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Abstract

In this paper we show an equivalence relationship be-
tween additively weighted Voronoi cells in R

d, power di-
agrams in R

d and convex hulls of spheres in R
d. An im-

mediate consequence of this equivalence relationship is a
tight bound on the complexity of : (1) a single additively
weighted Voronoi cell in dimension d; (2) the convex hull
of a set of d-dimensional spheres. In particular, given a
set of n spheres in dimension d, we show that the worst
case complexity of both a single additively weighted
Voronoi cell and the convex hull of the set of spheres is
Θ(nd d

2
e). The equivalence between additively weighted

Voronoi cells and convex hulls of spheres permits us to
compute a single additively weighted Voronoi cell in di-
mension d in worst case optimal time O(n log n+ndd

2
e).

Keywords: computational geometry; combinatorial
geometry; Voronoi diagrams; Power diagrams; Möbius
diagrams; convex hulls; spheres.

1 Introduction

Let E = {P0, . . . , Pn} be a set of weighted points in
R

d. We note Pi = (pi, ωi), where pi ∈ R
d is called the

center of Pi and ωi ∈ R the weight of Pi, i = 0, . . . , n.
We define the additively weighted distance δ+(·, ·) of a
point p ∈ R

d from a weighted point Pi to be δ+(p, Pi) =
‖p − pi‖ − ωi, where ‖ · ‖ denotes the L2-norm in R

d.
We can then assign each point in R

d to the weighted
point Pi that is closest to p with respect to the distance
δ+(·, ·). This assignment subdivides the space into j-
dimensional cells, 0 ≤ j ≤ d. The collection of all j-cells
is called the additively weighted Voronoi diagram V+(E)
of the set E . The additively weighted Voronoi diagram
does not change if we translate all weights ωi by the
same constant quantity. We thus assume without loss
of generality that ∀i, ωi ≥ 0. In this case the weighted
points Pi are spheres in R

d centered at pi, with radius

ωi. In the sequel, spheres will refer to weighted points
with non-negative weights.

The additively weighted Voronoi diagram is a gener-
alization to the usual Voronoi diagram for points, which
can be obtained from the additively weighted Voronoi
diagram if all the weights ωi are equal. Another gen-
eralization of the point Voronoi diagram is the power

diagram, where the distance metric δP (·, ·) used is de-
fined as δP (p, Pi) = ‖p− pi‖2 − ω2

i . A detailed descrip-
tion of the various variations of Voronoi diagrams, their
properties, algorithms for their construction and their
applications can be found in the survey paper by Au-
renhammer and Klein [4], or the book by Okabe, Boots,
Sugihara and Chiu [9].

Consider a set E of spheres. We call Π a supporting

hyperplane of the set E if it has non-empty intersection
with E , and E is contained in one of the closed halfspaces
limited by Π. We call H a supporting halfspace of
the set E if it contains all the spheres in E and is
limited by a supporting hyperplane Π of E . The
intersection of all the supporting halfspaces of E is called
the convex hull CH(E) of E . The definition of convex
hulls given above is general, i.e., it does not depend
on the type of geometric objects considered. In the
case of points there exist worst case optimal, as well
as output sensitive algorithms for the construction of
convex hulls. Erickson [7] gives a nice overview of the
various algorithms for the computation of convex hulls
of point sets. Convex hull algorithms for non-linear
objects are very limited; the interested reader can refer
to the paper by Nielsen and Yvinec [8] for an overview
of the results for convex hulls of non-linear objects.

In this paper we focus on the combinatorial proper-
ties of Voronoi diagrams and convex hulls. In particular,
we are interested in the worst case combinatorial com-
plexity of a single additively weighted Voronoi cell and
the convex hull of a set of spheres. Aurenhammer [2]
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Figure 1: Equivalence relationships between the various Voronoi diagrams. “AW-Voronoi” stands for “Additively
weighted Voronoi”.

proved that the worst case complexity of the power di-
agram for a set of n spheres in dimension d is Θ(nd d

2
e).

As a consequence, he proved that the worst case com-
plexity of the additively weighted Voronoi diagram is
O(nb d

2
c+1), which is tight in odd dimensions. The com-

plexity for a single additively weighted Voronoi cell or
the convex hull of a set of spheres is O(nd d

2
e) (see [2] and

[5], respectively), which was known to be worst case op-
timal only for even d. Will [10] was the first to show
that a 3-dimensional additively weighted Voronoi cell
has complexity Ω(n2). Boissonnat et al. [5] provide an
example of 2n+ 1 spheres in R

3 whose convex hull has
complexity Θ(n2). They also conjecture that the worst
case complexity of the convex hull in any dimension is
Θ(nd d

2
e).

The main result of our paper is a tight bound on
the worst case combinatorial complexity of an additively
weighted Voronoi cell in any dimension d. This is done
by showing an equivalence between additively weighted
Voronoi cells and a new type of Voronoi diagrams called
Möbius diagrams. Möbius diagrams are generalizations
of both power diagrams and multiplicatively weighted
Voronoi diagrams. They are invariant under Möbius
transformations, hence their name, and also generaliza-
tions of affine diagrams introduced by Aurenhammer
(cf. [3]). We show that the problem of computing a
Möbius diagram in R

d−1 is equivalent to computing a
power diagram in R

d. We also present a relationship
between additively weighted Voronoi cells and convex
hulls of spheres, which permits us to obtain a worst
case tight bound on the combinatorial complexity of the
convex hull of a set of spheres in dimension d. In partic-
ular, both complexities, that of an additively weighted
Voronoi cell and that of the convex hull of spheres, are
shown to be Θ(nd d

2
e) in the worst case. In view of our

result the algorithm presented in [5] for the construction
of the convex hull of a set of spheres is optimal for any
d, and it gives us a way to optimally construct a single
additively weighted Voronoi cell in any dimension.

The rest of the paper is structured as follows. In

Section 2 we introduce Möbius diagrams. In Section 3
we show that the worst case complexity of a single addi-
tively weighted Voronoi cell in dimension d is Θ(nd d

2
e),

where n is the number of weighted points. In Section
4 we show that the worst case complexity of the con-
vex hull of a set of n spheres in dimension d is Θ(nd d

2
e).

Section 5 discusses how to optimally construct an ad-
ditively weighted Voronoi cell in dimension d. Finally,
Section 6 is devoted to conclusions and open problems.

2 Möbius diagrams

Let F = {Q1, . . . , Qn} be a set of doubly weighted

points of R
d−1, where Qi = (pi, λi, µi), pi is a point

of R
d−1 and λi, µi are real numbers. For a point

x ∈ R
d−1, the distance from x to the doubly weighted

pointQi is defined as δM (x,Qi) = λi(x−pi)
2−µi, where

y2 = y · y = ‖y‖2. We can then assign each point x of
R

d−1 to the doubly weighted point Qi that is closest to
x with respect to the distance δM (·, ·). The subdivision
induced by this assignment is called the Möbius diagram

VM (F) of F . A cell of the Möbius diagram is called a
Möbius cell.

Let M = {M1, . . . ,Mn} be a set of weighted
points of R

d−1, where Mi = (mi, µi), mi ∈ R
d−1 and

µi ∈ R. The multiplicatively weighted distance of a
point x ∈ R

d−1 from a weighted point Mi is defined
as δ∗(x,Mi) = µi‖x − mi‖. By assigning every point
x ∈ R

d−1 to its closest weighted point Mi with respect
to the distance δ∗(·, ·) we get a subdivision of the space
called the multiplicatively weighted Voronoi diagram (cf.
[2]).

The Möbius diagram, induced by the distance
δM (·, ·), is a generalization of both power diagrams
and multiplicatively weighted Voronoi diagrams. In
particular, if all λi are equal to some positive λ, the
Möbius diagram coincides with the power diagram of
the spheres with centers the pi’s and squared radii the
quantities µi/λ. If all µi are equal and all λi are positive,
then the Möbius diagram coincides with the multiplica-



tively weighted Voronoi diagram of the weighted points
Mi = (pi,

√
λi).

We now exhibit an equivalence between Möbius di-
agrams in R

d−1 and power diagrams in R
d. This is

a generalization of the equivalence between multiplica-
tively weighted Voronoi diagrams and power diagrams
shown by Aurenhammer [2]. If x ∈ R

d−1 is closer to Qi

than to Qj , we have for all j > 0,

λi(x − pi)
2 − µi ≤ λj(x− pj)

2 − µj

⇐⇒ λix
2 − 2λipi · x+ λip

2
i − µi

≤ λjx
2 − 2λjpj · x+ λjp

2
j − µj

⇐⇒ (x − λipi)
2 + (x2 +

λi

2
)2 − ρ2

i

≤ (x− λjpj)
2 + (x2 +

λj

2
)2 − ρ2

j

⇐⇒ (y − ci)
2 − ρ2

i ≤ (y − cj)
2 − ρ2

j

where y = (x, x2) ∈ R
d, ci = (λipi,−λi

2
) ∈ R

d and

ρ2
i = λ2

i p
2
i +

λ2

i

4
− λip

2
i + µi. Let Σi be the sphere of R

d

centered at ci of squared radius ρ2
i , i = 1, . . . , n. The

above inequality shows that x is closer to Qi than to
Qj in the distance δM (·, ·), if and only if y belongs to
the cell of Σi in the power diagram of the spheres Σj ,
j = 1, . . . , n. Hence,

Lemma 1. Let F be a set of doubly weighted points in

R
d−1, let P be the paraboloid xd = x2 of R

d and let

C be the CW-complex obtained by intersecting P with

the power diagram of the spheres of R
d centered at ci

with squared radii ρ2
i . There is an 1–1 correspondence

between the k-dimensional faces of the Möbius diagram

of F and the k-dimensional faces of C, k = 0, . . . , d− 1.

It follows that the combinatorial complexity of the
Möbius diagram of n doubly weighted points in R

d−1

is O(nd d

2
e). This bound is tight since Aurenhammer [2]

has shown that it is tight for multiplicatively weighted
Voronoi diagrams. To the best of our knowledge this
is the first result on the combinatorial complexity of
Möbius diagrams.

Theorem 1. Let F be a set of n doubly weighted points

in R
d−1. The worst case complexity of the Möbius

diagram VM (F) of F is Θ(nd d

2
e).

It is easy to verify that the bisectors of Möbius
diagrams are spheres or hyperplanes. Moreover, we
will show that Möbius diagrams are invariant under
inversions, and thus under all Möbius transformations
(hence their name). Other properties of spheres, such
that the intersection of a sphere and a hyperplane is
a sphere of lower dimension, also have interpretations

in terms of Möbius diagrams. In the remainder of
this section we show two such properties, which are
used to prove our main combinatorial complexity results
(cf. Theorems 2 and 3). In Subsection 3.1 we present
another property of Möbius diagrams, namely, that
given a set of spheres and a hyperplane in R

d the
projection of the additively weighted Voronoi cell of
the hyperplane onto itself is a Möbius diagram in
R

d−1. Finally, in Subsection 3.2 we show that Möbius
diagrams in R

d−1 can be understood as the intersection
of a polyhedron and a sphere in R

d. These two last
properties are alternative, more geometric, ways to
define Möbius diagrams.

Consider the standard inversion transformation
f(x;x0) that maps a point x ∈ R

k to the point x0+(x−
x0)/‖x − x0‖2 ∈ R

k. f(x;x0) maps spheres that pass
through x0 to hyperplanes and spheres that do not pass
through x0 to spheres. Moreover, it leaves hyperplanes
that pass through x0 invariant and maps hyperplanes
that do not pass through x0 to spheres. It can be easily
verified that f is an involution, i.e. f(f(x;x0)) = x. f
is therefore 1–1 and f−1(x;x0) = f(x;x0).

Let F = {Q1, . . . , Qn} be a set of doubly weighted
points of R

d, where Qi = (pi, λi, µi). Let x0 be a point
in R

d such that x0 6= pi, i > 0. We can assume without
loss of generality that x0 coincides with the origin in
R

d. Let also x be a point in the Möbius cell of Qi and
let y = f(x;x0). Since x belongs to the Möbius cell of
Qi, we have, for all j > 0,

λi(x− pi)
2 − µi ≤ λj(x− pj)

2 − µj

⇐⇒ λi(
y

y2
− pi)

2 − µi ≤ λj(
y

y2
− pj)

2 − µj

⇐⇒ λi(
1

y2
− 2

y

y2
· pi + p2

i ) − µi

≤ λj(
1

y2
− 2

y

y2
· pj + p2

j ) − µj

⇐⇒ (λip
2
i − µi)y

2 − 2λipi · y + λi

≤ (λjp
2
j − µj)y

2 − 2λjpj · y + λj

⇐⇒ (λip
2
i − µi)(y −

λipi

λip2
i − µi

)2 − λiµi

λip2
i − µi

≤ (λjp
2
j − µj)(y −

λjpj

λjp2
j − µj

)2 − λjµj

λjp2
j − µj

Let Q′
k = ( λkpk

λkp2

k
−µk

, λkp
2
k − µk,

λkµk

λkp2

k
−µk

), k > 0. By

the analysis above, we deduce that x belongs to the
Möbius cell of Qi if and only if y belongs to the Möbius
cell of Q′

i. This observation implies that Möbius cells
remain Möbius cells under inversion, which is not the
case, e.g., for the usual Euclidean Voronoi diagram for
points. Hence,



Theorem 2. The set of Möbius diagrams in R
d is

closed under inversion.

Since Möbius transformations are the function
product of up to four inversions [6], we deduce :

Corollary 1. The set of Möbius diagrams in R
d is

closed under Möbius transformations.

Let x = (x′, x′′), x′ ∈ R
d−1, x′′ ∈ R. Similarly,

pi = (p′i, p
′′
i ), p′i ∈ R

d−1, p′′i ∈ R. Consider a hyperplane
Π ∈ R

d−1. We can assume, without loss of generality,
that Π is the hyperplane xd = 0. Suppose that x ∈ Π,
i.e., x′′ = 0. Then x belongs to the Möbius cell of Qi, if
and only if for all j > 0 :

λi(x− pi)
2 − µi ≤ λj(x− pj)

2 − µj

⇐⇒ λi(x
′ − p′i)

2 + λi(x
′′ − p′′i )2 − µi

≤ λj(x
′ − p′j)

2 + λj(x
′′ − p′′j )2 − µj

⇐⇒ λi(x
′ − p′i)

2 + λip
′′2
i − µi

≤ λj(x
′ − p′j)

2 + λjp
′′2
j − µj

Hence, x′ belongs to the Möbius cell of the doubly
weighted point (p′i, λi, µi −λip

′′2
i ) whose center p′i is the

projection of pi on Π. More generally,

Theorem 3. The intersection of a Möbius diagram in

R
d with a hyperplane Π is a Möbius diagram in R

d−1,

defined over the projections on Π of the centers of the

d-dimensional doubly weighted points.

3 Additively weighted Voronoi cells

Let E = {P0, . . . , Pn} be a set of weighted points of R
d.

We note Pi = (pi, ωi), where pi ∈ R
d and ωi ∈ R is the

weight of Pi, i = 0, . . . , n. Without loss of generality,
we can assume that the ωi are non-negative. Let V+(E)
be the additively weighted Voronoi diagram of E . We
are interested in computing combinatorial complexity
of the cell V+(Pi) of V+(E) that is associated with Pi.
For concreteness, in the sequel, the cell we want to
compute is combinatorial complexity of the cell V+(P0)
associated with P0. We also assume that V+(Pi) 6= ∅,
i ≥ 0, which geometrically means that no sphere is
contained inside another (see [10, Proposition 1]).

3.1 The lower bound. For simplicity we consider
the case where ω0 is infinite. In this case, P0 is a
hyperplane and all Pi, i > 0, are spheres. Without
loss of generality we assume that P0 is the hyperplane
xd = 0. The points x = (x′, x′′), x′ ∈ R

d−1, x′′ ∈ R,
that are at equal distance from P0 and Pi, i > 0, belong
to the paraboloid

x′′ = ‖x− pi‖ − ωi

⇐⇒ (x′′ + ωi)
2 = (x − pi)

2

⇐⇒ 2 (p′′i + ωi)x
′′ = (x′ − p′i)

2 + p′′2i − ω2
i ,

where pi = (p′i, p
′′
i ), p′i ∈ R

d−1, p′′i ∈ R. Note that our
assumption V+(Pi) 6= ∅ implies p′′i + ωi > 0. Suppose
that V+(P0) ∩ V+(Pi) 6= ∅. The points x that are at
equal distance from P0, Pi, i > 0, must verify, for any
j > 0 :

2 (p′′i + ωi)x
′′ = (x′ − p′i)

2 + p′′2i − ω2
i ,

2 (p′′j + ωj)x
′′ ≤ (x′ − p′j)

2 + p′′2j − ω2
j .

Eliminating x′′ we get

1

p′′i + ωi
(x′−p′i)2+p′′i −ωi ≤

1

p′′j + ωj
(x′−p′j)2+p′′j −ωj.

This shows that the vertical projection onto P0 of the
boundary of the cell V+(P0) is the Möbius diagram of
the doubly weighted points Qi = (p′i,

1

p′′

i
+ωi

, ωi − p′′i ).

In particular, we have an 1–1 correspondence between
the k-dimensional faces of V+(P0) and the k-dimensional
faces of the Möbius diagram in R

d−1 of the Qi’s, k =
0, . . . , d − 1. Suppose that p′′i = ωi, i > 0. Then the
Möbius diagram of the Qi’s is actually a multiplicatively
weighted Voronoi diagram of the weighted points Mi =
(p′i, (2ωi)

−1/2). Since the worst case complexity of

multiplicatively weighted Voronoi diagrams is Ω(nd d

2
e),

we conclude that the worst case complexity of V+(P0)

is Ω(nd d

2
e) in this special case. Our argumentation can

be applied to the general case by taking ω0 sufficiently
large instead of infinite. Aurenhammer [2] showed that
the worst case combinatorial complexity of an additively
weighted Voronoi cell is O(nd d

2
e). Hence,

Theorem 4. Let E be a set of n weighted points in R
d.

The worst case complexity of a single additively weighted

Voronoi cell in the additively weighted Voronoi diagram

V+(E) of E is Θ(nd d

2
e).

The construction above also provides a Euclidean
model for Möbius diagrams. A special case of this
construction has been recently used in [1].

3.2 Correspondence with Möbius diagrams.

Let now E = {P0, . . . , Pn} be our set of spheres, where
Pi = (pi, ωi), i ≥ 0. We can assume without loss of gen-
erality that p0 coincides with the origin. Let S

d−1 be the
unit sphere in R

d centered at the origin. Let x be a point
on the boundary of the additively weighted Voronoi cell
V+(P0) of P0. Let Pi be a sphere, such that x lies on
the bisector of P0 and Pi. We denote by xs = ψ(x), the
radial projection of x onto S

d−1. Clearly :

x = ψ−1(xs) = δ+(x, Pi)xs.



It can easily be shown that (see [10, Proposition 4] for
the case ω0 = 0) :

δ+(x, Pi) =
αi

2(ω∗
i + xs · pi)

− ω0,

where

αi = p2
i − (ω∗

i )2, ω∗
i = ωi − ω0.

Note that αi > 0, since otherwise P0 would be contained
inside Pi and thus V+(P0) = ∅. It can also easily be
shown that ω∗

i + xs · pi > 0 (cf. [10, Proposition 4]).
Suppose that V+(P0) ∩ V+(Pi) 6= ∅. Let x ∈ R

d be
a point on the bisector of P0, Pi and let xs be its radial
projection on S

d−1. Since x is closer to Pi (and P0) than
to any other sphere Pj , we have, for any j > 0 :

δ+(x, Pi) ≤ δ+(x, Pj)

⇐⇒ pi

αi
· xs +

ω∗
i

αi
≥ pj

αj
· xs +

ω∗
j

αj

⇐⇒ x2
s − 2

pi

αi
· xs −

2ω∗
i

αi
≤ x2

s − 2
pj

αj
· xs −

2ω∗
j

αj

⇐⇒ (xs −
pi

αi
)2 − µi ≤ (xs −

pj

αj
)2 − µj ,

where

µk =
2ω∗

kαk + p2
k

α2
k

, k = i, j.

Hence x belongs to the bisector of P0, Pi if and only if
xs belongs to the power cell of the sphere Σi centered at
qi = pi

αi

of squared radius µi. Therefore, the projection

of the bisector of P0, Pi on S
d−1 coincides with the

intersection of S
d−1 with the power cell of Σi. Let

S = {Σ1, . . . ,Σn}. Let x0 be a point of S
d−1 that is

in the interior of a cell of the power diagram VP (S)
of S in R

d. The sphere S
d−1 is mapped by f(·;x0)

onto a hyperplane Π. Without loss of generality, we
can assume that x0 = (0, . . . , 0, 1). Hence Π is the
hyperplane xd = 1

2
. By Theorem 2, the power diagram

of S is mapped by f(·;x0) to the Möbius diagram
VM (S ′) of another set S ′ ∈ R

d. More precisely, the
cell of Σi in VP (S) is mapped to the cell of the doubly
weighted point Σ′

i = (q′i, λ
′
i, µ

′
i) in VM (S ′), where S ′ =

{Σ′
1, . . . ,Σ

′
n}, q′i = qi−x0

λ′

i

+ x0, λ
′
i = (qi − x0)

2 − µi

and µ′
i = µi/λ

′
i. By Theorem 3, the intersection of Π

with VM (S ′) is a (d − 1)-dimensional Möbius diagram
VM (S ′′) of a set S ′′, the centers of which lie on Π.
More precisely, a point xs ∈ S

d−1 lies in the power
cell of some Σi if and only if the image by f(·;x0)
of xs, which lies on Π, lies in the cell of the doubly
weighted point Σ′′

i = (q′′i , λ
′
i, µ

′
i − λ′ih

2
i ) in VM (S ′′),

where S ′′ = {Σ′′
1 , . . . ,Σ

′′
n}, q′′i is the projection of q′i

onto Π, and hi = ‖q′i − q′′i ‖ + 1

2
. This shows :

Lemma 2. Let E be a set of n spheres in R
d, and

let S ′′ be the set of doubly weighted points in R
d−1

that we get by the series of transformations described

above. Then the k-dimensional faces of V+(P0) are in

1–1 correspondence with the k-dimensional faces of the

Möbius diagram VM (S ′′) of S ′′, k = 0, . . . , d− 1.

4 Convex hulls of spheres

Let δε(x,Π) denote the signed distance of a point x ∈ R
d

from a hyperplane Π. We define the distance δ+(P,Π) of
a weighted point P = (p, ω) from a hyperplane Π to be
δ+(P,Π) = δε(p,Π) − ω. Finally we define the distance
δ+(P,Q) between two weighted points P = (p, ωP ) and
Q = (q, ωQ) to be

δ+(P,Q) = ‖p− q‖ − ωP − ωQ

= δ+(p,Q) − ωP = δ+(q, P ) − ωQ.

Observe that, if P and Q are two spheres, δ+(P,Q) > 0
(resp. = 0) if and only if the two balls bounded by P
and Q do not intersect (resp. are tangent). Let again
E = {P0, . . . , Pn}, Pi = (pi, ωi) be a set of spheres in R

d,
and suppose that V+(P0) 6= ∅. Let uk be a point of a
k-dimensional face of V+(P0), 0 ≤ k ≤ d. In particular,
u0 is a Voronoi vertex of V+(P0) and ud is a point in the
interior of V+(P0). The co-dimension (d−k) of the face
of V+(P0) containing uk is called the Voronoi dimension

(V-dimension) of uk. Let βk = δ+(uk, P0). The distance
βk may be positive, zero or negative, since uk may lie
on the exterior, boundary or interior of P0, respectively.
We call the weighted point Uk = (uk, βk) the Voronoi

weighted point associated with uk. We use the term
Voronoi sphere to refer to a Voronoi weighted point with
non-negative weight. We define the V-dimension of Uk

to be the V-dimension of uk.
Let us consider the convex hull CH(S) of a set S

of spheres. We say that a supporting hyperplane Π of
S has convex hull dimension (CH-dimension) k, if it
is tangent to exactly k spheres of S. Finally, a face

of CH(S) of circularity k, 0 ≤ k ≤ d− 1, is a maximal
connected portion of the boundary of CH(S), consisting
of points where the supporting hyperplanes are tangent
to a given set of (d− k) spheres.

4.1 A special case. We assume that ω0 = 0. Let
Σi = (ci, ρi) = f(Pi; p0), i > 0. Since V+(P0) 6= ∅, none
of the spheres Pi pass through p0 and thus the Σi are
spheres with

ci =
pi − p0

(pi − p0)2 − ω2
i

, ρi =
ωi

(pi − p0)2 − ω2
i

.

Let uk, k < d, be a point of V+(P0) of V-dimension
(d − k) and let Uk = (uk, βk) be the corresponding



Voronoi sphere. Let Πk = f(Uk; p0). Since Uk passes
through p0, Πk is a hyperplane in R

d. The normal of
Πk is chosen such that the points at positive distance
to Uk map to points that are at positive distance to Πk .
Without loss of generality, let Pi, i = 1, . . . , d − k, be
the weighted points that define Uk along with P0. By
construction,

δ+(Pi, Uk) = 0, 0 ≤ i ≤ d− k,

δ+(Pi, Uk) > 0, i > d− k.

The above relations are equivalent to

δ+(Σi,Πk) = 0, 1 ≤ i ≤ d− k,

δ+(Σi,Πk) > 0, i > d− k.

Hence Πk is a supporting hyperplane of the convex hull
of the set of spheres S = {Σ1, . . . ,Σn} of CH-dimension
(d−k) and conversely, a hyperplane Π of CH-dimension
(d − k) maps to a point of V+(P0) of V-dimension
(d−k). In particular, this implies an 1–1 correspondence
between the faces of CH(S) of circularity k and the k-
dimensional faces of V+(P0).

4.2 The general case. In this subsection we want
to show the equivalence of the previous subsection when
ω0 ≥ 0. In particular, we want to find a set of spheres
the convex hull of which is combinatorially equivalent
to the additively weighted Voronoi cell V+(P0) of P0.

Let P ′
i = (pi, ωi − ω0), i = 0, . . . , n (see Fig. 2(top

right)), and let Σi = (ci, ρi) = f(P ′
i ; p0) (see Fig.

2(bottom left)). In this case :

ci =
pi − p0

(pi − p0)2 − (ωi − ω0)2
,

ρi =
ωi − ω0

(pi − p0)2 − (ωi − ω0)2
.

Note that the additively weighted Voronoi diagram does
not change combinatorially, as well as geometrically, if
we translate the weights by the same quantity, which
implies that the Voronoi cells V+(P0) and V+(P ′

0) are
exactly the same. Let uk, k < d be a point of V+(P0)
of V-dimension (d − k) and let Uk = (uk, βk) be the
corresponding Voronoi weighted point. In this case
βk may be positive as well as zero or negative. Let
U ′

k = (uk, βk + ω0). Then :

δ+(P0, Uk) = 0 ⇐⇒ ‖p0 − uk‖ − (ω0 + βk) = 0

⇐⇒ δ+(p0, U
′
k) = 0.

Trivially, ω0 + βk = ‖p0 − uk‖ ≥ 0. Hence U ′
k is a

Voronoi sphere that passes through p0, and corresponds

to uk in V+(P ′
0). Let Πk = f(U ′

k; p0). The orientation
of Πk is as in the previous subsection. Clearly,

δ+(P ′
i , U

′
k) = 0, 0 ≤ i ≤ d− k,

δ+(P ′
i , U

′
k) > 0, i > d− k,

which in turns implies that :

δ+(Σi,Πk) = 0, 1 ≤ i ≤ d− k,

δ+(Σi,Πk) > 0, i > d− k.

Let R ∈ R be a sufficiently large number such that
ρi + R ≥ 0, and let Σ′

i = (ci, ρi + R), i > 0. Finally,
let Π′

k be the translation of Πk by R in the opposite
direction of its normal (see Fig. 2(bottom right)).
Obviously :

δ+(Σ′
i,Π

′
k) = 0, 1 ≤ i ≤ d− k,

δ+(Σ′
i,Π

′
k) > 0, i > d− k,

i.e., Π′
k is a supporting hyperplane of the set of spheres

S = {Σ′
1, . . . ,Σ

′
n} of CH-dimension (d − k). As in the

preceding subsection, we can show, by means of the
inverse transformation, that a supporting hyperplane of
S of CH-dimension (d − k), maps to a point of V+(P0)
of V-dimension (d− k). Hence,

Lemma 3. Let E = {P0, . . . , Pn} be a set of n + 1
spheres in R

d, and let S be the set of n spheres that

we get by the series of transformations described above.

Then the k-dimensional faces of V+(P0) are in 1–1
correspondence with the faces of CH(S) of circularity

k, k = 0, . . . , d− 1.

An immediate consequence of the above lemma is
that the worst case complexity of the convex hull of a
set of spheres in dimension d is the same with the worst
case complexity of an additively weighted Voronoi cell
in dimension d, i.e.,

Theorem 5. Let S be a set of n spheres in R
d. The

worst case complexity of the convex hull CH(S) of S is

Θ(nd d

2
e).

It has been shown in [5] that the worst case com-
plexity of the convex hull of a set of n d-dimensional
spheres is O(nd d

2
e). It has also been shown that the

worst case complexity of the convex hull of n spheres is
Ω(nb d

2
c). Our construction provides an alternative way

to prove the upper bound in [5], and at the same time it
gives us a tight lower bound. A corollary of Theorem 5 is
that the algorithm presented in [5] for the construction
of the convex hull of spheres in dimension d is optimal
in any dimension.
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Figure 2: The equivalence relationship between additively weighted Voronoi cells and convex hulls of spheres in
two dimensions. The input circles and their transforms are shown in black or dark gray. Voronoi circles and their
transforms are shown in light gray. Black circles have positive weight. Dark gray circles have negative weight.
Solid circles correspond to neighbors of P0 in V+(E). Dotted circles are not neighbors of P0 in V+(E). Top left:
the set {P0, . . . , Pn}. The Voronoi circles Uk of V-dimension 0 are shown in light gray. The 1-dimensional Voronoi
cells are shown in dark gray. Top right: the set {P ′

0, . . . , P
′
n}. The circles U ′

k are in light gray. The 1-dimensional
Voronoi cells remain the same and P ′

0 is a point. Bottom left: the set {Σ1, . . . ,Σn}. The hyperplanes Πk are in
light gray. Bottom right: the set {Σ′

1, . . . ,Σ
′
n}. The hyperplanes Π′

k are in light gray.



5 Computing a cell of an additively weighted

Voronoi diagram

The algorithm of Aurenhammer [2] for the computation
of the entire additively weighted Voronoi diagram sug-
gests also an algorithm for the computation of a single
additively weighted Voronoi cell. This algorithm runs
in time O(nb d

2
c+1) and it is worst case optimal only for

odd d.
The construction described in Subsection 4.2 pro-

vides an alternative to the above algorithm of Au-
renhammer for the computation of a single additively
weighted Voronoi cell in any dimension. Suppose that
we are given a set E = {P0, . . . , Pn} of weighted points
in R

d and suppose we want to compute the additively
weighted Voronoi cell V+(P0) of P0 = (p0, ω0). The first
step is to decrease the weights of all Pi by ω0. Then we
invert all Pi’s, i > 0, using p0 as the pole of inversion.
After the inversion we get a new set of n weighted points
S = {Σ1, . . . ,Σn}. We enlarge the weights of all Σi by
the same quantity R, so that they become non-negative.
Finally, we use the algorithm in [5] to construct the con-
vex hull CH(S) of S. The additively weighted Voronoi
cell V+(P0) of P0 can now be constructed from CH(S)
in time proportional to its complexity. By Lemma 3
and Theorem 5 we conclude that the algorithm just de-
scribed is worst case optimal in any dimension, i.e.,

Theorem 6. Let E be a set n of weighted points in R
d.

A single additively weighted Voronoi cell of V+(E) can be

computed in worst case optimal time O(n log n+ nd d

2
e).

Yet another worst case optimal algorithm is that
suggested in Subsection 3.2. Assuming that P0 is the
origin, we first compute the set of spheres S, such that
the intersection of VP (S) with the unit sphere S

d−1

coincides with the projection of V+(P0) with S
d−1. Then

we invert S using a suitable point x0 on S
d−1, to get a

set of doubly weighted points S ′. Let Π be the image
of S

d−1 under the inversion. The next step is to project
the set S ′ on Π. This gives us another set of (d − 1)-
dimensional doubly weighted points S ′′, the Möbius
diagram of which can be computed as per Lemma 1.
V+(P0) can then be constructed from VM (S ′′) in time
proportional to its complexity.

6 Conclusion

In this paper we presented an equivalence relationship
between additively weighted Voronoi cells in R

d, convex
hulls of spheres in R

d, power diagrams in R
d and Möbius

diagrams in R
d−1. Using this equivalence, we proved

tight bounds on the worst case complexity of a single
additively weighted Voronoi cell and the convex hull for
a set of spheres in dimension d. We also presented two

worst case optimal algorithms for the construction of a
single additively weighted Voronoi cell in any dimension.

The worst case complexity of the whole additively
weighted Voronoi diagram in even dimensions d > 2 is
still an open problem. It is also unknown what is the
complexity of a single additively weighted Voronoi cell,
the whole additively weighted Voronoi diagram or the
convex hull of a set of spheres, if the spheres have a
constant number of different radii.
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