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Abstract: One of the earliest and most well known problems in computati geometry is the
so-calledart gallery problem The goal is to compute the minimum possible number guaitsepl
on the vertices of a simple polygon in such a way that they rcthee interior of the polygon. We
consider the problem of guarding an art gallery which is niedlas a polygon with curvilinear walls.
Our main focus is on polygons the edges of which are convexomting towards the exterior or
interior of the polygon (but not both), named piecewisevesnand piecewise-concave polygons.
We prove that, in the case of piecewise-convex polygonseibwnly allow vertex guards{,%”] -1
guards are sometimes necessary, p?gdj guards are always sufficient. Moreover, @(nlogn)
time andO(n) space algorithm is described that produces a vertex gupseirof size at moétt%”j .
When we allow point guards the afore-mentioned lower bougidown to| 7 |. In the special
case of monotone piecewise-convex polygons we can show#jat 1 vertex or| | point guards
are always sufficient and sometimes necessary. In the casecefvise-concave polygons, we show
that2n — 4 point guards are always sufficient and sometimes necesgheyeas it might not be
possible to guard such polygons by vertex guards. We coachith bounds for other types of
curvilinear polygons and future work.
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Garder les galeries d’art curvilignes avec des gardes de sommet
ou de point

Résumé : Un des plus anciens et plus célébres probléemes en géomguiélamique est le prob-
leme dit degalerie d’art qui consiste a calculer le nombre minimal des gardians quirsécessaires
afin de couvrir I'intérieur d’un polygone simple s'ils soriapés sur ses sommets.

Dans cet article, nous considérons le probleme de gardes djaterie d’art qui est modélisée
par un polygone avec des murs courbés. En particulier, nonsidérons des polygones dont les
bords sont des arcs convexes qui se dirigent vers I'extéoielintérieur du polygone (mais pas les
deux au méme temps), appelés polygones par morceaux ceruegencaves respectivement. Nous
montrons que, dans le cas de polygones par morceaux cCongexesis permettons seulement des
gardians de sommets, alqﬁ{”J —1 gardians sont parfois nécessaireét,??tj gardians sont toujours
suffisants. D’ailleurs, nous décrivons un algorithrogn logn) en temps eO(n) en espace, qui
produit I'ensemble des sommets de garde de taille auugﬁs Dans le cas particulier de polygones
monotones et par morceaux convexes nous pouvons montrefgue 1 gardians de sommets ou
| 5] gardians de points sont toujours suffisants et parfois séaes.

Dans le cas des polygones par morceaux concaves, hous psogwe2n — 4 gardians de points
sont toujours suffisantes et parfois nécessaires, tandisgyeut étre possible de garder de tels
polygones par des gardians de sommets. Nous concluons esdinites pour d’autres types de
polygones courbés et perspectives pour le futur.

Mots-clés : galerie d’art; polygones courbés, gardians de sommetiagede point, polygones par
morceau convexes, polygones par morceau concaves
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1 Introduction

Consider a simple polygoR with n vertices. How many points with omnidirectional visibiliéye
required in order to see every point in the interior/? This problem, known as thert gallery
problemhas been one of the earliest problems in Computational Gepm@pplications areas
include robotics [21, 36], motion planning [24, 28], com@uvision and pattern recognition [32,
37, 2, 33], graphics [26, 7], CAD/CAM [4, 15] and wirelesswetks [16]. In the late 1980’s to
mid 1990’s interest moved from linear polygonal objectsuovsdinear objects [35, 9, 11, 10] — see
also the paper by Dobkin and Souvaine [13] that extendsHipelygon algorithms to curvilinear
polygons, as well as the recent book by Boissonnat and Tidil|d] for a collection of results on
non-linear computational geometry beyond art galleryteelaoroblems. In this context this paper
addresses the classical art gallery problem for varioussek of polygonal regions the edges of
which are arcs of curves. To the best of our knowledge thidesfirst time that the art gallery
problem is considered in this context.

The first results on the art gallery problem or its variatidate back to the 1970’s. Chvéatal [8]
was the first to prove that a simple polygon witlvertices can be always guarded wjth| vertices;
this bound is tight in the worst case. The proof by Chvatal guite tedious and Fisk [18] gave a
much simpler proof by means of triangulating the polygonewidring its vertices using three colors
in such a way so that every triangle in the triangulation effblygon does not contain two vertices
of the same color. The algorithm proposed by Fisk run®if’(n) + n) time, whereT'(n) is the
time to triangulate a simple polygon. Following Chazellaigar-time algorithm for triangulating a
simple polygon [5, 6], the algorithm proposed by Fisk run®im) time. Lee and Lin [22] showed
that computing the minimum number of vertex guards for a &npplygon is NP-hard, which was
extended to point guards by Aggarwal [1]. Soon afterwarlisidypes of polygons were considered.
Kahn, Klawe and Kleitman [19] showed that orthogonal polygjof sizen, i.e., polygons with axes-
aligned edges, can be guarded wjith| vertex guards, which is also a lower bound. Sevérat)
algorithms have been proposed for this variation of the lprab notably by Sack [30], who gave
the first such algorithm, and later on by Lubiw [25]. Edelsbrer, O'Rourke and Welzl [14] gave a
linear time algorithm for guarding orthogonal polygonstwii; | point guards.

Beside simple polygons and simple orthogonal polygonsjguois with holes, and orthogonal
polygons with holes have been investigated. As far as the ¢fjguards is concerneddge guards
and mobile guardshave been considered. An edge guard is an edge of the polggdna point
is visible from it if it is visible from at least one point ondledge; mobile guards are essentially
either edges of the polygon, or diagonals of the polygon.eOtypes of guarding problems have
also been studied in the literature, notably, tberess problen{guard the exterior of the polygon
against enemy raids) and tipeison yard problen(guard both the interior and the exterior of the
polygon which represents a prison: prisoners must be gdardéhe interior of the prison and
should not be allowed to escape out of the prison). For alddtdiscussion of these variations and
the corresponding results the interested reader showdtcethe book by O’Rourke [29], the survey
paper by Shermer [31] and the book chapter by Urrutia [34].

In this paper we consider the original problem, that is thebf@m of guarding a simple polygon.
We are primarily interested in the case of vertex guardspaljh results about point guards are also
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described. In our case, polygons are not required to hagariedges. On the contrary we consider
polygons that have smooth curvilinear edges. Clearlyelpesblems are NP-hard, since they are
direct generalizations of the corresponding original aitsgy problems. In the most general setting
where we impose no restriction on the type of edges of thegoolyit is very easy to see that there
exist curvilinear polygons that cannot be guarded witheseguards, or require an infinite number
of point guards (see Fig. 23(b)). Restricting the edges ®fpiblygon to be locally convex curves,
pointing towards the exterior of the polygon (i.e., the gy is a locally convex set, except possibly
at the vertices) we can construct polygons that require &mim of n vertex or point guards, where
n is the number of vertices of the polygon (see Fig. 23(a));aict Such polygons can always be
guarded with thein vertices. The main focus of this paper is the class of polggbat are either
locally convex or locally concave (except possibly at thetiges), the edges of which are convex
arcs; we call such polygonsecewise-convexandpiecewise-concave polyggmespectively.

For the first class of polygons we show that it is always pdssibguard them Witﬂ%”J ver-
tex guards, where is the number of polygon vertices. On the other hand we desdamilies of
piecewise-convex polygons that require a minimunhféﬂ — 1 vertex guards anglz | point guards.
Aside from the combinatorial complexity type of results, describe arD (n logn) time andO(n)
space algorithm which, given a piecewise-convex polygomputes a guarding set of size at most
L%”J. Our algorithm should be viewed as a generalization of Bialgorithm [18]; in fact, when ap-
plied to polygons with linear edges, it produces a guardet@ssize at most |. For the purposes
of our complexity analysis and results, we assume, throuigthe paper, that the curvilinear edges of
our polygons are arcs of algebraic curves of constant degsegeresult all predicates required by the
algorithms described in this paper také1) time in the Real RAM computation model. The central
idea for both obtaining the upper bound as well as for desgyour algorithm is to approximate the
piecewise-convex polygon by a linear polygon (a polygornwite segments as edges). Additional
auxiliary vertices are added on the boundary of the cumdirpolygon in order to achieve this. The
resulting linear polygon has the same topology as the @aigiolygon and captures the essentials of
the geometry of the piecewise-convex polygon; for obvi@asons we term this linear polygon the
polygonal approximationOnce the polygonal approximation has been constructeaowgpute a
guarding set for it by applying a slight modification of Fiskdlgorithm [18]. The guarding set just
computed for the polygonal approximation turns out to bearding set for the original curvilinear
polygon. The final step of both the proof and our algorithmsisis in mapping the guarding set
of the polygonal approximation to another vertex guardieigcensisting of vertices of the original
polygon only.

If we further restrict ourselves tmonotone piecewise-convex polygoins., piecewise-convex
polygons that have the property that there exists alinsuch that any lind. perpendicular td.
intersects the polygon at most twice, we can show tdt+ 1 vertex or| 7 | point guards are always
sufficient and sometimes necessary. Such alliman be computed i®(n) time (cf. [13]). Given
L, itis very easy to compute a vertex guarding set of 5ize+ 1, or a point guarding set of siZ€; |
the problem of computing such a guarding set essentiallyoesito merging two sorted arrays, thus
taking O(n) time andO(n) space. This result should be contrasted against the caseraitane
linear polygons where the corresponding upper and lowendaun the number of vertex or point
guards required to guard the polygon matches that of gefigralnot necessarily monotone) linear
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polygons. In other words, monotonicity seems to play a alucie in the case of piecewise-convex
polygons, which is not the case for linear polygons.

For the second class of polygons, i.e., the class of pieeegnacave polygons, vertex guards
may not be sufficient in order to guard the interior of the goly (see Fig. 22(a)). We thus turn
our attention to point guards, and we show thvat- 4 point guards are always sufficient and some-
times necessary. Our method for showing the sufficiencyltresaimilar to the technique used to
illuminate sets of disjoint convex objects on the plane [IGiven a piecewise-concave polygéh
we construct a new locally concave polyg@h contained inside”, and such that the tangencies
between edges af are maximized. The problem of guardidgythen reduces to the problem of
guarding®, which essentially consists of a number of faces with paewdisjoint interiors. The
faces of(@) require, each, two point guards in order to be guarded, amihat—1 correspondence
with the triangles of an appropriately defined triangulatisaph7 (R) of a polygonR with n ver-
tices. Thus the number point guards required to guarslat most two times the number of faces of
T(R),i.e.,2n — 4.

The rest of the paper is structured as follows. In Section dntreduce some notation and
provide various definitions. In Section 3 we present our i@tigm for computing a guarding set, of
size L%"J, for a piecewise-convex polygon withvertices. Section 3 is further subdivided into five
subsections. In Subsection 3.1 we define the polygonal appation of our curvilinear polygon
and prove some geometric and combinatorial propertiesulhis&ction 3.2 we show how to construct
a, properly chosergonstrainedriangulation of the polygonal approximation. In Subsewcts.3 we
describe how to compute the guarding set for the originalitmear polygon from the guarding set
of the polygonal approximation due to Fisk’s algorithm anove the upper bound on the cardinality
of the guarding set. In Subsection 3.4 we show how to competgtarding set i@ (n log n) time
andO(n) space. Finally, in Subsection 3.5 is devoted to the presentaf the family of polygons
that attains the lower bound Q@J — 1 vertex guards. The special case of guarding monotone
piecewise-convex polygons is discussed in Section 4. We shat | 3 | + 1 vertex (or| 5 | point)
guards are always necessary and sometimes sufficient, asdrprarO(n) time andO(n) space
algorithm for computing such a guarding set. In Section 5 wesent our results for piecewise-
concave polygons, namely, that — 4 point guards are always necessary and sometimes sufficient
for this class of polygons. Section 6 contains further tssilore precisely, we present bounds for
locally convex polygons, monotone locally convex polygand general polygons. The final section
of the paper, Section 7, summarizes our results and discogs® problems.

2 Definitions

Curvilinear arcs. Let S be a sequence of points,...,v, and E a set of curvilinear arcs
ai,...,a,, such thats; has as endpoints the points andv; (,*. We will assume that the arcs
a; anda;, i # j, do not intersect, except whgn= i — 1 or j = i + 1, in which case they intersect
only at the point; andw; 1, respectively . We define eurvilinear polygonP to be the closed
region delimited by the aras;. The pointsy; are called the vertices d?. An arca; is aconvex arc

Lindices are considered to be evaluated modulo
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(@ (b) (©

(d) (e) ®

Figure 1: Different types of curvilinear polygons: (a) adar polygon, (b) a convex polygon, (c) a
piecewise-convex polygon, (d) a locally convex polygon.a@iecewise-concave polygon and (f) a
general polygon.

if every line on the plane intersecigat either at most two points or along a linear segment.idfa
point in the interior ofz;, ane-neighborhood:. (¢) of ¢ is defined to be the intersection @f with a
disk centered af with radiusz. An arca; is alocally convex ardf for every pointg in the interior of
a;, there exists an, such that for every < ¢ < ¢4, thee-neighborhood of lies entirely in one of
the two halfspaces defined by the lihtangent tau; atg; note that if/ is not uniquely defined, then
the containment-in-halfspace property mentioned justalbas to hold for any such lirfe Finally,
note that a convex arc is also a locally convex arc.

Our definition does not really require that the atgsare smooth. In fact the areg can be
polylines, in which case the results presented in this papestill valid. What might be different,
however, is our complexity analyses, since we have assuma¢thieq,;’s have constant complexity.
In the remainder of this paper, and unless otherwise statedyill assume that the ares are
G'-continuous and have constant complexity.

Curvilinear polygons. A polygon P is alinear polygonif its edges are line segments (see Fig.
1(a)). A polygonP consisting of curvilinear arcs as edges is call@davex polygoif every line on
the plane intersects its boundary at either at most two paoinalong a line segment (see Fig. 1(b)).
A polygon is called giecewise-convex polygpifievery arc is a convex arc and for every pajrin

the interior of an are; of the polygon, the interior of the polygon is locally on thee side as the
arca; with respect to the line tangent i at ¢ (see Fig. 1(c)). A polygon is calledlacally convex
polygonif the boundary of the polygon is a locally convex curve, etqeossibly at its vertices (see
Fig. 1(d)). Note that a convex polygon is a piecewise-compaygon and that a piecewise-convex
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polygon is also a locally convex polygon. A polygéhis called apiecewise-concave polygoif
every arc ofP is convex and for every poiftin the interior of a non-linear are;, the interior of P
lies locally on both sides of the line tangentdpat ¢ (see Fig. 1(e)). Finally, a polygon is said to
be ageneral polygonf we impose no restrictions on the type of its edges (see Kf)). We will
use the terncturvilinear polygonto refer to a polygon the edges of which are either line or eurv
segments.

Guards and guarding sets. In our setting, ayuard or point guardis a point in the interior or on
the boundary of a curvilinear polygad. A guard of P that is also a vertex aP is called avertex
guard We say that a curvilinear polygaR is guardedby a setG of guards if every point inP is
visible from at least one point i. The set that has this property is calledgmarding sefor P.

A guarding set that consists solely of verticesofs called avertex guarding set

3 Piecewise-convex polygons

In this section we present an algorithm which, given a piésexgonvex polygorP of sizen, it
computes a vertex guarding setof size L%”J. The basic steps of the algorithm are as follows:

1. Compute the polygonal approximatiéhof P.
2. Compute a constrained triangulatiiiP) of P.
3. Compute a guarding sét; for P, by coloring the vertices of (P) using three colors.

4. Compute a guarding sétp for P from the guarding set 5.

3.1 Polygonalization of a piecewise-convex polygon

Let a; be a convex arc with endpoints andv;;,. We call the convex region; delimited bya;

and the line segmentv;,; aroom A room is called degenerate if the argis a line segment. A
line segmenipq, wherep, g € a; is called achord and the region delimited by the chopd and

a; is called asector The chord of a roomr; is defined to be the line segment;; connecting
the endpoints of the corresponding asc A degenerate sector is a sector with empty interior. We
distinguish between two types of rooms (see Fig. 2):

1. empty rooms these are non-degenerate rooms that do not contain argxweftP in the
interior of r; or in the interior of the chord;v; ;.

2. non-empty roomghese are non-degenerate rooms that contain at least de& @éP in the
interior of r; or in the interior of the chord;v; ;.

In order to polygonalizé® we are going to add new vertices in the interior of non-linearvex
arcs. To distinguish between the two types of verticestlvertices of P will be calledoriginal
vertices whereas the additional vertices will be calkakiliary vertices

More specifically, for each empty roomwe add a vertexv; ; (anywhere) in the interior of the
arca; (see Fig. 3). For each non-empty room let X; be the set of vertices aP that lie in the
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Figure 2: The two types of rooms in a piecewise-convex palygg andr” are empty rooms,
whereas-, . andr!/, are non-empty rooms.

O
w31

Figure 3: The auxiliary vertices (white points) for rooms (empty) andrs; (non-empty). ws ;
is a point in the interior ofi3. ms is the midpoint ofvs and v, whereasws ; andws o are the
intersections of the lineswsvy and msv; with the arcas, respectively. In this exampl&; =
{Ul, v, 1]7}, Wherea@g‘ = {’Ul, 122}.

interior of the chord;v;41 of r;, andR; be the set of vertices d? that are contained in the interior
of r; or belong taX; (by assumptior?; # (). If R; # X, letC; be the set of vertices on the convex
hull of the vertex setR; \ X;) U {v;,vi41}; if Ry = X5, letC; = X; U {v;,v;41}. Finally, let
Cf = C; \ {vi, viy1}. Clearly,v; andv;; belong to the sef’; and, furthermore(’; = §.

Let m; be the midpoint ob;v;11 andéiL (p) the line perpendicular to;v;1 passing through a
pointp. If C; # X;, then, for eachy, € C, letw, j,, 1 < ji < |C/|, be the (unique) intersection
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Figure 4: (a) The polygonal approximatidh shown in gray, of the piecewise-convex polygBn
with verticesv;, ¢ = 1,...,7. (b) The constrained triangulatidﬁ(ﬁ) of P. The dark gray triangles
are the constrained triangles. The polygonal regigns 1 ws 2vsv1v2vs5 IS @ crescent. The triangles
ws, 1v2v5 anduvyws 2ve are boundary crescent triangles. The triangles 2v, is an upper crescent
triangle, whereas the trianglews 1 ws 2 is a lower crescent triangle.

of the linem,v;, with the arca;; if C; = X, then, for eachy, € C}, letw; ;,, 1 < ji, < |C;|, be
the (unique) intersection of the lirfg (vy,) with the arca;.

Now consider the sequenceof the original vertices o> augmented by the auxiliary vertices
added to empty and non-empty rooms; the order of the veriicésis the order in which we en-
counter them as we traverse the boundaryadh the counterclockwise order. The linear polygon
defined by the sequenceof vertices is denoted bi (see Fig. 4(a)). It is easy to show that:

Lemma 1 The linear polygorP is a simple polygon.

Proof. It suffices show that the line segments replacing the caedli segments d? do not intersect
other edges oP or P.

Let ; be an empty room, and let; ; be the point added in the interior @f. The interior
of the line segments;w; ; andw; v,y lie in the interior ofr;. SinceP is a piecewise-convex
polygon, andr; is an empty room, no edge d? could potentially intersect;w; ; or w; 1v;41.
Hence replacing; by the polylinev;w; 1v;+1 gives us a new piecewise-convex polygon.

Let r; be a non-empty room. Leb;;,...,w; k, be the points added an;, whereK; is the
cardinality ofC. By construction, every poinb; ;. is visible fromw; 41,k =1,... K; — 1, and
every pointw; j, is visible fromw; _1, k = 2, ... K;. Moreover,w; ; is visible fromv; andw; g,
is visible fromwv; ;. Therefore, the interior of the segments in the polyline; 1 ... w; k,vit1
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lie in the interior ofr; and do not intersect any arc iR. Hence, substituting; by the polyline
VWi 1 - - . Wy K, Vit1 YIVES US a new piecewise-convex polygon.
As a result, the linear polygoR is a simple polygon. O

We call the linear polygotP, defined byS, thestraight-line polygonal approximatioof P, or
simply thepolygonal approximatiolf P. An obvious result forP is the following:

Corollary 2 If P is a piecewise-convex polygon the polygonal approximaktoof P is a linear
polygon that is contained inside.

We end this section by proving a tight upper bound on the dizkeopolygonal approximation
of a piecewise-convex polygon. We start by stating and pigoein intermediate result, namely that
the set”} are pairwise disjoint.

Lemma 3 Leti, j, with1 <i < j <n. ThenC; N C; = 0.

Proof. If one of the rooms:; andr; is a degenerate or an empty room, the result is obvious.

Consider two non-empty rooms andr;. For simplicity of presentation we assume tlfgt#
X; andR; # X;; the proof easily carries on to the caBe= X; or R; = Xj.

Suppose that there exists a vertexe P that is contained irC; N Cy. Letw;, vigg, and
vj, vj+1 be the endpoints of the ares anda;, andm;, m; the midpoints of the chords;v;; 1,
vjv;41, respectively. Let; be the intersection of the line;u with the convex ara; andu; be the
intersection of the linen;u with the convex are;, respectively. Consider the following cases.

vj, Vj41 € Ri,vi,vip1 € R;. Thisis the easy case (see Fig. 5). Since C; N C; we have
thatr; N r; # (. Moreover, it is either the case thaf intersects the chord;v; 1 or a;
intersects the chord;v; ;. Without loss of generality we can assume thaintersects the
chordv;v; 1. In this case the boundary of N r; that lies in the interior of; is a subarc of
a;. But then the segmeniu; has to interseai;, which contradicts the fact thate C;".

Vit1l

Figure 5: Proof of Lemma 3. The casg v;1 & R;,v;,vit1 € R;.

INRIA
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vi ' m; Vit1 v; v;

(b)

Figure 6: Proof of Lemma 3. The casg v; 1 € R;. (a) the chordy;v;4 intersects the interior
of uu; andw is contained inside the trianglev; 1 v;. (b) the chordv;v;, intersects the interior of
uu; andu is contained inside the convex quadrilateral; {1 v;v;1. () the chordv;v;, 1 intersects
uu; atu.

vj,vj+1 € R;. Sinceu belongs taC}, the line segmeniu; cannot contain any vertices éf and
it cannot intersect any edge 6f(since otherwise; would not belong ta;"). For this reason,
and sinceu belongs toC', uu,; has to intersect the chord of. We distinguish between the
following two cases (see Fig. 6):

1. The chordv;v; intersects the interior ofiu;. Depending on whether the supporting
line of v;v;4, intersects the chord;v;; of r; or not,u will be either contained in the
interior of one of the triangles;v;1v; andv;v;11v;41 (this happens if the supporting
line of vjv;41 intersectsv;v; 11 — see Fig. 6(a)), or inside the convex quadrilateral
v;v;410;50;541 (this happens if the supporting line ofv; ., does not interseat;v; ; —
see Fig. 6(b)). In either case,is in the interior of a convex polygon, the vertices of
which are inR; U {v;, v;41}, and, thus, it cannot belong @, hence a contradiction.

2. The chordv;v; ;1 intersectsuu; at . We can assume without loss of generality that
viy1, v; are to the right ana;, v; 4, to the left of the oriented lina,u (see Fig. 6(c)).
Notice that bothy; andv; 1, have to belong t@’;", since otherwise would not belong to
Ccr. Letv;- andug+1 be the intersections of the lines;v; andm;v;; with a;. Consider
the pathr from « to v; on the boundary)P of P, that does not contain the edgg.

7 has to intersect either the interior of the line segment or the interior of the line
segmen; . 1v’, ; either case yields a contradiction with the fact that bgtandv; .,
belong toC;'.

v;, Vi41 € Rj;. This case is symmetric to the previous one.

[{vj,vj+1} N R;| = 1. Without loss of generality we may assume thate R; andv;1 & R;.
Consider the following two cases (see Fig. 7):

RR n° 6132
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V4
j+1 v/

@)

Figure 7: Proof of Lemma 3. The ca@;,v;4+1} N R;| = 1. (a) the chordy;v;,, intersects the
chordv;v; 1 andv;v;4, intersects the interior af;v;,. (b) the chordv;v;; intersects the chord
v;v;41 andv;v;4 intersectsy;v; 1 atv;. () the chordvjv; i intersectss,.

1. The chordvjv;4 intersects the chord;v; 1. If vjv;11 intersects the interior afjv; 1
(see Fig. 7(a)), then has to lie in the interior of the trianglgv;,v;, which contradicts
the fact that, € C.

Suppose now that;v;; intersects one of the endpoints @; 1, and let us assume
that this endpoint is; (see Fig. 7(b))u has to lie in the interior ob;v;, since otherwise
it would have been in the interior of the trianglg; 1 v;, which contradicts the fact that
u € CF. Moreoverp; (resp. ;) has to belong tdz; (resp.,R;), since otherwise ¢ C7
(resp.,u & C7). Let v‘; be the intersection ofz;v; with a; andv, be the intersection
with a; of the line perpendicular to;v;4, atv;. Consider the paths; andmr, on 9P
from v to v; 1 andv;q, respectively. One of these two paths has to intersectreitiee
interior of the line segment;v; or the interior of line segment;v’; either case yields a
contradiction with the fact that; belongs toC'’s andv; belongs toC;.

2. The chordv;v; 4, intersects the edge;. In this case we also have that eithgre R;
orv;11 € Rj, but not both. Without loss of generality we may assume that € R;
(see Fig. 7(c)). Since belongs to bottC; andC7, it has to lie on the line segment
vi+1vj+1. Moreoverp; 1 (resp.w;11) has to belong t&’; (resp.,C;), since otherwise
u would not belong ta@’; (resp.,C7). Let Vi1 andug»Jrl be the intersections of the lines
m;vi+1 andm,v; 1 with the arcsz; anda;, respectively. Consider the paths andr,
on JP from v to v; andv;, respectively. One of these two paths has to intersectreithe
the interior of the line segment ., v; , or the interior of the line segmenj, v} ;. In
the former case, we get a contradiction with the fact that belongs ta”?; in the latter
case we get a contradiction with the fact that; belongs toC;".

[{vi, vit1} N R;| = 1. This case is symmetric to the previous one. O

An immediate consequence of Lemma 3 is the following corpliaat gives us a tight bound on
the size of the polygonal approximatidhof P.
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Figure 8: A piecewise-convex polygdd of sizen (solid curve), the polygonal approximatidhof
which consists o8n — 3 vertices (dashed polyline).

Corollary 4 If n is the size of a piecewise-convex polydarthe size of its polygonal approximation
P is at most3n. This bound is tight (up to a constant).

Proof. Leta; be a convex arc aP, and letr; be the corresponding room.df is an empty room, then
P contains one auxiliary vertex duedg. HenceP contains at mosi auxiliary vertices attributed to
empty rooms inP. If a; is a non-empty room, theR containg C;| auxiliary vertices due ta;. By
Lemma 3 the set§’, i = 1,..., n are pairwise disjoint, which implies that"_, |C}| < |P| = n.
ThereforeP contains the: vertices of P, contains at most vertices due to empty rooms ift and
at mostn vertices due to non-empty roomsih We thus conclude that the size Bfis at mosBn.
The upper bound of the paragraph above is tight up to a can&ansider the piecewise-convex

polygon P of Fig. 8. It consists ofx — 1 empty rooms and one non-empty room such that
|C| =n — 2. Itis easy to see thaP| = 3n — 3. O

3.2 Triangulating the polygonal approximation

Let P be a piecewise-convex polygon aftis its polygonal approximation. We are going to con-
struct aconstrained triangulatiorof P, i.e., we are going to triangulate, while enforcing some
triangles to be part of this triangulation. LBt = P \ P be the set of auxiliary vertices iR. The
main idea behind the way this particular triangulation iegtaucted is to enforce that:

1. all triangles of7 (P), that contain a vertex i®, also contain at least one vertex Bf i.e.,
no triangles contain only auxiliary vertices,

2. every vertex ilP® belongs to at least one triangledr( P) the other two vertices of which are
both vertices of”, and

3. the triangles of (15) that contain vertices aP can be guarded by vertices Bf

These properties are going to be exploited in Step 4 of tharitihgn presented in Section 3.
More precisely, we are going to enforce the way the triangfe5(P) are created in the neigh-
borhoods of the vertices iP®. By enforcing the triangles in these neighborhoods, wectffely
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triangulate parts oP. The remaining untriangulated parts®fconsist of one of more disjoint poly-
gons, which can then be triangulated by means of@tylog n) polygon triangulation algorithm.
In other words, the triangulation @ that we want to construct is a constrained triangulatiothén
sense that we pre-specify some of the edges of the triamguldn fact, as we will see below we
pre-specify triangles, rather than edges, which are gairmptreferred to asonstrained triangles

Let us proceed to define the constrained triangle& (i#). If r; is an empty room, ang; ; is
the point added on;, add the edges;v; 1, v;w; 1 andw; 1v;11, thus formulating the constrained
triangle v;w; 1v;+1 (See Fig. 4(b)). Ifr; is a non-empty room{c,...,ck,} the vertices inC},
K; = |C}|, and{w; 1, ..., w; k, } the vertices added osy, add the following edges, if they do not
already exist:

1 ock,cop1, k=1,...,K; — 1, vic1; ek, Viga;

2. CiW; k= 1,. .. ,Kz';

3. cwipr1, k=1,...,K; — 1,

4, Wi ks Wi k+1s k= 1, .. .,Ki —1; ViW;,1; Wi K;Vit1-

These edges formulatek; constrained triangles, namely,cyyiw; py1, & = 1,..., K; — 1,
Wi Wi g1, k= 1,..., K; — 1, vicqw; 1 andv; ek, w; i,. We call the polygonal region de-
limited by these triangles erescent The trianglesy;c;w; 1 andv; ¢k, w; i, are calledooundary
crescent trianglesthe triangles:ycr11w; k41, k = 1,. .., K; — 1 are calledupper crescent triangles
and the triangles,w; w; x+1, k = 1,..., K; — 1 are calledower crescent triangles

Note that almost all points i~ belong to exactly one triangle the other two points of whikh a
in P; the only exception are the points, x, which belong to exactly two such triangles.

As we have already mentioned, having created the constr#ilaagles mentioned above, there
may exist additional possibly disjoint polygonal non-tgmilated regions of. The triangula-
tion procedure continues by triangulating these additipoé/gonal non-triangulated regions; any
O(nlogn) polygon triangulation algorithm may be used.

3.3 Computing a guarding set for the original polygon

To compute a guarding set fét we will perform the following two steps:
1. Compute a guarding sét; for P.

2. From the guarding set'; for P compute a guarding sé&tp for P of size at mosl{%”j,
consisting of vertices of only.

Assume that we have colored the verticesPolvith three colors, so that every triangleTr(P)
does not contain two vertices of the same color. This can biyedone by the standard three-
coloring algorithm for linear polygons presented in [27].1Bet red, green and blue be the three
colors, and let 4 be the set of vertices of red coldi,4 be the set of vertices of green color and
M 4 be the set of vertices of blue color in a subgetf P. Clearly, all three set& 5, 115 and M
are guarding sets faP. In fact, they are also guarding sets feras the following theorem suggests
(see also Fig. 9).
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Figure 9: The three guarding sets fBr are also guarding sets fét, as Theorem 5 suggests.

Theorem 5 Each one of the set& ;, I1; and M is a guarding set forP.

Proof. Let G be one ofK 5, II 5 and M. By construction(G > guards all triangles if (P). To
show thatG ; is a guarding set foP, it suffices to show thaty 5 also guards the non-degenerate
sectors defined by the edges/fand the corresponding convex subarc#of

Let s; be a non-degenerate sector associated with the convex.afde consider the following
two cases:

1. The roomr; is an empty room. Thes; is adjacent to the triangle w; jv;41 of T(P). Note
that sincez; is a convex arc, all three points, v;11 andw; ; guards;. Since one of them has
to be inG 5, we conclude thatr ; guardss;.

2. The roomr; is a non-empty room. The#; is adjacent to either a boundary crescent triangle
or a lower crescent triangle ifi(P) . Let T be this triangle, and let, y andz be its vertices.
Sinceq; is a convex arc, all three, y andz guards;. Therefore, since one of the three vertices
x,y andz is in G 5, we conclude thatr ; guardss;.

Therefore every non-degenerate sectaPfis guarded by at least one vertexGiy, which implies
thatG 5 is a guarding set foP. O

Let as now assume, without loss of generality that, am@pgllp andM p, K p has the smallest
cardinality and thakl » has the second smallest cardinality, i|&p| < |IIp| < |Mp|. We are going
to define a mapping from K p« to the power se2™» of I1 p. Intuitively, f maps a vertex in K p«
to all the neighboring vertices afin 7(15) that belong tdI». We are going to give a more precise
definition of f below (consult Fig. 10). Let € Kp~. We distinguish between the following cases:
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1. x is an auxiliary vertex added to an empty roem(see Fig. 10(a)). Then is one of the
vertices of the constrained trianglev; 1= contained inside-;. One ofv;, v;.1 must be a
vertex inIlp, sayv;.1. Then we sef(x) = {v;+1}.

2. z is an auxiliary vertex added to a non-empty rogmConsider the following subcases:

(a) xis notthe last auxiliary vertex an, as we walk along; in the counterclockwise sense
(see Fig. 10(b)). Then is incident to a single triangle 'rfﬁ(P) the other two vertices of
which are vertices iP. Lety andz be these other two vertices. Oneypoéndz has to
be a green vertex, say Then we sef (z) = {y}.

(b) x is the last auxiliary vertex on; as we walk along:; in the counterclockwise sense
(see Figs. 10(c) and 10(d)). Thenis incident to a boundary crescent triangle and an
upper crescent triangle. Leb;. 1y be the boundary crescent triangle ang the upper
crescent triangle. Clearly, all three vertiags, y andz are vertices ofP. If y € IIp
(this is the case in Fig. 10(c)), then we géi) = {y}. Otherwise (this is the case in Fig.
10(d)), bothw; 1 andz have to be green vertices, in which case wef$e) = {v;11, z}.

Now define the sefip = Kp U (Urera f(a:)). We claim thatG p is a guarding set foP.
Lemma6 TheselGp = Kp U (UxeKPa f(x)) is a guarding set for”.

Proof. Let us consider the triangulatioh(P) of P. The regions inP* are sectors defined by
a curvilinear arc, which is a subarc of an edgefbaind the corresponding chord connecting the
endpoints of this subarc. Let us consider the set of trianiglg (P) and the seS(P) of sectors in
P<. To show that7p is a guarding set foP, it suffices show that every triangle iﬁ(P) and every
sector inS(P) is guarded by at least one vertexGip.

If T'is a triangle in7 ( P) that is defined over vertices &f, one of its vertices is colored red and
belongs toKp C G p. Hence T  is guarded.

Consider now a trianglé’ that is defined inside an empty roam If the auxiliary vertex ofl’
is not red, then one of the two endpointsagthas to be red, and thus it belongsde. Hence both
T and the two sectors adjacent to itrinare guarded. If the auxiliary vertex is red, then one of the
other two vertices of " is green and belongs @p; again, T’ is guarded.

Suppose now that is a boundary crescent triangle, anddéte the sector adjacent to it (consult
Fig. 11(a)). Letr be the endpoint of; contained irnl’, y be the second point af that belongs ta®
andz the point inP<. Note that all three vertices guard the sectolf x (resp.,y) is a red vertex it
will also be a vertex irG p. Hence, in this case bofhi ands are guarded by (resp.,y). If z is the
red vertex inT’, eitherx or y has to be a green vertex. Hence eithar y will be in Gp, and thus
again bothl" ands will be guarded.

If T is a lower crescent triangle, letbe the sector adjacent to it (consult Fig. 11(b)). ket
be the endpoints of the chord efon a; and letz be the point ofP in T'. Let us also assume we
encounter: andy in that order as we walk along in the counterclockwise sense, which implies
thatz is the intersection of the linem; and the are;. Finally, letT’ be the upper crescent triangle
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() (d)

Figure 10: The three cases in the definition of the mappgin@€ase (a):x is a auxiliary vertex in
an empty room. Case (b): is an auxiliary vertex in a non-empty room and is not the lasileary
vertex added on the curvilinear arc. Cases (c) and{dk the last auxiliary vertex added on the
curvilinear arc of a non-empty room (in (c) only one of itsgt@ors inP is green, whereas in (d)
two of its neighbors inP are green).

incident to the edgez, and letw be the third vertex of /, beyondy andz. It is interesting to note
that all four vertices, y, z andw guardT, 7’ ands. Moreover,z andw have to be of the same
color. In order to show that ands are guarded by~ p, it suffices to show that one af, y, z andw
belongs to p. Consider the following cases:

1. zis ared vertex. Since € Kp, we get that € Gp.

2. zis ared vertex. But themw is also a red vertex. Sinaee € Kp, we conclude that) belongs
to Gp as well.

3. yis ared vertex. Then eitheris a green vertex or both andw are green vertices. K is a
green vertex, thefiz} C f(y), which implies that € Gp. If z is a blue vertex, then both
andw are green vertices, and in particufar} C f(y). Hencew € Gp.

RR n° 6132



inria-00132988, version 8 - 18 Feb 2008

18 Karavelas and Tsigaridas

Figure 11: Three of the five cases in the proof of Lemma 6: @}rianglel” is a boundary crescent
triangle; (b) the triangld’ is a lower crescent triangle; (c) the triandlés an upper crescent triangle.

Finally, consider the case thatis an upper crescent triangle, leindy be the vertices of in
T and letz be the vertex of " in P~ (consult Fig. 11(c)). Let us also assume that the intersection
of the lineym,; with a;. To show thatl" is guarded byG p, it suffices to show that one af andy
belongs toGp. Consider the following cases:

1. xzisred vertex. Since € Kp we have that € Gp.
2. yisred vertex. Sincg € Kp we have thay € Gp.

3. zis ared vertex. Ifc is a green vertex, thefi} C f(z). Hencex € Gp. If x is blue vertex,
theny has to be a green vertex, afigd} C f(z). Thereforey € Gp. O

Sincef(x) C Ilp for everyz in K po we get thanera f(x) C IIp. Butthis, in turn implies
thatGp C KpUIIp. SinceK p andIlp are the two sets of smallest cardinality amdiig, I1» and
Mp, we can easily verify thatk p| + [IIp| < |2]. Hence|Gp| < |Kp| + |Ip| < | 2], which
yields the following theorem.

Theorem 7 Let P be a piecewise-convex polygon with> 2 vertices. P can be guarded with at
most| 2 | vertex guards.

We close this subsection by making two remarks:

Remark 1 The bound on the size of the vertex guarding set in Theorertighis our algorithm will
produce a vertex guarding set of size exa{;f-’% when applied to the piecewise-convex polygon of
Fig. 8 or the crescent-like piecewise-convex polygon of Bl

Remark 2 When the input to our algorithm is a linear polygon all rooms degenerate; conse-
quently, no auxiliary vertices are created, and the gugrdgt computed corresponds to the set
of colored vertices of smallest cardinality, hence prodga vertex guarding set of size at most
|5 ]. In that respect, it can be considered as a generalizatibisk algorithm [18] to the class of
piecewise-convex polygons.

INRIA



inria-00132988, version 8 - 18 Feb 2008

Guarding curvilinear art galleries with vertex or point gias 19

3.4 Time and space complexity

In this section we will show how to compute a vertex guardiegp, of size at most%"j , for P,
in O(nlogn) time andO(n) space. The algorithm presented at the beginning of thigoseobnsists
of four phases:

1. The computation of the polygonal approximatiBrof P.

2. The computation of the constrained triangulatiof?) of P.

3. The computation of a guarding s&f; for P.

4. The computation of a guarding &p for P from the guarding sef 5.

Step 2 of the algorithm presented above can be dori&(#(n)) time andO(n) space, where
T'(n) is the time complexity of ang®)(n log n) polygon triangulation algorithm: we need linear time
and space to create the constrained triangle® (d?), whereas the subpolygons created after the
introduction of the constrained triangles may be triangadan O(7'(n)) time and linear space.

Step 3 of the algorithm takes also linear time and space wgpect to the size of the polygon
P. By Corollary 4,|P| < 3n, which implies that the guarding sét; can be computed i0(n)
time and space.

Step 4 also require@(n) time. ComputingG p from G 5 requires determining for each vertex
v of Kpo all the vertices ofll » adjacent to it. This takes time proportional to the degieg(v)
of v in T(P), i.e., a total R ek po deg(v) = O(|P|) = O(n) time. The space requirements for
performing Step 4 i®(n).

To complete our time and space complexity analysis, we neeshow how to compute the
polygonal approximatior® of P in O(nlogn) time and linear space. In order to compute the
polygonal approximatior? or P, it suffices to compute for each room the set of verticeg’".

If C¥ = 0, thenr; is empty, otherwise we have the set of vertices we wantedmErp we can
compute the pointa; ,, and the linear polygo® in O(n) time and space.

The underlying idea is to spliP into y-monotone piecewise-convex subpolygons. For each
roomr; within each suchy-monotone subpolygon, corresponding to a convexamith endpoints
v; andw; 11, we will then compute the corresponding §&t. This will be done by first computing
a subsetS; of the setR; of the points inside the room;, such thatS; 2 C, and then apply an
optimal time and space convex hull algorithm to theset {v;, v; 1} in order to compute&’;, and
subsequently from that;. In the discussion that follows, we assume that for eacheoavwca; of
P we associate a sét, which is initialized to be the empty set. The s8tswill be progressively
filled with vertices ofP, so that in the end they fulfill the containment property nmred above.

Splitting P into y-monotone piecewise-convex subpolygons can be done inteps:s

1. First we need to split each convex arcinto y-monotone pieces. Le?’ be the piecewise-
convex polygon we get by introducing tlyeextremal points for each;. Since eactu; can
yield up to threey-monotone convex pieces, we conclude tft < 3n. Obviously splitting
the convex arcs; into y-monotone pieces také¥(n) time and space. A vertex added to split
a convex arc intgj-monotone pieces will be called adlded extremal vertex
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Figure 12: Decomposition of a piecewise-convex polygon tenhy-monotone subpolygons. The
white points are added extremal vertices that have beerdaddeder to split non;-monotone arcs
to y-monotone pieces. The bridges are shown as dashed segments.

2. Second, we need to apply the standard algorithm for canmgytmonotone subpolygons out
of a linear polygon ta®’ (cf. [23] or [12]). The algorithm in [23] (or [12]) is valid rtenly for
line segments, but also for piecewise-convex polygonsisting of y-monotone arcs (such as
P’). Since|P’| < 3n, we conclude that computing themonotone subpolygons @’ takes
O(nlogn) time and require®(n) space.

Note that a non-split arc aP belongs to exactly ong-monotone subpolygory-monotone pieces
of a split arc ofP may belong to at most threemonotone subpolygons (see Fig. 12).

At the beginning of our algorithm we associate to eachuam@f P a set of vertices;, which is
initialized to the empty set. Suppose now that we hayenaonotone polygor®). The edges of)
are either convex arcs @f, or pieces of convex arcs @1, or line segments between mutually visible
vertices ofP, added in order to form thg-monotone subpolygons @t; we call these line segments
bridges(see Fig. 12). For each non-bridge edgef (), we want to compute the s€t". This can be
done by sweeping in the negativey-direction (i.e., by moving the sweep line frofibo to —oo).
The events of the sweep correspond togleordinates of the vertices ¢f, which are all known
before-hand and can be put in a decreasing sorted list. T8teefient of the sweep corresponds to
the top-most vertex af): since consists ofj-monotone convex arcs, themaximal point of@ is
necessarily a vertex. The last event of the sweep corresgoritie bottom-most vertex 6J, which
is also they-minimal point of Q. We distinguish between four different types of events:

1. the first event: corresponds to the top-most verte of

2. the last event: corresponds to the bottom-most vertéx, of
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3. aleft event: corresponds to a vertex of the {jefhonotone chain of), and
4. aright event: corresponds to a vertex of the riginhonotone chain of).

Our sweep algorithm proceeds as follows. Ldte the sweep line parallel to theaxis at somey.
For eachy in between thg-maximal andy-minimal values ofy, ¢ intersects) at two points which
belong to either a left edgeg (i.e., an edge on the left-monotone chain of)) or is a left vertex
v; (i.e., a vertex on the lefy-monotone chain of)), and either a right edge. (i.e., an arc on the
right y-monotone chain of)) or a right vertexv, (i.e., a vertex on the righj-monotone chain of
Q). We are going to associate the current left edgat positiony to a point setS;, and the current
right edge at positiony to a point setS. If the edgee; (resp.,e,.) is a non-bridge edge, the s&t
(resp.,Sr) will contain vertices ofp that are inside the room of the convex arcfdtorresponding
e; (resp..e,).

When they-maximal vertexv,,,... iS encountered, i.e., during the first event, we initialize
and Sk to be the empty set. When a left event is encountered due awvertet ¢; ., be the left
edge above ande; 40, b€ the left edge below and lete, be the current right edge (i.e., the right
edge at the/-position ofv). If ¢, ,,, is an non-bridge edge, and is the corresponding convex arc
of P, we augment the seff; by the vertices inS;. Then, irrespectively of whether or net.,, is
a bridge edge, we re-initializ€,, to be the empty set. Finally, &, is a non-bridge edge, ang,
is the corresponding convex arc ity we check ifv is inside the roomr;, or lies in the interior of
the chord ofry; if this is the case we add to Sg. When a right event is encountered our sweep
algorithm behaves symmetrically. If the right event is dua vertexv, lete, ., be right edge of)
abovev ande, 40.n be the right edge of) beloww and lete; be the current left edge @}. If ¢; .,
is a non-bridge edge, and is the corresponding convex arc Bf we augment; by the vertices
in Sr. Then, irrespectively of whether or net,,, is a bridge edge or not, we re-initializ; to be
the empty set. Finally, I§; is a non-bridge edge, ang is the corresponding convex arc Bf we
check ifv is inside the roomr;, or lies in the interior of the chord of;.; if this is the case we add
to S;.. When the last event is encountered due togtmeinimal vertexv,,;,, lete; ande,. be the left
and right edges af) abovev,,,;.., respectively. If; is a non-bridge edge, let be the corresponding
convex arc inP. In this case we simply augmeSt by the vertices inS;. Symmetrically, ife,. is
a non-bridge edge, let; be the corresponding convex arcih In this case we simply augmes
by the vertices irb'z.

We claim that our sweep-line algorithm computes a%etuch thatS; O C;. To prove this we
need the following intermediate result:

Lemma 8 Given a non-empty room of P, with a; the corresponding convex arc, the vertices of the
setC belong to they-monotone subpolygons &f computed via the algorithm in [23] (or [12]),
which either contain the entire arg; or y-monotone pieces af.

Proof. Letr; be a non-empty roona, the corresponding convex arc andddie a vertex of” in C
that is not a vertex of any of themonotone subpolygons @1’ (computed by the algorithm in [23]
or [12]) that contain either the entire arcor y-monotone pieces af;. Letv,,,q. (resp.vm:,) be the
vertex of P of maximum (resp., minimumy-coordinate inC; (ties are broken lexicographically).
Let/, be the line parallel to the-axis passing through. Consider the following cases:

RR n° 6132



inria-00132988, version 8 - 18 Feb 2008

22 Karavelas and Tsigaridas

@ (b)

Figure 13: Proof of Lemma 8. (a) The case= C; \ {vmin, Vmaz }, With wy € s. (b) The case
u € CF \ {Vmin, Vmaz }» Withw,w_ ¢ s. (C) The case: = vpqz-

1. u € CF \ {Vmin, Umaz }- IN this caseu will be a vertex in either the lefj-monotone chain of
C; or a vertex in the righg-monotone chain of’;. Without loss of generality we can assume
thatw is a vertex in the righy-monotone chain of’; (see Figs. 13(a) and 13(b)). Le&tbe the
intersection of,, with a;. Let@ (resp.,Q’) be they-monotone subpolygon @’ that contains
u (resp.,u); by our assumptio® # Q’. Finally, letu (resp.,u_) be the vertex of’; above
(resp., below): in the righty-monotone chain of’;.

The line segmentu’ cannot intersect any edges Bf since this would contradict the fact
thatu € C;. Similarly, uu’ cannot contain any vertices &f: if v is a vertex ofP in the
interior of uv’, v would be inside the triangleu u_, which contradicts the fact thate C7,
whereas ifv is a vertex of P’ \ P in the interior ofuu’, P would not be locally convex at
v, a contradiction with the fact tha? is a piecewise-convex polygon. As a result, and since
Q@ # @', there exists a bridge edgentersectinguu’. Letw.,, w_ be the two endpoints of

in P’, wherew, lies above the liné,, andw_ lies below the line,,. In fact neitherw, nor
w_ can be a vertex itP’ \ P, since the algorithm in [23] (or [12]) will connect a vertex i
P’\ P inside a room; with either they-maximal or they-minimal vertex ofC}, only. Let
£y (resp./_) be the line passing through the vertieeandu_ (resp.,u andu_). Finally, let

s be the sector delimited by the linés, ¢/_ anda;. Now, if w lies insides, thenu will be
inside the trianglevuu_ (see Fig. 13(a)). Analogously, if_ lies insides, thenu will be
inside the trianglev_u,u_. In both cases we get a contradiction with the fact that C;.

If neitherw, norw_ lie insides, then bothw, andw_ have to be vertices inside, and
moreoveru will lie inside the convex quadrilaterad . v, u_w_; again this contradicts the
fact thatu € C; (see Fig. 13(b)).

2. U = vpmae. BY the maximality of they-coordinate ofu in C;, we have that thg-coordinate
of w is larger than or equal to thecoordinates of both; andv;.,. Therefore, the liné,,
intersects the ara; exactly twice, and, moreovet,; has ay-maximal vertex ofP’ \ P in
its interior, which we denote by, .. (see Fig. 13(c)). Let’ be the intersection of, with
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a; that lies to the right of;, and letQ (resp.,Q’) be they-monotone subpolygon a?’ that
containsu (resp.,u’). By assumptiorf) # @', which implies that there exists a bridge edge
intersecting the line segment’. Notice, that, as in the casec C; \ {vmin, Vmas }, the line
segmentw’ cannot intersect any edges Bf or cannot contain any vertexof P’ \ P; the
former would contradict the fact thate C;, whereas as the latter would contradict the fact
that P is piecewise-convex. Furthermorg,’ cannot contain vertices d? since this would
contradict the maximality of thg-coordinate of in C;.

Letw, andw_ be the endpoints of above and below,,, respectively. Notice that cannot
havev!, .. as endpoint, since the only bridge edge thatjas, as endpoint is the bridge edge
vl .U Butthenw must be a vertex oP lying insider;; this contradicts the maximality of

they-coordinate ofu among the vertices i@;.

3. u = v,n- This case is entirely symmetric to the case v;,q- O

An immediate corollary of the above lemma is the following:

Corollary 9 For each convex are; of P, the setS; computed by the sweep algorithm described
above is a superset of the gg&t.

Let us now analyze the time and space complexity of Step leoathorithm sketched at the
beginning of this subsection. Computing the polygonal epipnation P of P requires subdividing
P into y-monotone subpolygons. This subdivision tak¥s: log n) time andO(n) space. Once we
have the subdivision oP into y-monotone subpolygons we need to compute the Sefer each
convex arca; of P. The setsS; can be implemented as red-black trees. Inserting an eleiment
somesS; takesO(logn) time. During the course of our algorithm we perform only iie®s on the
Si’s. A vertexv of P is inserted at mosfeg(v) times in someS;, wheredeg(v) is the degree of
v in the y-monotone decomposition @?. Since the sum of the degrees of the vertice®ah the
y-monotone decomposition d? is O(n), we conclude that the total size of ti$¢'s is O(n) and
that we performO(n) insertions on thes;’s. Therefore we need(nlogn) time andO(n) space
to compute thes;’s. Finally, since} " | |S;| = O(n), the setLC; can also be computed in total
O(nlogn) time andO(n) space. The analysis above thus yields the following:

Theorem 10 Let P be a piecewise-convex polygon with> 2 vertices. We can compute a guarding
set for P of size at most22 | in O(nlogn) time andO(n) space.

3.5 The lower bound construction

In this section we are going to present a piecewise-convéggpn which requires a minimum of
|42 ] — 1 vertex guards in order to be guarded.

Let us first consider the windmill-like piecewise-convexygmn IV with seven vertices of Fig.
14(a), a detail of which is shown in Fig. 14(b). THeuble eardefined by the verticess, v, and
vy and the convex aras; anday is constructed in such a way so that neitbhgmor v; can guard

both roomsr; andr, by itself. This is achieved by ensuring that (resp.,a4) intersects the line
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v4v5 (resp.,v3vy) twice. Note that bothuz anday intersect the linenv, only atwv,, wherem is
the midpoint of the line segmengv;. The double ear defined by the vertiags vs andv; and the
convex arcsi; andag is constructed in an analogous way. Moreover, the vertiges,, v, andug
are placed in such a way so that they do not (collectivelyydytize interior of the trianglesvsv;
(for example the lengths of the edgg®; andv,vs are considered to be big enough, so thatioes
not see too much of the trianglgusv7). As a result of this construction}” cannot be guarded by
two vertex guards, but can be guarded with three. There d@ualbconly five possible guarding
triplets: {vs, vy, vs}, {vs, vs, v}, {vs, 5, v7}, {v4, v5,v7} and{vy, v, v7}. Any guarding set that
contains eithew, or v, has cardinality at least four. The verticesand v, will be referred to as
base vertices

Consider now the crescent-like polygéhwith n vertices of Fig. 15. The vertices 6f are in
strictly convex position. This fact has the following imgdtion: if v;, v;11, v;+2 andv;, 3 are four
consecutive vertices @', andw is the point of intersection of the linesv; 1 andv;12v;.3, then
the trianglev; 11 uv, 12 is guarded if and only if eithew; . ; or v; - is in the guarding set af'. As a
result, it is easy to see thatcannot be guarded with less thgh | vertices, since in this case there
will be at least one edge both endpoints of which would nothltbé guarding set fat'.

In order to construct the piecewise-convex polygon thaggivs the lower bound mentioned at
the beginning of this section, we are going to merge seveaies ofi” with C. More precisely,
consider the piecewise-convex polygbrof Fig. 16 withn = 7k vertices. It consists of copies of
the polygoni?’ merged withC' at every other linear edge 6f, through the base points of th&’s.

In order to guard any of the windmill-like subpolygons, wedat least three vertices per such
polygon, none which can be a base point. This gives a totakofertices. On the other hand, in
order to guard the crescent-like part®fwe need at least — 1 guards among the base points. To

(b)

Figure 14: The windmill-like piecewise-convex polygdn that requires at least three vertex guards
in order to be guarded. The only triplets of guards that gu&rdire {vs, vy, v}, {vs,v5, 06},
{’Ug, Vs, 1}7}, {1)47 Vs, ’07} and{’U4, Vg, 1}7}.
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Figure 15: The crescent-like piecewise-convex polygqrthat requires a guarding set of at least
| 5] vertex guards.

Figure 16: The lower bound construction.

see that, notice that there are- 1 linear segments connecting base points; if we were to use les
thank — 1 guards, we would have at least one such line segmeértth endpoints of which would
not participate in the guarding set 6f But then, as in the case ¢f, there would be a triangle,
adjacent tee, which would not be guarded. Therefore, in order to gudnde need a minimum of

4k — 1 = L%J — 1 guards, which yields the following theorem.
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Theorem 11 There exists a family of piecewise-convex polygonsmatértices any vertex guarding
set of which has cardinality at leat | — 1.

4 Monotone piecewise-convex polygons

In this section we focus on the subclass of piecewise-copadygons that are monotone. Let
us recall the definition of monotone polygons from Sectioralcurvilinear polygonP is called
monotone if there exists a line such that any line.- perpendicular td.. intersectsP at most
twice.

In the case of linear polygons monotonicity does not yielidsdoounds on the worst case num-
ber of point or vertex guards needed in order to guard thegoolyIn both cases, monotone or possi-
bly non-monotone linear polygongy | point or vertex guards are always sufficient and sometimes
necessary. In the context of piecewise-convex polygonsithation is different. Unlike general
(i.e., not necessarily monotone) piecewise-convex paiggahich require at Iea$l47"J — 1 vertex
guards and can always be guarded wi# | vertex guards, monotone piecewise-convex polygons
can always be guarded witl§; | + 1 vertex or| 5 | point guards. These bounds are tight, since there
exist monotone piecewise-convex polygons that requirertizay vertex (see Figs. 18 and 19) or
point guards (see Fig. 20). This section is devoted to thegmtation of these tight bounds.

Vertex guards. Let us consider a monotone piecewise-convex polygprand let us assume
without loss of generality thal is monotone with respect to theaxis (see also Fig. 17). Let;,

1 < 5 < n, be thej-th vertex of P when considered in the list of vertices sorted with respetieir
x-coordinate (ties are broken lexicographically). Let algaresp.,u, 1) be the left-most (resp.,
right-most) point ofP. Let¢;, 0 < j < n + 1 be the vertical line passing through the paintof
P,andletl = {{y, 01, 0s,...,4,11} be the collection of these lines. An immediate consequehce o
the fact thatP is monotone and piecewise-convex is the following corgllar

Corollary 12 The collection of linesC decomposes the interior d? into at mostn + 1 convex
regionsk;, j = 0,...,n, that are free of vertices or edges Bf

In addition to the fact that the regioty, 1 < j < n — 1, is convex,; has on its boundary both
verticesu; andu;41. This immediately implies that both; andw;,; see the entire region;. As
far ask( andx,, are concerned, they haue andw,, on their boundary, respectively. As a result,
seeskg, whereasu,, seess,,. Hence, in order to guarg it suffices to take every other vertei,
starting fromu,, plusu, (if not already taken). The s€t = {uz,,—1,1 < m < [5]} U{u,}is,
thus, a vertex guarding set fét of size [ 5 | + 1.

A line L with respect to whichP is monotone can be computed@nn) time if it exists [13].
Given L, we can compute the vertex guarding &efor P in O(n) time andO(n) space: project the
vertices of P on L and merge the two sorted (with respect to their orderind plists of vertices in
the upper and lower chain @t; then report every other vertex in the merged sorted listisgafrom
the first vertex, plus the last vertex 8% if it has not already been reported.

The polygons\/; and M, yielding the lower bound are shown in Figs. 18 and 8. has an odd
number of vertices, wheredd, has an even number of vertices. (&t (resp.,Gs) be the vertex
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Figure 17: A monotone piecewise-convex polygdnvith n = 9 vertices and its vertical decompo-
sition into four-sided convex slabs. The pointsandu,, are the left-most and right-most points of
P; u, is the projection ofus = vg, alongé,, on the opposite chain dP. P can be either guarded
with: (1) [ 5| + 1 = 5 vertices, namely the vertex sy, us, us, ur, ug} = {v1,vs, v3,v7,v6}, OF

| 5| = 4 points, namely the point sétus, uy, ug, ug} = {uj, v2,v4,vs}.

Figure 18: A monotone piecewise-convex polygdn with an odd number of vertices that requires
| 5] + 1 vertex guards in order to be guarded: the shaded regionseehat at least one of the two
endpoints of the bottom-most edge of the polygon to be in tiE@djng set.

guarding set fol/; (resp.,Ms). Let us first considef/; (see Fig. 18). Notice that each prong of
M is fully guarded by either of its two endpoints; the othertieers of M/, can only partially guard
the prongs that they are not adjacent to. Moreover, the shaggons ofM/; can only be guarded
by u; or u,,. Suppose, now, we can guakdh with less thani 7 | + 1 vertex guards. Then either two
consecutive vertices; andu;; of My, 1 < i < n — 1, will not belong toG,, or u; andw,, will
not belong toG;. In the former case, the prong that hasandu,,; as endpoints is only partially
guarded by the vertices ifi;, a contradiction. In the latter case, the shaded regiorid,0ére not
guarded by the vertices @1, again a contradiction.
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Figure 19: A monotone piecewise-convex polygda with an even number of vertices that requires
| %] + 1 vertex guards in order to be guarded.

Consider now the polygoi/, (see Fig. 19). The number of vertices &f, betweenz; and
xo IS equal to the number of vertices betweenandxg, and even in number. Every prong bf;
betweenr; andx; (resp., between; andxzg) can be guarded by its two endpoints only; all other
vertices of M, guard each such prong only partially. The shaded regiofresp.,ss) is guarded
only if eitherz; or z3 (resp., either:s or xg) belongs toGs. The prong with endpoints, andz4
can be guarded by either bathh andxz,, or by x3. If x5 is the only vertex inGy amongzs, 3
andz,, then the shaded region is not guarded. Similarly, if:4 is the only vertex inG; among
x9, r3 andxy, then the shaded region is not guarded. Finally, if neither, nor x5 belong toGs,
then the shaded prong is not guarded. Let us suppose now thét can be guarded by less than
| 5] + 1 vertex guards. By our observations above, it is not possitzietwo consecutive vertices
u; andu; 1 of My, 1 < i < n — 1, do not belong ta7,. HenceG, will be a subset of the set

5 = {uzm-1,1 < m < | 5]} or a subset of the s&ty = {uz,,,1 < m < [§]}. Inthe former
case, i.e., ifGy C GY, neitherag nor g belong toG,, and thus the regioss is not guarded, a
contradiction. Similarly, ifGo C GY, neitherz; nor z3 belong toG,, and thus the regiosy, is not
guarded, again a contradiction. We thus conclude|tiat > [ %] + 1.

Point guards. We now turn our attention to guardirfgwith point guards (refer again to Fig. 17).
DefineGeyer t0 be the vertex seficye, = {uam,1 < m < |5} If ug # uy, i.e., if kg # 0, let
ey be the first (left-most) edge d?, andw,, ; > 1, the right-most endpoint af; (the left-most
endpoint ofe is necessarilyiy). If u,11 # un, i.e., if k41 # 0, lete; be the last (right-most) edge
of P, andu,, v < n, the left-most endpoint of; (the right-most endpoint of; is necessarily:,,).
Finally, letu!, 2 < i < n — 1 be the projection along* of u; on the opposite monotone chain of
P. Define the se€ according to the following procedure:

1. SetG equal toGpen, -
2. Ifup # uy andp > 2, replaceus in G by u),.

3. Ifupy1 # uy andnis odd andv < n — 1, replaceuztgj by u’QL%J.
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Figure 20: A comb-like monotone piecewise-convex polydut tequireg % | point guards in order
to be guarded: one point guard is required per prong.

As in the case of vertex guards, the 6etan be computed in linear time and spa€g;,.,, can
be computed in linear time and space, whereas determining(iesp.,uz| » |) is to be replaced in
G by u, (resp.,u’Qt%J) takesO(1) time. The following lemma establishes tiGitis indeed a point
guarding set forP.

Lemma 13 The setG defined according to the procedure above is a point guardeidgcs P.

Proof. Every convex regiom;, 3 < i < n — 3 is guarded by eithew; or u,, 1, Since one of the two
isindG.

Now consider the convex regiors, x; andx,. Bothus andw), lie on the common boundary
of k; andks. Since eithetusy or uj is in G, we conclude that; andr. are guarded. Ifp = 0,
i.e., if ug = u1, Ko is vacuously guarded. Supposg # 0, i.e.,up # u;. Letr; be the room ofP
corresponding to the edgg. Clearly,xo C r¢. We distinguish between the cages- 2 andyu > 2.
If © =2, thenuy, € G guardsy and thuss. If 1 > 2, the pointu, € G is a point ores. Therefore,
us guardsry and thuss.

Finally, we consider the convex regiorg_o, k,—1 andx,. If k, = 0, i.e.,upt1 = un, fin
is vacuously guarded. Suppose, now, that=# 0, i.e., u,4+1 # u,. Letr be the room ofP
corresponding to the edgg. Clearly,x,, C ;. We distinguish between the caseséven” and
odd”. If n is even, then both,,_» = Ug|n| o andu,, = ug|n | belong toG. This immediately
implies that all threex,, _», <, andx,, are guardedk,,_» is guarded by:,, >, whereass,,_; and
Kk, are guarded by,,. If n is odd, eithem,, _; = Ug| n | oru, = ugL%J belongs ta. Since both
un—1 andw,,_, lie on the common boundary af,_» andx,_;, we conclude that botk,,_, and
kn_1 are guarded. To prove that, is guarded, we further distinguish between the casesn — 1
andv <n—1.If v =n—1, thenu,_; € G is an endpoint of;, and thus guards,,. If v <n —1,
the pointu,,_; € G is a point ore;. Thereforeu!,_; guardsr; and thuss,,. O

As far as the minimum number of point guards required to gaartbnotone piecewise-convex
polygon is concerned, the polygadi, shown in Fig. 20, yields the sought for lower bound. Notice
that is very similar to the well known comb-like linear potygthat establishes the lower bound on
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the number of point or vertex guards required to guard atipelygon. In our case it is easy to see
that we need at least one point guard per prong of the polyayuhsince there argl; | prongs we
conclude that we need at led$}| point guards in order to guard/.

We are now ready to state the following theorem that summaiize results of this section.

Theorem 14 Given a monotone piecewise-convex polygowith n > 2 vertices,| 5 | + 1 vertex
(resp.,| 5] point) guards are always sufficient and sometimes necessarger to guardP. More-
over, we can compute a vertex (resp., point) guarding sePfof size| 5 | + 1 (resp.,| 5 ]) in O(n)
time andO(n) space.

5 Piecewise-concave polygons

In this section we deal with the problem of guarding piecewisncave polygons using point guards.
Guarding a piecewise-concave polygon with vertex guardglmampossible even for very simple
configurations (see Fig. 22(a)). In particular we prove tilWwing:

Theorem 15 Let P be a piecewise-concave polygon withiertices.2n — 4 point guards are always
sufficient and sometimes necessary in order to guard

Proof. To prove the sufficiency a2n — 4 point guards we essentially apply the technique in [17]
for illuminating disjoint compact convex sets — please rdteFig. 21. We denote by, the
convex object delimited by; and the chord;v;; of a;. Lett;(v;) be the tangent line te; atv;,
j=1,i+1, and leth;, be the bisecting ray of (v;11), t;+1(v;41) pointing towards the interior of
P.

Construct a set of locally convex arks = {1, k2, ..., K, } that lie entirely insideP as such
that (cf. [17]):

(a) the endpoints of; arev;, v;11,

(b) x; istangent td; (resp.,b; 1) atv; (resp.,v;11),

(c) if S; is the locally convex object defined lay and its chordy;v; 41, thenA; C S;, 1 <i < n,
(d) the arcs:; are pairwise non-crossing, and

(e) the number of tangencies between the elemenitSisfmaximized.

Let @ be the piecewise-concave polygon defined by the sequenhe afes inC.

Suppose now that; andx, ;) are tangent] < j < m, and let/; ,; be the common tangent to
ki andr,(;). Lets; 5(;) be the line segment of ;) between the points of intersection ©f, ;)
with 4; ;(;—1) and/; ,(;+1). LetIl; be the polygonal region defined by the cherd;,; and the
line segments;; ,(;). II; is a linear polygon with at most two reflex vertices (atand/orv; ).

It is easy to see that placing guards on the vertices ofl}® guards both” and(). Let G be
the guard set of” constructed this way. Construct, now, a planar grBphith vertex setC. Two
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Figure 21: The proof for the upper bound of Theorem 15. Thggmi P is shown with thick solid
curvilinear arcs. The aros; are shown as thin solid arcs. The dotted rays are the bige@ysb;,
whereas the dashed ray is the rgyvy). The regionsds, Ss \ Ag andIlg \ Sg are also shown using
three levels of gray; note thais has one reflex vertex at. The graphl’ (i.e., the triangulation
graph7 (R)) is shown in red: the node; corresponds to the arg and the polygoR is depicted
via thick segments.

verticesk; andx; of I' are connected via an edgesif andx; are tangent. The graghis a planar
graph combinatorially equivalent to the triangulationgrd@ (R) of a polygonR with n vertices.
The edges of" connecting the arcs;, x;11, 1 < i < n, are the boundary edges &f whereas
all other edges of correspond to diagonals ii(R). Let Q° denote the interior of). Observing
that@° consists of a number of faces that are in 1-1 correspondeitic¢hs triangles ir7 (R), we
conclude that)° consists ofr — 2 faces, each containing three guard<f. It fact, each face of
QQ° can actually be guarded by only two of the three guards itaiostand thus we can eliminate
one of them per face @P°. The new guard se&¥ of ) constructed above is also a guard setifor
and containg(n — 2) point guards.

To prove the necessity, refer to the piecewise-concavegpaly in Fig. 22(b). Each one of
the pseudo-triangular regions in the interior@frequires exactly two point guards in order to be
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(@) (b)

Figure 22: (a) A piecewise-concave polygéhthat cannot be guarded solely by vertex guards.
Two consecutive edges @f have a common tangent at the common vertex and as a resuitréee t
vertices of P see only the points along the dashed segments. (b) A piee@eizcave polygo
that require€n — 4 point guards in order to be guarded.

guarded. Consider for example the pseudo-triangown in gray in Fig. 22(b). We need one
point along each one of the linég /5 andl3 in order to guard the regions near the corners,of
which implies that we need at least two points in order to dua(two out of the three points of
intersection of the lineg, I> andl3). The number of such pseudo-triangular regions is exactiy,
thus we need a total @n — 4 point guards to guaré. O

6 Locally convex and general polygons

We have so far been dealing with the cases of piecewise-g@ne piecewise-concave polygons.
In this section we will present results about locally conveonotone locally convex and general
polygons.
Locally convex polygons. The situation for locally convex polygons is much less iegting, as
compared to piecewise-convex polygons, in the sense theg #xist locally convex polygons that
requiren vertex guards in order to be guarded. Consider for exampléttally convex polygon of
Fig. 23(a). Every room in this polygon cannot be guarded biygle guard, but rather it requires
both vertices of every locally convex edge to be in any gueydiet in order for the corresponding
room to be guarded. As aresult it requiregertex guards. Clearly, theseguards are also sufficient,
since any one of them guards also the central convex paregfdlygon. More interestingly, even if
we do not restrict ourselves to vertex guards, but rathewadjuards to be any point in the interior
or the boundary of the polygon, then the locally convex potym Fig. 23(a) still requires guards.
This stems from the fact that the rooms of this polygon haenlm®nstructed in such a way so that
the kernel of each room is the empty set (i.e., they are notsbi@ed objects). However, we can
guard each room with two guards, which can actually be chtsée the endpoints of the locally
convex arcs.

In fact then vertices of a locally convex polygon are not only necessamyhe worst case),
but also always sufficient. Consider a pojninside a locally convex polygo#® and letp, be an
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(@) (b)

Figure 23: (a) A locally convex polygon with vertices that requires vertex or point guards in
order to be guarded. (b) A non-convex polygon that cannotuaeded by vertex guards, and which
requires an infinite number of point guards.

arbitrary ray emanating from Letw, be the first point of intersection @f, with the boundary o

as we walk orp, away fromg. If w, is a vertex ofP we are doney is visible by one of the vertices

of P. Otherwise, rotate, aroundg in the, say, counterclockwise direction, until the line rsegt
qw, hits a featuref of P (if multiple features ofP are hit at the same time, consider the one closest
to ¢ alongp,). f cannot be a point in the interior of an edgefofsince then” would have to be
locally concave af. Therefore,f has to be a vertex aP, i.e.,q is guarded byf. We can thus state
the following theorem:

Theorem 16 Let P be a locally convex polygon with > 2 vertices. Them vertex (then vertices
of P) or point guards are always sufficient and sometimes necggsarder to guardP.

Monotone locally convex polygons. As far as monotone locally convex polygons are concerned,
it easy to see thats | + 1 vertex or point guards are always sufficient. [i2be a locally convex
polygon. As in the case of piecewise-convex polygons, asesuithout loss of generality that is
monotone with respect to theaxis. Letuy, ..., u, be the vertices of sorted with respect to their
x-coordinate. To prove our sufficiency result, it sufficesaosider the vertical decomposition Bf
into at mostn + 1 convex regions:;, 0 < ¢ < n. Corollary 12 remains valid. As a result, the vertex
setG = {ugm-1,1 <m < 5]} U{u,} is a guarding set foP of size || + 1. every convex
regionk;, 1 < i < n — 1is guarded by eithet, or u; .1, Ssince at least one af;, u;;1 is in G;
moreoveru; andu, guardkg andx,,, respectively. As in the case of piecewise-convex polygons
G can be computed in linear time and space.

In fact, the upper bound on the number of vertex/point guBmd® just presented is also a worst
case lower bound. Consider the locally convex polygbnandTs; of Fig. 24, each consisting of
vertices.T has an odd number of vertices, while the number of verticés a$ even. It is readily
seen that botl’; and7» need at least one point guard per prong (including the mgbst prong
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Figure 24: Two comb-like monotone locally convex polyg@ngtop) and7; (bottom) with an odd
and even number of vertices, respectively. Both polygogaire | 5 | + 1 point guards in order to
be guarded: one point guard is required per prong.

of 77 and both the left-most and right-most prongsigj. Since the number of prongs in eitHEy
orTyis || + 1, we conclude thal; andT; require at least % | 4 1 point guards in order to be
guarded. Summarizing our results about monotone localtyeopolygons:

Theorem 17 Given a monotone locally convex polygBrwith n > 2 vertices,| 5] + 1 vertex or
point guards are always sufficient and sometimes necessanygler to guardP. Moreover, we can
compute a vertex guarding set férof size| 5 | + 1 in O(n) time andO(n) space.

Remark 3 The results presented in this section about locally conayxgons are in essence the
same with known results on the number of reflex vertices requio guard linear polygons. In
particular, it is known that if a linear polygan hasr > 1 reflex verticesy vertex guards placed on
these vertices are always sufficient and sometimes negassader to guard® [29], whereas ifP

is a monotone linear polygohy | +1 among its- reflex vertices are always sufficient and sometimes
necessary in order to guafél[1]. In our setting, the: reflex vertices of the linear polygaR are
then vertices of our locally convex polygons, and the locallywnpolylines connecting the reflex
vertices ofP are our locally convex edges. Clearly, the analogy onlyrsefe the combinatorial
complexity of guarding sets, since for our algorithmic gs& we have assumed that the polygon
edges have constant complexity.
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In the context we have just described, i.e., seeing linegmgpas as locally convex polygons
the vertices of which are the reflex vertices of the lineaygohs, it also possible to “translate” the
results of Section 3 as follows:

Consider a linear polygoR with r > 2 reflex vertices. IfP can be decomposed into
¢ > r convex polylines pointing towards the exterior of the palggthenP can be
guarded with at most3 | vertex guards.

The analogous “translation” for the results of Section Ssisadlows:

Consider a linear polygoR with n vertices, of which are reflex. IfP can be decom-
posed inta: > n—r convex polylines pointing towards the interior of the paiypgthen
P can be guarded with at maat — 4 point guards.

General polygons. The class of general polygons poses difficulties. Consigembn-convex
polygon N of Fig. 23(b), which consists of two vertices and v, and two convex arcs; and
az. The two arcs are tangent to a common lihat v,. It is readily visible thaty; andvy cannot
guard the interior ofV. In fact,v; cannot guard any point a¥ other than itself. Even worse, any
finite number of guards, placed anywhere\h cannot guard the polygon. To see that, consider the
vicinity of v;. Assume thatV can be guarded by a finite number of guards, ang it v, be the
guard closest t@; with respect to shortest paths withM. Consider the lin€, passing through
g that is tangent ta, (among the two possible tangents we are interested in thehenpoint of
tangency of which is closer to;). Let s, be the sector oV delimited bya,, a; and/,. s, cannot
contain any guarding point, since such a vertex would besclos); thang. Sinces, is not guarded
by v1, we conclude that, is not guarded at all, which contradicts our assumptionha guarded
by a finite set of guards.

7 Summary and future work

In this paper we have considered the problem of guardingygpakl art gallery, the walls of which
are allowed to be arcs of curves (our results are summarnizéahile 1). We have demonstrated that
if we allow these arcs to be locally convex araqyvertex or point) guards are always sufficient and
sometimes necessary. If these arcs are allowed to be naygdhen an infinite number of guards
may be required. In the case of piecewise-convex polygotisnwertices, we have shown that it is
always possible to guard the polygon with* | vertex guards, whereas? | — 1 vertex guards are
sometimes necessary. Furthermore, we have describ@¢&liog n) time andO(n) space algorithm
for computing a vertex guarding set of size at mp%ﬂ. For piecewise-concave polygons, we
have shown thatn — 4 point guards are always sufficient and sometimes necedsaally, in the
special case of monotone piecewise-convex polygohss-1 vertex or| 7 | point guards are always
sufficient and sometimes necessary, whereas for monotoalyl@onvex polygons % | + 1 vertex
or point guards are always sufficient and sometimes negessar

Up to now we have not found a piecewise-convex polygon tteatires more tham%”j +0(1)
vertex guards, nor have we devised a polynomial time algoritor guarding a piecewise-convex
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Bounds by guard type
Polygon type Vertex Point
Upper | Lower Upper | Lower
Piecewise-convex ! B
Monotone piecewise-convex 5] +1 | 2]
Locally convex n
Monotone locally convex 5] +1

Piecewise-concave NOT ALWAYS POSSIBLE 2n —4

General NOT ALWAYS POSSIBLE 00

Table 1: The results in this paper: worst case upper and lbaends on the number of vertex or
point guards needed in order to guard different types ofiinear polygons.

polygon with less tharh%”j vertex guards. Closing the gap between then two complexigimains
an open problem. Another open problem is the worst case mainumber of point guards required
to guard a piecewise-convex polygon. In this case our loveend construction fails, since it is
possible to guard the corresponding polygon V\{@fj -+ O(1) point guards. On the other hand,
the comb-like polygon shown in Fig. 20, requirgg]| point guards. Clearly, our algorithm that
computes a guarding set of at m¢s§ | vertex guards is still applicable.

Other types of guarding problems have been studied in thetiire, which either differ on the
type of guards (e.g., edge or mobile guards), the topolodiyeopolygons considered (e.g., polygons
with holes) or the guarding model (e.qg., the fortress pnobide the prison yard problem, mentioned
in Section 1); see the book by O’Rourke [29], the survey payeshermer [31] of the book chapter
by Urrutia [34] for an extensive list of the variations of tag gallery problem with respect to the
types of guards or the guarding model. It would be intergsiinrextend these results to the families
of curvilinear polygons presented in this paper.

Last but not least, in the case of general polygons, is itiptesto devise an algorithm for com-
puting a guarding set of finite cardinality, if the polygonedaot contain cusp-like configurations
such as the one in Fig. 23(b)?
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