Scalable Nonlinear Dynamical Systems
for Agent Steering and Crowd Simulation

Siome Goldenstein ! Menelaos Karavelas? Dimitris M etaxas?
L eonidas Guibas? Eric Aaron®2 Ambarish Goswami ¢

a Computer and Information Science Department, University of Pennsylvania.
b Computer Science Department, Sanford University.
¢ Discreet.

Abstract

We present a new methodology for agent modeling that is scalable and efficient. It is based
on the integration of nonlinear dynamical systems and Kinetic data structures. The method
consists of three-layers, which together model 3D agent steering, crowds and flocks among
moving and static obstacles. The first layer, the local layer employs nonlinear dynamical
systems theory to models low-level behaviors. It is fast and efficient, and it does not depend
on the total number of agents in the environment. This dynamical systems-based approach
also allows us to establish continuous numerical parameters for modifying each agent’s
behavior. The second layer, a global environment layer consists of a specifically designed
kinetic data structure to track efficiently the immediate environment of each agent and
know which obstacles/agents are near or visible to the given agent. This layer reduces the
complexity in the local layer. In the third layer, a global planning layer, the problem of tar-
get tracking is generalized in a way that allows navigation in maze-like terrains, avoidance
of local minima and cooperation between agents. We implement this layer based on two
approaches that are suitable for different applications: One approach is to track the closest
single moving or static target; the second is to use a pre-specified vector field, which may
be generated automatically (with harmonic functions, for example) or based on user input
to achieve tht desired output. We also discuss how hybrid systems concepts for global plan-
ning can capitalize on both our layered approach and the continuous, reactive nature of our
agent steering.

We demonstrate the power of the approach through a series of experiments simulating
single/multiple agents and crowds moving towards moving/static targets in complex envi-
ronments.

1 Supported by Brazil’s “Conselho Nacional de Pesquisa e Desenvolvimento” (CNPQ).
2 Partially supported by NSF grant NSF-SBR 8920230.

Preprint submitted to Elsevier Science 30 May 2001

1 Introduction

Modeling autonomous digital agents and simulating their behavior in virtual envi-
ronments is becoming increasingly important in computer graphics. In virtual real-
ity applications, for example, each agent interacts with other agents and the environ-
ment, so complex real-time interactions are necessary to achieve non-trivial behav-
ioral scenarios. Modern game applications require smart autonomous agents with
varying degrees of intelligence to permit multiple levels of game complexity. Agent
behaviors must allow for complex interactions, and they must be adaptive in terms
of both time and space (continuous changes in the environment). Finally, the mod-
eling approach should scale well with the complexity of the environment geometry,
the number and intelligence of the agents, and the various agent-environment inter-
actions.

There have been several promising approaches towards achieving the above goal.
Many of them, however, are restrictive in terms of their application domain. They
do not scale well with the complexity of the environment. They do not model time
explicitly. They do not guarantee that the desired behavior will always be exhib-
ited. This paper presents an alternative: a scalable, adaptive, and mathematically
rigorous approach to modeling complex low-level behaviors in real time.

We employ nonlinear dynamical system theory, kinetic data structures, and har-
monic functions in a novel three-layer approach to modeling autonomous agents
in a virtual environment. The first layer consists of differential equations based
on nonlinear dynamic system theory, modeling the low-level behavior of the au-
tonomous agent in complex environments. In the second layer, the motions of the
agents, obstacles, and targets are incorporated into a kinetic data structure, provid-
ing an efficient, scalable approach for adapting an agent’s motion to its changing
local environment. In the third layer, differential equations based on harmonic func-
tions determine a global course of action for an agent, initializing the differential
equations from the first layer, guiding the agent, and keeping it from getting stuck
in local minima. We also discuss how hybrid systems concepts for global planning
can capitalize on both our layered approach and the continuous, reactive nature of
our agent steering.

In the first layer, we characterize in a mathematically precise way the behavior of
our agents in complex dynamic virtual environments. The agents exist in a real-time
virtual environment consisting of obstacles, targets, and other agents. Depending
on the application, agents reach one or multiple targets while avoiding obstacles;
targets and obstacles can be stationary and/or moving. Further, the inclusion of time
as a variable in our system makes the formulation efficient, natural and powerful
compared to traditional Al approaches.

Our agent modeling is based on the coupling of a set of nonlinear dynamical sys-

tems. The first dynamical system is responsible for the control of the agent’s angular
velocity. It uses carefully designed attractor and repeller functions for targets and
obstacles (respectively). Due to the nonlinearity of these functions, a direct sum-
mation can generate undesired attractors that would lead to collisions and other
unsuitable behaviors. To remedy this problem, we use a second nonlinear dynam-
ical system that automatically computes the correct weighted contribution of the
above functions. A third dynamical system controls the agent’s forward velocity.

Each agent is described by its position, geometrical shape, heading angle, forward
velocity, and personality. To model low-level personality attributes, (e.g., agility,
aggressiveness), we extend the above set of equations through additional parame-
terization of the governing equations. This results in different low-level agent be-
haviors, depending on the environment configuration. Agents with different person-
alities will react differently in the same environment, given the same set of initial
conditions. Our approach is general; other low-level behaviors can be easily mod-
eled if needed for a given application.

The nonlinear dynamical systems that model changes in agent attributes are based

on local decisions. To avoid local minima, and we use harmonic function theory to

generate a nominal global trajectory based on the static objects in the environment.

Harmonic functions are solutions to the Laplace equation; they create an artificial
potential field for the agent to follow. The underlying mathematical theory [22,46]
(used in fluid dynamics, electrostatics, and other engineering fields) guarantees that
the minima of the field occur only at the boundary of the agents’ configuration
space, i.e., a global minimum. The nominal solution is then used to compute the

agent’s motion at each time instant.

In addition to the “intrinsic” personality attributes of each agent, an agent’s behav-
ior is affected by “extrinsic” factors in its immediate environment, such as obsta-
cles, other friendly or hostile agents, etc. In order to make our approach efficient
and scalable with the number of agents and the geometric complexity of the envi-
ronment, we use Kinetic data structures (KDS, for short) to track the immediate en-
vironment of each agent and know which obstacles/agents are near or visible to the
given agent. Kinetic data structures [9,27] are a general framework for designing
algorithms tracking attributes of a continuously evolving system so as to optimally
exploit the continuity or coherence of the motion. A KDS works by caching a cer-
tain set of assertions about the environment, certifying the value of the attribute of
interest, and then maintaining this assertion cache and the attribute of interest as
assertions fail.

We demonstrate the power of our approach through a series of examples that ex-
hibit continuously adaptive low-level behaviors, including flocking. The formula-
tion lends itself naturally to parallelism. It may also be used as a basis for modeling
high-level behaviors.

The paper is organized as follows. In Section 2, we list some of the related work
in the field, and how it relates to our approach. In Section 3 we describe our basic
framework. Sections 4, 5, and 6.1.1 describe our framework in detail. Section 7
explains the demos that are in the video, and Section 8 contains conclusions and
directions for future work.

2 Redated Work

Modeling autonomous agents has been an active area of research in CG since the
pioneering work of Reynolds [49]. Since then, methodologies from many fields
have been employed to address this problem [13] and have been used in several do-
mains including game applications [54,56,45,47]. Al (artificial intelligence) tech-
nigues have shown very promising results [30,38,10,23] generally require complex
inferencing mechanisms and explicit rules, and they make the explicit modeling
of time very difficult. Typically, such methods do not scale well with the num-
ber of agents or obstacles, especially when each agent has a different set of gov-
erning rules. On the other hand, learning, perception, and dynamics-based tech-
niques [50,48,55,40,26,33,12] can easily adapt to dynamically changing environ-
ments. Some initial attempts to use nonlinear dynamical systems for low-level be-
havior modeling have appeared recently in [24,25]. Methods from computational
geometry have also been employed [57,28].

Different systems and approaches have been developed to add distinct behaviors to
autonomous agents [55,10,16,11]. The usefulness of a layered approach to model-
ing low and high-level behaviors has been advocated by several researchers [35,3,44].

Behavioral robotics deals with similar issues, usually dealing with only two-dimensional
environments [7,53,37].

In this paper, we present a novel integration of nonlinear dynamical systems, ki-
netic data structures and harmonic functions. This results in a layered, efficient,
and scalable approach to modeling low-level behaviors, higher-level planning, and
smart environment management.

3 Framework Design

We describe a three-layer framework for autonomous agent modeling and motion
generation. Each layer is responsible for a different stage of the process, and has
to communicate with the others. Different approaches can be taken for each layer,
depending on the particular application.

Environmental

|

Global

Local

/'
\

We call the three layers local, environmental, and global:

Local This layer is responsible for basic reactive actions: obstacle avoidance and
moving in the desired direction. This stage needs to be fast, scalable, robust,
and parameterized to control the particular way it does these basic tasks. For the
system to be scalable, this layer cannot depend on the number of elements in the
environment.

Global Environment This layer has knowledge about the spatial layout (e.g., agents,
obstacles) of the environment. It tracks each agents’ immediate environment,
which in turn is used to determine the agent’s behavior. Such information can
then be transmitted to and shared by other agents, so that each agent can build a
more complete model of its environment. This layer is also responsible for colli-
sion detection, and for notification to the agents involved in it, so that appropriate
responses can be generated.

Global Planning Since the local layer only knows how to deal with very local op-
erations, it becomes necessary to give the agents some intelligence, or at least a
more general knowledge of their environment. This global planning layer gives
each agent the general direction it should follow at each point in time. An inter-
pretation of the result of this layer is a time-varying adaptive flow field. This is
used in the local layer as an educated guess of where the agent should try to go
to achieve its goal.

In a cooperative situation, this layer is responsible for organizing different
agents to achieve a common goal. It needs to take into account each agent’s
attributes.

This layer can also change the attributes of each agent, so as to achieve higher-
level behaviors. For instance, an agent can get “tired” as time goes by, moving
slower or in a more clumsy way. Or, if a critical task has to be achieved no matter
the cost, an agent might allow itself to get closer to moving obstacles, increasing
the risk of being involved in a collision.

4 Local System: Nonlinear Dynamical System

We model the low-level movement of every agent by a nonlinear dynamical sys-
tem. The movement of an agent at any instant is defined by its heading angle and

forward velocity. An agent’s behavior is modeled through a parameterization of the
nonlinear systems governing the agent’s movements.

We first present our model of an agent’s heading angle, which is defined through a
pair of coupled nonlinear dynamical systems. We then present the modeling of the
agent’s forward velocity. Our methodology is an adaptation of nonlinear dynamical
system theory first used in behavioral robotics [53,37]; intuitively, it amounts to
computing an agent’s motion so that it always turns away from obstacles and moves
in the direction of the targets. The agent’s behavior is adaptive and intelligent, since
it dynamically computes the varying contributions of the surrounding objects to
determine its path towards a target.

4.1 Agent Heading Angle

The agent’s heading angle, ¢, is computed by a nonlinear dynamical system of the
form

¢ = f(o,env),)

where f is a nonlinear function and env represents the state of the environment,
i.e., the position and size of obstacles, targets, and other agents.

The function f is constructed so that each agent avoids obstacles and pursues the
desired direction. The first step in the design of f is to model the contribution of
obstacles and target direction. We model their contribution so that the direction of
an obstacle will act as a repeller and the goal direction will act as an attractor.

According to the dynamical system in (1), attractors and repellers are located at the
zero crossings of f. At these points, an attractor or repeller property will be deter-
mined by the derivative of f with respect to ¢. In both cases, at the zero crossing
points ¢ = 0. These points are called critical points or fixed points, since ¢ does
not change at these points.

The fixed point behaves as an attractor or repeller, depending on the value of the
derivative of f with respect to ¢, i.e., df/0¢ = agb/agb. If the derivative is positive,
any ¢ slightly off of the critical point will deviate farther away with time. This is
a repeller. The inverse situation occurs when the derivative is negative. Values of
¢ slightly away from the critical point will converge towards it. This is an attrac-
tor. Shiftings of these functions will place repellers and attractors to the specified
positions of obstacles and goal direction respectively.

Figure 1 shows several parameters in a situation involving an agent and two obsta-
cles. 9, is the angle of obstacle i with respect to the horizontal, 2Av; is the angle
subtended by obstacle 7 on the agent and r; is the distance between obstacle 7 and

the agent. We will use these parameters to define a repeller and an attractor func-
tion that correspond to the targets’ and obstacles’ contribution to f, fia and fops,
respectively.

obs; A obs,

r1

Fig. 1. Two obstacles in front of an agent.

The design of new attractor/repeller functions can be a complex task, but once it
is done it results in a very fast computer implementation — it only amounts to
function evaluations. Figure 2 shows the plotting of two typical examples of these
functions. All the necessary equations are in Appendix A. More details and design
choices can be found in [25].

(a) (b)

Fig. 2. In 2(a), attractor function for a target in ¢ = 0. In 2(b) an repeller with ¢y = 0,
Ay =7/10,r; = 3,dyp =6 and § = 0.8.

The definitions of the attractor fy (A.1) and repeller fqns (A.2) functions are used
to define the environment function f that takes into account both obstacles and goal
direction. A simplistic approach would be to sum the obstacle and target contribu-

tions to obtain

¢(¢, env) = f = faa + fobs- (2)

Unfortunately this approach does not always produce the desired result. Undesir-
able behaviors may result due to the nonlinearity of the summed functions [36,24].
To overcome this problem we use an adaptive weighted sum of the target and ob-
stacle contributions (see 3) instead of a direct sum.

4.1.1 Non-spherical Obstacles

Certain environments need non spherical objects to be well described. (Examples
include walls in rooms or mazes, the ocean’s bottom, or the sides of a building.) A
repeller function for such objects can be simulated by placing enough small non-
interleaving spheres sampling the desired area, but this can increase the complexity
of an environment (number of total agents to be taken care of) by orders of magni-
tude.

There are two cases that need to be distinguished when taking into account a non-
spherical obstacles (such as a two-dimensional segment of line). The first is when
the object is far enough from the agent. It can then be treated as a normal repeller,
where the midpoint of the segment is used to calculate ¢ and A. The distance
between the agent and the object is also calculated using standard geometric line-
point properties.

If the agent is close enough, the line segment can be thought as extending itself
through infinity. It is unreasonable to expect that the movement of the agent will
be influenced by the midpoint of the line segment alone. Instead, v and At are
calculated using the closest point to the agent in the line segment. This is equivalent
to using the angle between the direction of the agent and the normal of the line
segment to calculate the repeller component. A reflecting effect is thus obtained.

4.1.2 Adaptive Weighting of Environment Contributions

The repeller functions, fqs are designed so that they will work as expected when
there are multiple obstacles, but their direct sum with a target’s function fi, will not
always produce the expected result. A simple example to demonstrate this occurs
when two obstacles are too close together to allow the agent to move between
them, and a target is hidden behind them. We would expect that the agent will go
around the obstacles. Instead, the resulting direct sum of these functions creates an
undesired attractor just in front of the agent, leading eventually to a collision.

One way to avoid this problem is to introduce a mechanism for selecting the rela-
tive weights for target and obstacle contributions in the sum. This could be accom-

plished with a rule-based / Al-based approach. However, the design of such rules
is not obvious, and they do not scale well with the number of targets and obstacles.

Instead, we use a nonlinear dynamical system approach to introduce the real-time
computation of the necessary adaptive weight functions. These functions are used
to determine a weighted sum of the target and obstacle functions. The weight values
change during the course of the simulation depending on the environment.

Based on our application domain, we use a two dimensional weight space (obsta-
cles and goal), but more classes can be used (allowing different types of obstacles
to be treated differently, for example) depending on the application and the sys-
tem’s stability conditions. (Similar approaches are used in Hopfield Neural Net-
works [31].) Therefore, the computation of the heading angle is based on a nonlin-
ear system of the form

Q-s = f((lsa env) = |wtar‘ftar + ‘wobs‘fobs +n, (3)
where wiy and wops are the weights for the targets and obstacles, respectively, and
n is a noise term used to escape from the unstable fixed points created by obstacles.
These weights are the fixed points of the following nonlinear constraint competition
dynamical system:

. o 2 2
Wtar = alwtar(l - wtar) — Y12Wtar Wops + T (4)
. _ 2 2 ’
Wobs = a2wobs(1 - wobs) — V21 WopsWiy + N

where oy, ag, 712 and ~yz; are parameter functions to be designed. Based on our
approach, at every iteration during the computation of ¢ using (3), we compute wig
and wqys based on the computation of the fixed points (tix = wWons = 0, Which re-
sults in two nonlinear equations with unknowns wiy and weys) Of the system defined

by (4).

A system like (4) chosen arbitrarily might not converge to a fixed point. Therefore,
a careful stability analysis is required to determine its convergence properties. The

stability anaIyS|s is done by first identifying the positions of the fixed points, i.e.,
W = (e, Wops) | = 0, and then for each fixed point checking the conditions such
that all the eigenvalues of the Jacobian matrix (0w; /0w;) at that point are less than

zero. This is a classical nonlinear dynamical system stability analysis [43]. Based

on this procedure we have computed that the above system (4) has four critical

points: (0,0), (£1,0), (0,£1) and (A, £A,), where

A =+ Otz(Oq —’)’12) ’ Ay = + Oll(Oéz —’721) _ (5)
a1 — Y12721 a102 — Y12721

In the Appendix A, Table (A.1) lists the stability conditions for each of these fixed
points in terms of the coefficients o; and +;;, where these carefully designed coef-
ficients are also found.

4.2 Agent’s Forward Velocity

Many different approaches can be used for modeling forward velocity. One possible
approach is to assign a constant value to the forward velocity. This approach has
drawbacks in a real-time environment: If an obstacle is suddenly in front of the
agent, there might not be enough time for the agent to change direction; and a
collision may occur. A better approach is to have the agent move faster when there
are no objects around and slower in a crowded area. The agent should also retreat
when it is too close to an obstacle. An equation for the forward velocity that satisfies
the above design criteria is the following
Tmin — dl

v t2¢ ©)
where r,,;, 1S the distance to the closest obstacle, d; the safety distance and ¢2¢
is the time to contact. This method basically applies a constant time to contact
approach (see [52] for similar approaches). If the closest obstacle is far then the
forward velocity is large. If the closest obstacle is at a distance smaller than d1,
then the resulting forward velocity will be negative, meaning that the agent will
retreat. Note that only obstacles in front of the agent should be considered for this
calculation. We have used the above method in all our examples.

4.3 Extension to Three Dimensions

In three dimensions, angular velocities are no longer scalars, but this does not
change the general approach. Basically, each contribution now is a vectorial an-
gular velocity that can be summed.

The contribution of an attractor or repeller is obtained through the normal 2D
method in the plane that contains both the current direction the agent is facing
and the direction to the given object. This scalar contribution is then converted in a
fully 3D angular velocity multiplying it by the normal of this plane (p — pos X v,
). We see this situation in Figure 3.

Treating the non-spherical case is similar. First, we find the plane where the compo-
nent is active; then, the contribution calculation is a local two dimensional problem
on this plane.

4.4 Modeling Low-Level Personality Attributes

The above dynamical system models every agent’s movement in the same way. This
can be a limitation when modeling more complex environments and behaviors. We

10

(pobj - pagt;

Fig. 3. Obtaining the three dimensional angular velocity.

add three scalar parameters (in the interval [0, 1]) that significantly change the way
agents react.

This approach gives each agent a certain degree of personality uniqueness. It is then
possible to create a simulation with a large number of agents, each one with its own
individual characteristics. Each parameter of a group of agents can then be defined
as a normal distribution with given average and standard deviation. The group will
act with some common characteristics but each agent will still have a particular
way of doing things. This approach gives the simulation designer a great deal of
flexibility.

Because these parameters only change the way numerical functions are evaluated,
there is no further impact on the complexity of the system.

4.4.1 Angular Acceleration — Moment of Inertia

Intuitively, this trait tries to model the agent’s agility, i.e., how fast it can change
direction. In our system this means imposing some kind of controllable (depending
on the trait’s value) limitation on the change in the heading angle.

We use this parameter to model how fast ¢ can change. The above designed system
(3) gives us a new value for ¢ at each time instant, without any consideration of the
previous history of the system. We need some kind of memory that will take into
account the previous values of ¢, combine it with the new proposed value, and give
the final valueg.

A possible realization of the above idea is to use a low-pass filter for the value of .
Electrical engineers study and develop methods for designing different kinds of fil-

11

ters [41]. For our application, however, we need a very efficient solution that allows
a limited degree of control over the filtering. A larger amount of dexterity allows
faster agent angle changes (larger band) while a smaller one limits the angle change

(smaller band). We therefore choose to use a IR (Infinite Impulse Response) filter,

whose discrete implementation is shown in Figure 4. The block | 2= | represents

a fixed time delay, 7 (the sampling rate, or in this case the integration step). The
equation describing this filter is:

$(n) = (1— k) % d((n — 1)7) + k * (n7),)

where ¢(t) is the output of (3) at time ¢, and ¢(t — 7) is its previous evaluated
value. The parameter £ defines how fast the response of the system is to sudden
variations; & is obtained as an affine transformation from the raw parameter. This
way, we can avoid the pathological case where & = 0 and the value of ¢ does not
change. Notice that this model is extremely efficient, since it requires only a single
addition and two multiplications.

proposed .
ot @ = 0

Fig. 4. Two obstacles in front of the agent.

4.4.2 Forward Acceleration — Mass

We use the second parameter to model how fast the agent can change its forward
velocity. This is a kind of imposition on the forward acceleration and the problem
is very similar to the one analyzed in the last section for dexterity.

We model this contribution using the same kind of low-pass filter as for the dexter-
ity trait, but now the forward velocity is modified instead of ¢.

4.4.3 Aggressiveness — A Subjective Quantity

Intuitively, this parameter changes how the agent is willing to take risks, how close
it is willing to get to the obstacles, and how fast it should move when close to them.

In the original system (3), the constant d, (equation A.6 on Appendix A) controls
the distance where obstacles start to be taken into account. Larger values of dg

12

imply that farther obstacles are also taken in account. Therefore, to model the will-
ingness of the agent to get close to obstacles we use a mapping from courage to
dy, where large values of courage lead to small values of d, and small values of
courage lead to large dy. The mapping we use is

do(co) = ¥l _ 1.0, (8)

where k£ = 2log(dosase + 1). This function is illustrated in Figure 5(a). For small
values of the parameter, it will result in large values for dy. When the parameter is
equal to zero, it will give dg.s. and when it is one, dy = 0.

do doyel
3.5 3.5
3 3
2.5 2.5
2 2
1.5 1.5
1 1
0.5 0.5
0.2 0.4 0.6 0.8 1 ® 0.2 0.4 0.6 0.8 i @
(@) (b)

Fig. 5. Mapping from courage to dy and dg,.;. In these figures dopese = 1.

In our nonlinear dynamic system approach, the forward velocity also depends on
the constant d; (6). The agent will even retreat when the distance to the closest
obstacle is smaller that d;. It is important then to reduce d; when this aggressiveness
parameter increases. \WWe model

dl == dOvel — Vo, (9)
where
dobase if)
dOvel = 0 I €0 < 0.5 (10)
2dopase(1 — c0) ifco < 0.5.

Figure 5(b) shows the plot of this function, setting the constant dqs. t0 1.

5 Global Environment Control: KDS

We now describe our data structures for keeping track of the near environment of
each agent. We model the near environment of an agent x by a disk C,, centered at
the agent. We may wish to know what obstacles are near the agent, and what other
agents, friendly or hostile, are close to x and visible to it, etc. This information

13

can be used for calculating environmental contributions to the dynamics of z, for
collision avoidance and detection, and so on. The challenge here is how to keep this
information up-to-date as the agents move and the environment changes. Though
in principle this information can be recomputed from scratch at each time step, this
is wasteful and would not allow our system to scale well to situations where large
numbers of agents are interacting.

We have developed a new kinetic data structure (KDS) tailored to this task. The
KDS exploits continuity of motion and temporal coherence by focusing only on
those relevant relationships in the environment that can be the ones to change next.
Effectively, the KDS maintains a mathematical proof that the objects in C,, the
near environment of agent z, are the ones the KDS knows about. This proof is sup-
ported by a number of simple atomic relationships (such as distance comparisons);
the set of objects forming the near environment of = cannot change unless one of
those support relationships fails. The KDS tracks these atomic relationships, called
the certificates of the KDS and, when one of them fails, it updates both the de-
scription of the near environment of x and the associated proof incrementally. A
well-designed KDS for this problem attempts to come as close as possible to the
goal of processing such certificate failures only when the near environment of x
actually changes.

To make these general ideas concrete, consider the simple case where we model
the agents as n moving points in the plane and there are no obstacles. As = moves,
and C,, moves with it, we wish to track the set of other points that are inside C..
We could do so by testing the distance of all other points from z at each time
step; if we were to do this for a fraction of all the points, we have to deal with a
©(n?) update algorithm at each time step. Instead, our KDS solution proceeds as
follows. We compute the well-known Delaunay triangulation of the n points; this
structure is appropriate for our purposes, because it contains a lot of proximity in-
formation about the points. Furthermore, it is known how to maintain the Delaunay
triangulation as the points move continuously, by simply doing certain edge-flip
operations [29]. We have discovered the surprising fact that the only points that can
enter of leave C,, are the endpoints of Delaunay edges crossed (exactly once) by
the boundary of C',. Thus, if we maintain the set of Delaunay edges crossed by C,
we need to focus on a much smaller set of points when it comes to tracking points
that may enter or exit C,. This is depicted in Figure 6, where the endpoints of the
solid edges are the only ones can make a transition next.

The KDS certificates in this case include those certifying the Delaunay triangula-
tion (these allow us to know when edge flips need to be done) and the ones asserting
that a certain set of edges is crossed by C,. Updating the Delaunay triangulation,
the set of points in C,, and the set of crossed edges at certificate failure times
is straightforward. The details are given in appendix A.3. The appendix also dis-
cusses the extension of these ideas to handle obstacles, visibility conditions, and
generalization to 3D. As compared with the naive solution to tracking the contents

14

Fig. 6. Tracking the agents that may enter or exit C,.

of Cx, the KDS solution has many advantages.

e Conservative estimates for the failure times of the KDS certificates can be com-
puted using motion estimates provided by the non-linear dynamical system; this
means that most KDS certificates need not be verified at each time step by only
when necessary.

e The number of other agents that can potentially enter or exit C', has been reduced
to the endpoints of Delaunay edges crossed by C,. Though exactly how many
these are depends on the radius of C,, it is reasonable to assume that agents have
a minimum size or separation and that the radius of C, is small compared to the
size of the entire environment. These conditions imply that this set of interest has
size which is a small constant, irrespective of the overall number of agents. Thus
in general our update cost will be O(1) per agent, or O(n) overall.

6 Global Planning L ayer

The global planning layer tells each agent, at each moment in time, what is the
direction it should pursue to reach the goal. A simple solution for that is to establish
the direction that points directly to the desired target as the correct course. In many
applications this is a good and simple enough solution (see examples “chicken-2D”,

15

“chicken-3D”, “flock1”, etc).

The advantage of having an independent layer for doing this calculation is that, as
long as it communicates the same way with the other layers, it is straightforward to
replace it with a more sophisticated approach if needed.

Using local knowledge of the surroundings to determine how to reach the goal is not
always enough. The agent will likely fail to reach the goal under trap situations like
the one suggested in Figure 7. In this example, using just the direct direction to the
target, the agent enters the dead-end region until it decides that it has to turn off the
target contribution. By then it turns around and leaves the U shaped obstacle, but
shortly after, it again takes the target into consideration, reestablishing the cycle.
Every now and then, because of the noise inserted into the equations, the agent
might escape this dead-end cycle - but there is no guarantee of how or when it
would happen.

Fig. 7. A trap situation where the agent could possibly fail to reach the goal. The agent is
represented by the pacman like figure, the target is represented by a banana. It is a good
example when a more sophisticated approach for the global planning layer is necessary.

6.1 Precomputed Velocity Fields

We now explain a more sofisticated way to determine what the local layer should
use as the goal direction: a precomputed velocity field.

The ability to use arbitrary velocity fields gives the designer of the environment/simulation
a great flexibility to achieve effects that might not be normal or expected, but that

16

are desired or necessary for a given application. An initial velocity field can also
be obtained through automatic procedures, like the use of harmonic functions (i.e.
also know as potential functions), to obtain a good initial global guess of how to
avoid local traps.

The potential field construction is a computationally expensive task, and to do it
in every integration step would rule out any real/interactive time application. What
we do is precompute the potential field for only static obstacles known in advance.
This is not a limitation, since main landmarks of the environment are usually al-
ready known. In a real terrain simulation it is absolutely reasonable to expect that
the position of rivers, crevices and buildings are known in advance, in games and
VR applications the “map” is already known and many times there are even pre-
computed BSP-trees.

Moving obstacles, as well as the static ones, are taken into account by the steering
and collision avoidance capabilities of the two other layers, and the direction of
the velocity field is then feed into the local layer whenever the target is not in
clear direct sight. This technique avoids local minima situations like the one in the
Figure 7 since there the goal direction in the “U-Shaped” room would be towards
the exit and not in the local direct line to the target.

Potential functions have already been used in robotic path planning applications [34].
Due to certain inherent properties such as the guaranteed absence of local minima,
harmonic potential functions are particularly suitable when robust trajectory gen-
eration is important [15]. Harmonic potentials are also used in several physical
domains, such as hydrodynamics and electrostatics, to analyze complex fluid flow
situations and to compute electric potentials. Modeling the agent motion as a flow
allows the use of the well-developed underlying mathematical theory and the asso-
ciated powerful tools.

6.1.1 Harmonic Functions

Harmonic functions are used, among other things, to model the behavior of ideal
(incompressible and non-viscous) fluids. They are solutions to the Laplace equa-
tion:

I

=57t a7 =0 (11)

where, V? = V - V is the Laplacian operator.

In the absence of viscosity, a fluid flow is irrotational, it cannot possess eddies
and vortices. Since vorticity is represented by the curl of the velocity vector v, an
irrotational flow satisfies curl v = V x v = 0. Equivalently, one can express v as
the gradient of a potential function, v = —V)\, where X is a scalar potential. For

17

an incompressible fluid, according to the continuity equation, the divergence of the
velocity field must be zero [20,21], V - v = 0.

The path adopted by a fluid particle in a steady flow is called a streamline. A stream-
line is the integral curve of (11) and may be represented by the gradient of the
harmonic potential. Streamlines may not intersect each other but external perturba-
tions, or even integration errors, will cause a particle to jump from one streamline
to another.

For our purposes, we only use the direction (and ignore the magnitude) of the local
gradient vector as the nominal goal direction of our agent. Our boundary conditions
in Laplace’s equation are the target potential (the potential of the region covered
by the target) and the obstacles’ potential, which include the configuration space
boundary. Typically, the target potential is set to a low value (the global minimum)
and the obstacle potential is set to a high value. Since fluid tends to flow towards
a decreasing potential, all the streamlines generated in this set-up will eventually
converge to the goal point.

The implementation details for the potential field can be found in the Appendix A.

6.2 Hybrid Systems

Another approach to global planning involves hybrid dynamical systems (hybrid
systems, for short), i.e., systems that combine continuous and discrete dynamics.
Intuitively, global planning may be described in a state-transition framework: Each
state may represent a mode of continuous behavior, corresponding to a particu-
lar “strategy” for low-level reactive navigation (e.g., “Go in the direction of the
target,” or “Ignore the target for now, just escape this apparent local minimum?”);
high-level planning decisions may be represented by discrete, instantaneous transi-
tions between states. This hybrid discrete/continuous mix neatly matches both well-
understood hybrid systems theory and natural abstractions of autonomous agent
behavior.

The formal theory of hybrid systems [1,6,39] has been employed in diverse appli-
cation domains, but animation is not typically considered in hybrid systems liter-
ature. Conversely, animation systems commonly combine discrete and continuous
dynamics, but rarely is it clear how such systems relate to the theoretical founda-
tions of hybrid systems. Nonetheless, theoretical models of hybrid systems allow
us to rigorously specify a state-transition approach to global planning without sac-
rificing any aspect of our technique for local, continuous behavior. In the paper [2],
our agent steering method was the basis for crowd simulation and agent navigation
animations that were formally specified and generated using the general purpose
hybrid system tool CHARON [4]. That paper also presents a simple demonstration
that, in some obstacle/target configurations, the ability to switch between contin-

18

uous behaviors in a hybrid system may result in more effective global planning
than if only one continuous behavior were possible. (These results do not add to
the foundations of our approach to agent navigation, so a full discussion of them is
outside the scope of this paper. See [2] for more details.) Because our method for
agent navigation is designed to accommodate a layered approach to planning, it is
an excellent fit in a hybrid systems framework.

Another benefit emerges from a hybrid systems-oriented approach to global plan-
ning: a framework for reasoning about animation systems. Animators may want to
verify properties of animations that could not easily be seen by watching a single
animation, e.g., properties of agent speed and precise distance that may be too sub-
tle for the human eye, or properties of a large class of animation systems. Such a
task would be extremely difficult without the assistance of an expressive logical
framework. Indeed, merely finding a formal language to express interesting prop-
erties of animation systems may be non-trivial. By working within the theoretical
framework of hybrid systems, however, animators may employ logics for hybrid
systems to formally specify complex properties of animation systems. In addition,
there are practical model checkers —tools that can mechanically verify some prop-
erties of simple hybrid systems— that can be applied to simple animation systems.
These model checkers have significant limitations: Many properties are theoreti-
cally undecidable, and as a practical matter, even decidable properties may only be
feasibly checked in simple cases. Nonetheless, [2] reports a successful application
of model checking to verify collision-avoidance in a simple race-like game. Fur-
ther, as we discuss in section 8, there are approaches to reasoning about complex
systems that allow us to circumvent some undecidability barriers.

7 Experiments

We demonstrate the power of our approach with a series of two and three dimen-
sional experiments. We demonstrate how changes in the intrinsic parameters of an
agent can generate different behaviors, in situations with few agents in crowd sim-
ulations. All our experiments run in the range of 1-700 frames per second on a
Pentium 11 400MHz Linux workstation.

In the two dimensional flocking example we used a random set of intrinsic attributes
for each of the agents. We show how some of the chosen attributes are not sufficient
for the agents to reach the target. For example, there are two agents that sometimes
get stuck behind obstacles. Their attributes allow them to get really close to the
target but do not give them enough flexibility to steer away in time. The forward
velocity component of the system is responsible to avoid actual collisions.

We use harmonic functions on the two maze-structured examples, and in the theater
example in order to provide a global direction that guarantees the agents do not get

19

stuck in dead-ends.

In the three dimensional examples we illustrate how the intrinsic parameters of the
agents affect the general flocking property of a group.

8 Conclusionsand Future Work

In this paper, we have presented a three-layered system for agent steering and cus-
tomizable behavior in real-time environments. The system uses nonlinear dynam-
ical systems, harmonic functions, and a specially designed kinetic data structure
to navigate around static and/or moving obstacles to reach static and/or moving
targets.

We demonstrated our principled approach in several examples, including flock-
ing simulation (which is itself a challenging area of research). We also discussed
a variety of low-level, continuously adaptive behaviors generated using person-
ality parameters. Systems based on our approach can make it easier for users to
achieve efficiently complex low-level agent behaviors and easily build new person-
ality traits. Our approach can serve as a basis for modeling higher-level behaviors,
since it provides a continuum of complex low-level behaviors. The embedded con-
trolling parameters allow time-changing agent behaviors. It is possible to simulate
fatigue in plane pilots, and adrenaline rush, it is also possible to simulate a highly
inertial vehicle, etc., all within the realm of the low-level layer.

The kinetic data structure (KDS) perfectly suits the environment layer, allowing
an implementation to simulate an agent’s perception of its local environment. A
KDS can maintain a substantial amount of information and deal with continuous
time collision detection (in precise points between integration steps), all with no
significant impact on computational complexity.

By applying hybrid systems theory in the global planning layer, we may be able to
formally specify and reason about properties of animations using expressive modal
logics for hybrid systems. Despite the significant undecidability barriers [5] men-
tioned in section 6.2, we need not simply abandon hope of verifying complex sys-
tems: There are approximation techniques for verification that might be applicable
to animation systems. Many relevant properties of animation systems (such as those
formally specified in [2]) are reachability properties, fundamentally about whether
some proposition holds in the states reachable by a system. It is often impossible to
effectively reason about the exact set of reachable states of a complex system, but
we may be able to verify properties on an approximation of that set. That is, if S
is the actual set of states reachable by a system, and we cannot decide property P
on S, we might instead be able to overestimate S by a computationally simpler set
S" > S on which P is decidable. Then, if we prove that P holds on all states in S’,

20

we know P also holds on all states in S. This kind of reasoning by approximation
is an active area of research in the hybrid systems community [17,32,42], but it has
not yet been explored in the context of animation systems.

Our ability to reason about virtual words is essential to our ability to create intelli-
gent virtual agents and design animation systems. Therefore, integrating concepts
from hybrid systems, Al, and computational geometry into the global planning
layer could yield significant advances; for example, a global, centralized structure
could be created to facilitate distributed, cooperative planning among intelligent
agents. For several reasons, a hybrid systems-oriented approach seems particularly
well-suited for such purposes. It would naturally exploit a critical feature of our
layered approach to planning, distinguishing low-level (i.e., continuous-level) tasks
such as obstacle avoidance from abstract, higher-level (i.e., discrete-level) tasks. It
could directly express properties of time, escaping a typical Al-based restriction.
Further, the highly expressive framework of hybrid systems allows formal reason-
ing while also permitting us to retain the character of our reactive agent-steering
behavior. No matter what techniques are used, however, success is likely to arise
from the natural degree of abstraction that our approach provides between high-
level and low-level planning.

A Formulasand Equations

In this appendix we provide some of the details omitted from the main text of this
paper to provide a smoother overview. These details, however, are still necessary
for reproducing our work.

A.1 Non Linear Dynamical System Equations

A.1.1 Heading Attractor and Repeller

The model we use for the attractor function fi, is defined as a sinusoidal shifted by
1, whose argument is the agent’s heading angle, i.e., the relative angle between the
agent’s direction and the object direction:

fiae = —asin(¢ —). (A.1)

It is worth noting that this function generates an attractor at ¢ — ¢ = 0 (when the
target is just in front of the agent) and a repeller at ¢ — v = 7 (when the target is
right behind the agent). Here « is always taken as 1.

21

To define a repeller function, a simple sinusoidal function is not enough. Two ob-
stacles which are close to each other should sum up to form a larger repeller, but
if they are far enough apart, an agent should be able to pass through them. In the
design of a repeller some other aspects of the environment geometry should also
be taken into account, such as the distance from the agent. In addition, we would
like to parametrically control certain properties of the repellers such as their spa-
tial extent. Therefore, as a model for a repeller we use the multiplication of three
different functions, R;, D;, W;, each modeling a different property, i.e.,

fobsi = Rz’ I/Vz Dz‘- (A.Z)

Function R; models a generic repelling property of an obstacle ¢, and is defined as:

R = (‘bA_iqme(l‘M), (A3)

1

where ¢ — 1); is the angle of obstacle 7 with respect to the agent’s direction and
2A); is the subtended angle of the obstacle by the agent.

The second function, W;, is responsible for limiting the angular range of the re-
peller’s influence in the environment and is defined as

Wi = %[tanh(hl(cos(qﬁ) — cos(20; + o)) + 1], (A4)

which models a window-shaped function. A, is responsible for the inclination of
the window’s sides and is defined as

hy = 4/(cos(2Av¢) — cos(2A¢ +6)), x (A.5)
where ¢ is a safety margin constant (in all our applications we kept § = 0.8).

The third function, D;, models the influence of the i** obstacle in the environment
based on the distance of the obstacle from the agent. It is modeled as

D,=e¢ i, (A6)

where 7; is the relative distance between the obstacle and the agent, and d, controls
the strength of this influence as the distance changes (exponential decay).

Figure 2(a) is a plot of fi, for a target located just in front of the agent (¢ — ¢ = 0).
Figure 2(b) is a plot of fq,s for an obstacle located just in front of the target, where
¢—1p=0,A¢=mr/10,7;,=3,dy=6and § = 0.8.

A.1.2 Adaptive Weighting of Contributions

Table A.1 lists the stability conditions for each fixed point [25]

22

Wtar Wobs Stablllty

0 0 Unstable aj,a0 >0

0 +1 | Stable Y12 > aq

as >0

+1 0 Stable Yo1 > Q2

a; >0

+A; | £A5 | Stable aj,ae >0
al > Y12
Qg > Y21

12721 < 00r y12,721 >0

Table A.1
Stability Conditions.

¢From the above table we can conclude the following. The first fixed point case,
W = Wops = 0, results in turning off contributions from both targets and obstacles.

Clearly, we would like that this fixed point is always unstable. Therefore we should
always have o; > 0 and s > 0.

The second fixed point, wy = 0 and wgy,s = +1, should be stable when the agent
must stop considering the target and concentrate only on obstacle avoidance. This
happens when 15 > a7 and ay > 0.

The third fixed point, uiy = +1 and wqps = 0, should be stable when where there
are no obstacles around. In this case the agent only focuses on the target. This point
is stable when v,; > ap and o > 0.

The fourth fixed point (uy and wons have values different than either zero or one)
amounts to what is called an averaging condition. It will be stable when o > 74,
Qi > 91 and either y19791 < 0 Or 712, 721 > 0. The exact value of the fixed point
will depend on the actual values of the four coefficients computed from (5).

The above mathematical facts lead to the following design of the parameter func-
tions a;, ;5. First we need to design a fixed point detector for each of the target fx
(A.1) and obstacle fqs (A.2) functions. We define a fixed point detector for £ as
follows:

Crftar
P — n Cl‘ftar‘. A?
tar Sg < 9 () € ()

The first multiplication term (signum function) will distinguish the attractor fixed
point from the repeller fixed point of f5 (cases when the target is just in front or is
just behind the agent) by detecting the sign of the slope (0 fir/0¢). The exponential

23

is 1 for fixed points (i.e., fx = 0) and is close to 0 elsewhere (these values are
controlled by the constant ¢;, which here is set to 2).

In case of an obstacle we can not use the exact same expression, since fons has a
limited range of influence (due to the window function W; (A.4)). There are several
intervals in fy,s that have zero value but do not indicate the location of the obstacle
(see Fig 2(b)). The solution to this uses the same design as in (A.4).

Ppps = 50N (ag—;bﬁ €1l fovs| (; WZ> . (A.8)

Now, using Py and Pq,s, We can design ~y;, as follows

e—CZPtarPobs

Y2= —o - (A.9)

ec?

When 75 > a5 (see Table A.1) the deactivation of the target contribution (w =
(0,£1)) is a stable solution. This definition results in a ~- that is slightly larger
than zero in most regions, but will have a narrow peak (¢, controls how narrow,
here is set to 2) around the region where targets and obstacles are aligned.

The relationship between -9, and as will choose between the stable points w =
(£1,0) and w = (£A;, £ A,). The only instant where we should turn off the ob-
stacles’ contribution is when there are no obstacles close to the agent. The condition
for this to happen is v9; > as. Therefore we use a small value of 0.05 for ~,;. ay
should be related to the distance of the obstacles to the target. The closer the obsta-
cles are from the target, the larger a., should become. To achieve this effect we use
the functions D; defined in (A.6) and we define @ as

o = tanh <Z Dz')) (A.10)

The hyperbolic tangent will smoothly limit the range of values of «, between 0 and
1.

We still have to select ai;. Remember that the relationship between ;5 and «; will
deactivate the target when ;5 > 4. To improve the collision avoidance, if there
are close obstacles the target should be disregarded. To achieve this, we decrease
a1 as ay increases and we use the following equation:

ar = 0.4(1 — ap). (A.11)

24

A.2 Potential Field Implementation Details

This section presents the computational scheme for solving (11) and is adapted
from [51,8,46]. In a numerical scheme the configuration space is discretized and is
replaced by a grid.

Applying Taylor’s theorem to A(¢) between z — h < ¢t < x + h, where typically
h = L, We can write

N () = Az + h) — 2);l(2x) + ANz — h)- (A12)

The above equation may be used to obtain the numerical counterpart of (11),

Mxjv1, ye) — 2M(x5, yi) + AM@ji-1, yk)
h2

+
M@, Yrr1) — 205, Yk) + A5, Yk—1)
h2
ignoring terms involving A2 and fourth-order derivatives of \. ;From (A.13) we can
compute A\, (z;, yx) at node (j, k),

~0, (A.13)

1
An(@j; yk) = Z[)‘h(xﬂ—la Yi) + An(@5, Yrt1) +
(i1, Uk) + An(T5, yk—1)]- (A14)

In other words, the harmonic potential of a node is the average of the potentials of
its four immediate neighbors.

We first set the target potential to 0 and the obstacle and boundary potential to 1.
To initiate the iterations, the empty configuration space nodes are arbitrarily set to
a value of 0.5. In the Gauss-Seidel [8] approach, the m! iteration step for node
pointsk =1,2,...,N—1landj=1,2,...,N—1inan N x N mesh is expressed
as,

m 1 m— m—
M (g, ye) = Z[)\E‘ D@1, 96) + A" (@5, Yern) +
/\Elm) (SEj_l, yk) + /\Elm) ($j, yk_l)]. (A15)
whereas for the boundary point nodes,

)\517”) (xj,yx) =0o0r1, forallm > 0. (A.16)
We terminate the iterations when the difference between the nodal values at the
current and previous time steps is below a chosen threshold (in all our experiments

we set it to 10e~1°). The Gauss-Seidel method may be significantly accelerated by
using the successive over relaxation or the SOR method [8].

25

A.3 Kinetic Near Neighbors

In this subsection we provide details about the kinetic data structure for maintain-
ing the near environment of each agent. Geometrically, the agents are modeled as
moving points, obstacles (fixed or moving) as line segments, an the near environ-
ment as a ball of a certain radius around an agent. We accomplish these goal by
maintaining variants of the Delaunay triangulation of the moving agents.

A.3.1 Nearest Neighbors in 2D

Let G(V, E) be a planar straight-line graph, where |V| = n, and let S be a subset
of V of size k. With each point p in S we associate a circle C,, centered at the p that
is of radius r,,. Let 7" be a triangulation of G. We call a point g in V" approachable
from a point p in S if ¢ is inside C}, and there exists a path from p to ¢ in T that
lies entirely in C,. We also say that an edge e of 1" properly intersects C, if one
endpoint of e lies outside of C, and the other endpoint of e is approachable from p.

We assume now that the points in V' are moving points in the plane and that the radii
of the points in S may be time dependent. We consider two cases: the unconstrained
case, when there are no obstacles present, and the constrained case, with obstacles.
In the unconstrained case, we maintain for each point p in S the set of points of V'
that are inside Cj,. In the constrained case, we maintain the set of points that are
inside C,, which are not blocked from p by a constrained edge that interests C,,
but not properly (these correspond to the agents near to and visible from the given
agent). It turns out that, if 7" is the Constrained Delaunay Triangulation (CDT) [14],
the set that we want to maintain for a point p in S is the set of points that are
approachable from p. In particular, in the unconstrained case, every point inside C,
is approachable from p, whereas in the constrained case the only points inside C,
that are not approachable from p are those that are blocked by a constrained edge
that crosses C,, but not properly.

The key observation that enables us to maintain the above mentioned sets is cap-
tured in the following lemma:

Lemmal LetT be the CDT of G and let C, be a circle centered at p € S. If point
g € V enters/exits the circle C, at some time ¢, and is visible from at least one
point inside C), then at ¢, there exists an edge of 7" between ¢ and a point inside
Cp.

Proof. At time ty, ¢ is on the boundary of C,.. Let {C, } be the family of circles with
center r that pass through ¢, where r is a point on the segment pq. Consider the
circle C, such that ' is at maximal distance from ¢, visible from ¢ and the circle
C, contains no points of /. Note that because the set of points of V' that are visible

26

from ¢ at ¢y is non-empty by assumption, such a circle C,, always exists. Clearly
the edge ¢r’ is a constrained Delaunay edge.O

This observation immediately provides a way to kinetize the maintenance of neigh-
bors of every point p in .S by maintaining the CDT of S. In addition, for every p
in S keep the set of approachable points A, and the set of properly crossing edges
E,. If the combinatorial structure of 7" does not change, then the endpoints of these
edges are the only points that could possibly enter or exit C,,. In other words the
maintenance of the neighbors of the points in V' consists of two parts: one is the
maintenance of the triangulation itself, and the second is the maintenance of the
triangulation edges crossed by the circles C,,.

The CDT can be maintained using standard edge-flip operations, just like the reg-
ular Delaunay triangulation [18,29]. Whenever an edge flip happens, however, we
also need to update the sets E,, p € S: when an edge in E,, for some p, disap-
pears we need to delete that edge from the edge set £, whereas when an edge that
intersects the circle Cy, for some p, appears we need to add it to E,,.

The situation is somewhat more complicated if a point enters or exits the circle. In
the case that a point ¢ enters the circle C, we have to look at ¢’s neighbors. For those
neighbors that are outside we only need to add the corresponding edges to E,,. For
those that are inside and approachable we need to remove the corresponding edges
from the edge set E,. Finally for the neighbors that are inside but not approachable
(this can only occur in the constrained case) we need to add them to the pointset A,
and perform the same tests for their neighbors recursively. When a point ¢ exits C,
the situation is entirely symmetric: for all the neighbors that are outside we delete
the corresponding edges from E,. For the neighbors that are inside and remain
approachable after the point exits, we need to add the corresponding edges to the
set E,,. Finally as far as the remaining neighbors are concerned, we have to delete
them from the set A, of approachable neighbors, as well as delete any edges in E),
that adjacent to them and recursively do the same for their neighbors.

A.3.2 Nearest Neighbors in 3D

In three dimensions we have implemented only where there are no obstacles present.
For every point p € S we now associate a sphere C, of radius r,. The definitions
of approachability and proper intersection are the same as in the two-dimensional
case.

Our goal is to maintain for each point p € S the set of points that are inside C,. As
in two dimensions, if 7" is the Delaunay triangulation, this set is the same as the set
of A, of approachable points, and Lemma 1 is still true.

The three-dimensional Delaunay triangulation is maintained by simply doing some

27

face-edge of edge-face flips [19]. Hence, what we need to do in the 3D case in
order to update our nearest neighbor structure is essentially the same as in the two-
dimensional unconstrained case. The only difference now is that when we have a
flip an edge either appears or disappears, whereas in the 2D case, whenever a flip
occurs, exactly one edge appears and exactly one disappears.

References

[1] Proceedings of the IEEE, 88, July 2000.

[2] E. Aaron, D. Metaxas, F. lvanci¢, and O. Sokolsky. A framework for reasoning about
animation systems. Technical report, University of Pennsylvania, 2001. Submitted to
3rd International Workshop on Intelligent Virtual Agents.

[3] N. Magnenat-Thalman adn D. Thalmann. Digital actors for interactive television.
Proc. IEEE (Special Issuein Digital Television, Part 2), 83(7):1022-1031, July 1995.

[4] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in CHARON. In N. Lynch and B. H. Krogh, editors, Hybrid Systems
: Computation and Control, volume 1790 of Lecture Notes in Computer Science.
Springer Verlag, 2000.

[5] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the |EEE, 88:971-984, July 2000.

[6] R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems 111, volume 1066
of Lecture Notesin Computer Science. Springer-Verlag, 1996.

[7] R. Arkin. Integrating behavioral, perceptual, and world knowledge in reactive
navigation. Journal of Robotics and Autonomous Systems, 6:105-122, 1990.

[8] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons., New
York, 1978.

[9] J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data. Journal of
Algorithms, 31:1-28, 1999.

[10] C. Beardon and V. Ye. Using behavioral rules in animation. In Computer Graphics:
Developments in Virtual Environments, pages 217-234. Academic Press, 1995.

[11] B. Blumberg. Go with the flow: Synthetic vision for autonomous animated creatures.
In Poster on Alll Conference on Autonomous Agents, 1997.

[12] David Brogan, Ronald Metoyer, and Jessica Hodgins. Dinamically simulated
characters in virtual environments. |EEE Computer Graphics and Applications,
18(5):59-69, Sep/Oct 1998.

[13] Mark Cavazza, Rae Earnshaw, Nadia Magnenat-Thalmann, and Daniel Thalmann.
Survey: Motion control for virtual humans. IEEE Computer Graphics and
Applications, 18(5):24-31, Sep/Oct 1998.

28

[14] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97-108, 1989.

[15] C. I. Connolly. Application of harmonic functions to robotics. In International
Symposium on Intelligent Control, 1992,

[16] Monica Costa and Bruno Feijo. Agents with emotions in behavioral animation.
Computers and Graphics, 20(3):377-384, May 1996.

[17] T. Dang and O. Maler. Reachability analysis via face lifting. In T. Henzinger and
S. Sastry, editors, Hybrid Systems : Computation and Control, volume 1386 of Lecture
Notes in Computer Science, pages 96—109. Springer Verlag, Berlin, 1998.

[18] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
1997.

[19] M. A. Facello. Implementation of a randomized algorithm for Delaunay and regular
triangulations in three dimensions. Comput. Aided Geom. Design, 12(4):349-370,
June 1995.

[20] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. In Proceedings Gl
'96, pages 204-212, 1996.

[21] Nick Foster and Dimitri Metaxas. Modeling the motion of hot, turbulent gas. In
Proceedings of SgGraph '97, 1997.

[22] R. W. Fox and A. T. McDonald. Introduction to Fluid Mechanics. John Wiley &
Sons., New York, 1989.

[23] John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. Cognitive modeling:
Knowledge, reasoning and planning for intelligent characters. Proc. of SGGRAPH
99, pages 29-38, 1999.

[24] S. Goldenstein, E. Large, and D. Metaxas. Dynamic autonomous agents: Game
applications. In Proceedings of Computer Animation 98, June 1998.

[25] S. Goldenstein, E. Large, and D. Metaxas. Non-linear dynamical system apprach to
behavior modeling. The Visual Computer, 15:349-369, 1999.

[26] R. Grzeszczuk and D. Terzopoulos. Automated learning of Muscle-Actuated
locomotion through control abstraction. In Proc. of SGGRAPH ’95, pages 63-70,
1995.

[27] L. J. Guibas. Kinetic data structures — a state of the art report. In Proc. 3rd Workshop
on Algorithmic Foundations of Robotics (WAFR), pages 191-209, 1998.

[28] L. J. Guibas, M. Sharir, and S. Sifrony. On the general motion planning problem with
two degrees of freedom. In Proc. 4" ACM Symp. Computational Geometry, pages
289-298. ACM Press, 1988.

[29] Leonidas J. Guibas, Joseph S. B. Mitchell, and T. Roos. Voronoi diagrams of
moving points in the plane. In G. Schmidt and R. Berghammer, editors, Proc. 17th
Internat. Workshop Graph-Theoret. Concepts Comput. Sci., volume 570 of Lecture
Notes Comput. <ci., pages 113-125. Springer-Verlag, 1991.

29

[30] D. Haumann and R. Parent. The behavioral test-bed: Obtaining complex behavior
from simple rules. The Visual Computer, 4(6):332-347, 1988.

[31] Simon S. Haykin. Neural Networks : A Comprehensive Foundation. Prentice Hall,
1998.

[32] T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for hybrid
automata. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems
I1, Lecture Notes in Computer Science 999, pages 252-264. Springer-Verlag, 1995.

[33] Jessica K. Hodgins and Nancy S. Pollard. Adapting simulated behaviors for new
characters. In SGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 153-162, 1997.

[34] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In IEEE
International Conference on Robotics and Automation, pages 500-505, March 1985.

[35] D. Kurlander and D. T. Ling. Planning-based control of interface animation. In Proc
CHI95 Conf., pages 472-479. ACM Press, 1995,

[36] E. Large, H. Christensen, and R. Bajcsy. Scaling the dynamic approach to path
planning and control: Competition among behavioral constraints. International
Journal of Robotics Research, 1998.

[37] E. Large, H. Christensen, and R. Bajcsy. Scaling the dynamic approach to path
planning and control: Competition among behavioral constraints. International
Journal of Robotics Research, 18(1):37-58, 1999.

[38] T. Lethebridge and C. Ware C. A simple heuristically-based method for expressive
stimulus-response animation. Computers and Graphics, 13(3):297-303, 1989.

[39] N. Lynch and B. H. Krogh, editors. Hybrid Systems : Computation and Contral,
volume 1790 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[40] H. Noser, O. Renault, D. Thalmann, and N. Thalmann. Navigation for digital actors
based on synthetic vision, memory and learning. Computer and Graphics, 1995.

[41] Alan Oppenheim, Alan Willsky, and lan Young. Sgnal and Systems. Prentice-Hall,
1983.

[42] G. J. Pappas and S. Sastry. Towards continuous abstractions of dynamical and control
systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems
IV, volume 1273 of Lecture Notes in Computer Science, pages 329-341. Springer
Verlag, Berlin, Germany, 1997.

[43] L. Perko. Differential Equations and Dynamical Systems. Number ISBN-0387974431
in Texts in Applied Mathematics. Springer Verlag, Berlin, February 1991.

[44] Ken Perlin and Athomas Goldberg. IMPROV: A system for scripting interactive actors
in virtual worlds. In SGGRAPH 96 Conference Proceedings, pages 205-216. ACM
SIGGRAPH, 1996.

[45] D. Pottinger. Coordinated unit movement. Game Developer, Jan 1999.

30

[46] W. H. Press, S. A. Teukolsky, T. V. Vetterling, and B. P. Flannery. Numerical Recipes
in C. Cambridge University Press, Cambridge, UK, 1992.

[47] C. Reinolds. Steering behaviors for autonomous characters. In Proc. of Game
Developers Conference, 1999.

[48] O. Renault, N. Thalmann, and D. Thalmann. A vision-based approach to behavioural
animation. The Journal of Visualization and Computer Animation, 1(1):18-21, 1990.

[49] C. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In Proc.
S GGRAPH ’'87, volume 21, pages 25-34, 1987.

[50] G. Ridsdale. Connectionist modelling of skill dynamics. Journal of Visualization and
Computer Animation, 1(2):66—72, 1990.

[51] K. Sato. Deadlock-free motion planning using the laplace potential field. Advanced
Robotics, 7(5):449-461, 1993.

[52] G. Schoner, M. Dose, and C. Engels. Dynamics of behaviour: theory and applications
for autonomous robot architectures. Robotics and Autonomous Systems, 16(2-4):213
— 246, 1996.

[53] A. Steinhage and G. Schoner. The dynamic approach to autonomous robot navigation.
In Proceedings |IEEE International Symposium on Industrial Electronics, 1997.

[54] B. Stout. Smart move: Path-finding. Game Developer, Oct 1996.

[55] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior.
In Proc. of SGGRAPH ' 94, pages 43-50, 1994.

[56] Swen Vinckle. Real-time pathfinding for multiple objects. Game Developer, June
1997.

[57] G. Wilfong. Motion planning in the presence of movable obstacles. In Proc. 4* ACM
Symp. Comp. Geometry, pages 179-288, 1988.

31

