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Abstract

This paper proposes a framework for constructing G1 surfaces that interpolate data points on parallel cross sections, consisting of simple

disjoined and non-nested contours, the number of which may vary from plane to plane. Using appropriately estimated cross tangent vectors

at the given points, we split the problem into a sequence of local Hermite problems, each of which can be one of the following three types:

“one-to-one”, “one-to-many” or “many-to-many”.

The solution of the “one-to-many” branching problem, where one contour on the i-plane is to be connected to M contours on the (i + 1)-

plane, is based on combining skinning with trimming and hole filling. More specifically, we first construct a C1 surrounding curve of all M

contours on the (i+ 1)-plane. Next, we build the so-called surrounding surface that skins the i-plane contour with the (i+ 1)-plane surrounding

curve and trim suitably along parts of the surrounding curve that connect contours. The resulting multi-sided hole is covered with quadrilateral

Gordon-Coons patches that possess G1 continuity. For this purpose, we develop a hole-filling technique that employs shape-preserving guide

curves and is able to preserve data symmetries. The “many-to-many” problem is handled by combining the “one-to-many” methodology

with a zone-separation technique, that achieves splitting the “many-to-many” problem into two “one-to-many” problems. The methodology,

implemented as a C++ Rhino v3.0 plug-in, is illustrated via two synthetic data sets and in the context of two realistic design examples.

Finally, the paper concludes with discussing ongoing work towards improving the robustness and the applicability of the method regarding the

surrounding curve construction step.
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1. Introduction

The request for designing or reconstructing objects from pla-

nar cross sections arises in various applications, ranging from

CAD [6], to GIS [12, 37], and medical imaging [34, 30].

In the reconstruction case the density of input data is likely

to be very high, in terms of the densities of captured cross sec-

tions and points per contour, thus orienting research toward de-

veloping fast algorithms for constructing C0 planar triangular

interpolants of the cross-sectional data. On the contrary, when

we design a surface from parallel cross sections, the available

data information is limited - only a small number of contours is

usually available - which imposes the need for data interpolants

that possess adequate smoothness (at least G1) and whose an-
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alytic type enables their easy and robust transfer to the surface

modeler used by the designer.

The method presented herein fits in the design context,

though it is also readily applicable for smooth reconstruction

purposes. Furthermore, we focus on handling the general case

of planar cross sections that consist of disjoint smooth Jordan

curves, henceforth referred to as contours, whose number can

vary from plane to plane. We are thus able to handle, be-

sides the standard “one-to-one” case, the “one-to-many” and

“many-to-many” configurations, guaranteeing a G1 interpola-

tion surface, composed from polynomial patches of principally

quadrilateral topology, that branches suitably at/through an

intermediate, designer-specified, level/zone, respectively.

There is a plethora of papers dealing with the “one-to-one”

problem in the design context, employing mainly B-Spline sur-

faces and NURBS [32, 19, 21, 18, 33]. Part of this literature

is concerned with controlling the shape of the outcome surface

by, e.g., minimizing its twist [14], or preserving its sectional

curvature between shape similar contours [23, 24].

Preprint submitted to Computer-Aided Design 11 June 2007



On the other hand, lots of references deal with developing

algorithms for solving the local “one-to-one” or tilling, ac-

cording to [29], problem for reconstruction purposes. Such al-

gorithms yield usually C0 triangular surfaces with the aid of

global optimality criteria, such as bounding the maximum vol-

ume [27], or minimizing the area of the surface [11, 38, 29]. In

these works the sought for triangulation is thought as a path in

a graph. Computing this path can also be accomplished locally,

node-by-node, by imposing local criteria on the path nodes,

such as minimizing the edge length of each triangle that is be-

ing generated after adding a new node to the path [7, 4, 17, 35].

Note that, in contrast to their complexity, these local approaches

introduce a non-local step, namely the definition of the first

node. There also exist hybrid schemes, which use local weights

for satisfying global criteria [9, 39]. Finally, the graph model

of [27], that works for polygonal contours, is extended in [36]

for continuous parametric contour representations, enabling its

application to quadrilateral surfaces; see also [8, 14].

The literature devoted to the “one-to-many” problem can

be classified into four main families. The family of contour-

connection methods attempt to artificially render an “one-to-

many” problem into an “one-to-one” by connecting the disjoint

contours with line [7] or triangular facet bridges [29]. The first

choice succeeds only for very simple configurations, while the

second constrains unnaturally the saddle points of the branching

surface to lie on the plane containing the disjoint contours.

The so-called intermediate-contour methods are based on

introducing an intermediate contour, thus splitting the original

problem into two problems, an “one-to-one” and a new “one-

to-many”. The second problem is further simplified into M

“one-to-one” problems by suitably partitioning the intermedi-

ate contour into M parts. This idea was proposed in [36, 9],

while [20] is apparently the first work where this idea is trans-

formed into an algorithm.

The family of partial contour connection and hole filling

methods, outlined in [3, 1, 2], is characterized by matching

partially the disjoint contours with the single contour of the

neighboring plane, thus leaving a number of holes to be filled

in the final step of such a scheme. In [15], where the case

“one-to-two” is being treated, the single hole is filled by an

appropriately chosen hyperboloid.

Finally, the family of implicit schemes relies on the assump-

tion that we possess implicit representations of the contours

composing the cross sections. Then an implicit interpolant can

be obtained by taking a convex combination of the contour rep-

resentations [5], or employing the notion of distance function

[22, 10].

The herein presented method for handling the “one-to-

many” problem belongs to the class of partial contour connec-

tions and hole filling schemes. Its apparent novelties pertain to:

(i) Ensuring G1 parametric continuity,

(ii) Providing as final outcome a spline polynomial surface,

composed from patches of mainly quadrilateral topology,

thus enabling portability to contemporary CAD systems,

(iii) Intensive use of shape-preserving interpolation tech-

niques for all 2D/3D curves encountered during the sur-

face construction scheme, in order to control the shape

quality of the final outcome,

(iv) Introducing the concepts of surrounding curve and sur-

rounding surface (§4.1),

(v) Developing a hole-filling technique that, though based on

[16], is able to preserve data symmetries (§4.3), and

(vi) Constructing the guide curves as shape-preserving poly-

nomial splines, that can intrinsically incorporate the ge-

ometry of the hole boundary (§4.3).

Last but not least, and to the best of the authors knowledge,

pertinent literature is lacking in works handling the “many-

to-many” problem in a G1 setting, which is achieved by the

technique presented in §5 of this paper.

The rest of the paper is structured as follows. Starting with a

formulation of the (global) problem (see Problem 2.1), §2 ends

with its decomposition to a sequence of local Hermite problems;

see Problem 2.2. In §3 we briefly present the technique we adopt

for constructing the contour curves and the tangent ribbons

along them. §4 deals with the “one-to-many” configuration;

this section is the kernel of the paper and consists of three

subsections. In §4.1 we introduce the notions and describe the

construction of bridges and surrounding curve/surface. §4.2

outlines the trimming process on the surrounding surface, that

leaves us with a hole-filling request, which is handled in some

detail in §4.3. Section 5 outlines the method for reducing the

“many-to-many” case to two “one-to-many” problems. The

tangent-vector estimates, that are necessary for decomposing

the global problem into a sequence of local ones, are obtained

as described in §6.

The proposed methodology is illustrated in §7 against two

synthetic data sets and two realistic examples. The synthetic

examples include a symmetric “one-to-three” branching con-

figuration with circular contours (see Figs. 18–23) and a highly

non-symmetric “one-to-two” configuration with non-convex

contours; see Figs. 24–27. As for the realistic examples, the

first is related with designing a detergent container with handle

(see Figs. 28–29), while the second one stems from the area of

ship design; see Figs. 30–32. The paper ends with summariz-

ing the basic advantages of the proposed approach (§8.1) and

discussing ongoing work towards improving the robustness and

the applicability of the method with regard to the surrounding

curve construction step; see §8.2 and Figs. 33–34.

2. Problem decomposition

As stated in the introduction, we aim to develop a method

for modeling or reconstructing an object from its cross sec-

tions with a set of parallel planes, say z = zi, i = 1, ...,N. It

is permitted that the boundary of each cross section may con-

sist of one or more non-nested disjoint Jordan curves, Ci j, j =

1, . . . ,Mi, i = 1, . . . ,N, referred to as contours, withMi vary-

ing, in general, from section to section. Further, and in con-

formity with the case that is likely to arise in practice, it is

assumed that we possess only discrete approximations of con-

tours Ci j in the form of ordered point sets Pi j ∈ Ci j. Then, we

proceed to formulate the following
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Problem 2.1 Construct a composite G1 parametric surface

S(u, v) that interpolates the contour point sets Pi j = {Pi jk ∈ E
3,

k = 0, . . . ,mi j − 1}, j = 1, . . . ,Mi, i = 1, . . . ,N, and whose

isoparametrics v = zi lie on the planes z = zi, i = 1, . . . ,N,

respectively.

Fig. 1. One data set, three different correspondence choices

Regarding the well-posedness of the above problem, one can

readily observe that, ifMi > 1 for some i-plane, the correspon-

dence question: which of the contours on the i-plane should be

connected to which of the contours on the (i + 1)-plane, ad-

mits more than one, topologically legitimate, answers; see Fig.

1. Its solution can be represented by a graph structure G, the

vertices of which are the contours, while edges indicate their

correspondences [29]. In what follows, we shall assume that G

is user-defined, which is a definitely reasonable assumption in

the design context. In general, the correspondence problem re-

mains an important issue; see [31] and the references therein.

Let us now consider the correspondence issue locally, i.e., be-

tween two consecutive planes. The connections between the

contours of two neighboring planes can be represented by a

set of disjoint connected subgraphs Giℓ of G, ℓ = 1, ..., Li, the

structure of which can be of the following three types:

I. A list of two elements, consisting of two vertices, each on

the i- and (i + 1)- planes, and an edge connecting them.

II. A two-level tree, consisting of one vertex on the i-plane, Ni+1

vertices on (i + 1)-plane and Ni+1 edges connecting them.

III. Gℓ has Ni > 1 vertices on the i-plane and Ni+1 > 1 vertices

on the (i + 1)-plane.

Each of the above local subgraph cases leads to a local inter-

polation subproblem, which will be referred to as: (I) the “one-

to-one” subproblem, (II) the “one-to-many” or branching sub-

problem and (III) the “many-to-many” or multiple branching

subproblem, respectively.

We can then proceed to decompose Problem 2.1 into a se-

quence of local subproblems of the above three types, provided

we can eventually secure the validity of the G1 global continuity

condition. For this purpose, we shall assume that all data points

Pi jk are enhanced with tangent vector estimates Ti jk along the

v parametric direction. A way to obtain these estimates, that

relies on a C0 version of the methodology described in the en-

suing three sections, is described in §6. The sought for decom-

position of Problem 2.1 can then take the following form:

Problem 2.2 Let be given the contour point sets Pi j, their

corresponding tangent-vector estimates Ti j = {Ti jk ∈ R
3, k =

0, . . . ,mi j − 1}, j = 1, . . . ,Mi, i = 1, . . . ,N, and the graph G.

(i) Construct planar parametric G1 curves Ci j(u) and tangent-

vector ribbons Ti j(u) that interpolate Pi j and Ti j, respec-

tively.

(ii) Construct the solution S(u, v) of Problem 2.1 as the union of

all composite G1 parametric patches Si(u, v), zi ≤ v ≤ zi+1,

that solve the local subproblems defined by the Hermite data

prepared in (i) and the local subgraphsGiℓ of G, ℓ = 1, ..., Li,

i = 1, . . . ,N − 1.

3. Planar contours and their tangent ribbons

In order to construct the contour curves Ci j and the tangent

ribbons Ti j referred to in Problem 2.2(i) we first have to supply

the data-sets Pi j with lists Ui j of parametric nodes.

We adopt the method proposed in [28], where for convex

point-sets Pi j the parametric node of each point is taken equal

to its polar angle with respect to the center of the polygon Pi j.

If Pi j defines a non-convex polygon we employ a technique

introduced in [9], which can roughly be described through the

example shown in Fig. 2. The first step is to decompose the

polygon into elementary convex hulls. This leads to a general

planar tree structure. Then, starting from the last level of it, we

project the internal vertices of each concavity onto the edge of

the above level and continue with the next level until all vertices

are projected onto the convex hull.

Fig. 2. Decomposing a non-convex polygon into a tree of its elementary

convex hulls.

Having defined the knot vectorsUi j and exploiting the shape-

preserving curve interpolation scheme in [25], we compute the

contour curves Ci j and the tangent-vector distributions Ti j along

them. Then, the solution of the “one-to-one” problem follows

readily by using the standard skinning surface scheme.

4. The “one-to-many” Hermite problem

4.1. Surrounding curve/surface

Before proceeding with a detailed construction of the sur-

rounding curve, let us denote by H the convex hull of all point

sets Pi+1, j, j = 1, . . . ,M, on the (i+1)-plane, byH the bound-

ary of H, and by Hc the complement, with respect to H, of the

closed domains bounded by the simple polygons formed by the

ordered point sets Pi+1, j. The complement Hc is the union of

some open disjoined domains Qk, k = 1, . . . ,R. Each Qk may

be multiply connected, if it contains at least one of the point

sets Pi+1, j, or simply connected otherwise.
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Definition 4.1 Let Qk, k = 1, . . . ,R, be the boundary (resp.,

outer boundary) of a simply (resp., multiply) connected domain

Qk. If Qk shares common points with only one of the polygons

formed by Pi+1, j, Qk will be called outer residual, otherwise it

will be referred to as inner residual.

The above definition is illustrated in Fig. 3.

Fig. 3. A set of M = 6 coplanar contours and their convex hull. The

complement Hc consists of the multiply connected outer residual Q1 (the

outer boundary of Q1 shares points with a single polygon), the multiply

connected inner residual Q2, the simply connected inner residual Q3, and the

simply connected outer residual Q4.

In the sequel we shall restrict ourselves to Hc consisting only

of simply connected inner and outer residuals. The general case

is discussed in §8.2.

Definition 4.2 Let HS be the domain obtained by subtracting

from H all the outer residuals. The boundary of HS is a closed

polygonal line, which will be called the surrounding polygon

of Pi+1, j, j = 1, . . . ,M, and denoted by C̃. The segments of C̃

that do not belong entirely on any of the polygons formed by

Pi+1, j will be called bridges, while the rest of will be referred

to as arcs.

Note that arcs are in general polygonal portions of the poly-

gons formed by Pi+1, j, while bridges are always line segments

linking different Pi+1, j’s; see Fig. 3.

In order to simplify the description of our method for solving

the “one-to-many” problem and without any loss of generality,

we shall henceforth assume that the M point-sets Pi+1, j, j =

1, . . . ,M, form only one inner residual Q. Under this assump-

tion, we order the contours in such a way that the j-th bridge

connects the polygons formed by Pi+1, j and Pi+1, j+1. This in

turn implies that each polygon, defined by Pi+1, j, meets two

bridges that split it into two parts: one that lies on the boundary

of Q and one belonging to the surrounding polygon C̃. Anal-

ogously constructed contour curves Ci+1, j and tangent ribbons

Ti+1, j, are split into two parts: the outer one, corresponding to

C̃, and the inner part corresponding to the inner residual.

Next, we provide C̃ with a parameterization Ũ by employ-

ing the method described in §3. We reparameterize the outer

part of Ci+1, j according to Ũ and finally construct a C1 con-

nection between the outer parts of Ci+1, j and Ci+1, j+1. This pro-

cedure defines the so called surrounding curve C̃. Working

analogously with the tangent ribbons Ti+1, j we define a tangent

vector distribution T̃ on it.

The so-called surrounding surface, can now be constructed

by employing the standard Hermite skinning technique for in-

terpolating the contour Ci on the i-plane and the surrounding

curve C̃ on the (i + 1)-plane along with their corresponding

tangent ribbons Ti and T̃, a process illustrated in Figs. 4–6.

(a) (b)

Fig. 4. (a) Data from an “one-to-two” example. (b) The initial contours and

tangent ribbons on them.

Fig. 5. The surrounding curve C̃ and the contour Ci along with their tangent

ribbons T̃ and Ti, respectively.

Fig. 6. The surrounding surface interpolating the contour Ci and the sur-

rounding curve C̃. The transparent parts correspond to the two bridges.

As one may observe in Fig. 6, in order for the final surface

to interpolate the Pi+1, j’s, the surrounding surface has to be

trimmed near the bridges. The resulting new bounds of the

trimmed surrounding surface along with the inner parts of the

contour curves, which have not been interpolated yet, form a

hole (see Fig. 8), which remains to be filled in order to complete

the interpolation process. The following two paragraphs deal

with these two problems.

4.2. Trimming

Let S : [uS , uE]× [0, 1] −→ E
3 be a patch of the surrounding

surface, corresponding to a bridge of the surrounding polygon.

We aim to trim S(u, v) so that the trimmed patch will still inter-

polate the bridge end-points BS = S(uS , 1) and BE = S(uE , 1).
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The domain curve X(t), t ∈ [0, T ], of the trimming curve to

be constructed, is selected to be a C1 quadratic spline in order

to:

(i) satisfy Hermite boundary conditions at bridge end-points,

(ii) reduce the number of hole sides and,

(iii) keep as low as possible the degree of the trimming curve

Y(t) = S ◦ X(t).

Eventually, X(t) is set to be symmetric with respect to the

middle of the interval [uS , uE], consisting of two linear and two

quadratic segments as shown in Fig. 7. The extent of the linear

segments defines a free parameter r ∈ (0, 1), which will be used

in the hole filling construction. Note that C1 continuity of X(t)

dictates dependency between T and r, which in our case takes

the form T = 2(r + 1).

Along the so-constructed trim curve Y(t) (see Fig. 7) we need

to define a cross-tangent vector distribution that is needed for

filling the hole, while ensuring G1-continuity along its bound-

ary. This distribution, say Y(1)(t), can be expressed as a linear

combination of the first partial derivatives of S(u, v): Y(1)(t) =

aS (t)
∂S(u,v)

∂u
+bS (t)

∂S(u,v)

∂v
. For the linear part, t ∈ [0, 1− r], of the

domain curve X(t), we take Y(1)(t) =
∂S(u,v)

∂u
, whereas for the

quadratic part, t ∈ [1−r, 1+r], we use cubic blending functions

aS (t), bS (t) fulfilling the Hermite boundary conditions:

aS (1 − r) = 1, aS (1 + r) = 0, bS (1 − r) = 0, bS (1 + r) = 1,

a′S (1 − r) = a′S (1 + r) = b′S (1 − r) = b′S (1 + r) = 0,

where prime denotes differentiation with respect to t. It is worth

noticing that it can be easily proved that the so constructed

cross-tangent vector distribution is nowhere collinear with the

tangent of the trimming curve.

Fig. 7. The domain curve X(t) and its map Y(t) on S(u, v).

4.3. Hole filling

The trimming of the surrounding surface provides us with

a hole with 2M C1-continuous sides, which remains to be

filled in order to give a complete solution to the “one-to-many”

problem; see Fig. 8.

Our method adopts the methodology presented in [16] (see

Fig. 9). According to [16], given a user-defined center K and a

Fig. 8. The hole formed after trimming the surrounding surface.

set of guide curves Gκ(t), t ∈ [0, tκ], κ = 1, . . . , 2M, that connect

K with the middle parameter point Mκ on each side, along with

appropriately defined derivative distributions on them, the hole

can be filled by a Gordon-Coons patchwork. In our case we are

restricted to G1 continuity, offering nevertheless the additional

advantages of permitting Gκ to be splines and preserve data

symmetries in the following sense: if Gκ is planar and the

cross tangent vectors at the end-points of Gκ are symmetric

with respect to this plane, then the tangent ribbons in between

should be symmetric as well.

The hole center K is user-defined, lying between the i- and

(i+1)-planes with its xy-projection set initially to be equal to the

centroid of the polygon formed by those Mκ lying on the (i+1)-

plane, in case it is convex, or just averaging them, otherwise.

The user-defined z-coordinate Kz of K, zi < Kz < zi+1, is linked

with the parameter r, used in §4.2, for controlling the extent of

the linear parts of the domain curves X(t), as follows:

r =
Kz − zi

zi+1 − zi

. (4.1)

A natural choice for the tangent plane through K is the plane

z = Kz, on which we define the so-called star vectors vκ [16],

that will be used as boundary tangent vectors of the guide

curves Gκ emanating from K. The direction of vκ is determined

by projecting the vector connecting K with Mκ onto z = Kz,

while its length is taken as the average of the lengths of the

tangent vectors of the neighboring hole sides at Mκ−1 and Mκ+1.

Finally, we force the surface to exhibit planar behavior in the

neighborhood of K by imposing zero second-order derivatives

at K.

As a preprocessing step, implied by the Gordon-Coons

scheme in [16], we have to reparameterize pairs of contour seg-

ments (segments Mκ−1ML
κ , Mκ+1MR

κ in Fig. 10) which bound

neighboring patches that are topologically opposite to their

common edge (segment KMκ in Fig. 10), so that eventually

they are defined over the same parametric interval. Employing

linear reparameterization and requesting minimization of the

length variation of their end tangent vectors, we are led to a

well-posed least-squares problem.

Then, we proceed to construct the family of guide curves

Gκ, which is divided into two sets, those Gκ that connect K

with contour segments (solid curves in Fig. 10) and those con-

necting K with trimming curves (dashed curves in Fig. 10).

Guide curves belonging to the first set are constructed as shape-

preserving 3D polynomial curves (cf. [13]) that satisfy the

boundary conditions implied by the corresponding star vectors
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Fig. 9. The Gordon-Coons patches covering a five-sided hole.

Fig. 10. Top view of three contours, C1, C2 and C3, on the (i + 1)-plane

forming one inner residual and the Gordon-Coons patchwork covering the

six-sided hole.

and the requested planar behavior at K, as well as positional

and tangential information readily available at Mκ. For the sec-

ond set of guide curves, we use shape-preserving interpolation

splines; the xy-projections of the interpolation points are ob-

tained from the middle isoparametric of the linear skinning sur-

face interpolating the topologically opposite contour segments.

This choice serves our aim to embed the shape of the contribut-

ing contours to the guide curve. The z-coordinate of the inter-

polation points is calculated with the aid of the cubic Hermite

polynomial that connects K with Mκ; see Fig. 11.

Fig. 11. The constructed guide curves.

It remains to build the tangent ribbons Lκ and Rκ that are to

be imposed on every pair of neighboring patches, sharing the

same guide curve Gκ as common boundary. These are expressed

as

Lκ(t) = λκ(t) (lκ(t) − rκ(t)) + µκ(t)
dGκ(t)

dt
(4.2)

and

Rκ(t) = νκ(t) (rκ(t) − lκ(t)) + ξκ(t)
dGκ(t)

dt
(4.3)

where lκ(t) and rκ(t) denote the tangent ribbons that we would

have obtained if step 6 in [16] had been applied to the two

neighboring patches. Obviously, Rκ(t) and Lκ(t) are coplanar

with
dGκ(t)

dt
while λκ(t), µκ(t), νκ(t) and ξκ(t) are functions such

that Lκ(t) and Rκ(t) share the same boundary conditions with

lκ(t) and rκ(t), respectively. The computed star vectors vκ, along

with the requested planar behavior at K and the available geo-

metric information at Mκ provide a set of boundary conditions

that uniquely determine lκ and rκ as cubic polynomials. As for

the functions λκ(t), µκ(t), νκ(t) and ξκ(t), it can be proved that

they should satisfy the following constraints:

λκ(0) =
vκ−1 × vκ

(vκ−1 − vκ+1) × vκ
, λκ(tκ) =

1

2
, (4.4)

µκ(0) =
vκ+1 × vκ−1

vκ × (vκ−1 − vκ+1)
, µκ(tκ) = 0, (4.5)

νκ(0) =
vκ+1 × vκ

(vκ+1 − vκ−1) × vκ
, νκ(tκ) =

1

2
, (4.6)

ξκ(0) =
vκ−1 × vκ+1

vκ × (vκ+1 − vκ−1)
, ξκ(tκ) = 0, (4.7)

λ′κ(0) = −ν′κ(0), µ′κ(0) = ξ′κ(0), (4.8)

λ′κ(tκ) = µ
′
κ(tκ) = ν

′
κ(tκ) = ξ

′
κ(tκ) = 0. (4.9)

Restricting λκ(t), µκ(t), νκ(t) and ξκ(t) to be cubic polynomials

and requiring,

λ′κ(0) = µ′κ(0) = ν′κ(0) = ξ′κ(0) = 0, (4.10)

gives us unique representations for these polynomials. Then Lκ
and Rκ can be calculated using (4.2) and (4.3).

The filling hole process can now be accomplished (see Fig.

12) by employing the Gordon-Coons scheme, once we can

guarantee the validity of the compatibility conditions at the

corner points of the hole. This is achieved by scaling the tangent

ribbon along each trimming curve with a suitably defined cubic

with vanishing end-derivatives.

Fig. 12. The final “one-to-two” surface.
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5. The “many-to-many” Hermite problem

The “many-to-many” problem is handled via a direct exten-

sion of the “one-to-many” methodology described in the pre-

vious section. In fact the two methodologies are identical up to

the construction step of the surrounding surface; see Fig. 13.

(a) (b)

(c) (d)

Fig. 13. Handling the “many-to-many” problem up to the surrounding-surface

step: (a) data sets, (b) contours along with tangent ribbons, (c) surrounding

contours with tangent ribbons, (d) surrounding skinning surface.

Next, by taking two v-isoparametric curves on the surround-

ing surface we create a separating zone (see Fig. 14) between

the i- and the (i + 1)-planes, that reduces the problem into

two independent to each other “one-to-many” subproblems, for

which the necessary surrounding surfaces are already there; see

Figs. 15 and 16.

Fig. 14. The separating strip.

Fig. 15. The surrounding surface after trimming, along with the constructed

guide curves.

Fig. 16. The surface after hole filling.

6. Tangent-vector estimation

Tangent vectors, especially those on the intermediate con-

tours, are rarely given in real world applications, thus a way

for estimating them is needed. For this purpose we use a C0

version of the so far developed methodology in the following

sense: skinning and hole filling does not take into account any

tangential information.

Suppose we want to obtain an estimate of Ti jk at Pi jk. We pro-

pose to take as Ti jk the tangent of a z-parameterized parabola,

that passes through Pi jk and two points, Pu and Pl, lying on

the two u-isoparametrics of the neighboring patches of the C0

surface, meeting at Pi jk.

It is reasonable to expect that the estimation varies contin-

(a)

(b)

Fig. 17. (a) Tangent vector estimation on an intermediate contour between

skinning surfaces. (b) Tangent vector estimation of an intermediate contour

which bounds at least one Gordon-Coons patch.
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uously with respect to u. To meet this constraint we take Pu

and Pl on the intersection of the u-isoparametric with the fur-

thest, with respect with the i-plane, v-isoparametrics for which

continuity with regard to u is preserved. So in the simplest

case when the neighboring surfaces are both skinning (see Fig.

17(a)), Pu and Pl are taken on the upper and lower contours,

respectively. In the more elaborate case of Fig. 17(b), where

the upper neighboring surface is skinning and the lower one is

a patchwork of Gordon-Coons patches and a trimmed skinning

surface, Pl lies on the v-isoparametric with v = Kz, namely the

z-coordinate of the hole center K. Such a choice places Pl on

the furthest from the i-plane v-isoparametric that guarantees

continuity with respect to u.

7. Examples

The kernel of the presented methodology, which is the so-

lution of the “one-to-many” branching problem, is illustrated

here through two synthetic and two realistic examples.

The first synthetic example aims to illustrate that the method

is able to retain the symmetries of the data. More specifically,

Fig. 18. A symmetric data set: The contour point sets.

Fig. 19. A symmetric data set: Top view of the data points and the traces

of the planes of symmetry on the xy-plane.

Fig. 20. A symmetric data set: The surrounding surface with the trimmed

area shown transparently.

Fig. 21. A symmetric data set: The boundary of the six-sided hole along

with the constructed guide curves which form six four-sided patches.

Fig. 22. A symmetric data set: The final “one-to-three” branching surface

after hole filling.

the contour point sets lie on two planes, z = 0 and z = 10,

and form an “one-to-three” problem with one inner residual,

as shown in Fig. 18. The data point sets are taken from two cir-

cles of radius 5 and 8.5 units, respectively, and are arranged in

such a way that their formation exhibits symmetry with respect

to three planes meeting along the z-axis (see Fig. 19). Further-

more, the imposed tangent vectors are such that they do not

violate this symmetry, i.e., they are parallel to the z-axis and

share the same length. The steps of the method, as described in

§4, namely skinning, trimming and hole-filling, are illustrated

through Figs. 20, 21 and 22, respectively. Finally, Fig. 23 re-

veals the capability of the method to preserve data symmetries,

by depicting the color map of the Gaussian curvature of the

8



Fig. 23. A symmetric data set: Top view of the surface with the color map

of its Gaussian curvature, revealing the capability of the method to preserve

data symmetries.

final surface.

The second synthetic example is an “one-to-two” problem,

where the two coplanar contour point-sets (see Fig. 24) are se-

lected to be highly non-symmetric and non-convex, while their

convex hull boundaries penetrate each other. The corresponding

surrounding surface with its trimmed area is depicted in Fig.

25, while the boundary of the resulting four-sided hole along

with the constructed guide curves is illustrated in Fig. 26. The

final result, depicted in Fig. 27, reveals the gorge-like nature of

the underlying surface.

The first of the two practical examples deals with the design

of a detergent container with handle. The contour point-sets

lie on eight planes and form six “one-to-one” and two “one-

to-two” branching problems, as illustrated in Fig. 28(a). Data

points in this figure are also endowed with longitudinal tangent

vectors, devised with the aid of the technique summarized in

§6. The final outcome of the method is depicted in the right

part of this figure; see Fig. 28(b). The intermediate steps of

constructing and trimming the two surrounding surfaces, as

well as the constructed guide curves required for filling the two

holes, are illustrated in Figs. 29(a) and 29(b), respectively.

The second practical example is related to computer-aided

ship design. More specifically, Fig. 30 depicts sections from

a hull with bulbous bow. The proposed approach enables the

designer to handle uniformly and efficiently the topological

changes that occur in ship sections as we move from amidships

towards the bulbous-bow and bow-flare areas. As opposed to

our assumption for closed point-sets, the data in question are

mainly open, which is bypassed by mirroring initial data with

respect to a plane parallel and well above the deck plane; see

Fig. 31(a). In the branching area we are thus faced with an

“one-to-three” problem with two inner residuals.

One can readily note from Fig. 31(b) that the bridges selected

do not lie on the convex hull of the three coplanar contour

point sets, which is a basic choice made in §4.1, but have

been placed near the longitudinal symmetry plane of the hull,

Fig. 24. A non-symmetric data set: The contour point-sets.

Fig. 25. A non-symmetric data set: The surrounding surface with the trimmed

area shown transparently.

Fig. 26. A non-symmetric data set: The boundary of the four-sided hole

along with the constructed guide curves which form four quadrilateral patches.

Fig. 27. A non-symmetric data set: The final “one-to-two” branching surface

after hole filling.

the so-called centerplane. This choice can be justified on the

basis of hydrodynamic performance criteria — design waterline

should not be bluff, nevertheless it reveals that the policy of

adhering bridges to the convex hull may become restrictive. In

this connection, we are currently working towards enriching

our method with alternative surrounding curves, that take into

account the geometry and relative position of the contours with

respect to their convex hull; see §8.2.
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(a) (b)

Fig. 28. The container example: (a) Contour point sets, tangent vector

estimates and the correspondence graph. (b) The final container surface.

(a) (b)

Fig. 29. The container example: (a) The two surrounding surfaces with the

corresponding trimmed areas shown transparently. (b) The two constructed

guide curve families.

Coming back to the graphical output of the example in ques-

tion, the surrounding surface, the holes with the constructed

guide curves and the branching surfaces are shown in Figs.

31(c)–(e), correspondingly. The final outcome of the hull de-

sign process is illustrated in Fig. 32.

Fig. 30. The bulbous hull example: Input cross sections.

(a) (b)

(c) (d) (e)

Fig. 31. The bulbous hull example: (a) The contour point sets mirrored.

(b) The surrounding polygon. (c) The surrounding surface with the trimmed

area shown transparently. (d) The boundary of the holes, along with the

constructed guide curves. (e) The final branching surfaces after hole filling.
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Fig. 32. The bulbous hull example: The final hull.

8. Summary and ongoing work

8.1. Summary

The algorithm solving the “one-to-many” problem is the

core of the paper. It seems to have many advantages over other

algorithms in the literature, due to the analytic structure of

the final surface patchwork, the G1 smoothness and its abil-

ity to preserve the shape and symmetry of the input data. The

method was designed to be easily implemented in an ordinary

CAD system, thus it uses structures (such as polynomial rect-

angular surface patches), which constitute the basis of most of

these systems. Since the proposed method is aiming to provide

a framework for designing branching surfaces, it leaves to the

involved designer a number of free parameters up to his alley.

The definition of the trimming curve or the construction of the

guide curves or the heuristic rules for the information on the

hole center, can be freely modified in order to better customize

the method for a particular application. In the following para-

graphs we provide some specific comments and a discussion

on current work towards removing a topological instability of

the algorithm and improving its applicability regarding the sur-

rounding curve construction step.

To start with, the methodology adopted for computing the

parametrization of the point-sets is fast and stable. Moreover,

it provides an acceptable automatic solution to the parameter-

matching problem for constructing the necessary skinning sur-

faces. On the other hand, however, the algorithm used for con-

structing the contour curves [25], guarantees the construction

of convexity-preserving curves independently of the chosen

parametrization. Note also that the same algorithm can guaran-

tee that no intersections between different contour curves may

occur, provided the polygons formed by Pi j do not intersect

one another.

The surrounding curves we construct at each plane can

rapidly and robustly handle point-sets Pi+1, j and the tangen-

tial information supplied by the already constructed contour

curves. On the other hand, we should note an apparent topo-

logical instability of the proposed algorithm, with respect to

the relative position of the above point-sets to their convex

hull. Let us assume, e.g., that the polygons formed by those

point-sets all contribute to the convex hull, i.e., there is one

(or more) simply connected residual(s). Then, a small pertur-

bation of one of the polygons may result in the formation of

a multiply connected inner/outer residual, a situation which is

not treated by the algorithm. In Section 8.2 we describe some

ideas on how to extend the definition of the surrounding curve

so as to connect not only point-sets that touch their convex

hull, but also point-sets near the convex hull.

The rest of the method involves skinning surfaces and

Gordon-Coons interpolation, which are both widely used by

the CAGD community. They also enable us to easily extend

the algorithm in order to incorporate NURBS curves. Based

on these underlying structures, we can increase the order of

continuity of the resulting surface, at the cost of enriching the

data sets with higher order information.

As a final note on the approach presented in this paper, the

solution to the “one-to-many” problem enabled us to give an

analogously reliable solution to the “many-to-many” problem,

a case so far handled by very few algorithms.

8.2. Ongoing work

As mentioned above, the way the surrounding curves are con-

structed in each plane exhibit a topological instability: point-

sets Pi+1, j that touch the convex hull and thus participate in the

construction of the surrounding curve, may, under a small per-

turbation, seize to touch the convex hull and thus fail to partic-

ipate in the construction of the surrounding curve. Moreover,

point-sets near, but not on, the convex hull cannot participate in

the surrounding curve and thus cannot be taken into account by

our algorithm when constructing the surrounding surface and

eventually the final interpolatory surface. One way to, at least

partially, remedy this deficiency is to extend the surrounding

curve definition by including point-sets that are near the convex

hull. There seems to be no unique notion of “nearness”, and in

what follows we shall describe two ways of measuring prox-

imity. Our discussion below is limited to contour curves Ci+1, j

that are convex, although we believe that the same approach

can be extended to the case of non-convex contours.

The key idea is to use the planar Euclidean Voronoi diagram

of the set of contours (viewed as solid compact objects with

convex boundary). Before diving into the details, let us give

some definitions and discuss some properties of such Voronoi

diagrams (see also [26]). Given a set S of n convex objects in

the plane S = {S 1, S 2, . . . , S n}, that are pairwise disjoint, define

the Euclidean distance δ(p, S k) of a point p in the plane, that

belongs to the complement of the union of the (interiors of the)

S i’s, from some S k ∈ S as δ(p, S k) = minq∈S k
d(p, q), where

d(·, ·) stands for the Euclidean distance between two points in

E
2. Define the Voronoi region Vk of S k to be the set Vk =

{p ∈ E
2 | δ(p, S k) ≤ δ(p, S ℓ), ℓ , k}. The Voronoi region of

S k is simply the set of points in the plane that are closer, or at

equal distance, to S k than to any other object in S. The locus

of points in E
2 that belong to exactly two Voronoi regions is

called a Voronoi edge, whereas points in the plane that belong

to at least three Voronoi regions are called Voronoi vertices.

The collection of Voronoi regions (or faces), edges and vertices

is called the Voronoi diagramV(S) of S. For a set of pairwise
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disjoint convex objects, such as S, the Voronoi diagram V(S)

is a planar graph of size O(n). Its faces are simply connected,

and there is one such face per object in S. In fact, the Voronoi

region Vk of S k fully contains S k in its interior, and, moreover,

Vk is star-shaped with respect to the medial axis of S k (see [26]

for more details).

The dual graph of V(S) is called the Delaunay graph D(S)

of S. The vertices of D(S) are in 1–1 correspondence with the

objects in S, whereas the faces of D(S) are in 1–1 correspon-

dence with the Voronoi vertices in V(S). The Delaunay graph

is typically understood via its compactified version: the Delau-

nay graph contains a fictitious vertex at infinity, connected with

all objects that appear on the convex hull H(S) of S (or more

accurately to all the vertices on the boundary of the infinite

face of D(S) — note that an object in S may appear multiple

times on H(S)). Under the non-degeneracy assumptions that:

(i) no three objects in S share a common tangent line (that

leaves them in the same halfplane) and,

(ii) no four objects in S have a common tangent circle (that

fully lies in the complement of the union of the objects

in S),

the Delaunay graphD(S) consists of only triangular faces, i.e.,

faces with three edges. These “triangles” may not be embed-

dable with straight line segments, since it is possible to have

two triangles sharing two edges. In the compactified version of

D(S), the objects of S along H(S) are connected via an edge.

We call such an edge a convex hull edge. At least one of the

neighboring triangles of a convex hull edge is an infinite trian-

gle, i.e., a triangle one vertex of which is the fictitious vertex at

infinity — the other neighboring triangle of a convex hull edge

may also be an infinite triangle. Although the discussion be-

low applies to non-degenerate sets of objects, the ideas readily

extend to possibly degenerate configurations.

In the surrounding curve context, the objects in the set S

are the convex objects bounded by the contour curves Ci+1, j.

What is interesting, in this context, is that the Voronoi diagram

V(S), or equivalently its dual Delaunay graph D(S), captures

a lot of proximity information, which we exploit in order to

extend the definition of surrounding curve given in §4.2. Let

us denote by S0 the set of objects in S that contribute to H(S)

(see Fig. 33). Now, let S1 be the set of objects in S \ S0 that

belong to a triangle in D(S), the other two vertices of which

belong to S0. In other words, we focus on non-convex-hull

objects than belong to triangles adjacent to convex hull edges

in D(S). If the objects in S0 can be thought of as the 0-level

objects when approaching S from infinity, S1 are the next level

(1-level) objects that we encounter after the objects in S0.

The objects in S1 are our candidate objects for inclusion in

the surrounding curve. Let S λ be some object in S1 and let T be

a triangle in D(S) that connects S λ with two objects S µ and S ν
in S0; notice that T may not be unique, i.e., S λ may be the non-

convex-hull vertex of many triangles in D(S) that are adjacent

to convex hull edges (see Fig. 33(b)). Let us denote by CT the

Voronoi circle corresponding to T , and let Σλ, Σµ and Σν be

the points of tangency of CT with S λ, S µ and S ν, respectively.

Let ∆λµν denote the triangle defined by the three points Σλ, Σµ
and Σν, and let αλ,µν be the angle of ∆λµν at Σλ, and Kλ,µν and

corresponding cone, the apex of which is Σλ. Moreover, let Rλµ
and Rλν be the rays emanating from Σλ, belonging to Kλ,µν, that

are tangent to S µ and S ν (see Figs. 33(a) and 33(c)). We shall

denote by K̃λ,µν the cone defined by Rλµ and Rλν, and by α̃λ,µν
and angle of K̃λ,µν at its apex Σλ. Note that K̃λ,µν is essentially

the region of space visible from Σλ through S µ and S ν.

The two angles αλ,µν and α̃λ,µν can be used to measure the

proximity of S λ to H(S). As S λ approaches H(S), both αλ,µν
and α̃λ,µν tend to π. In view of this property we use these

angles in order to decide whether or not an object in S1 is to

be added to the set of objects defining the surrounding curve.

The decision can be made via threshold values, which should

be considered as design parameters. The designer can choose

a value in the interval [0, π] as the minimum acceptable value

for either αλ,µν or α̃λ,µν. Setting this threshold to zero implies

that all objects in S1 are to participate in the surrounding curve,

whereas choosing the threshold to be equal to π essentially

reduces to constructing the surrounding curve as in §4.2. What

is the most interesting feature of the approach described above,

is that it not only gives us a way to augment the set of objects

used to construct the surrounding curve, but also defines the

circular order with which the surrounding curve is to touch

these objects. To be more specific, the surrounding curve, as

discussed on §4.2, touches the objects in H(S) in the order they

appear as we move around H(S). When an object S λ ∈ S1 is

chosen, according to one of the two afore-mentioned criteria,

to participate in the construction of the surrounding curve, we

place it in between S µ and S ν in the circular list of objects in

H(S); here S µ and S ν are two objects in H(S) connected with

S λ via a triangle T ∈ D(S), and either the angle αλ,µν or α̃λ,µν
(depending on which criterion we use) is above the threshold

value set.

The approach, described in the above paragraphs, for extend-

ing the set of contours participating in the construction of the

surrounding curve is illustrated in Figs. 33 and 34. Fig. 33 shows

the resulting surrounding curves (in fact C0-versions of them)

for two data sets and for the two criteria mentioned above. Fig.

34 illustrates the effect of the threshold value chosen for the

second criterion (namely, the one based on the angles α̃λ,µν).

We depict the output surrounding curve for six threshold values

ranging from 0◦, in which case all objects in S1 participate in

the surrounding curve — one of them is actually touched three

times, to 150◦, in which case the surrounding curve coincides

with the convex hull H(S).
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