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Abstract

We study the predicates involved in an efficient dynamic algorithm for computing
the Apollonius diagram in the plane, also known as the additively weighted Voronoi
diagram. We present a complete algorithmic analysis of these predicates, some of
which are reduced to simpler and more easily computed primitives. This gives rise to
an exact and efficient implementation of the algorithm, that handles all special cases.
Among our tools we distinguish an inversion transformation and an infinitesimal
perturbation for handling degeneracies.

The implementation of the predicates requires certain algebraic operations. In
studying the latter, we aim at minimizing the algebraic degree of the predicates
and the number of arithmetic operations; this twofold optimization corresponds to
reducing bit complexity. The proposed algorithms are based on static Sturm se-
quences. Multivariate resultants provide a deeper understanding of the predicates
and are compared against our methods. We expect that our algebraic techniques are
sufficiently powerful and general to be applied to a number of analogous geometric
problems on curved objects. Their efficiency, and that of the overall implementation,
are illustrated by a series of numerical experiments. Our approach can be imme-
diately extended to the incremental construction of abstract Voronoi diagrams for
various classes of objects.
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1 Introduction

Voronoi diagrams are among the most studied constructions in computational
geometry due to their numerous applications, including motion planning and
collision detection, communication networks, graphics, and growth of micro-
organisms in biology.

In this paper we deal with the problem of computing the predicates for the
Apollonius diagram, also known as the additively weighted Voronoi diagram.
The input data is a set of points and a set of weights associated with them.
We denote the Euclidean norm by ‖·‖. We define the distance δ(p, B) between
a point p on the Euclidean plane E2 and a weighted point B = {b, r} as

δ(p, B) = ‖p− b‖ − r.

We also define the distance δ(Bi, Bj) between two weighted points Bν =
{bν , rν}, ν = i, j, as:

δ(Bi, Bj) = ‖bi − bj‖ − ri − rj.

The Apollonius diagram is then defined to be the subdivision of the plane
induced by assigning each point p ∈ E2 to its nearest neighbor with respect to
the distance function δ(·, ·). If the weights are positive, the Apollonius diagram
can be viewed as the Voronoi diagram for a set of circles. Points outside a circle
have positive distance, whereas points inside a circle have negative distance.
The Apollonius diagram does not change if all the weights are translated by
the same quantity. Hence, in the remainder of this paper we assume that all
the weights are positive. We will also use the term site to refer to a weighted
point taken from our input set. In contrast to the usual Euclidean Voronoi
diagram for points, in Apollonius diagram a site can have an empty Voronoi
cell. We call such a site hidden.

There have been several algorithms for this problem, e.g. [1,2,3,4,5], however
the problem of designing algorithms for the evaluation of predicates has sel-
dom been treated and even less often implemented. In particular, [5,3] discuss
the predicates required, but they are rather complicated. The algorithm pre-
sented in [4] treats Voronoi diagrams in an abstract way and thus requires the
predicates as input. The work [6] examines the main predicates involved in
the algorithm of [1], which is nonetheless of quadratic complexity and off-line.
The algebraic formulations of the predicates have maximum degree 16 in the
input variables, which is the same as in our case.

In [7,8], an implementation of the Delaunay triangulation of the input point
set is used, followed by edge flips in order to arrive at the desired Voronoi
diagram. However, the algorithm has quadratic worst-time complexity and is
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off-line; it uses a somewhat different metric, so all sites correspond to non-
empty Voronoi cells. Lastly, this approach maintains topological consistency
but not geometric exactness, and it makes no algebraic analysis of the predi-
cates.

The combinatorial algorithm that we consider is a dynamic one and is detailed
in [9]; the latter also offers a proof of correctness. The basic idea is similar to
that in [4]. To insert a new site we first determine if the new site is hidden.
Otherwise, we find the portion of the existing Apollonius diagram that is in
conflict with the new site; finally we add the new site to the existing Apollonius
diagram using the boundary of the conflict region. The predicates needed for
this algorithm are discussed in [9, Sec.6]; we organize them in a flowchart
in Section 3.3. It is noteworthy that a subset of our predicates are sufficient
for implementing the algorithm in [4] for the same problem. In [4], the only
predicate needed by the algorithm is the following: given an edge of the Voronoi
diagram, defined by four sites, as well as a fifth site, determine what portion of
the Voronoi edge is destroyed by the new site. We discuss this in more detail
in Section 11.

The study of predicates in computational geometry indicates a shift of focus
towards lower level algorithmic issues. In particular, minimizing the algebraic
degree of the tested quantities (in terms of the input parameters) has nowadays
become a question that influences algorithm design. A related issue concerns
algebraic algorithms for evaluating geometric predicates efficiently and accu-
rately, e.g. [10,11,12,13,14]. In Section 8.5 we deal with one such predicate,
which calls for comparing roots of real quadratic polynomials; our algebraic
techniques have been published in preliminary form in [15] and achieve a max-
imum degree of the tested quantities equal to 16. The study of several other
possible methods has been undertaken in [16]. Its main conclusion is that all
methods which minimize the maximum algebraic degree need to test the same
quantities. We aspire that our algebraic tools, based on static Sturm sequences,
can serve not only for solving the problem in higher dimensions but also in
analogous problems, such as arrangements of algebraic curves and surfaces.
Their advantage is that they do not depend on the root separation. Moreover,
all computations can be performed over the ring of the given quantities thus,
if all inputs are integers, it suffices to use integer arithmetic of sufficiently high
precision. On the downside, our algebraic methods rely on isolating intervals
for the roots of polynomials, in order to guarantee optimal performance. Ex-
tensions of our approach to polynomials of degree higher than 2 can be found
in [17].

This paper is structured as follows. In the following section we discuss the
problem’s setting and properties of the Apollonius diagram. In Section 3 we
sketch the dynamic algorithm and illustrate the relations among its predi-
cates and subpredicates. Our main algebraic tools are discussed in Section 4.
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In Section 4.3 we describe inversion, and perform some preliminary computa-
tions that will be needed for the (sub)predicates. In Section 5 we present our
perturbation scheme for dealing with degeneracies. Section 6 treats the first
three predicates, while Section 7 presents the InfiniteEdgeConflictType

predicate. The next predicate is analyzed in Section 8, along with its subpredi-
cates: Section 8.1 shows how to determine the type of a shadow region and the
next two sections describe the Existence and the InCircle subpredicates.
In Section 8.5 we describe the RadiiDifference subpredicate and show how
to compute it optimally; this is the hardest predicate and our algebraic tools
are fully applied here. Section 9 treats the last two predicates. In Section 10
we perform two sets of numerical experiments, namely for studying the entire
algorithm and its predicates. Finally, in Section 11 we discuss extensions of
our work and we conclude with open questions and future work.

2 Preliminaries

In this section we provide basic definitions and discuss various properties of
Apollonius diagrams that are interesting from the algorithmic or evaluation-
of-predicates point of view. When applicable we will make the analogy or
indicate the differences with respect to the Voronoi diagram of point sites.

Let B be a set of sites Bj, with centers bj and radii rj. For each j 6= i, let
Hij = {y ∈ E2 : δ(y, Bi) ≤ δ(y, Bj)}. Then the (closed) Apollonius cell Vi of
Bi is defined to be

Vi =
⋂

i6=j

Hij.

The connected set of points that belong to exactly two Apollonius cells are
called Apollonius edges, whereas points that belong to more than two Apol-
lonius cells are called Apollonius vertices. The Apollonius diagram V(B) of B
is defined as the collection of the Apollonius cells, edges and vertices. The
Apollonius skeleton V1(B) of B is defined as the union of the Apollonius edges
and Apollonius vertices of V(B). The Apollonius diagram is a subdivision of
the plane [5, Property 1]. Its skeleton consists of straight or hyperbolic arcs
and each cell is star-shaped with respect to the center of the corresponding
site [5, Properties 3 and 4]). This is entirely analogous to the case of points,
with the only exception being that the skeleton consists of straight arcs only.

In the case of the usual Euclidean Voronoi diagram for a set of points, every
point has a non-empty Voronoi cell. In Apollonius diagrams there may exist
sites, the Apollonius cells of which are empty. In particular, the Apollonius
cell Vi of a site Bi is empty if and only if Bi is contained in another site Bj

(see [5, Property 2]). A site whose Apollonius cell has empty interior is called
hidden, whereas a site whose Apollonius cell has non-empty interior is called

4



Fig. 1. Left: the Apollonius diagram for a set of 12 sites. Visible sites are shown in
dark gray. Hidden sites are shown in light gray. The Apollonius skeleton is shown in
black. Right: a planar embedding of the Apollonius graph of the same set of sites.
The edges of the Apollonius graph are shown in black.

visible. Fig. 1(left) shows the Apollonius diagram for a set of 12 sites, among
which 2 are hidden.

We call Apollonius graph and note D(B) the dual graph of the Apollonius
diagram V(B). There is a vertex in D(B) for each visible site Bi in B. Let Bi

and Bj be two sites whose Apollonius cells Vi and Vj are adjacent. We denote
by αk`

ij the Apollonius edge in Vi ∩ Vj whose endpoints are the Apollonius
vertices equidistant to Bi, Bj, Bk and Bi, B`, Bj, respectively. There exists an
edge ek`

ij in D(B) connecting Bi and Bj for each edge αk`
ij of V(B) in Vi∩Vj. The

fact that we have a planar embedding of linear size for the Apollonius graph
[5, Property 7], immediately implies that the size of the Apollonius diagram
is O(n). The Apollonius skeleton may consist of more than one connected
component [5, Property 9], whereas the dual graph is always connected.

If we do not have any degeneracies, the Apollonius graph has the property
that all but its outer face have exactly three edges, which is exactly what
happens in the case of the Delaunay triangulation for points. Unlike Delaunay
triangulations, Apollonius graphs may contain vertices of degree 2, i.e., we
have triangular faces with two edges in common. Moreover, if the Apollonius
skeleton consists of more than one connected component, the Apollonius graph
may also have vertices of degree 1, which are the dual of Apollonius edges with
no vertices (e.g., the Apollonius edge at the top left corner of Fig. 1(left)). To
simplify the representation of the Apollonius graph we add a fictitious site
called the site at infinity B∞. This amounts to adding a Apollonius vertex on
each unbounded edge of V1(B) (such an edge occurs for each pair of sites Bi

and Bj that appear consecutively on the convex hull of B). These additional
vertices are then connected through Apollonius edges forming the boundary of
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the Apollonius cell of B∞. In this compactified version, the Apollonius skeleton
consists of only one connected component, and the previously non-connected
components are now connected through the edges of the Apollonius cell of
B∞. The compactified Apollonius graph corresponds to the original Apollonius
graph plus edges connecting the sites on the convex hull of B with B∞. In the
absence of degeneracies, all faces of the compactified Apollonius graph have
exactly three edges, but this graph may still have vertices of degree 2. From
now on when we refer to the Apollonius diagram or the Apollonius graph, we
refer to their compactified versions (see Fig. 1(right)). Note that in the case of
point sites, both the original and the compactified versions of Voronoi diagrams
consist of a single connected component, whereas in Delaunay triangulations
no edges of degree 2 ever appear.

Degenerate cases arise when there are points equidistant to more than three
sites. Then, the Apollonius graph has faces with more than three edges. This
is entirely analogous to the situation for the usual Delaunay diagram for a
set of points with subsets of more than three cocircular points. In such a
case, a graph with triangular faces can be obtained from the Apollonius graph
through an arbitrary “triangulation” of the faces with more than three edges.

Let Bi and Bj be two sites such that none is contained inside the other. Let
us, moreover, assume that neither Bi nor Bj is the site at infinity B∞. A circle
tangent to Bi and Bj that neither contains any of them nor is contained in
any of them is called an exterior bitangent Apollonius circle. A circle tangent
to Bi and Bj that lies in Bi∩Bj is an interior bitangent Apollonius circle. Let
Bi, Bj and Bk be three sites, such that none is contained inside the others. A
circle that is tangent to all three of them, that does not contain any of them
and is not included in any of them is called an exterior tritangent Apollonius
circle. A circle that is tangent to all three of them and lies in Bi ∩Bj ∩Bk is
called an interior tritangent Apollonius circle. A triple of sites Bi, Bj and Bk

can have up to two tritangent Apollonius circles, either exterior or interior.
This is equivalent to stating that the Apollonius diagram of three sites can
have up to two Apollonius vertices (see [5, Property 5]).

Let pi, pj, pk be the points of tangency of the sites Bi, Bj, Bk with one
of their tritangent Apollonius circles. Let also CCW(·, ·, ·) denote the usual
orientation test of three points. If CCW(pi, pj, pk) > 0 we say that the tritan-
gent Apollonius circle is a CCW-Apollonius circle of the triple Bi, Bj, Bk. If
CCW(pi, pj, pk) < 0, we say that the tritangent Apollonius circle is a CW-
Apollonius circle of the triple Bi, Bj, Bk. We will show in Section 8.2 that
three sites in a given order can have at most one CCW- or CW-Apollonius
circle, which can be either exterior or interior.

The situation here is drastically different with respect to the points’ case. In
the points’ case there is really no distinction between interior and exterior
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Fig. 2. The 6 possible cases for the shadow region Sij(Bk) (dashed curve(s)). The
Apollonius circles Cijk and Cikj are shown only if they exist (thin white circles).

tritangent circles – in fact interior tritangent circles can never exist. Viewing
points as special cases of circles, a circle passing through three points is nothing
but a double circle (in the algebraic sense), i.e., two copies of the same circle.
The fact, however, that we have a single CCW-Apollonius circle is the analog
of the well known fact that there exists a unique circle that passes through
three (non-collinear) points.

Let πij denote the bisector of the sites Bi and Bj. As we have already men-
tioned, πij can be a line or a hyperbola. We define the orientation of πij to be
such that bi is always to the left of πij. Clearly, the orientation of πij defines an
ordering on the points of πij, which we denote by≺ij. Let oij be the intersection
of πij with the segment bibj. We can parameterize πij as follows: if oij ≺ij p,
then ζij(p) = δ(p, Bi)− δ(oij, Bi); otherwise, ζij(p) = −(δ(p, Bi)− δ(oij, Bi)).
The function ζij(·) is a 1–1 and onto mapping from πij to R. Given a bitangent
Apollonius circle C of Bi and Bj, we define ζij(C) to be the parameter value
ζij(c), where c ∈ πij is the center of C. In addition, given a point c ∈ πij, we
denote the bitangent Apollonius circle of Bi and Bj centered at c as Wij(c).

The shadow region Sij(B) of a site B with respect to the bisector πij of Bi

and Bj is the locus of points c on πij such that δ(B, Wij(c)) < 0. Let S̃ij(B)
denote the set of parameter values ζij(c), where c ∈ Sij(B). It is easy to
verify that S̃ij(B) can be of the form ∅, (−∞,∞), (−∞, ξ), (η,∞), (ξ, η) and
(−∞, ξ) ∪ (η,∞), where ξ, η ∈ R (see Fig. 2).

Let αk`
ij be an edge of V(B), and let Cijk and Ci`j be the tritangent CCW-
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Apollonius circles associated with the endpoints of αk`
ij . We denote by cijk

(resp. ci`j) the center of Cijk (resp. Ci`j) and call cijk (resp. ci`j) the ijk-
endpoint or ijk-vertex (resp. i`j-endpoint or i`j-vertex) of αk`

ij . Under the
mapping ζij(·), αk`

ij maps to the interval α̃k`
ij = [ξijk, ξi`j] ⊂ R (if k = ∞ or

` = ∞, then α̃k`
ij = (−∞, ξi`j] or α̃k`

ij = [ξijk,∞), respectively). We define the
conflict region Rk`

ij (B) of B with respect to the edge αk`
ij to be the intersection

Rk`
ij (B) = αk`

ij ∩Sij(B). Then, B is in conflict with αk`
ij if Rk`

ij (B) 6= ∅. Under the

mapping by ζij(·), the conflict region Rk`
ij (B) maps to R̃kl`

ij (B) = α̃k`
ij ∩ S̃ij(B).

R̃k`
ij (B) can be one of the following types (see also Fig. 3):

(1) R̃k`
ij (B) = ∅, in which case we say that B is not in conflict with αk`

ij .

(2) R̃k`
ij (B) consists of a single connected interval, in which case we further

distinguish between the following cases:
(a) α̃k`

ij = R̃k`
ij (B), in which case we say that B is in conflict with the

entire edge αk`
ij .

(b) R̃k`
ij (B) contains ξijk, but not ξi`j, in which case we say that B is in

conflict with the ijk-vertex (or first vertex) of αk`
ij .

(c) R̃k`
ij (B) contains ξi`j, but not ξijk, in which case we say that B is in

conflict with the i`j-vertex (or second vertex) of αk`
ij .

(d) R̃k`
ij (B) contains neither ξijk nor ξi`j, in which case we say that B is

in conflict with the interior of αk`
ij .

(3) R̃k`
ij (B) consists of two disjoint intervals, including respectively ξijk and

ξi`j, in which case we say that B is in conflict with both vertices of αk`
ij .

Finally we define the conflict region RB(B) of B with respect to B as the union

RB(B) =
⋃

αk`
ij
∈V(B)

Rk`
ij (B).

It is easy to verify that RB(B) = VB∪{B}(B)∩V1(B), where VB∪{B}(B) denotes
the Apollonius cell of B in V(B ∪ {B}).

Consider now the case where either Bi or Bj is the site at infinity. Without loss
of generality we assume that Bj ≡ B∞. In this case the bitangent Apollonius
circles correspond to lines tangent to Bi and they are always exterior. The
CCW-tritangent Apollonius circle Ci∞k of Bi, B∞ and Bk becomes an oriented
line bitangent to Bi and Bk, that has both Bi and Bk to its left and touches
Bi, Bk in this order. The bisector πi∞ is now a bisector at infinity, but we can
still define the map ζi∞(·) as follows. Let p be a point on πi∞ and let Wi∞(p)
be the corresponding bitangent Apollonius circle, i.e., in this case, an oriented
line tangent to Bi at some point t, that has Bi to its left. Let ~νi∞(p) denote
the unit vector in the direction of tbi. ~νi∞(p) is perpendicular to Wi∞(p) and
defines a (unique) point on the unit circle S1. We define ~ni∞(p) to be the
image of p through ζi∞(·). Hence, the function ζi∞(·) is 1–1 and onto mapping
from πi∞ to S1. An Apollonius edge αk`

i∞ on πi∞ maps to an oriented circular

8



PSfrag replacements

B

Bi

Bj

Bk

B`

πij

Cijk Ci`j

(a) R̃k`
ij (B) = ∅

PSfrag replacements

B

Bi

Bj

Bk B`

πij

Cijk
Ci`j

(b) R̃k`
ij (B) = [cijk, ci`j ]

PSfrag replacements

B

Bi

Bj

Bk

B`

πij

Cijk
Ci`j

(c) R̃k`
ij (B) = [cijk, ξ

′)

PSfrag replacements

B

Bi

BjBk B`

πij

Cijk

Ci`j

(d) R̃k`
ij (B) = (η′, ci`j ]

PSfrag replacements

B

Bi

Bj

Bk

B`

πij

Cijk

Ci`j

(e) R̃k`
ij (B) = (ξ′, η′)

PSfrag replacements

B

Bi

Bj

Bk

B`

πij

Cijk

Ci`j

(f) R̃k`
ij (B) = [cijk, ξ

′) ∪
(η′, ci`j ]

Fig. 3. The 6 possible cases for the conflict region Rk`
ij (B) of an Apollonius edge αk`

ij

lying on a finite bisector. The edge αk`
ij is shown as a solid thin curve.

arc on S1 and similarly the shadow region Si∞(Bk) of Bk with respect to πi∞
maps also to an oriented circular arc on S

1. In order to deduce the type of
the conflict region Rk`

i∞(B) it suffices to determine the type of the intersection
of the two circular arcs α̃k`

i∞ and S̃i∞(B). The types of the conflict region are
exactly the same as those in the case of a finite bisector. In the subsequent
sections we will also identify S1 with Bi, since every point ~ni∞(·) on S1 is in
1–1 correspondence with the point bi + ~ni∞(·)ri on Bi.

Let us finish this section by again making the comparison against the case of
point sites. In the point Voronoi diagram the notions of shadow and conflict
region are entirely analogous. What is different are the possible cases. The
shadow region of a point p with respect to the bisector πij of two other points
pi and pj can only be one of the following four types: ∅ (where p is collinear
with pi and pj but does not belong to the segment pipj), (−∞,∞) (when p
is contained in the segment pipj), (−∞, ξ) (when p is to the left of the line
passing through pi and pj) and (η,∞) (when p is to the right of the line passing
through pi and pj). The possible cases for the conflict region of a point with
respect to a Voronoi edge are also four, namely the cases 1, 2(a), 2(b) and 2(c)
above. Another way to derive this is consider the relation R̃k`

ij (p) = α̃k`
ij ∩S̃ij(p):

here S̃ij(p) is any of the four types mentioned above and α̃k`
ij is an interval.

The possible types for the intersection R̃k`
ij (p) are also four and topologically

equivalent to the types for S̃ij(p).
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3 The dynamic algorithm

In this section we describe briefly the algorithm presented in [9]. The aim of
this section is to focus on the required predicates rather than explain in detail
the combinatorial aspects of the algorithm. The interested reader should refer
to [9] for the details of the combinatorial part of the algorithm.

3.1 Inserting a site incrementally

In this subsection we show how to insert a new site. Let B be our set of n sites
and let us assume that we have already constructed the Apollonius diagram
for a subset B′ of B. We now want to insert a site B 6∈ B′. The insertion is
done in the following steps:

(1) Locate the nearest neighbor NN(B) of B in B′, with respect to the
distance function δ(B, ·).

(2) Test if B is hidden.
(3) Find the conflict region of B and repair the Apollonius graph.

3.1.1 Nearest neighbor location.

The nearest neighbor location of B in fact reduces to the location of the center
b of B in V(B′). We can do that as follows. Select a site Bi ∈ B′ at random.
Look at all the neighbors of Bi in the Apollonius graph. If there exists a Bj,
j 6= i, such that δ(B, Bj) < δ(B, Bi), then Bi cannot be the nearest neighbor
of B. In this case we replace Bi by Bj and restart our procedure. If none of
the neighbors of Bi is closer to B than Bi, then NN(B) = Bi.

Clearly, the only predicate needed for this phase of the algorithm is to com-
pare the quantities δ(B, Bj) and δ(B, Bi). In fact this comparison reduces to
comparing the quantities δ(b, Bj) and δ(b, Bi). Geometrically, with this pred-
icate we determine the half-plane, with respect to the (oriented) bisector πij

of Bi and Bj, which contains the point b. We refer to this predicate as the
SideOfBisector predicate.

3.1.2 Testing if a site is hidden.

It is shown in [9, Lemma 1] that B is hidden if and only if B ⊂ NN(B). This
amounts to determining the sign of the quantity δ(B, NN(B)) + 2r, where r
is the radius of B. The required predicate determines, given a site Bi and a
query site B, whether B ⊂ Bi. We call this predicate IsHidden.

10



3.1.3 Finding the conflict region.

Let R′(B) be the conflict region of B with respect to B′. Let ∂R′(B) denote
the boundary of R′(B). As discussed in [9], in order to insert the new site B we
need to discover ∂R′(B). This is done as follows. First we find a point on the
Apollonius skeleton V1(B), that is in conflict with B. Starting at that point
we perform a depth first search (DFS) on the Apollonius skeleton to discover
the entire region R′(B). Once we have discovered R′(B), we also have ∂R′(B).

We consider finding a first point on the Apollonius skeleton V1(B′) which is
in conflict with B. By [9, Lemma 2], if B is visible it has to be in conflict
with at least one of the Apollonius edges of the Apollonius cell VNN(B) of its
nearest neighbor NN(B) in B′. Since VNN(B) is star-shaped, the Apollonius
vertices of VNN(B) split VNN(B) into portions of cones whose apex is the center
bNN(B) of NN(B). Clearly, we can associate each Apollonius edge of VNN(B)

with such a cone. Then B is in conflict with the edge α, the cone of which
contains the center b of B. Therefore, we need to locate the cone that contains
b, which reduces to orientation tests of the form CCW(v, b, bNN(B)), where v
is an Apollonius vertex of VNN(B).

The corresponding predicate is Orientation. Formally, the input for this
predicate is a tritangent Apollonius circle Cijk and two sites B`, Bm, and
returns the result of the test CCW(cijk, b`, bm), where cijk, b` and bm are the
centers of Cijk, B` and Bm, respectively.

Suppose that we have found a Apollonius edge α on the boundary of VNN(B)

that is in conflict with B. If B is in conflict with the interior of α, we have
discovered the entire conflict region R′(B). Otherwise, B has to be in con-
flict with at least one of the two Voronoi vertices of α. In this case the DFS
algorithm is invoked and will recursively visit all vertices in conflict with B.
Suppose that we have arrived at a Apollonius vertex v (which is a node on the
Apollonius skeleton). Firstly, we mark it. Then we look at all the Apollonius
edges α adjacent to it. Let v′ be the Apollonius vertex of α that is different
from v. If v′ has been marked then the DFS backtracks, since we have already
processed v′. If v′ has not been visited we determine the type of the conflict
region of B with α. If B is in conflict with the entire edge α we continue
recursively on v′. Otherwise, the DFS backtracks.

From the point of view of the predicates required for the DFS performed, the
only operation we need is to find the conflict type of an Apollonius edge α
given a site B. This constitutes the EdgeConflictType predicate.

11



3.2 Site deletion

During the insertion procedure hidden sites can appear in two possible ways.
Either the new site B to be inserted is hidden, or B contains existing sites,
which after the insertion of B will become hidden. When deletion of sites is
allowed, B may contain other sites which will become visible if B is deleted.
Since a site is hidden if and only if it is contained inside some other site, there
exists a natural parent-child relationship between hidden and visible sites. In
particular, we can associate every hidden site to a visible site that contains
it. If a hidden site is contained in more than one visible sites, we can choose
the parent of the hidden site arbitrarily. A natural choice for storing hidden
sites is to maintain a list for every visible site, which contains all hidden sites
that have the visible site as their parent. In the sequel of this subsection, we
denote by Lh(B) the list of sites whose parent is B.

Suppose we are given a set B of sites for which we have already constructed
the Apollonius diagram V(B). Let also B ∈ B be a site that we wish to delete
from V(B). We distinguish between the cases where B is visible or hidden.

3.2.1 Deleting a visible site.

Suppose that B is visible. Let Bγ be the set of neighbors of VB in D(B). By
[9, Lemma 6], the Apollonius diagram after the deletion of B can be found
by constructing the Apollonius diagram of Bγ ∪ Lh(B). Once V(Bγ ∪ Lh(B))
has been constructed, we can construct V(B \ {B}) by superimposing the two
Apollonius diagrams.

Recall that we represent the Apollonius diagram through its dual, the Apol-
lonius graph. Given this, the above mentioned superposition of Apollonius
diagrams is trivial if there are no degeneracies in the input, since in this case
the dual graphs are locally the same. However, if degeneracies exist, it is pos-
sible that the dual graphs are not locally the same; this is due to the fact that
they depend on the order of insertion of sites. We will describe in Section 5
how we deal with degeneracies.

The required predicate determines, given an Apollonius edge α, whether this
edge is degenerate, i.e., it has empty interior. We call this predicate IsDe-

generateEdge.

3.2.2 Deleting a hidden site.

Suppose that B is hidden. We have to find the visible site Bi such that
B ∈ Lh(Bi) and then delete B from Lh(Bi). By [9, Lemma 1], B ⊂ NN(B).

12
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Fig. 4. Relation of predicates, subpredicates and primitives. Shaded boxes corre-
spond to the lowest level operations; these are the operations that need to be im-
plemented.

Hence B must be in the list Lh(B
′) of some Bi, which is in the same connected

component of the union of sites as NN(B). It has been shown that the sub-
graph K(B) of D(B) that consists of all edges of D(B) connecting intersecting
sites, is a spanning subgraph of the connectivity graph of the set of sites [18,
Chapter 5]. Hence the deletion of B can be done as follows:

(1) Find the nearest neighbor NN(B) of B;
(2) Walk on the connected component CNN(B) of NN(B) in the graph K(B)

and for every site Bi ∈ CNN(B) that contains B, test if B ∈ Lh(Bi);
(3) Once the site Bi, such that B ∈ Lh(Bi), is found, delete B from Lh(Bi).

The only new operation that is needed is to determine if two sites Bi, Bj

intersect. The predicate is equivalent to determining the sign of the quantity
δ(Bi, Bj) and is called IsIntersecting.

3.3 Algorithmic analysis of the predicates

The EdgeConflictType predicate requires certain subpredicates for its
evaluation. The subpredicates required depend on whether the corresponding
Apollonius edge α lies on an infinite or finite bisector. In this context we con-
ceptually have two versions of the EdgeConflictType predicate, namely
the InfiniteEdgeConflictType and FiniteEdgeConflictType predi-
cates. However, we assume that the EdgeConflictType predicate can rec-
ognize whether α is on an infinite or finite bisector and appropriately calls the
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corresponding subpredicates. If the bisector is infinite we need the following
subpredicates:

• DistanceFromBitangent, which computes the sign of the distance of a
site from a bitangent line of two other sites. It is equivalent to the InCir-

cle predicate on the input data before performing the inversion mapping
(described below).

• InsideCircularArc, which given a circular arc on a circle and a query
point on the same circle determines if the point is inside the circular arc
or not. In our case, both the endpoints of the circular arc, as well as the
query point are defined as points of tangency of a bitangent line of two
circles. We show how to reduce this subpredicate to the primitive operation
χ2 discussed and analyzed in [19]. In short, χ2(~a,~b) returns the sign of the

2-by-2 determinant of coordinates of ~a and ~b, where ~a and ~b are vectors
perpendicular to bitangent lines of two circles.

If the bisector is finite we need the following subpredicates:

• InCircle, which decides if a tritangent Apollonius circle is in conflict with
an input site; it reduces to the classical InCircle predicate for points when
all input radii are equal.

• Determining the type of a shadow region, called the ShadowRegionType

subpredicate. This subpredicate is decided by 2 primitive operations: the
Existence primitive, and DistanceFromBitangent.

• Ordering two points on the (oriented) bisector of two input sites, called the
OrderOnBisector subpredicate; typically, these points are the centers
of tritangent Apollonius circles, i.e., defined by the two sites and one third
site for each. The primitive operations required here are Orientation and
RadiiDifference, which are examined in detail later. In short, RadiiD-

ifference compares the difference of the weights of two Apollonius circles
whose centers lie on the bisector of two sites.

Finally, the IsDegenerateEdge predicate can be evaluated easily using the
InCircle and OrderOnBisector subpredicates. We will describe in detail
how this can be done in Section 9.2.

Figure 4 shows the relationships between the various, predicates, subpredi-
cates and primitives required. The shaded boxes correspond to lowest level
operations that need to be implemented.

For the purposes of computing the algebraic degree of the predicates used in
our algorithm, we assume that each site is given by its center and its radius; the
latter constitute the input variables, or parameters. Computing the algebraic
degree requires that we bound the degree of each polynomial whose sign needs
to be tested (for the particular input) in order for the corresponding predicate
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to be decided. These polynomials are defined over the input variables, hence
their total algebraic degree in these variables is well-defined.

4 Algebraic and geometric tools

This section introduces our main algebraic and geometric tools in three subsec-
tions, namely resultants, Sturm sequences, and the inversion transformation.

4.1 Multivariate resultants

We start with multivariate resultants in general and give Example 1; then we
apply resultants to the problems encountered in our algorithm’s predicates.
The interested reader may consult [20,21] for details on resultants. This sub-
section presents also geometric invariants, which are also useful in conjunction
with Sturm sequences, and Descartes’ rule of sign.

Consider a system of n+1 polynomials in n affine variables, whose coefficients
are indeterminate parameters. The resultant R of this system is an irreducible
polynomial in these indeterminate parameters, with integer coefficients; see,
for instance, the matrix determinant in Example 1. The resultant is well-
defined up to a sign. It is possible to specialize all indeterminate coefficients
to values in some arbitrary field. Then, the resultant evaluates to zero if and
only if the specialized polynomials have a common root in the algebraic closure
of the coefficient field.

More precisely, the projective (or classical) resultant of the homogenized poly-
nomials in n + 1 variables vanishes exactly when there exists a common root
in projective space Pn. Toric (or sparse) resultants express the existence of
roots in a toric variety, which is the closure of (C \ {0})n in a projective space
of dimension usually larger than n. The resultant has degree degfi

R in the
coefficients of each fi equal to the generic number of roots of the other n poly-
nomials, in the corresponding variety, either projective or toric. In the former
case, Bézout’s number implies degfi

R =
∏

j 6=i deg fj, where deg fj is the total
degree of fj. Toric elimination theory generalizes this to the mixed volume of
the fj for j 6= i. Typically, we wish to express the R as a determinant. The
type of matrices on which we concentrate here is named after Sylvester.

When we are given a well-constrained system f1, . . . , fn, one may define an
over-constrained system by adding an extra polynomial f0 = u0 + u1x1 + · · ·+
unxn. This yields the u-resultant, which factors into a constant term and linear
factors (u0α0 + u1α1 + · · · + unαn)m, where (α0 : α1 : · · · : αn) is a common
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projective zero of the f1, . . . , fn and m its multiplicity.

Example 1 Let us consider the bivariate system

f0 = u0 + u1x1 + u2x2, f1 = c10 + c11x1 + c12x
2
1, f2 = c20 + c21x2 + c22x

2
2.

Clearly, the coefficients are indeterminate parameters, so the resultant shall
be a polynomial in these ui’s and cij’s. A Sylvester-type matrix expressing the
resultant is

M =



































































c10 c12 c11 0 0 0 0 0

0 0 0 0 c10 c11 c12 0

c20 0 0 c22 c21 0 0 0

0 0 c20 0 0 c21 0 c22

u0 0 u1 0 u2 0 0 0

0 u1 u0 0 0 u2 0 0

0 0 0 u2 u0 u1 0 0

0 0 0 0 0 u0 u1 u2



































































,

where the matrix columns are indexed by monomials

1, x2
1, x1, x

2
2, x2, x1x2, x

2
1x2, x1x

2
2.

The rows of M express multiples of f1, f2, f0 by the monomials {1, x2}, {1, x1}
and {1, x1, x2, x1x2}, respectively. The number of rows containing each of
f0, f1, f2 gives the degree of the determinant in the corresponding coefficients,
namely 4,2 and 2. The Bézout numbers, as well as the mixed volumes, are
4,2,2 so, in this example, the toric and projective resultants coincide. It is
easy to prove that R | det M , hence R = det M .

The rest of this section applies resultants in conjunction with invariants to a
general class of predicates, which shall include RadiiDifference. It must be
observed that the algebraic problem is similar to that in [10], concerning cir-
cular arcs. This is not obvious here, but will be demonstrated later. Consider
predicates formulated by polynomials fτ (xτ ) := ατx

2
τ − 2βτxτ + γτ , τ = 1, 2,

and f0 = −t + x1 − x2. The latter is a u-polynomial when u0 7→ −t, u1 7→
1, u2 7→ −1. The resultant is of degree 4 in t and factors into a constant term
and 4 linear terms t− x1 + x2, where the x1, x2 represent the 4 different pairs
of roots. The irreducibility of the resultant for generic coefficients ατ , βτ , γτ

is tantamount to the fact that it gives us the smallest condition for the solv-
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ability of the 3 bivariate polynomials. Hence we obtain a lower bound on the
quantities whose sign must be determined in order to decide the predicate.

The resultant coefficients can be simplified in terms of the classical geometric
invariants, just as in [10]. For a comprehensive treatment of invariant theory
see [22]. The quantities needed here are:

∆τ = β2
τ − ατγτ , τ = 1, 2, K = α1γ2 + α2γ1 − 2β1β2.

J = α1β2 − α2β1, J ′ = β1γ2 − β2γ1, G = α1γ2 − α2γ1.

The ∆τ ’s and K are the classical invariants for the fτ by the action of SL(C2).
This is the group of matrices whose determinant equals 1, a subgroup of
GL(C2), the group of 2 × 2 invertible complex matrices. Moreover, J and
J ′ are invariant with respect to translations for the system of two quadratic
equations fτ . G is not an invariant but its expression looks like one. We can
now write,

R(t) = (α1α2)
2t4 + 4α1α2Jt3 + (4J2 + 2α1α2K)t2 + 4KJt + (G2− 4JJ ′). (1)

For a sequence (α0, . . . , αn) of reals, the number of sign variations is the num-
ber of integers i such that there exists an integer j, 0 ≤ j < i, with αjαj+k ≥ 0,
k = 1, . . . , i− j − 1 and αiαj < 0.

Theorem 2 (Descartes) [23] The number of sign variations in the coeffi-
cients of a univariate polynomial in R[x] exceeds the number of positive real
roots by an even quantity, possibly 0.

The following result follows easily, cf. e.g. [24, Ch.7, Exer.1.3]: For a polynomial
in R[x] of degree d, the number of sign variations in its coefficient sequence
gives precisely the number of positive roots assuming no root equals zero and
there are d real roots.

Case Number of positive roots of t Root ordering

1 4 x−2 < x+
2 < x−1 < x+

1

2 3 x−2 < x−1 < x+
2 < x+

1

3a 2 x−2 < x−1 < x+
1 < x+

2

3b 2 x−1 < x−2 < x+
2 < x+

1

4 1 x−1 < x−2 < x+
1 < x+

2

5 0 x−1 < x+
1 < x−2 < x+

2

Table 1
The 6 different orderings for the roots of two quadratic polynomials, assuming that
the roots are distinct; we denote by x+

τ the large root of fτ , τ = 1, 2.

Tables 1 and 2 show the possible root orderings and the number of positive
roots for t when the coefficients of R take all possible signs. It is clear how
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R4 R3 R2 R1 R0 #roots > 0 case

+ J (+) + K JK (+) − JJ ′

+ − − − − 1 infeasible

+ − − − + 2 infeasible

+ − − + − 3 2 (x−2 < x−1 < x+
2 < x+

1 )

+ − − + + 2 3

+ − + − − 3 2 (x−2 < x−1 < x+
2 < x+

1 )

+ − + − + 4 1 (x−2 < x+
2 < x−1 < x+

1 )

+ − + + − 3 2 (x−2 < x−1 < x+
2 < x+

1 )

+ − + + + 2 3

+ + − − − 1 4 (x−1 < x−2 < x+
1 < x+

2 )

+ + − − + 2 3

+ + − + − 3 infeasible

+ + − + + 2 infeasible

+ + + − − 1 4 (x−1 < x−2 < x+
1 < x+

2 )

+ + + − + 2 3

+ + + + − 1 4 (x−1 < x−2 < x+
1 < x+

2 )

+ + + + + 0 5 (x−1 < x+
1 < x−2 < x+

2 )

Table 2
Different cases according to the coefficient signs in the resultant, assuming ατ > 0.
Some of the combinations for the coefficient signs are not possible (e.g., if R3 < 0
and R2 < 0, then necessarily K < 0, which implies that R1 > 0); these cases are
denoted by the keyword “infeasible”.

to deduce the sign of t = x1 − x2, when there are 0, 1, 3, or 4 positive roots.
However, when there are two positive and two negative roots, two cases are
possible. So an additional test is necessary, which can be reduced to the sign
of E := ∆1α

2
2 −∆2α

2
1.

4.2 Sturm sequences

This section surveys Sturm sequences; further details can be found in, e.g.,
[24]. This theory shall be applied in Section 8.5.3.

Given univariate polynomials P0, P1 ∈ R[x], their Sturm sequence is any
(pseudo-remainder) sequence P of polynomials P0, P1, . . . , Pn ∈ R[x], n ≥ 1
such that αPi−1 = TiPi +βPi+1, i = 1, . . . , n−1, for some Ti ∈ R[x], α, β ∈ R,
and αβ < 0. When a specific sequence of polynomials is understood and real
number p is given, we shall denote by VP (p) the number of sign variations of
the sequence of values obtained by evaluating the polynomials Pi at p.

Proposition 3 [24, Lect. VII, §3] For relatively prime polynomials A, B ∈
R[x], where A is assumed square-free, consider any Sturm sequence P of
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f2(x+
1 ) f2(x

−

1 ) f ′2(x
+
1 ) f ′2(x

−

1 ) sign(J) Case

− − any any any 3a (x−2 < x−1 < x+
1 < x+

2 )

− + any − + 4 (x−1 < x−2 < x+
1 < x+

2 )

− + any + infeasible

+ − − any infeasible

+ − + any − 2 (x−2 < x−1 < x+
2 < x+

1 )

+ + − − + 5 (x−1 < x+
1 < x−2 < x+

2 )

+ + − + infeasible

+ + + − any 3b (x−1 < x−2 < x+
2 < x+

1 )

+ + + + − 1 (x−2 < x+
2 < x−1 < x+

1 )

Table 3
Cases according to the first 4 signs, for ατ ,∆τ > 0; sign(J) is shown if it can be
derived from the first 4 signs.

A, A′B. Then for any p < q non-roots of A, it holds that

VP (p)− VP (q) =
∑

A(ρ)=0, p<ρ<q

sign(B(ρ)).

The Sturm sequence here may be (A, A′B,−A, . . . ).

Ordering the roots of the fτ can be reduced to deciding the sign of f2 and
f ′2, say, evaluated at the root of f1 which interests us (see Table 3). This is a
direct application of Proposition 3, since we assume that the f1 and f2 have
no common roots and that ∆τ > 0, τ = 1, 2. The case ∆τ = 0 can be treated
easily, since in this case we have explicit expressions for the double root of fτ .
The Sturm sequence (Pi)i of f1 and f ′1f2 is:

P0(x) = f1(x)

P1(x) = f ′1(x)f2(x)

P2(x) = −f1(x)

P3(x) = −2α1[(α1K + 2α2∆1)x + (γ1J − α1J
′)]

P4(x) = −α1∆1(α1K + 2α2∆1)
2(G2 − 4JJ ′)

Similarly, the Sturm sequence (Qi)i of f1 and f ′1f
′
2 is:

Q0(x) = f1(x)

Q1(x) = f ′1(x)f ′2(x)

Q2(x) = α2(−Jx + L)

Q3(x) = 4α2∆1α
2
1J

2(α1∆2 + α2K)

where L = β1β2 − α2γ1. Interestingly, the same quadratic invariants are en-
countered in the Sturm sequence approach; here we also have to deal with
cubic invariants. Moreover, the constant term in the resultant is precisely the
factor of highest degree to be tested in the Sturm sequence. If we are interested
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in the larger root of f1, it is possible to apply Proposition 3 by choosing

p =
β1

α1

, q = ∞,

since they clearly avoid the roots of f1 and their interval includes only the
large root. For bounding the small root, use −q, p.

4.3 The inversion approach

In this section we show how to compute the tritangent CCW-Apollonius circle
Cijk corresponding to the triplet Bi, Bj, Bk which touches the sites Bν, ν =
i, j, k, in the order {i, j, k}, when we walk on the boundary of Cijk in the
counter-clockwise sense. We call our approach the inversion approach. This is
because we use an inversion mapping to transform the problem of computing
a circle commonly tangent to three sites to that of computing a line co-tangent
to two sites.

Let Z be the (complex) plane that contains the sites Bν, ν = i, j, k. Let
B∗

ν , ν = i, j, k be the sites with centers the centers of the Bν ’s and radii
r∗ν = rν−ri. Clearly, the site Bi has now been reduced to the point bi, whereas
the remaining two sites may have negative radius. We call the plane that
contains the sites B∗

ν , ν = i, j, k the Z∗-plane. Consider the standard inversion
mapping (cf. [25])

W (z) =
z − zi

|z − zi|2
(2)

between the complex plane Z∗ and the complex plane W, where zi is the point
bi and |z| stands for the norm of z ∈ C. This mapping maps circles on the
Z∗-plane that do not pass through zi to circles on the W-plane, and circles
that pass through zi on the Z

∗-plane to lines on the W-plane (cf. [25]).

Let C∗
ijk be the tritangent CCW-Apollonius circle of B∗

ν , ν = i, j, k. To sim-
plify our notation we drop the subscripts of Cijk and C∗

ijk. Thus in the sequel
C is in fact Cijk, and C∗ is in fact C∗

ijk. Let P = (x, y) be the center of C,
and let r be its radius. The sites B∗

ν , ν = j, k, are transformed to the sites
Wν = {(uν, vν), ρν}, ν = j, k, on the W-plane, where

uν =
x∗ν
p∗ν

, vν =
y∗ν
p∗ν

, ρν =
r∗ν
p∗ν

, ν = j, k,

x∗ν = xν − xi, y∗ν = yν − yi, p∗ν = (x∗ν)
2 + (y∗ν)

2 − (r∗ν)
2, ν = j, k. (3)

Note that since the sites B∗
ν , ν = j, k, are visible, we have p∗ν > 0, ν = j, k.

Moreover, the sign of the radii ρν, ν = j, k, is the same as the sign of the radii
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r∗ν, ν = j, k.

The site C∗ on the Z∗-plane is transformed to a line L on the W-plane. Let
āijku + b̄ijkv + c̄ijk = 0, ā2

ijk + b̄2
ijk = 1, be the equation of the line L. Since the

sites B∗
ν , ν = j, k, are tangent to C∗ on the Z

∗-plane, the sites Wν , ν = j, k, are
tangent to the line L on the W-plane (the inversion transformation preserves
tangency and containment relations). We also required that the tritangent
circle C has the correct orientation, i.e., as we walk on the boundary of C
in counter-clockwise order, we have the sites Bi, Bj and Bk to the right and
we touch the sites Bν, ν = i, j, k, in this order. The ordering does not change
when we reduce the problem of finding C to that of finding C∗. However,
the sites B∗

ν may now be on different sides of C∗, depending on the sign of
r∗ν, ν = j, k. In particular, if r∗ν is positive the site B∗

ν is to the right of C∗,
whereas if r∗ν < 0, the site B∗

ν is to the left of C∗. If r∗ν is zero, then we can
choose any of the two sides without loss of generality.

In the W-plane this requirement can be stated as follows: as we walk on the
line L, the sites Wj, Wk must be on the same side of L as in the Z∗-plane. This
can be achieved by requiring that the vector (āijk, b̄ijk) is oriented in such a
way that the positive half-plane with respect to L contains the circle(s) with
ρν positive and the negative half-plane contains the circle(s) with ρν negative.
The vector that is parallel to L in the direction that we traverse L is the
vector (b̄ijk,−āijk). On the Z

∗-plane we also required that we touch the sites
Bν, ν = i, j, k, in this order. This requirement in the W-plane means that as
we walk on L in the direction (b̄ijk,−āijk), we first touch Wj and then Wk. This
is equivalent to requiring that the projection of the vector (uk−uj, vk−vj) on
the line L is positive. This is exactly the problem of Section 7.2, where now
we also allow sites of negative radius. Using Section 7.2, we get:

āijk =
Du

jkD
ρ
jk + Dv

jk

√

∆jk

Du
jk

2 + (Dv
jk)

2
, b̄ijk =

Dv
jkD

ρ
jk −Du

jk

√

∆jk

(Du
jk)

2 + (Dv
jk)

2
, (4)

c̄ijk =
Du

jkD
uρ
jk + Dv

jkD
vρ
jk + Duv

jk

√

∆jk

(Du
jk)

2 + (Dv
jk)

2
, ∆jk = (Du

jk)
2 + (Dv

jk)
2 − (Dρ

jk)
2,

(5)
where

Ds
λν =

∣

∣

∣

∣

∣

∣

∣

sλ 1

sν 1

∣

∣

∣

∣

∣

∣

∣

, Dst
λν =

∣

∣

∣

∣

∣

∣

∣

sλ tλ

sν tν

∣

∣

∣

∣

∣

∣

∣

, s, t ∈ {u, v, ρ}, λ, ν ∈ {j, k}.

By using the inverse of the transformation (2), we can easily verify that the
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line āijku + b̄ijkv + c̄ijk = 0 is transformed to the circle:

(x +
āijk

2c̄ijk

− xi)
2 + (y +

b̄ijk

2c̄ijk

− yi)
2 =

1

4c̄2
ijk

, (6)

provided of course that c̄ijk 6= 0. If c̄ijk = 0, the line āijku + b̄ijkv + c̄ijk = 0 is
mapped to the line:

āijk(x− xi) + b̄ijk(y − yi) = 0,

which geometrically means that the three sites Bν, ν = i, j, k, are in a degen-
erate condition and instead of having two tritangent Apollonius circles, they
have a common tritangent line. In other words in this case the center of the tri-
tangent Apollonius circle is at infinity. Considering again the non-degenerate
case, equation (6) is the equation of the circle C∗. Hence the center of C is

(x, y) = (− āijk

2c̄ijk

+ xi,−
b̄ijk

2c̄ijk

+ yi) (7)

whereas the radius r of C is the radius of C∗ reduced by ri, i.e.,

r =
1

2c̄ijk

− ri.

Here we assumed that c is positive. This is a valid hypothesis because, as
we will see in Section 8.2, it is equivalent to requiring that the tritangent
Apollonius circle exists.

The expressions of āijk, b̄ijk and c̄ijk in terms of the original coordinates are:

āijk =
Exp

ijkE
rp
ijk + Eyp

ijk

√

Γijk

(Exp
ijk)

2 + (Eyp
ijk)

2
, b̄ijk =

Eyp
ijkE

rp
ijk − Exp

ijk

√

Γijk

(Exp
ijk)

2 + (Eyp
ijk)

2
, (8)

c̄ijk =
Exp

ijkE
xr
ijk + Eyp

ijkE
yr
ijk + Exy

ijk

√

Γijk

(Exp
ijk)

2 + (Eyp
ijk)

2
, (9)

where

Est
λµν =

∣

∣

∣

∣

∣

∣

∣

s∗µ t∗µ

s∗ν t∗ν

∣

∣

∣

∣

∣

∣

∣

, s, t ∈ {x, y, r, p}, λ, µ, ν ∈ {i, j, k},

and

Γijk = (Exp
ijk)

2 + (Eyp
ijk)

2 − (Erp
ijk)

2. (10)
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5 Dealing with degeneracies

We handle inputs with degeneracies by the standard conceptual infinitesimal
perturbation method. This involves no actual computation with the positive
infinitesimal variable ε; its use merely specifies the actual quantities that must
be computed and tested. Moreover, our perturbations do not increase the
asymptotic complexity of the algorithm. For general information on symbolic
perturbations one may consult, e.g., [26,27].

In the dynamic algorithm described above the Apollonius diagram is repre-
sented by its dual graph. Degenerate instances are precisely those that lead to
non-triangular faces, or to tritangents on the convex hull of B. The possible
degenerate configurations, from the point of view of analyzing the predicates,
are quite numerous. Elaborating on all of them is possible but of no interest.
All degenerate cases arise from two basic configurations: either four sites with
a common tangent Apollonius circle, or three sites that are tangent to the
same line and lie on the same halfspace with respect to that line. As we will
see below, the first degeneracy is handled really easily: we basically consider
such a configuration as being the same with the case were the fourth site does
not intersect the Apollonius circle of the first three. The second degeneracy
is the one that calls for our symbolic perturbation, and may be analyzed as
follows.

It is required that all sites on the convex hull are connected to B∞ in the
dual graph; this is a canonical configuration, since near the convex hull it does
not depend on the order of insertion. The canonicity requirement is achieved
by means of a local infinitesimal perturbation scheme, which resolves the de-
generate cases near the convex hull. Locality has a twofold sense. First, the
perturbation applies only when a specific subpredicate is considered, namely
DistanceFromBitangent (see Section 3.3), and does not constitute a pre-
processing step that modifies the entire set of input sites. In addition, a site is
perturbed in a certain way during an evaluation of this subpredicate, while it
might be perturbed in a different way during another evaluation. Our scheme
guarantees, however, that the resulting triangulated dual graph is coherent (or
consistent) and correct. More precisely, when DistanceFromBitangent is
called, we shall consider perturbed sites Bε = {b, r− ε τ}, where τ is some real
quantity determined by the problem at hand and ε → 0+ is the infinitesimal
indeterminate. Note that the implementation does not have to introduce ε;
this is simply used for the purposes of the analysis and in order to derive the
quantities to be tested.

Our perturbation does not affect the dual graph of the internal sites. In case
of degeneracies, the non-triangular faces of the dual graph can be triangulated
in an arbitrary way, because there is no canonicity requirement in the interior
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of the hull. The dual graph itself depends on the order of insertion away from
the convex hull. One may consider that an implicit perturbation is applied,
since it has been incorporated in the definitions of shadow and conflict region
(e.g., the cases δ(Cijk, B) > 0 and δ(Cijk, B) = 0 are identical).

When deletions are allowed, this calls for some care at the removal stage. Let
B be a visible site we want to delete from the Apollonius diagram and let us
assume temporarily that none of the sites in Lh(B) will become visible after the
deletion of B. The deletion procedure described above essentially simulates the
insertion of B in the Apollonius diagram of its neighbors. In fact by simulating
this insertion it is implicitly assumed that B is the last site that would have
been inserted in V(Bγ ∪ {B}). If the Apollonius cell of B has only Apollonius
vertices of degree 3, then the order in which B is inserted in V(Bγ ∪ {B}) is
not important; the star of B in the Apollonius graph D(Bγ ∪{B}) is uniquely
defined. On the contrary, when the Apollonius cell of B has vertices of degree
higher than 3, then the star of B in D(Bγ ∪ {B}) depends on the fact that B
is the last site inserted. In fact, the way we construct the Apollonius graph,
the degree of B in D(Bγ ∪ {B}) is the minimum one among all possible valid
triangulations of the dual of the Apollonius diagram for the set Bγ∪{B}. Since
in the original Apollonius graph D(B), B may not be the last site inserted,
the star of B in D(B) and D(Bγ ∪ {B}) may differ.

One way to remedy this is to perform the deletion of B in two stages: at first
we modify the Apollonius graph D(B) so as to simulate that B is the last
site inserted. In fact this amounts to minimizing B’s degree in the Apollonius
graph; minimization is understood over all possible valid Apollonius graphs.
Note that it is possible to impose the desired dual graph, since ties can be
broken at will in the interior of the hull. The second stage amounts to per-
forming the deletion as it has already been described. Minimizing the degree of
B essentially means flipping some edges in the Apollonius graph D(B) before
proceeding into the second stage of the deletion. The edges in the Apollonius
graph that are flipped are edges added to the actual dual of the Apollonius
diagram to make the Apollonius graph consisting of only triangular faces.
The edges in the Apollonius diagram that they correspond to can be viewed
as degenerate edges, i.e., edges whose endpoints coincide. Flipping an edge
in this context corresponds to a different possible way of triangulating the
non-triangular faces of the dual of the Apollonius diagram. From the point of
view of the predicates this calls for one more predicate, namely, determine if
an edge of the Apollonius diagram, defined by four sites, is degenerate.

Let us analyze a concrete example that illustrates the problem and how we
resolve it. Consider the set B of 9 point sites Bi, i = 1, . . . , 9, shown in Fig.
5 (we consider point sites for simplicity; the situation for non-point sites is
entirely analogous). The first 5 sites are cocircular, and if we insert them
in order of increasing index, the resulting Apollonius graph will be the one
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Fig. 5. The deletion procedure in the presence of degeneracies away from the con-
vex hull. (a): a set of 9 point sites B = {Bi, i = 1, . . . , 9}, with 5 cocircular sites
(Bi, i = 1, . . . , 5), and the corresponding Apollonius graph when sites are inserted
in order of increasing index. (b): the Apollonius graph after minimizing the degree
of B3. (c): the Apollonius graph after the deletion of B3. (d) and (e): the two possi-
ble Apollonius graphs for the set Bγ ∪ {B3} from Subfigure (a). (f): the Apollonius
graph for the set Bγ ∪ {B3} from Subfigure (b). (g): the Apollonius graph of the
set Bγ from Subfigure (b). For simplicity, the edges to the site at infinity are not
shown. The star of B3 is shown in gray.

shown in Fig. 5(a). Suppose now that we want to delete B3. Our deletion
procedure would require that we construct the Apollonius graph of the set Bγ

of neighbors of B3; here Bγ = {B1, B2, B4, B5, B6, B7}. Then we would have
to superimpose D(B) with D(Bγ) and retriangulate the star of B3 in D(B),
using the Apollonius graph D(Bγ). This procedure is based on the assumption
that the boundaries of the stars of B3 in D(B) and D(Bγ ∪{B}) are identical.
In our example this is not the case. The two possible Apollonius graphs of
the set Bγ ∪ {B} are shown in Figs. 5(d) and 5(e): the star of B3 in either
of these graphs differs from its star in D(B) (recall that we require B3 to be
the last one inserted in D(Bγ ∪ {B})). Notice also that the degree of B3 in
Figs. 5(d) and 5(e) has the property that it is minimal among all possible
valid Apollonius graphs of the set Bγ ∪ {B} (or B). The afore-mentioned
observations motivated our two-stage approach. We first minimize the degree
of B3 in D(B): the resulting Apollonius graph is shown in Fig. 5(b) (assuming
that the edge b1b3 is flipped before the edge b2b3). The new set of neighbors
of B in D(B) is Bγ = {B4, B5, B6, B7}. We then perform the actual deletion
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procedure. The star of B3 is now identical in D(B) and D(Bγ ∪{B}) (cf. Figs.
5(b) and 5(f)) and we can retriangulate the star of B3 by superimposing D(B)
and D(Bγ) (cf. Figs. 5(c) and 5(g)).

6 The first three predicates

6.1 The SideOfBisector predicate.

Let Bν = {(xν, yν), rν}, ν = i, j, be two sites and let B be a query site. The
SideOfBisector(b, Bi, Bj) predicate is equivalent to finding the sign of the
quantity QSB, where

QSB := δ(b, Bi)− δ(b, Bj)

=
√

(x− xi)2 + (y − yi)2 −
√

(x− xj)2 + (y − yj)2 − ri + rj.
(11)

QSB is a quantity of the form A0 +A1

√
B1 +A2

√
B2, which we can rewrite as

A′
0+A′

1

√
B′, where A′

0 = A0 +A1

√
B1, A′

1 = A2 and B′ = B2. The sign of QSB

can be determined easily if we know how to determine the sign of quantities
of the form X0 + X1

√
Y . The latter can be done easily using the following

formula:

sign(X0 + X1

√
Y ) = sign(sign(X0)X

2
0 + sign(X1)X

2
1Y ) (12)

In particular, we need first check if Y is zero; if this is the case, then sign(X0 +
X1

√
Y ) = sign(X0). If Y > 0 we need to check if sign(X0) and sign(X2) are

the same. Clearly, in this case, sign(X0 + X1

√
Y ) = sign(X0) = sign(X1).

If sign(X0) 6= sign(X1) we need to distinguish between two cases for X0. If
X0 = 0, then sign(X0 + X1

√
Y ) = sign(X1). Otherwise, sign(X0 + X1

√
Y ) =

sign(X0)sign(X2
0 −X2

1Y ). We can summarize the procedure, described above
in words, as follows:

sign(X0 + X1

√
Y ) =



























sign(X0) if Y = 0

sign(X0) if sign(X0) = sign(X1)

sign(X1) if X0 = 0

sign(X0) sign(X2
0 −X2

1Y ) otherwise

.

(13)
In order to compute the sign of QSB, we need to apply (13) recursively. Con-
ceptually, we firstly apply it with X0 = A0+A1

√
B1, X1 = A2 and Y = B2. We

recursively apply it to compute sign(X0). Finally, we may need to apply it once
more to compute the sign of X2

0−X2
1Y = A2

0+A2
1B1−A2

2B2+2A0A1

√
B1. This

amounts to computing the sign of the quantity (A2
0+A2

1B1−A2
2B2)

2−4A2
0A

2
1B1,
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which is homogeneous with respect to its algebraic degree in the input quan-
tities, and in particular its algebraic degree is 4 (the algebraic degrees of A0,
A1, A2, B1 and B2 are 1, 0, 0, 2 and 2, respectively.) We thus deduce that
the algebraic degree of the SideOfBisector predicate is 4 (in the input
quantities).

6.2 The IsHidden predicate.

Let Bi be a site and B be a query site. We want to determine if B is contained
inside Bi. This is equivalent to determining the sign of the quantity QH , where:

QH := δ(B, Bi) + 2r =
√

(x− xi)2 + (y − yi)2 + r − ri.

We can determine the sign of QH by using relation (12). Thus, the algebraic
degree of the IsHidden(B, Bi) predicate is 2.

6.3 The IsIntersecting predicate.

Let Bi and Bj be two sites. IsIntersecting(Bi, Bj) is equivalent to deter-
mining the sign of the quantity QX , where:

QX := δ(Bi, Bj) =
√

(xi − xj)2 + (yi − yj)2 − ri − rj.

We can again determine sign(QX) by using relation (12). The algebraic degree
of IsIntersecting is clearly 2.

Collecting the results above we get:

Lemma 4 The algebraic degrees of the SideOfBisector, IsHidden and
IsIntersecting predicates is 4, 2 and 2, respectively.

In the remaining sections we describe how to evaluate the remaining three
predicates. The sites involved in the computations that follow are consid-
ered visible. Finally, we do not consider the EdgeConflictType predicate
directly, but rather its two versions, namely InfiniteEdgeConflictType

and FiniteEdgeConflictType, depending on whether the Apollonius edge
tested lies on an infinite or finite bisector, respectively.
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7 The InfiniteEdgeConflictType predicate

Determining the type of the conflict region of an infinite Apollonius edge αk`
i∞

with respect to a site Bm reduces to determining the type of intersection of
the circular arcs αk`

i∞ and Si∞(Bm) on ∂Bi. Let p`i, pik denote the points of
tangency of Ci`∞, Cki∞ with Bi respectively. Let also q1 and q2 denote the
endpoints of the circular arc Si∞(Bm). We can decide InfiniteEdgeCon-

flictType as follows (cf. Fig. 6).

We first check if p`i and pik lie in Si∞(Bm) using the DistanceFromBitan-

gent subpredicate, which checks the sign of the distance of the site Bλ from
the line Lµν bitangent to the sites Bµ and Bν (Lµν ≡ Cνµ∞). In terms of the
conflict region of Bm w.r.t. αk`

i∞, DistanceFromBitangent tells us if an
endpoint of αk`

i∞ is in the shadow region Si∞(Bm). Its degree is 6 (cf. Section
7.2). If exactly one of p`i and pik belongs to Si∞(Bm) we are done. Otherwise,
we need to determine if the arc

y

p`ipik is entirely inside Si∞(Bm). This is done
by checking if the point q1 (or q2) lies inside

y

p`ipik, which calls for the Inside-

CircularArc subpredicate. We discuss this subpredicate in Section 7.1 and
show that its degree is also 6.

In the above analysis we implicitly assumed that our data are in non-dege-
nerate position, i.e., the signed distance of Bm from the bitangent lines L`i

and Lik is non-zero. Suppose that δ(B, L`i) = 0. Then whether or not p`i or
pik is in conflict with Bm depends on whether Bm is actually on the convex
hull of the set of sites in between B` and Bi, or Bi and Bk, respectively. Let
t`, ti and tm be the points of tangency of B`, Bi and Bm with L`i (clearly
ti ≡ p`i). Then Bm is in conflict with p`i if and only if tm lies in the interior of
the segment t`ti (since we have visible sites the points t`, ti, tm are distinct).
This is discussed in Section 7.2. We shall compute the distance of a perturbed
site Bε

m = {bm, rm− ε (
−−→
t`tm · −−→titm)} with respect to L`i (cf. Fig. 7). The degree

of DistanceFromBitangent does not change due to this perturbation.

Lemma 5 The algebraic degree of the InfiniteEdgeConflictType predi-
cate is 6.

7.1 The InsideCircularArc subpredicate

Consider a circle C. Given a point p on C, we denote as ~p the unit vector in
the direction of −→cp, where c is the center of C. Given two points p and q on C
we denote as

y

pq the counter-clockwise arc on C that starts from p and ends at
q. Consider now a third point r on C. We want to determine if r is inside the
arc

y

pq. This is the InsideCircularArc subpredicate. Suppose that we have
the primitive χ2(~p, ~q) which returns the sign of the z-coordinate of the cross
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Fig. 6. Three of the 6 possible (non-degenerate) cases for the conflict region Rk`
i∞(B)

of an Apollonius edge αk`
i∞ lying on an infinite bisector. The map of the edge αk`

i∞ on
∂Bi is depicted as a dashed arc. The shadow region Si∞(B) is depicted as a dotted
arc. The dash-dotted arc in Subfigures (b) and (c) is the intersection Si∞(B)∩αk`

i∞.

product ~p× ~q. Then we can easily decide the InsideCircularArc predicate
as follows.

The first thing to do is to check if p and q are the same or antipodal points on
C. This can be determined by looking at the signs of χ2(~p, ~q) and χ2(~p, ~q

⊥),
where ~q⊥ is the vector ~q rotated counterclockwise by π

2
. If χ2(~p, ~q) = 0 and

χ2(~p, ~q
⊥) > 0, then the arc

y

pq has empty interior, whereas if χ2(~p, ~q) = 0
and χ2(~p, ~q

⊥) < 0, the arc
y

pq is a half-circle. In the first case we can further
decide if r coincides with p and q or if it is outside

y

pq by looking at the signs
χ2(~p,~r) and χ2(~p,~r

⊥). In the second case it suffices to look at the sign χ2(~p,~r).
If the arc

y

pq has neither empty interior nor is a half-circle, we can answer
the InsideCircularArc subpredicate by looking at the signs χ2(~p,~r) and
χ2(~q, ~r), and taking into account the sign χ2(~p, ~q). Note that when χ2(~p, ~q) > 0
(resp. χ2(~p, ~q) < 0) the arc

y

pq is smaller (resp. greater) than π
2
.

In our problem, the points p, q and r are tangent points on bitangent lines
of two circles. This specific version of the χ2 primitive has been studied and
analyzed in [19]. A method to compute this primitive using quantities up to
degree 6 is provided; as in our case, circles are assumed to be given by the
coordinates of their center and their radius. Hence:
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Lemma 6 The InsideCircularArc subpredicate can be evaluated using
quantities of algebraic degree up to 6.

7.2 The DistanceFromBitangent subpredicate

Let L := ax + by + c = 0 be the equation of a line. The (signed) distance
δ(B, L) of a site B = {(bx, by), r} from L is defined to be:

δ(B, L) = δ(b, L)− r, δ(b, L) =
abx + bby + c√

a2 + b2
.

where δ(b, L) is the (signed) distance of b from the line L. Let Bi, Bj and Bk

be three sites. Let Lij denote the oriented bitangent line of Bi and Bj that
has the following two properties:

(1) Bi and Bj are to the left of Lij

(2) as we walk on Lij in the positive direction, Lij touches the two sites Bi

and Bj in the order {i, j}

In this section we show how to compute the sign of the distance of δ(Bk, Lij)
of Bk from Lij.

Let aijx+ bijy + cij = 0, a2
ij + b2

ij = 1 be the equation of the bitangent line Lij

that we seek. Since the sites Bi and Bj are tangent to Lij and lie to the left
of Lij, we have that the (signed) distance of bi and bj from Lij is equal to ri

and rj, respectively. Hence

aijxλ + bijyλ + cij = rλ, λ = i, j. (14)

Since the sites are visible we must have that (xi − xj)
2 + (yi − yj)

2 6= 0. We
can then solve the system of linear equations (14), along with the quadratic
equation a2

ij + b2
ij = 1, to get the following two solutions:

aij =
Dx

ijD
r
ij ∓Dy

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2 , bij =
Dy

ijD
r
ij ±Dx

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2 ,

cij =
Dx

ijD
xr
ij + Dy

ijD
yr
ij ∓Dxy

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2 ,

(15)

where

Ds
λν =

∣

∣

∣

∣

∣

∣

∣

sλ 1

sν 1

∣

∣

∣

∣

∣

∣

∣

, Dst
λν =

∣

∣

∣

∣

∣

∣

∣

sλ tλ

sν tν

∣

∣

∣

∣

∣

∣

∣

, s, t ∈ {x, y, r}, λ, ν ∈ {i, j},
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and
∆ij = (Dx

ij)
2 + (Dy

ij)
2 − (Dr

ij)
2.

Since we assumed that the sites Bi, Bj are mutually visible, we immediately
get that ∆ij > 0. Therefore, we always have two real solutions for our system.
This is nothing but an algebraic justification that two circles, such that none
of the two is inside the other, have always two exterior bitangent lines.

The vector that is parallel to Lij in the direction that we traverse Lij is the
vector (bij,−aij). The requirement that, as we walk on Lij in the direction of
(bij,−aij), we meet Bi and Bj in the order {i, j} is equivalent to requiring that
the projection of the vector (xj − xi, yj − yi) on Lij is positive. Algebraically
this can be written as:

(bij,−aij) · (xj − xi, yj − yi) > 0,

or equivalently,
(−bij, aij) · (Dx

ij, D
y
ij) > 0.

Substituting the expressions for aij and bij in the above inequality we get:

−
Dy

ijD
r
ij ±Dx

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2
Dx

ij +
Dx

ijD
r
ij ∓Dy

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2
Dy

ij > 0,

which reduces to the inequality:

∓
√

∆ij > 0.

Since ∆ij > 0, we deduce that the solution of interest is the solution:

aij =
Dx

ijD
r
ij + Dy

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2 , bij =
Dy

ijD
r
ij −Dx

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2 ,

cij =
Dx

ijD
xr
ij + Dy

ijD
yr
ij −Dxy

ij

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2 .

(16)

Substituting aij, bij and cij from (16) in the expression for δ(Bk, Lij), and
using the fact that a2

ij + b2
ij = 1, we get:

δ(Bk, Lij) =
Dx

ijD
xr
ijk + Dy

ijD
yr
ijk + Dxy

ijk

√

∆ij

(Dx
ij)

2 + (Dy
ij)

2
, (17)

where

Dst
λµν =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sλ tλ 1

sµ tµ 1

sν tν 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, s, t ∈ {x, y, r}, λ, µ, ν ∈ {i, j, k}.
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Fig. 7. The three degenerate cases for the DistanceFromBitangent subpredicate.

Middle: the case
−→
titk ·

−→
tjtk < 0 (δ(Bε

k, Lij) < 0). Left, Right: the two cases
−→
titk ·

−→
tjtk > 0 (δ(Bε

k, Lij) > 0). The dashed circle denotes the perturbed site B ε
k.

Clearly, the sign of δ(Bk, Lij) is the sign of Dx
ijD

xr
ijk + Dy

ijD
yr
ijk + Dxy

ijk

√

∆ij,

which can be computed using relation (12); its algebraic degree is 6, since
the algebraic degrees of Ds

ij, Dsr
ijk, s ∈ {x, y}, Dxy

ijk and ∆ij are 1, 2, 2 and 2,
respectively. Hence,

Lemma 7 The algebraic degree of the DistanceFromBitangent subpred-
icate is 6.

We now apply our local perturbation scheme (cf. Fig. 7). We saw that if

δ(Bk, Lij) = 0, then we need to compute the sign of the quantity
−→
titk · −→tjtk,

where ti, tj, tk, are the points of contact of Bν, ν = i, j, k, with the line Lij.
This is done as follows. Let L⊥µν(p) be the line perpendicular to Lµν through
p. We check if tk lies in the interior of titj by computing the orientation of bk

with respect to the lines L⊥ij(bi) and L⊥ij(bj). These tests amount to computing
the signs of oν = bij(xν − xk) − aij(yν − yk), ν = i, j, which can be shown to

be of degree 6. If oν are of the same (resp. opposite) sign then
−→
titk · −→tjtk > 0

(resp.
−→
titk · −→tjtk < 0) and δ(Bε

k, Lij) > 0 (resp. δ(Bε
k, Lij) < 0).

8 The FiniteEdgeConflictType predicate

Let αk`
ij be an Apollonius edge and let Bm be our query site. The result of

FiniteEdgeConflictType is the type of the conflict region Rk`
ij (Bm) (cf.

Fig. 3). Let cijk and ci`j be the centers of the Apollonius circles Cijk and Ci`j .
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We first determine if cijk and ci`j are in conflict with Bm. If one is in conflict
but the other is not, we know the type of the conflict region. This is done
using the InCircle subpredicate, which essentially computes the sign of the
quantity δ(C, Bm), where C is an Apollonius circle (cf. Section 8.3). If either
both endpoints of αk`

ij are in conflict with Bm, or no endpoint of αk`
ij is in

conflict with Bm, then we compute the type of the shadow region Sij(Bm), by
means of the ShadowRegionType subpredicate. We consider two cases:

(1) cijk, ci`j ∈ Rk`
ij (Bm). If S̃ij(Bm) is not of the type (−∞, ξ) ∪ (η,∞), then

the entire edge is in conflict with Bm. Otherwise, we need up to two
OrderOnBisector tests to determine if the interior of αk`

ij is also in
conflict with Bm.

(2) cijk, ci`j 6∈ Rk`
ij (Bm). If S̃ij(Bm) is not of the type (ξ, η), then the interior

is not in conflict with Bm. Otherwise, we again need up to two Or-

derOnBisector tests to determine if the interior of αk`
ij is in conflict

with Bm.

In the subsequent subsections we prove the following lemma:

Lemma 8 The algebraic degree of the FiniteEdgeConflictType predi-
cate is 16.

8.1 The ShadowRegionType subpredicate

Let Bi, Bj be sites and Bk be a query site. We show how to determine the
type of Sij(Bk) (cf. Fig. 2). The first observation is that any finite point on
the boundary of Sij(Bk) has to be the center of either the Apollonius circle
Cijk or the Apollonius circle Cikj. The existence of Cijk and Cikj reduces to
determining the number of positive roots of a quadratic equation. This is the
Existence primitive discussed below and its degree is 5.

If we know that Cijk exists, but Cikj does not, then we know that S̃ij(Bk) is
of the form (−∞, ξ). Similarly, if Cikj exists, but Cijk does not, then S̃ij(Bk)
is of the form (η,∞). If none of the two exist then S̃ij(Bk) is equal to either ∅
or (−∞,∞). Analogously, if both tritangent Apollonius circles exist, S̃ij(Bk)
is either of the form (ξ, η) or (−∞, ξ)∪ (η,∞). In these last two cases we need
an additional test to determine the type of Sij(Bk).

If both Apollonius circles Cijk and Cikj exist, then δ(Bk, Lij)δ(Bk, Lji) > 0.
Moreover, if δ(Bk, Lij) < 0, then S̃ij(Bk) = (−∞, ξ) ∪ (η,∞). Hence we
can distinguish between the cases (−∞, ξ) ∪ (η,∞) and (ξ, η) by looking
at the sign of δ(Bk, Lij). If neither Cijk nor Cikj exist, then we can show
that δ(Bε

k, Lij)δ(B
ε
k, Lji) > 0. In particular, if δ(Bε

k, Lij) < 0, then S̃ij(Bk) =
(−∞,∞). Hence, we can distinguish between the cases (−∞,∞) and ∅, by
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computing the sign of δ(Bε
k, Lij). This is the DistanceFromBitangent

subpredicate and its algebraic degree is 6 (cf. Section 7.2). Notice that our
perturbation is applied again, but does not affect the algebraic degree.

Lemma 9 The algebraic degree of the ShadowRegionType subpredicate is
6.

8.2 The Existence primitive

In this section we show how to determine whether a triple of mutually visible
sites has a tritangent Apollonius circle or not. Let Bν, ν = i, j, k, be three
sites. We are interested in only two kinds of tritangent Apollonius circles: the
interior and exterior tritangent circles.

The existence of the tritangent Apollonius circle for Bν, ν = i, j, k, is equiv-
alent to that for the sites B∗

ν , ν = i, j, k, defined in Section 4.3. When we
perform the transformation from the Z to the Z∗-plane the three sites do not
have any interior tritangent circles. In this context we want to see if the solu-
tion computed in Section 4.3 is indeed an exterior tritangent Apollonius circle,
or whether it is a circle that contains both sites B∗

ν , ν = j, k. In the first case
the sought for Apollonius circle exists, whereas in the second case the answer
is negative.

Let us consider the sites B∗
ν , ν = j, k. The tritangent Apollonius circle of in-

terest separates the plane into two regions, one bounded and one unbounded.
If the tritangent Apollonius circle exists, then the point at infinity is on the
same region of the plane with the sites for which r∗ν is positive and on dif-
ferent regions with the sites for which r∗ν is negative. On the W-plane this
can be expressed as follows. The point at infinity on the Z∗-plane is mapped
at the origin on the W-plane. Requiring that the site B∗

ν , ν = j, k, is on the
unbounded side of C∗ is equivalent to requiring that Wν is on the same half-
plane with respect to L as the origin, on the W-plane (recall that the inversion
transformation preserves the tangency and containment relationships). Simi-
larly, if B∗

ν is on the bounded side of C∗ on the Z∗-plane, we require that Wν is
on different half-planes, with respect to L, with the origin. In any case, given
the orientation that we chose for L, the above requirements are equivalent to
requiring that the origin on the W-plane is on the positive half-plane with
respect to L, which algebraically can be written as:

āijk · 0 + b̄ijk · 0 + c̄ijk > 0.

In other words we require that c̄ijk > 0. We can compute the sign of c̄ijk in
the following two ways.
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One approach is to consider the explicit expression for c̄ijk given by relation
(9). This reduces to sign determination by relation (12). Its degree is 10 in the
original coordinates.

However, we can do better than that. Following the analysis of Sections 7.2
and 4.3 we can write the defining equation for c̄ijk. This is a quadratic equation
of the form:

γc̄2
ijk + βc̄ijk + α = 0, (18)

where

γ = (Du
jk)

2 + (Dv
jk)

2, β = −2(Du
jkD

uρ
jk + Dv

jkD
vρ
jk),

α = (Duρ
jk )2 + (Dvρ

jk)2 − (Duv
jk )2.

In the original coordinates, and given that p∗ν > 0, ν = j, k, these expressions
reduce to:

γ = (Exp
ijk)

2, β = −2(Exp
ijkE

xr
ijk + Eyp

ijkE
yr
ijk), α = (Exr

ijk)
2 + (Eyr

ijk)
2 − (Exy

ijk)
2.

Note that the discriminant ∆c̄ijk
of equation (18) is ∆c̄ijk

= (Exy
ijk)

2 Γijk. If Exy
ijk

is positive, then c is the largest of the two roots of (18). If Exy
ijk is negative,

then c̄ijk is the smallest of the two roots of (18). Then,

(1) If Exy
ijk > 0

(a) If α < 0, then sign(c̄ijk) = 1
(b) If α ≥ 0

(i) If β > 0, then sign(c̄ijk) = 1
(ii) If β < 0, then sign(c̄ijk) = −sign(α)
(iii) If β = 0, then sign(c̄ijk) = sign(α)

(2) If Exy
ijk < 0

(a) If α < 0, then sign(c̄ijk) = −1
(b) If α ≥ 0

(i) If β > 0, then sign(c̄ijk) = sign(α)
(ii) If β < 0, then sign(c̄ijk) = −1
(iii) If β = 0, then sign(c̄ijk) = −sign(α)

(3) If Exy
ijk = 0, then ∆c̄ijk

= 0, which means that (18) has a double root; in
this case sign(c̄ijk) = sign(β).

Since the degrees of β, α and Exy
ijk, with respect to the original coordinates,

are 5, 4 and 2, respectively, we have:

Lemma 10 The Existence primitive can be evaluated by determining the
signs of the quantities β, α and Exy

ijk, and it is of algebraic degree 5.
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8.3 The InCircle subpredicate

Suppose that we are given once again four sites Bν, ν = i, j, k, `, and that we
want to compute the sign of the distance δ(Cijk, B`) of B` from the tritan-
gent Apollonius circle Cijk of Bν, ν = i, j, k. We consider again the inversion
transformation described in Section 4.3, but now we also transform B` to B∗

`

and then to W`. The problem of determining the afore-mentioned sign on the
Z-plane now reduces to determining the sign of the (signed) distance of W`

from the line L. Algebraically this means that we need to compute the sign of
the quantity QI :

QI := āijku` + b̄ijkv` + c̄ijk− ρ` = āijk(u`−uj)+ b̄ijk(v`− vj)− (ρ`− ρj). (19)

Substituting the expressions for āijk and b̄ijk from (8) we get:

QI =
Dρ

jkD
u
jkD

u
`j + Dρ

jkD
v
jkD

v
`j −Dρ

`j[(D
u
jk)

2 + (Dv
jk)

2]± Zuv
jk`

√

∆jk

(Du
jk)

2 + (Dv
jk)

2

=
Du

jk(D
u
`jD

ρ
jk −Du

jkD
ρ
`j) + Dv

jk(D
v
`jD

ρ
jk −Dv

jkD
ρ
`j)± Zuv

jk`

√

∆jk

(Du
jk)

2 + (Dv
jk)

2
,

where
Zuv

jk` = Du
jkD

v
`j −Dv

jkD
u
`j.

The above expression can be greatly simplified by using the following identi-
ties:

Du
`jD

ρ
jk −Du

jkD
ρ
`j = Duρ

jk`, Dv
`jD

ρ
jk −Dv

jkD
ρ
`j = Dvρ

jk`,

Du
jkD

v
`j −Dv

jkD
u
`j = Duv

jk`.

The denominator of QI is strictly positive, thus the condition QI ≥ 0 is
equivalent to Q′

I ≥ 0, where Q′
I is the numerator of QI . The expression for Q′

I

in terms of the original coordinates is:

Q′
I =

Exrp
jk` Exp

ijk + Eyrp
jk` E

yp
ijk + Exyp

jk`

√

Γijk

(p∗j)
2(p∗k)

2p∗`

where

Estq
µνλ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s∗µ t∗µ q∗µ

s∗ν t∗ν q∗ν

s∗λ t∗λ q∗λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, s, t, q ∈ {x, y, r, p}, µ, ν, λ ∈ {j, k, `}.

Since p∗ν > 0, ν = j, k, `, in order to determine the InCircle subpredicate we
need to determine the sign of the quantity:

Q′′
I = Exrp

jk` Exp
ijk + Eyrp

jk` E
yp
ijk + Exyp

jk`

√

Γijk.
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To do this we can use relation (12); since the degree of Esrp
jk` , s ∈ {x, y}, and

Exyp
jk` is 4, the degree of Esp

ijk, s ∈ {x, y}, is 3, and the degree of Γijk is 6, we
conclude that the degree of the InCircle predicate is 14.

Theorem 11 The InCircle predicate can be evaluated by determining the
sign of the quantity Q′′

I , and it is of algebraic degree 14 in the input quantities.

Remark: If all three circles are of the same radius, then r∗ν = 0, i = j, k, `,
and the sign of Q′′

I is equal to the sign of Exyp
jk` . In this case, Exyp

jk` is nothing
but the determinant involved in the usual InCircle test for points.

8.4 The OrderOnBisector subpredicate

Let Bi and Bj be two sites and let πij be their oriented bisector. Let p and
q be two points on πij. In our setting, p and q are the centers of tritangent
Apollonius circles, thus each defined by Bi, Bj and a third site each. The aim
of this section is to discuss how to determine the order of p and q on πij. Let
Aij denote the line going through the centers bi and bj of Bi and Bj. If ri 6= rj,
then πij is a branch of hyperbola and Aij is the axis of symmetry of this
hyperbola. If ri = rj, then πij is a line and Aij is a line perpendicular to πij,
going through the midpoint of the segment bibj. We call oij the intersection of
πij and Aij. In both cases the bitangent Apollonius circle centered at oij is the
bitangent Apollonius circle of smallest weight among all bitangent Apollonius
circles of Bi and Bj (exterior bitangent Apollonius circles have positive weight
equal to their radius and interior bitangent Apollonius circles have negative
weight, with absolute value equal to their radius). The weight of bitangent
Apollonius circles is a strictly monotone function in the two half-bisectors of
πij defined with respect to oij. More precisely, let C(p) denote the bitangent
Apollonius circle centered at p ∈ πij and let w(p) denote the weight of C(p).
Then for all p, q ∈ πij with oij 4 p ≺ q we have w(p) < w(q). Similarly, for
all p, q ∈ πij with p ≺ q 4 oij, we have w(p) > w(q). The above observation
suggests a way to determine the order of p, q ∈ πij. If p and q are on different
sides w.r.t. Aij then we know the order immediately. If both p and q are on
the same side w.r.t. Aij, then we can determine the order of p and q on πij by
looking at the sign of w(p)− w(q).

To determine the side of Aij in which p and q reside we can use the Orien-

tation predicate discussed in Section 9.1. The subpredicate corresponding to
the computation of the sign of w(p)− w(q) is called the RadiiDifference

subpredicate and it is discussed in the following subsection.

37



8.5 The RadiiDifference subpredicate

In this section we show how to determine the difference of the weights of the
Apollonius circles whose centers lie on a common bisector. Let Bi, Bj be two
sites and let πij be their oriented bisector. Let p, q be two points on πij. We
want to determine whether p ≡ q, p ≺ q or p � q. In our case, p and q are the
centers of CCW-tritangent Apollonius circles, i.e., they are defined by Bi, Bj

and a third site each. Without loss of generality we can assume that p is the
center cijk of the CCW-tritangent Apollonius circle Cijk of Bi, Bj, Bk, and
that q is the center ci`j of the CCW-tritangent Apollonius circle Ci`j of Bi,
B`, Bj. The RadiiDifference test is performed only when we are unable to
determine the ordering of the Apollonius centers cijk and ci`j on πij by one of
the previous predicates or subpredicates. This implies that both Cijk and Ci`j

exist, and moreover they are on the same half of πij with respect to oij. We call
wijk and wi`j the weights of the Apollonius circles Cijk and Ci`j respectively.
What the RadiiDifference primitive needs to compute is the sign of the
difference:

QR := wijk − wi`j.

As we saw in Section 4.3, the weights of the Apollonius circles Cijk and Ci`j

are given by:

wijk =
1

2c̄ijk
− ri, wi`j =

1

2c̄i`j
− ri,

where we used the fact that c̄ijk, c̄i`j > 0, by the Existence predicate. Hence:

QR =
1

2

(

1

c̄ijk
− 1

c̄i`j

)

.

In other words it suffices to compute the sign of the quantity:

t =
1

c̄ijk
− 1

c̄i`j
. (20)

Let us consider the equations defining c̄ijk and c̄i`j (e.g., (18) is the defining
equation of c̄ijk). These are quadratic equations of the form:

γτy
2
τ − 2βτyτ + ατ = 0, τ = 1, 2, (21)

where c̄ijk is the one of the roots of the equation for τ = 1, and c̄i`j is one of
the roots of the equation for τ = 2. The algebraic degrees of γτ , βτ and ατ , are
6, 5, and 4, respectively. We are going to rewrite the equations (21) in such a
way, so that the unknown is not c̄ijk or c̄i`j, but rather 1/c̄ijk and 1/c̄i`j. The
equations then become:

fτ := ατ
1

y2
τ

− 2βτ
1

yτ
+ γτ = 0, τ = 1, 2. (22)
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or
fτ = ατx

2
τ − 2βτxτ + γτ = 0, τ = 1, 2. (23)

In what follows we are going to assume that ατ > 0, τ = 1, 2. The case
α1α2 = 0 will be discussed in detail in Section 8.5.4.

8.5.1 Straightforward methods of evaluation

We first make the observation that we know which one of the roots of equations
(21) to pick. We know that the root that we want is the one given by (9): If
Exy

ijk > 0 we are interested in the largest root of (21; τ = 1). If Exy
ijk < 0 we

are interested in the smallest root of (21; τ = 1). Finally, if Exy
ijk = 0, we are

interested in the double root of (21; τ = 1). The analysis for c̄i`j is entirely
analogous. Once we know which of the roots of (21) is of interest, we can
determine which of the roots of (23) is of interest. For example, suppose that
we are interested in the largest root of (21). Then, if γτ > 0 we are interested
in the smallest root of (23), whereas if γτ < 0 we are interested in the largest
root of (23). The argumentation is symmetric when we are interested in the
smallest root of (21). Throughout the rest of this section we shall concentrate
on the comparison of the largest roots of equations (23). The analysis for the
remaining three cases is similar.

One straightforward approach is to evaluate the sign of t by substituting in
(20) the expressions for 1/c̄ijk and 1/c̄i`j. Then we get (using the notation
from Section 4):

t =
β1 +

√
∆1

α1

− β2 +
√

∆2

α2

=
−J + α2

√
∆1 − α1

√
∆2

α1α2

. (24)

Since α1α2 > 0 it suffices to compute the sign of the numerator of t. This
is a quantity of the form X0 + X1

√
Y1 + X2

√
Y2, where, in general, Y1 6= Y2

and Y1, Y2 > 0. The degrees of X0, X1, X2, Y1 and Y2 are 11, 8, 8, 6 and 6,
respectively. Following the analysis of Section 6, in order to determine the sign
of X0 + X1

√
Y1 + X2

√
Y2, we need to determine, in the worst case the sign of

the quantity (X2
0 + X2

1Y1−X2
2Y2)

2 − 4X2
0X

2
1Y2, which is a degree 36 quantity

in the input.

Let us consider the evaluation procedure for comparing the two larger roots.
The same problem is solved, albeit by other methods, by the procedures de-
tailed later in Figures 9 and 10. Here, the evaluation starts by computing J
and E, in the notation of the above figures, or of Section 4. If their signs are
the same, then one needs to compute L1 := J2 − E − 2α2

1∆2. When L1 > 0,
the algorithm tests L2 := L2

1 − α2
1α

2
2∆1∆2. The tests described so far define a

tree whose branches depend on the different signs. If all branches are assumed
equally likely, it is straightforward to compute the probability that we visit a
specific node.
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We wish to bound the expected total bit complexity of the procedure, as-
suming all operations have complexity linear in the bit size of the operands.
Let us suppose that the input parameters have unit bit size. Then, in order
to bound the bit cost per node, we multiply the number of operations by
the degree of the computed quantity at every step. The degree in the input
data of J, E, L1, L2 are 9, 18, 18, and 36, respectively, whereas the number
of arithmetic operations to compute each one from the previously computed
quantities is 3, 5, 4, and 3. This gives 27 + 90 + 72/2 + 108/4 = 180; for in-
stance, L1 is required with probability 1/2 hence its overall cost of 18 · 4 = 72
is divided by 2. We shall see later that this is significantly higher than the
respective estimates with other methods.

We are now going to consider a slightly different approach. Above what we did
was to substitute in (20) the values of 1/c̄ijk and 1/c̄i`j directly. Now we are
only going to substitute the value of 1/c̄i`j directly. This will yield a quadratic
equation in terms of t that we will need to analyze. Indeed, substituting 1/c̄ijk

in terms of t and 1/c̄i`j in (23; τ = 1), we get:

α1

(

t +
1

c̄i`j

)2

− 2β1

(

t +
1

c̄i`j

)

+ γ1 = 0,

which can be rewritten as a quadratic polynomial in terms of t:

ᾱ1t
2 + β̄1t + γ̄1 = 0, (25)

where:

ᾱ1 = α1, β̄1 = 2α1
1

c̄i`j
− 2β1 = f ′1(

1

c̄i`j
),

γ̄1 = α1
1

(c̄i`j)2
− 2β1

1

c̄i`j

+ γ1 = f1(
1

c̄i`j

).

The problem of determining the sign of t now reduces to determining the sign
of the appropriate root of (25). This can be done by using Descartes’ rule
on (25), which calls for computing the signs of β̄1 and γ̄1. Here c̄i`j is the
appropriate root of (21; τ = 2), such that 1/c̄i`j is the largest root of (23;
τ = 2). Both β̄1 and γ̄1 are expressions of the form (X0 + X1

√
Y )/Z, where

Z > 0, and their signs can be evaluated using relation (12). The degrees of X0,
X1 and Y are 9, 6 and 6, respectively, for β̄1 and 14, 11 and 6, respectively for
γ̄1. Hence the highest algebraic degree involved in the evaluation of the signs
of the roots of (25) is 28.

The discussion of Section 4 can be directly applied to the RadiiDifference

predicate, hence offering two means of handling this predicate, either by re-
sultants of 3 bivariate polynomials or by Sturm sequences. Both approaches
yield the same maximum degree, although the former requires the additional
quantity E, which raises this degree. Moreover, the rough comparison of pre-
cision and bit operations indicates that Sturm sequences are more efficient for

40



PSfrag replacements

3

3

4

6

9

10

11

20

Case 1, 2, 3

Case 1, 2

Case 1, 2

Case 2, 3

Case 1

Case 1

Case 2

Case 3, 4, 5
K

J

J ′

R0

R3 > 0R3 < 0

R1 > 0 R2 > 0 > R1

R0 > 0

<

<

<

>

>

Fig. 8. Evaluation procedure for x−1 � x+
2 , for � ∈ {<,>}.

PSfrag replacements

33

3

44

5 5

66

9

1010

1111

1818

2020

Case 1, 2, 3

Case 1, 2

Case 2, 3

Case 2, 3a

Case 2, 3b

Case 2 Case 3a

Case 3a

Case 3, 4, 5

Case 3, 4

Case 4, 5

Case 3a, 4

Case 3b, 4

Case 3b

Case 3b

Case 4

K K

J

J ′ J ′

E E

R0 R0

R3 > 0R3 < 0

R1 > 0 R1 < 0 R1, R2 > 0R2 > 0 > R1

R0 > 0 R0 > 0

<

<

<

<

<

>

>

>

>

>

Fig. 9. Evaluation procedure for x+
1 � x+

2 , for � ∈ {<,>}, using the resultant.

the predicate in hand. In the two paragraphs that follow we use the definitions
and notations of Section 4.

8.5.2 Evaluation by resultants

The resultant R corresponding to the RadiiDifference subpredicate is
R = det M , where M is the matrix of Example 1. Using expression (1), the
maximum degree of the coefficients of t3, t2, t, 1, are, respectively, 9, 18, 10, 20,
in the input quantities. The coefficient of t4 is always positive. Applying the
analysis of Section 4.1, one may follow the evaluation procedure of Figure 8
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when comparing a small and a large root, or that of Figure 9 for comparing
the two large roots.

In these figures, the bottom part of each evaluation shows the number of op-
erations needed to compute the quantity, given the previously computed ones,
and its degree in the input data. In counting operations, we ignore negations.
Given the coefficients of the fi and the discriminants ∆i, it is possible to
compute the quantities in Figure 9 with an expected number of operations
of 3 + 6 + 5/2 + 3/4 + 4/8 = 12 3

4
, assuming each branch is equally likely. A

more realistic measure is to simulate bit complexity cost by multiplying the
number of operations at each node by the corresponding degree in the input
data. Then, the same predicate costs 27 + 60 + 90/2 + 33/4 + 80/8 = 150 1

4
.

Another way of measuring expected complexity is by considering that all 6
cases are equally likely. To identify cases 1 and 5, 9 operations are required.
For cases 2 and 4, we need 3 + 6 + 5/2 + 3/4 + 4/8 = 12 3

4
, whereas for each

of cases 3a and 3b we need 3 + 6 + 5 + 3/2 + 4/4 = 16 1
2

operations on the
average. This gives an overall average of 12 3

4
operations.

8.5.3 Evaluation by Sturm sequences

Let us consider the evaluation of the Sturm sequence (Pi)i at p = βi

αi
∈ R.

The first sign depends on α1 because it shows whether the parabola is facing
upwards or downwards.

sign(Pi(p))

i assuming ∆1,∆2 > 0 assuming ∆1,∆2, α1, α2 > 0

0 −sign(α1) −
1 0 0

2 sign(α1) +

3 sign(J) sign(J)

4 sign(α1)sign((α1K + 2α2∆1)2)sign(4JJ ′ −G2) sign((α1K + 2α2∆1)2)sign(4JJ ′ −G2)

If ∆τ > 0 and ατ > 0, then the degree of the tested quantities in the input
data is 0 for P0, P1, P2, 9 for P3(p), and 20 for P4, because the degree of ατ , βτ

and γτ are, respectively, 4, 5, 6. For q = ∞, we have the following signs:

sign(Pi(∞))

i assuming ∆1,∆2 > 0 assuming ∆1,∆2, α1, α2 > 0

0 sign(α1) +

1 sign(α1)sign(α2) +

2 −sign(α1) −
3 −sign(α1)sign(α1K + 2α2∆1) −sign(α1K + 2α2∆1)

4 sign(α1)sign((α1K + 2α2∆1)2)sign(4JJ ′ −G2) sign((α1K + 2α2∆1)2)sign(4JJ ′ −G2)
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Looking into the second column again, we have degree 0 for P0, P1, P2 and
14 for P3(∞). The identity α1K + 2α2∆1 = −2β1J + α1G offers an alterna-
tive means of determining sign(P3(∞)). Since the two polynomials have no
common root, computing sign(f2(x

+
1 )) = VP (p)− VP (∞) yields an answer in

{−1, 1}. The same Sturm sequence may be evaluated at −∞ and p to yield
sign(f2(x

−
1 )) = VP (−∞)− VP (p) ∈ {−1, 1}. At x 7→ p the signs are the same

as above, and at −∞ they are

+, +,−,−sign(P3(∞)), sign(P4),

because the degrees of the polynomials P0(x), . . . , P4(x) are 2, 3, 2, 1, 0 in x.
We can analogously evaluate the Sturm sequence (Qi)i at p = βi

αi
and q = ∞.

Again we use the fact that ∆τ > 0 and in the last column we further assume
that ατ > 0:

sign(Qi(p))

i assuming ∆1,∆2 > 0 assuming ∆1,∆2, α1, α2 > 0

0 −sign(α1) −
1 0 0

2 sign(α1) +

3 sign(α2)sign(J2)sign(α1∆2 + α2K) sign(J2)sign(α1∆2 + α2K)

For q = ∞:

sign(Qi(∞))

i assuming ∆1,∆2 > 0 assuming ∆1,∆2, α1, α2 > 0

0 sign(α1) +

1 sign(α1)sign(α2) +

2 −sign(α2)sign(J) −sign(J)

3 sign(α2)sign(J2)sign(α1∆2 + α2K) sign(J2)sign(α1∆2 + α2K)

Evaluating this Sturm sequence at −∞, we get the following sign sequence:

+, +, sign(J), sign(Q3)

because the degrees of the polynomials Q0(x), . . . , Q3(x) are 2, 2, 1, 0 in x.
Figure 10 shows the evaluation of the predicate using Sturm sequences, when
we need to compare the two larger roots x+

τ . This is to be juxtaposed to
Figure 9. The shown procedure can also handle the cases where any or several
of the tested quantities vanish, but this is not made explicit in Figure 10 for
the sake of simplicity and readability.

If all branches are equally likely, the expected number of operations is 3 +
6 + 4/2 + 3/4 + 4/8 = 11 1

4
. If each number of operations is multiplied by the

corresponding degree in the input data, this count becomes 27 + 60 + 56/2 +
33/4+80/8 = 133 1

4
. If we consider all 6 cases to be equally likely, cases 1 and
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Fig. 10. Evaluation procedure for deciding x+
1 �x+

2 , where � ∈ {<,>}. At each tested
quantity we indicate the number of operations needed in order to compute it (left)
and its algebraic degree in the input (right).

5 require 3+6 = 9 operations, cases 2 and 4 require 3+6+4/2+3/4+4/8 =
121

4
operations and cases 3a and 3b require 3 + 6 + 4 + 3/2 + 4/4 = 15 1

2

operations. This gives an overall average of 12 1
4

operations. All are lower than
the respective numbers of operations using resultants. The evaluation tree in
Figure 10 is not the only possible one. Its design, however, reflects our main
aims:

(1) Conclude as fast as possible (e.g., Case 5 is decided after only two compar-
isons, those of J and K). This is also achieved by using certain quantities
as filters for others (e.g., J ′ is a filter for P4).

(2) Re-use computed quantities (e.g., J can be used to compute P3(∞) and
P4; K or J ′ can be used to compute P4). This helps minimizing the
expected number of operations in the tree.

(3) Compute high-degree quantities as rarely as possible, i.e., the high-degree
quantities should appear as low as possible in the tree (e.g., P4, the
highest-degree quantity, is a leaf of the tree).

Analogous procedures are obtained for comparing the other root pairs, e.g.,
Fig. 8 shows the procedure for x−1 � x+

2 , � ∈ {<, >}.

Now, a further reduction in the degree of the tested polynomials is possible if
we write them in terms of the input quantities by completely developing all
intermediate quantities (ατ , βτ , γτ ) as functions of the input parameters. Then
P4 factorizes to two polynomials of degrees 12 and 8, respectively. To under-
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stand their complexity, consider that the former has 205 monomials in the
input quantities. However, the same effect is not possible with the resultant
method, because it requires testing E which does not factorize as a polynomial
in the input quantities, hence it gives a test of degree 18. Due to the factoriza-
tion of P4 the bottlenecks of our method become the degenerate cases α1 6= 0,
α2 = 0 or α1 = 0, α2 6= 0, in which case we need quantities of degree 16 to
answer our problem. We discuss these cases in the next subsection.

Lemma 12 There is an algorithm for deciding RadiiDifference that re-
duces the predicate to testing the sign of the difference of two specific roots of
quadratic equations. This algorithm tests quantities of degree at most 16 in the
input coefficients by using Sturm sequences as described above.

8.5.4 Sturm sequence degeneracies

Due to the factorization of P4 to two expressions of degree 12 and 8 in the
input parameters respectively, the maximum algebraic degree now appears in
the case of degenerate input, namely α1α2 = 0, |α1|+ |α2| > 0. Geometrically
this corresponds to 3 sites which have a common tangent line, or equivalently
to 3 sites whose Apollonius circle has infinite radius. In this case we need
quantities of degree 16 to answer our problem. It is interesting to note that
these quantities do not factorize to expressions of lower degree. Recall that
factorization does not commute with taking projections of polynomials modulo
an ideal: here the ideal is defined by the polynomial ατ , τ = 1, 2, developed
in terms of the input parameters. In particular, the Sturm sequence P of
f1, f

′
1f2, assuming α1 = 0 < α2, ends with P3(x) = 4β2

1α2f2(γ1/(2β1)). The
quantity 4β2

1f2(γ1/(2β1)) is of degree 16. Notice that the Sturm sequences
cannot be obtained simply by specializing the quantities that vanish because
specialization does not commute with pseudo-remaindering.

One may consider as degenerate any configuration that makes one or more
of the tested quantities equal to zero. One such degenerate setting is when
ατ > 0, τ = 1, 2, but 2β1J − α1G = 0, in which case the polynomial P3(x) is
a constant. In this case we have:

2β1J = α1G ⇐⇒ (x+
1 − x−2 )(x+

2 − x+
1 ) + (x−1 − x−2 )(x+

2 − x−1 ) = 0.

In this degenerate case, we may compute the Sturm sequence under this hy-
pothesis and see that all tested quantities are of lower degree. In particular,
P3 becomes 2α1∆1J

′, hence the maximum degree of any tested quantity is 11.
Note that this expression for P3 can also be obtained by simply specializing
the polynomial P3(x).

We have checked that all degeneracies can be handled by the procedure of
Figure 10 (and the analogous procedures for testing different pairs of roots)
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without modifying the shown tree substantially. More specifically, for certain
nodes, the zero case can be incorporated in one of the two non-zero cases con-
sidered already. For the rest of the nodes, when the tested quantity vanishes,
it is possible to conclude almost immediately and decide which case occurs.
Therefore, the maximum degree of expressions tested by our algorithm be-
comes 16 when dealing with arbitrary inputs, including the degenerate cases.
This discussion, together with that of the previous section, proves our main
algorithmic result.

Theorem 13 It is possible to implement the algorithm of [9] for constructing
the Apollonius diagram by testing quantities of degree at most 16 in the input
parameters.

Note that, in order to compute the RadiiDifference primitive, it is also
possible to use the polynomials fτ (y), τ = 1, 2, where y = 1/x; cf. also the
definition of fτ in (21). The maximum algebraic degree of any tested quantity
in this case is 16. On the upside, we can avoid all of the above degeneracies,
since γτ > 0, τ = 1, 2, by definition. This yields an alternative approach with
the same maximum degree as that of Theorem 13.

9 The last two predicates

9.1 The Orientation predicate

In this section we deal with the usual orientation predicate when one of the
points is the center of a tritangent Apollonius circle. Let Bν = {(xν , yν), rν},
ν = i, j, k, be the defining sites, and let (cx, cy) be the coordinates of the
center cijk of the Apollonius circle Cijk. Finally, let (xν , yν), ν = `, m be the
remaining two points involved in the Orientation predicate. We want to
compute the sign of the quantity QO below. Following relation (7), we get:

QO =
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The Orientation predicate is used to find the first conflict of a new site with
respect to the Apollonius edges of its nearest neighbor. In this context, Cijk

always exists, thus c̄ijk > 0 by Section 8.2. Therefore, it suffices to determine
the sign of the quantity Q′

O, which is the expression inside the square brackets
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above. Substituting the expressions for āijk, b̄ijk and c̄ijk from (8), (9), we get:

Q′
O =

Q′′
O

(p∗j)
2(p∗k)

2[(Exp
ijk)

2 + (Eyp
ijk)

2]
,

where

Q′′
O =2(Exp

ijkE
xr
ijk + Eyp

ijkE
yr
ijk)E

xy
i`m + [Eyp

ijk(x
∗
` − x∗m)− Exp

ijk(y
∗
` − y∗m)]Erp

ijk

+ [2Exy
ijkE

xy
i`m − Exp

ijk(x
∗
` − x∗m)− Eyp

ijk(y
∗
` − y∗m)]

√

Γijk.

and x∗ν = xν − xi, y∗ν = yν − yi, ν = `, m. Recall also (cf. rel. (3)) that
p∗λ = (x∗λ)

2 + (y∗λ)
2 − (r∗λ)

2, λ = j, k. The sign of Q′′
O can be computed using

relation (12). The algebraic degrees of x∗ν, y∗ν, ν = `, m, p∗λ, λ = j, k, are 1, 1
and 2 respectively, whereas the degrees of Esr

ijk, s ∈ {x, y}, Esp
ijk, s ∈ {x, y, r},

Est
ijk, s, t ∈ {x, y, r}, Exy

i`m and Γijk are 2, 3, 2, 2 and 6, respectively. Hence:

Lemma 14 The Orientation predicate can be evaluated by determining the
sign of the quantity Q′′

O, and it is of algebraic degree 14.

9.2 The IsDegenerateEdge predicate

The predicate can be evaluated as follows. Given an Apollonius edge αk`
ij , first

determine if B` touches the Apollonius circle Cijk; if this is not the case then
αk`

ij is not degenerate. The next test that we have to perform is whether Bk

touches the Apollonius circle Ci`j. Again, if this is not the case the edge αk`
ij

is not degenerate. Note that both of the tests above can be answered using
the InCircle subpredicate. There is still one final test to be done. We need
to determine if the points cijk and ci`j are the same; αk`

ij is degenerate if and
only if cijk and ci`j coincide. The answer to this last test can be given using
the OrderOnBisector subpredicate.

It is worth noticing that we could use the OrderOnBisector subpredicate
directly, in order to resolve the IsDegenerateEdge predicate. However, we
choose to perform first the two InCircle tests because they filter the vast
majority of the cases where the answer to the IsDegenerateEdge predicate
is false, and moreover it has lower algebraic degree than the OrderOnBi-

sector subpredicate.

10 Experimental results

In this section we briefly describe the input data sets, and two sets of experi-
ments, one for the overall algorithm and one focusing on the predicates.
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We start with comments that apply to both sets of experiments. Our code is
written in C++ and has recently become part of Cgal 3.0. All experiments
were conducted on a Pentium-III architecture at 1 GHz. We used version 2.4
of Cgal, and version 4.3 and 4.2 of LEDA for the two respective sets of
experiments. The compiler used was the GNU g++ compiler, version 2.95.3
(with options -O2 -mcpu=pentiumpro -march=pentiumpro). We have imple-
mented caching of intermediate expressions when evaluating the predicates,
which reduces significantly the number of operations.

We consider various number types: LEDA reals, the multi precision float-
ing point number MP Float provided by Cgal, and the GNU multiprecision
integer GMP [28]. We use the keywords real, mpfloat and gmp to refer to
these number types, respectively. We moreover consider filtered versions of the
above exact number types, where the filtering is dynamic and is performed
via the interval arithmetic package of Cgal [29]. Other potential number
types include CORE’s Expr (cf. [30]) and GMP’s multi precision rationals,
but both these number types had not been fully interfaced with Cgal at
the time our experiments were made. The built-in double of C++ is used
primarily for reference, since it is inexact and, in general, may incorrectly
evaluate the predicates. In particular, the Sqrt method with double arith-
metic never produced correct results for the OnLine examples below. In the
second subsection, double arithmetic is applied successfully to random data,
but for the almost degenerate data it is insufficient, i.e., the predicates cannot
be evaluated correctly.

10.1 Overall algorithm

We use two methods for evaluating the predicates. The first requires that signs
of expressions involving the operations {+,−,×, /,

√ } are performed exactly.
The second requires that signs of polynomial expressions are performed ex-
actly. We refer to the two evaluation methods using the keywords Sqrt and
Polynomial, respectively.

We report on three series of experiments. Every series corresponds to a dif-
ferent type of input data. The first one consists of circles whose coordinates
are random integers of bit size b ∈ {10, 20, 30, 40, 50}. Their radii are random
non-negative integers of bit size b′ ∈ {5, 10, 20, 30, 40}. The bit sizes of the
radii were chosen to be smaller than the bit sizes of the coordinates in order
to have few hidden sites. Larger bit sizes for the radii would produce many
more hidden sites. The second example consists of circles whose centers lie on
the parabola y = x2 and whose radii are equal to their y-coordinate. The x-
coordinate of these circles is a random integer of bit size b ∈ {5, 10, 15, 20, 25}.
All circles of this data set are equidistant from the point (0, 1

4
) and are all
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bmax 10 20 30 40 50

n Method Number type T (n, h) [seconds]

In
S
q
u
a
r
e

104

h 6503 9994 9990 9993 9994

Sqrt

double 0.62 0.71 0.7 0.69 0.72

real 12.47 13.95 14.64 14.55 14.86

filter + real 2.48 2.86 2.84 2.84 2.81

Polyn.

double 0.58 0.6 0.7 0.7 0.71

real 10.45 13.15 15.07 15.29 16.11

gmp 41.45 46.27 47.9 50.04 52.31

mpfloat 22.57 26.58 31.18 36.59 37.52

filter + real 2.27 2.42 2.3 2.42 2.64

filter + gmp 2.18 2.51 2.53 2.49 2.61

filter + mpfloat 2.31 2.52 2.5 2.51 2.6

105

h 30399 99376 99400 99345 99390

Sqrt

double 4.97 8.19 8.14 8.21 8.23

real 93.47 147.65 153.61 152.97 153.29

filter + real 18.48 30.61 30.04 30.07 29.79

Polyn.

double 4.65 7.89 8.06 7.95 8.03

real 78.98 141.78 154.62 161.41 162.31

gmp 314.62 501.48 509.68 535.08 541.15

mpfloat 162.47 280.15 321.77 383.04 381.23

filter + real 15.9 27.15 27.29 27.18 27.31

filter + gmp 16.06 27.31 27.41 27.43 27.59

filter + mpfloat 16.18 27.22 27.16 27.22 27.39

106

h 139146 941875 941589 941746 941628

Sqrt

double n/a 99.8 99.35 100.38 99.85

real 692.06 1519.69 1609.7 1617.7 1609.05

filter + real 141.78 336.1 336.05 342.35 334.55

Polyn.

double 40.17 103.65 98.14 100.29 98.25

real 605.77 1472.11 1651.06 1738.16 1731.99

gmp 2250.5 5381.66 5474.15 5732.83 5852.29

mpfloat 1142.1 2956.96 3364.22 3974.87 3982.74

filter + real 113.68 302.58 303.02 306.84 302.38

filter + gmp 115.95 304.12 302.44 303.61 301.9

filter + mpfloat 119.03 301.98 302.27 303.67 302.27

Table 4
Experimental results for the InSquare data set. T (n, h) is the total running time; n

is the number of input sites and h the number of visible sites. bmax is the maximum
bit size of the input; “n/a” implies that the algorithm could not compute a correct
diagram due to numerical errors.

tangent to the x-axis. Our third data set consists of circles whose centers
lie on the positive x-axis and whose radii are one-half the x-coordinate of
their center. All circles of this data set are tangent to the lines y = ± 1√

3
x.

The x-coordinate of these circles is a non-negative random integer of bit size
b ∈ {10, 20, 30, 40, 50}. We use the keywords InSquare, OnParabola and
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bmax 10 20 30 40 50

n Method Number type T (n, h) [seconds]

O
n
P
a
r
a
b
o
l
a

104

h 63 2028 9269 9980 10000

Sqrt

double 0.07 n/a

real 5.19 8.87 22.7 90.11 304.78

filter + real 0.19 1.13 30.05 92.65 345.47

Polyn.

double 0.06 n/a

real 4.8 9.51 29.38 60.82 212.96

gmp 4.98 17.84 32.35 37.77 49.62

mpfloat 2.09 7.97 16.14 20.55 29.75

filter + real 0.16 1.18 38.31 69 315.64

filter + gmp 0.16 1.3 37.45 44.41 261.23

filter + mpfloat 0.15 1.01 19.18 24.01 127.39

105

h 63 2047 51262 97636 99939

Sqrt

double 0.64 n/a

real 49.71 73.62 190.66 1159.98 3261.06

filter + real 1.67 6.26 144.72 1237.5 3715.83

Polyn.

double 0.66 n/a

real 47.8 74.54 254.88 541.77 2178.91

gmp 50.07 152.83 465.87 424.45 491.72

mpfloat 21.23 66.67 224.36 226.99 287.42

filter + real 1.58 5.99 191.22 621.37 3365.68

filter + gmp 1.81 6.44 181.89 515.53 2601.15

filter + mpfloat 1.69 5.87 102.29 252.36 1402.28

106

h 63 2047 65535 795149 992546

Sqrt

double 6.17 n/a

real 509.6 716.53 1278.03 14935 34324.5

filter + real 17.86 56.55 314.17 15606.8 39340.4

Polyn.

double 6.81 n/a

real 485.7 732.78 1532.15 4737.4 22363.6

gmp 499.98 1497.29 3679.23 5014.94 5106.87

mpfloat 211.69 650.93 1762.05 2629.74 2922.99

filter + real 17.12 53.27 359.56 5058.78 34832.9

filter + gmp 17.22 55.01 377.02 4130.94 27359.5

filter + mpfloat 17.49 53.89 254.03 2224.78 14175.7

Table 5
Experimental results for the OnParabola data set. T (n, h) is the total running
time; n is the number of input sites and h the number of visible sites. bmax is the
maximum bit size of the input; “n/a” implies that the algorithm could not compute
a correct diagram due to numerical errors.

OnLine, respectively. Clearly, the last two are highly degenerate, chosen so
in order to illustrate the robustness of our implementation. In any case, we
denote by bmax the maximum bit size of the input. Lastly, for each type of
data and each bit size, the number n of input circles takes the values 104, 105

and 106.
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bmax 10 20 30 40 50

n Method Number type T (n, h) [seconds]

O
n
L
in

e

104

h 512 9892 9999 10000 10000

Sqrt

double n/a

real 17.56 61.66 70.25 72.59 84.99

filter + real 2.06 2.39 68.44 74.22 89.43

Polyn.

double 0.5 0.56 0.76 n/a

real 18.77 68.06 75.08 87.11 84.86

gmp 39.28 36.69 42.84 60.47 43.16

mpfloat 16.2 14.64 17.31 25.23 17.87

filter + real 1.5 2 78.16 88.23 94.8

filter + gmp 1.52 2.05 65.42 73.49 69.8

filter + mpfloat 1.53 1.95 31.44 34.14 32.96

105

h 512 91100 99991 99998 99996

Sqrt

double n/a

real 161.87 573.31 692 687.52 843.15

filter + real 19.89 22.67 555.94 714.3 857.98

Polyn.

double 5.47 7.25 n/a

real 167.24 643.88 773.17 831.47 851.86

gmp 401.82 383.24 466.34 573.5 442.15

mpfloat 173.21 148.7 187.86 243.78 182.5

filter + real 14.92 19.99 651.91 848.59 915.89

filter + gmp 15.23 20.01 544.1 691.21 690.65

filter + mpfloat 15.67 20.51 254.34 330.58 314.1

106

h 512 446817 999067 999775 999760

Sqrt

double n/a

real 1600.34 3939.36 7147.13 7154.49 8563.14

filter + real 201.16 297.92 4805.81 6774.37 8182.67

Polyn.

double 55.46 94.93 n/a

real 1580.29 4402.52 8425.47 8658.88 8756.45

gmp 4023.87 4974.26 6520.6 7141.51 5127.44

mpfloat 1732.43 1868.43 2605.06 2999.01 2088.08

filter + real 149.47 253.6 5765.34 8123.3 8805.28

filter + gmp 153.88 255.03 4678.14 6636.59 6554.35

filter + mpfloat 155.4 257.19 2375.97 3312.92 3260.81

Table 6
Experimental results for the OnLine data set. T (n, h) is the total running time; n

is the number of input sites and h the number of visible sites. bmax is the maximum
bit size of the input; “n/a” implies that the algorithm could not compute a correct
diagram due to numerical errors.

To give a rough idea of our code’s speed, we note that the largest instance
of these inputs can be solved exactly in about 5min, 3h56min, and 55min,
respectively (with filtered mpfloat arithmetic).

Let us now analyze Tables 4 (InSquare data), 5 (OnParabola) and 6
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(OnLine). First, the small number of visible sites for small bit sizes for the
OnParabola and OnLine inputs is due to the fact that we cannot represent
more input sites than the bit size permits. The hidden inputs are just copies
of the visible ones.

In the InSquare example the running times for all bit sizes b > 10 are
approximately the same, irrespectively of the increase in the bit size of the
input. This is a manifestation of the fact that interval arithmetic is largely
sufficient for computing the Apollonius diagram, and that exact arithmetic is
rarely used: interval arithmetic uses intervals of doubles and thus the bit size
of the input is irrelevant. The difference in running times between the case
b = 10 and the cases b > 10 is due to the fact that in the former case we have
many more hidden sites. More precisely, in the first case the radii have bit size
b′ = 5 = b − 5, whereas as for b > 10 the bit size of the radii is b′ = b − 10.
Therefore, the radii in the first case are larger than in the second, relatively,
of course, to the coordinates of the centers.

Notice that the above observations do not apply to the OnParabola and
Online inputs, for large bit sizes: the number of hidden sites is generally
small compared to the number of visible sites. Moreover, these inputs are
highly degenerate, thus exact arithmetic is much more often employed for
the evaluation of the predicates, than for the InSquare inputs. As a result,
the bit size of the input has a direct effect on the running times: as the bit
size increases the running times for computing the Apollonius diagram also
increases.

It is interesting that all data with small bit sizes can be treated exactly with
double arithmetic, provided we apply the polynomial method. Let us restrict
attention to inputs for which double arithmetic solves the problem correctly:
the input bit size can be larger for the OnLine inputs than for the On-

Parabola inputs. This is due to the fact that the former inputs require
predicates of maximum algebraic degree 6, whereas the latter of degree 14.

On the other hand, double, combined with the Sqrt method, was not able
to compute a correct diagram for the OnLine example for any n and bmax.
This means that the algorithm either cannot terminate, due to inconsistent
evaluations, or yields an incorrect output. Another interesting situation is the
case bmax = 10, n = 106, of the InSquare example, using again the Sqrt

method. In this case we have a degeneracy w.r.t. OrderOnBisector, which
is evaluated incorrectly and causes the algorithm to terminate prematurely. In
short, comparing with the performance of double arithmetic offers an estimate
of the price to be paid for achieving robustness.

A general observation concerns double arithmetic, compared to (filtered) exact
number types. The fastest of the latter incurs an overhead factor of at most 4
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in any of the examined data sets. A notable exception is the OnLine example
with 104 sites, expressed by quantities of 30 bits. The slowdown factor is
larger than 30. To explain this behavior, observe that it happens precisely
at the largest input set which can be handled by double arithmetic. What
becomes manifest here is the high cost of exception handling, as performed
by the current implementation of filtered arithmetic. Exceptions are widely
used to catch numerical errors, and significantly influence run time for large
data sets, whereas for most inputs they constitute rare events. This is due
to the fact that exceptions render a program highly non-sequential, in which
case compiler optimizations cannot be effective enough. The remedy would
be a more careful exception-free implementation, which requires an additional
programming effort that we have not undertaken. Remark that, despite the
fact that exceptions do not occur regularly, their handling becomes important
for very large sizes.

A related observation concerns experiments with non-filtered mpfloat arith-
metic: they confirm that this type is faster for OnParabola inputs of 50
bits than the filtered mpfloat type. For inputs of 40 bits the filtered and
non-filtered mpfloat type take about the same time, and for inputs of 30 bits
or less, the filtered mpfloat type is faster. This behavior for inputs of large
bit-size should be attributed to the high cost of exception handling, which oc-
curs every time the InCircle predicate is called, whereas for inputs of small
bit-size, it is a combination of two facts: (i) interval arithmetic suffices to re-
solve the InCircle subpredicate, and (ii) the number of hidden sites is much
higher relative to the inputs of larger bit-size, which implies that the InCir-

cle subpredicate is called fewer times with respect to the number of input
circles. Recall that determining if a site is hidden is done using expressions
of algebraic degree up to 4. Similar observations can be made if we consider
the filtered and non-filtered real, or the filtered and non-filtered gmp number
types. The GMP package uses asymptotically faster algorithms than those
supporting mpfloat. But this is not obvious from our experiments since they
seldom treat sufficiently large instances. Finally, it is also interesting to see
that we have an analogous pattern of behavior for the afore-mentioned filtered
and non-filtered number types when we consider the OnLine inputs. The time
gap, however, between the filtered and non-filtered number types is smaller,
which should be attributed to the fact that the predicates evaluated for the
OnLine inputs are of smaller degree than for the OnParabola inputs.

In comparing the most efficient implementation, with filtered number types,
for each of the two predicate evaluation methods, we see that the Polynomial

method is faster (with filtered mpfloat arithmetic) than the Sqrt method,
on every instance. Their ratio of performance can be as large as 3, e.g., for the
OnParabola inputs.
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10.2 Predicate evaluation

As before, we use two evaluation methods, denoted by the keywords Sqrt

and Polynomial, respectively. The first one assumes that the operations
{+,−,×, /,

√ } are performed exactly. The second uses the procedure of Fig-
ure 10 and assumes that only the operations {+,−,×} are performed exactly.

For reasons of programming simplicity concerning the most demanding prim-
itive, namely RadiiDifference, we have used the approach sketched just
after Theorem 13. In our current preliminary implementation, the factoriza-
tion of R0 to polynomials of degree 12 and 8 is not undertaken. The main
reason is that this requires a large number of operations; e.g., the first factor
is comprised of 205 monomials in the input parameters. Thus the maximum
degree of the expressions actually tested by our program is 20.

We present two series of experiments. The first focuses on the entire algorithm.
Two data sets are considered, one random and one in almost degenerate po-
sition (Table 7). The random set consists of N = 5 · 105 sites with integer
coordinates uniformly distributed in the square [−M, M ] × [−M, M ], where
M = 1014. The weights of the sites are integers uniformly distributed in the
interval [0, R], where R = 1011. About 3% of the sites are hidden. The almost
degenerate data set consists of N sites which are approximately tangent to the
circle centered at the origin of radius M . The coordinates of the site centers
are random integers. The radii of the sites are also random integers uniformly
distributed in [0, R]. Less than 1% of the sites are hidden.

The second series of experiments focuses on the comparison between two al-
gebraic numbers of degree 2 (Table 8). In particular, we are given the polyno-
mials in (23) and we want to compare x+

1 and x+
2 . We use 3 different methods,

namely the one that represents the roots as radicals (cf. (24)), the method
presented in [10] (cf. Fig. 9) and our method based on the evaluation tree of
Figure 10. We use the keywords Sqrt, Dfmt and Polynomial, respectively.
We consider 3 models for the bit size of the coefficients ατ , βτ and γτ . These
are (4b, 5b, 6b), (b−2, b−1, b) and (b, b, b), where b is a parameter. The first one
corresponds to our geometric problem, where b is the bit size of the inputs of
our algorithm. The second and third model correspond to a homogeneous and
a generic polynomial. The number types used are the same as in the first series
of experiments. The experiments using doubles are only given for reference.
We consider polynomials with randomly chosen coefficients, using two scenar-
ios: (1) the roots of the two polynomials are entirely independent (random

data), and (2) the larger roots of the two polynomials are equal (degener-

ate data). No exception mechanism has been used; in other words, the code
did not do any exception handling (no exception throwing and no exception
catching).
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Algorithm for Apollonius Diagram using hierarchy

Method
Number Insertion OrderOnBisector RadiiDifference x+

1 -x+
2 tree P3(∞) P4

type time time # calls time # calls # calls # evals # evals

R
a
n
d
o
m

Sqrt

double 60.63 1.62

50201

<0.01

10035

n/a n/a n/areal 761.17 19.8 0.04

filter + real 197.68 5.08 0.04

Polyn.

double 60. 1.5 0.02

8896 6198 6072

real 778.59 20.32 0.12

gmp 3562.92 93.06 0.52

mpfloat 2493.55 66.54 0.97

filter + real 204.47 5.69 0.06

filter + gmp 190.15 5.35 0.08

filter + mpfloat 190.67 5.23 0.09

A
l
m
o
s
t

D
e
g
e
n
e
r
a
t
e Sqrt

real 3291.61 129.6 2621874 14.97 1533280
n/a n/a n/a

filter + real 3134.17 95.72 2622036 14.32 1533426

Polyn.

real 1712.26 93.64

2621874

12.31

1533280 767489 598460 825gmp 5282.56 402.89 62.04

mpfloat 3550.62 331.4 74.11

filter + real 1276.53 53.85

2622054

7.39

1533374 767523 598493 858filter + gmp 1178.41 53.1 8.18

filter + mpfloat 852.85 47.79 9.47

Table 7
Comparison of different number types and methods for the overall algorithm and
its predicates. Running times are in seconds and refer to the total time spent in the
corresponding module; “# evals” denotes number of evaluations and “n/a” refers
to cases where the corresponding entry is not applicable.

We observe that the running times of the filtered approach with random in-
puts are only 3 to 5 times larger than those with floating point arithmetic;
this holds for all three tables. This may go against popular belief that as-
sumes exact arithmetic to be excessively costly, when compared to numerical
computation. The latter, moreover, offers no guarantee and would lead to
inconsistencies when (near) degeneracies occur; in the case of Apollonius di-
agrams, inconsistencies may appear even with certain random inputs. Our
experiments thus provide another confirmation that carefully implemented
exact arithmetic imposes a reasonable overhead on efficiency.

An important observation is that the filtered approach is usually at least two
times faster than the non-filtered approach, and more so for almost degenerate
inputs; cf. Table 7. Among the filtered methods, our Sturm-based techniques
run about twice as fast as the Sqrt method. It is natural that for almost
degenerate inputs, the number of tests increases with filtering, because in
certain cases an augmented precision is required. This increase occurs for
both OrderOnBisector and RadiiDifference, and for both Sqrt and
Polynomial methods, but not to the same extent. This is a manifestation
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Methods for number types that support {+,−,×, /,
√ }

Degree model b double real filter + real

(ατ , βτ , γτ ) Sqrt Dfmt Polyn. Sqrt Dfmt Polyn. Sqrt Dfmt Polyn.

R
a
n
d
o
m

4b, 5b, 6b
4 0.37 0.28 0.24 2.42 2.82 3.7 1.23 1.06 0.86

8 0.24 0.26 0.32 3.63 5.35 5.1 1.39 0.84 0.79

b-2, b-1, b
25 0.28 0.23 0.24 2.41 2.95 3.73 1.28 1.1 0.81

50 0.35 0.31 0.22 4.17 5.5 5.24 1.33 0.91 0.79

b, b, b
25 0.35 0.27 0.25 2.51 2.96 3.66 1.39 0.83 0.79

50 0.21 0.25 0.26 3.66 5.69 5.49 1.33 0.99 0.98

D
e
g
e
n
e
r
a
t
e

4b, 5b, 6b
4 0.23 0.3 0.26 114.53 122.05 111.01 117.44 125.58 113.65

8 0.29 0.23 0.34 485.95 421.69 367.17 488.23 426.66 372.79

b-2, b-1, b
25 0.25 0.25 0.32 127.23 128.83 128.68 130. 132.58 131.23

50 0.44 0.23 0.42 538.78 427.07 376.2 543.46 433.61 380.87

b, b, b
25 0.27 0.24 0.33 126.84 129.41 129.62 130.6 132.51 131.68

50 0.38 0.23 0.27 538.71 427.24 375.95 543.66 433.86 380.48

Methods for number types that support {+,−,×}

Degree model b gmp mpfloat filter + gmp filter + mpfloat

(ατ , βτ , γτ ) Dfmt Polyn. Dfmt Polyn. Dfmt Polyn. Dfmt Polyn.

R
a
n
d
o
m

4b, 5b, 6b
4 25.95 23.25 11.65 9.69 0.97 0.81 0.89 0.81

8 27.61 25.42 14.82 12.24 1.07 0.77 0.84 0.93

b-2, b-1, b
25 25.63 23.7 12.83 9.68 0.88 0.87 0.84 0.75

50 29.96 25.7 17.38 13.49 0.94 0.86 1.1 0.92

b, b, b
25 26.2 23.04 12.84 10.07 1.08 0.9 0.95 0.95

50 30.44 26.75 18.4 13.89 0.87 0.97 0.93 1.09

D
e
g
e
n
e
r
a
t
e

4b, 5b, 6b
4 43.16 37.68 19.42 15.78 53.33 46.26 28.53 23.58

8 46.28 39.91 25.67 20.74 56.75 49.62 34.97 28.37

b-2, b-1, b
25 44.01 37.9 20.54 15.59 53.8 46.88 28.7 24.37

50 49.54 41.7 30.13 23.15 60.1 51.45 38.79 31.67

b, b, b
25 43.82 37.8 20.53 17.03 53.24 46.71 29.83 24.57

50 49.94 42.37 31.07 24.19 60.25 51.06 40.33 32.96

Table 8
Running times for the comparison of x+

1 and x+
2 considering various models and bit

sizes for the coefficients. The measurements are in µsec and are the averages of 106

random input sequences.

of the fact that the two methods do not use the same error bounds; a larger
input sample may shed light to this phenomenon.

It was expected that the number of tests should increase between random
and almost degenerate inputs. It is less obvious, though, that this would not
hold for the tests on P4, the quantity examined at the maximum depth of the
evaluation tree; cf. the last column of Table 7. Experimental data, not shown
here, confirm that the output cases do not occur with the same frequency
when the input is almost degenerate. Recall that the last 3 columns of Table
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7 refer to those instances that require comparing x+
1 and x+

2 , and different
pairs of cases are distinguished by P3(∞) and P4. In our random data the
prevailing cases are 3b (J > 0) and 4; hence the numerous P4 tests. In the
almost degenerate data the vast majority of cases is distributed between 2, 3b
(J < 0) and 5. In this case P3(∞) can decide the order of x+

1 , x+
2 in about

99% of the cases for which K cannot yield an answer.

Another interesting corollary of our experiments is the clear improvement
upon the method of [10], thanks to the procedure based on Sturm sequences,
which reduces the number of operations; cf. Table 8. In addition, the inputs
that do not require going to maximum depth of the evaluation tree have a
lower algebraic degree, since we have replaced testing E by P3(∞). This may
have also allowed for better filtering.

Further conclusions can be drawn from Table 8 by considering the complexity
as a function of bit size. We observe that, for random inputs, the cost increases
in sublinear fashion, because several tests can be performed accurately at
low precision. As far as degenerate inputs are concerned, this is again true
with multi-precision integer or floating-point arithmetic, which is adaptive in
this sense. However, using reals implies a superlinear dependence on bit size
because of lazy evaluations, which require that several evaluations be repeated
as precision increases. The GMP package uses asymptotically faster algorithms
than those supporting MP Float. But this is not obvious from our experiments
since they never treat quantities of more than about 200 bits.

11 Extensions and future work

As we have mentioned in the introduction, our algorithmic analysis of the pred-
icates for the Apollonius diagram can be almost immediately adapted for the
algorithm in [4]. The latter algorithm needs a single predicate: given an edge
of the Apollonius diagram, defined by four sites Bi, Bj, Bk and B`, as well as a
fifth site Bm, determine what portion of the edge αk`

ij is destroyed by the new
site Bm. This is, essentially, our EdgeConflictType predicate. In our case,
however, when the EdgeConflictType predicate is called we have already
verified that Bm is not a hidden site. Hence, in order to use the EdgeCon-

flictType predicate we need to slightly modify it as follows. We first check if
Bm is contained in the interior of any of the four sites Bν, ν = i, j, k, ` (clearly,
if one of these sites is the site at infinity B∞, Bm is not contained in the interior
of that site). If this is the case, then Bm is hidden and thus Bm is not in conflict
with the edge αk`

ij . Otherwise, and depending on whether the edge αk`
ij lies on

an infinite or finite bisector, we simply call the FiniteEdgeConflictType

or InfiniteEdgeConflictType predicate. Clearly, the algebraic degree of
the predicate required by the algorithm [4] is 16.
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It is also interesting to notice that our algorithmic analysis of the predicates for
the Apollonius diagram is also applicable to the case of smooth disjoint convex
objects. More specifically, consider the scenario, where instead of circular sites
we have smooth convex objects (e.g., ellipses) that are disjoint. The distance of
a point on the plane from an object is now defined to be the minimal distance
from the point to the boundary of the convex object. The distance is positive
if the point lies in the complement of the convex object, zero if it lies on its
boundary, and negative if it lies in its interior. It turns out that under this
distance metric, the Voronoi diagram of the convex objects is a special case
of an abstract Voronoi diagram [31], and we can either use the dynamic algo-
rithm presented in [31] or the one for abstract Voronoi diagrams in [4]. The
second algorithm would simply require the EdgeConflictType predicate
(since the objects are disjoint we do not have hidden sites). The predicates re-
quired for the first algorithm, when applied to disjoint convex objects are the
OrderOnBisector, EdgeConflictType, Orientation and IsDegen-

erateEdge predicates. Their decomposition to subpredicates and primitives
described in Section 3.3 is still valid. Naturally, the way the Orientation

predicate, the DistanceFromBitangent and InCircle subpredicates, and
the χ2, Existence and RadiiDifference primitives are computed will now
depend on the type of convex objects considered.

Given our remarks above we would like to apply our algorithmic analysis of
the predicates to the computation of the 2D Voronoi diagram of specific in-
stances of smooth convex objects, such as ellipses or C1-continuous composite
Bézier curves. We also expect that it will be possible to use Sturm sequences
for the exact computation of arrangements of curves, as well as to extend our
approaches to the three dimensional problem, i.e., the Apollonius diagram
of spheres in 3D. Some preliminary efforts in the direction of computing ex-
actly single cells of the 3D Apollonius diagram have been made in [32] and
[33,34]. In [32] the implementation is not exact, but rather relies on controlled
floating point arithmetic; when the floating-point arithmetic fails the input is
numerically perturbed and the computation is restarted. The implementation
in [33,34] is exact and relies on the computation of a special two-dimensional
Voronoi diagram, called Möbius diagram, that is combinatorially equivalent
to a single 3D Apollonius cell (cf. [35]).
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