locally convex edge to be in any guarding set in order for the corresponding
room to be guarded. As a result it requiresn vertex guards. Clearly, thesen guards are also sufficient,
since any one of them guards also the central convex part of the polygon. More interestingly, even if
we do not restrict ourselves to vertex guards, but rather allow guards to be any point in the interior
or the boundary of the polygon, then the locally convex polygon in Fig. 23(a) still requiresn guards.
This stems from the fact that the rooms of this polygon have been constructed in such a way so that
the kernel of each room is the empty set (i.e., they are not star-shaped objects). However, we can
guard each room with two guards, which can actually be chosento be the endpoints of the locally
convex arcs.

In fact then vertices of a locally convex polygon are not only necessary (in the worst case),
but also always sufficient. Consider a pointq inside a locally convex polygonP and letρq be an
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(a)

v1

v2

a1

a2

ℓ

(b)

Figure 23: (a) A locally convex polygon withn vertices that requiresn vertex or point guards in
order to be guarded. (b) A non-convex polygon that cannot be guarded by vertex guards, and which
requires an infinite number of point guards.

arbitrary ray emanating fromq. Letwq be the first point of intersection ofρq with the boundary ofP
as we walk onρq away fromq. If wq is a vertex ofP we are done:q is visible by one of the vertices
of P . Otherwise, rotateρq aroundq in the, say, counterclockwise direction, until the line segment
qwq hits a featuref of P (if multiple features ofP are hit at the same time, consider the one closest
to q alongρq). f cannot be a point in the interior of an edge ofP since thenP would have to be
locally concave atf . Therefore,f has to be a vertex ofP , i.e.,q is guarded byf . We can thus state
the following theorem:

Theorem 16 Let P be a locally convex polygon withn ≥ 2 vertices. Thenn vertex (then vertices
of P ) or point guards are always sufficient and sometimes necessary in order to guardP .

Monotone locally convex polygons. As far as monotone locally convex polygons are concerned,
it easy to see that⌊n

2 ⌋ + 1 vertex or point guards are always sufficient. LetP be a locally convex
polygon. As in the case of piecewise-convex polygons, assume without loss of generality thatP is
monotone with respect to thex-axis. Letu1, . . . , un be the vertices ofP sorted with respect to their
x-coordinate. To prove our sufficiency result, it suffices to consider the vertical decomposition ofP

into at mostn + 1 convex regionsκi, 0 ≤ i ≤ n. Corollary 12 remains valid. As a result, the vertex
setG = {u2m−1, 1 ≤ m ≤ ⌊n

2 ⌋} ∪ {un} is a guarding set forP of size⌊n
2 ⌋ + 1: every convex

regionκi, 1 ≤ i ≤ n − 1 is guarded by eitherui or ui+1, since at least one ofui, ui+1 is in G;
moreover,u1 andun guardκ0 andκn, respectively. As in the case of piecewise-convex polygons,
G can be computed in linear time and space.

In fact, the upper bound on the number of vertex/point guardsfor P just presented is also a worst
case lower bound. Consider the locally convex polygonsT1 andT2 of Fig. 24, each consisting ofn
vertices.T1 has an odd number of vertices, while the number of vertices ofT2 is even. It is readily
seen that bothT1 andT2 need at least one point guard per prong (including the right-most prong
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34 Karavelas and Tsigaridas

Figure 24: Two comb-like monotone locally convex polygonsT1 (top) andT2 (bottom) with an odd
and even number of vertices, respectively. Both polygons require⌊n

2 ⌋ + 1 point guards in order to
be guarded: one point guard is required per prong.

of T1 and both the left-most and right-most prongs ofT2). Since the number of prongs in eitherT1

or T2 is ⌊n
2 ⌋ + 1, we conclude thatT1 andT2 require at least⌊n

2 ⌋ + 1 point guards in order to be
guarded. Summarizing our results about monotone locally convex polygons:

Theorem 17 Given a monotone locally convex polygonP with n ≥ 2 vertices,⌊n
2 ⌋ + 1 vertex or

point guards are always sufficient and sometimes necessary in order to guardP . Moreover, we can
compute a vertex guarding set forP of size⌊n

2 ⌋ + 1 in O(n) time andO(n) space.

Remark 3 The results presented in this section about locally convex polygons are in essence the
same with known results on the number of reflex vertices required to guard linear polygons. In
particular, it is known that if a linear polygonP hasr ≥ 1 reflex vertices,r vertex guards placed on
these vertices are always sufficient and sometimes necessary in order to guardP [29], whereas ifP
is a monotone linear polygon,⌊ r

2⌋+1 among itsr reflex vertices are always sufficient and sometimes
necessary in order to guardP [1]. In our setting, ther reflex vertices of the linear polygonP are
then vertices of our locally convex polygons, and the locally convex polylines connecting the reflex
vertices ofP are our locally convex edges. Clearly, the analogy only refers to the combinatorial
complexity of guarding sets, since for our algorithmic analysis we have assumed that the polygon
edges have constant complexity.
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Guarding curvilinear art galleries with vertex or point guards 35

In the context we have just described, i.e., seeing linear polygons as locally convex polygons
the vertices of which are the reflex vertices of the linear polygons, it also possible to “translate” the
results of Section 3 as follows:

Consider a linear polygonP with r ≥ 2 reflex vertices. IfP can be decomposed into
c ≥ r convex polylines pointing towards the exterior of the polygon, thenP can be
guarded with at most⌊ 2c

3 ⌋ vertex guards.

The analogous “translation” for the results of Section 5 is as follows:

Consider a linear polygonP with n vertices,r of which are reflex. IfP can be decom-
posed intoc ≥ n−r convex polylines pointing towards the interior of the polygon, then
P can be guarded with at most2c − 4 point guards.

General polygons. The class of general polygons poses difficulties. Consider the non-convex
polygonN of Fig. 23(b), which consists of two verticesv1 andv2 and two convex arcsa1 and
a2. The two arcs are tangent to a common lineℓ at v1. It is readily visible thatv1 andv2 cannot
guard the interior ofN . In fact,v1 cannot guard any point ofN other than itself. Even worse, any
finite number of guards, placed anywhere inN , cannot guard the polygon. To see that, consider the
vicinity of v1. Assume thatN can be guarded by a finite number of guards, and letg 6= v1 be the
guard closest tov1 with respect to shortest paths withinN . Consider the lineℓg passing through
g that is tangent toa2 (among the two possible tangents we are interested in the onethe point of
tangency of which is closer tov1). Let sg be the sector ofN delimited bya1, a2 andℓg. sg cannot
contain any guarding point, since such a vertex would be closer tov1 thang. Sincesg is not guarded
by v1, we conclude thatsg is not guarded at all, which contradicts our assumption thatN is guarded
by a finite set of guards.

7 Summary and future work

In this paper we have considered the problem of guarding a polygonal art gallery, the walls of which
are allowed to be arcs of curves (our results are summarized in Table 1). We have demonstrated that
if we allow these arcs to be locally convex arcs,n (vertex or point) guards are always sufficient and
sometimes necessary. If these arcs are allowed to be non-convex, then an infinite number of guards
may be required. In the case of piecewise-convex polygons with n vertices, we have shown that it is
always possible to guard the polygon with⌊ 2n

3 ⌋ vertex guards, whereas⌊ 4n
7 ⌋ − 1 vertex guards are

sometimes necessary. Furthermore, we have described anO(n log n) time andO(n) space algorithm
for computing a vertex guarding set of size at most⌊ 2n

3 ⌋. For piecewise-concave polygons, we
have shown that2n − 4 point guards are always sufficient and sometimes necessary.Finally, in the
special case of monotone piecewise-convex polygons,⌊n

2 ⌋+1 vertex or⌊n
2 ⌋ point guards are always

sufficient and sometimes necessary, whereas for monotone locally convex polygons⌊n
2 ⌋ + 1 vertex

or point guards are always sufficient and sometimes necessary.
Up to now we have not found a piecewise-convex polygon that requires more than⌊ 4n

7 ⌋+ O(1)
vertex guards, nor have we devised a polynomial time algorithm for guarding a piecewise-convex
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36 Karavelas and Tsigaridas

Bounds by guard type
Polygon type Vertex Point

Upper Lower Upper Lower

Piecewise-convex ⌊ 2n

3
⌋ ⌊ 4n

7
⌋ − 1 ⌊ 2n

3
⌋ ⌊n

2
⌋

Monotone piecewise-convex ⌊n

2
⌋ + 1 ⌊n

2
⌋

Locally convex n

Monotone locally convex ⌊n
2 ⌋ + 1

Piecewise-concave NOT ALWAYS POSSIBLE 2n − 4
General NOT ALWAYS POSSIBLE ∞

Table 1: The results in this paper: worst case upper and lowerbounds on the number of vertex or
point guards needed in order to guard different types of curvilinear polygons.

polygon with less than⌊ 2n
3 ⌋ vertex guards. Closing the gap between then two complexities remains

an open problem. Another open problem is the worst case maximum number of point guards required
to guard a piecewise-convex polygon. In this case our lower bound construction fails, since it is
possible to guard the corresponding polygon with⌊ 3n

7 ⌋ + O(1) point guards. On the other hand,
the comb-like polygon shown in Fig. 20, requires⌊n

2 ⌋ point guards. Clearly, our algorithm that
computes a guarding set of at most⌊ 2n

3 ⌋ vertex guards is still applicable.
Other types of guarding problems have been studied in the literature, which either differ on the

type of guards (e.g., edge or mobile guards), the topology ofthe polygons considered (e.g., polygons
with holes) or the guarding model (e.g., the fortress problem or the prison yard problem, mentioned
in Section 1); see the book by O’Rourke [29], the survey paperby Shermer [31] of the book chapter
by Urrutia [34] for an extensive list of the variations of theart gallery problem with respect to the
types of guards or the guarding model. It would be interesting to extend these results to the families
of curvilinear polygons presented in this paper.

Last but not least, in the case of general polygons, is it possible to devise an algorithm for com-
puting a guarding set of finite cardinality, if the polygon does not contain cusp-like configurations
such as the one in Fig. 23(b)?
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