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Abstract

In this paper we consider the problem of monitoring an art gallery
modeled as a polygon, the edges of which are arcs of curves. We
consider two types of guards: edge guards (these are edges of the
polygon) and mobile guards (these are either edges or straight-line
diagonals of the polygon). Our focus is on piecewise-convex poly-
gons, i.e., polygons that are locally convex, except possibly at the
vertices, and their edges are convex arcs. We reduce the prob-
lem of monitoring a piecewise-convex polygon to the problem of
2-dominating a constrained triangulation graph with edges or diag-
onals, where 2-dominance requires that every triangle in the trian-
gulation graph has at least two of its vertices in the 2-dominating
set. We show that, given a triangulation graph TP of a polygon P
with n ≥ 3 vertices: (1) ⌊n+1

3
⌋ diagonal guards are always suffi-

cient and sometimes necessary, and (2) ⌊ 2n+1

5
⌋ edge guards are al-

ways sufficient and ⌊ 2n
5
⌋ edge guards are sometimes necessary, in

order to 2-dominate TP . We also show that a diagonal (resp., edge)
2-dominating set of size ⌊n+1

3
⌋ (resp., ⌊ 3n

7
⌋) can be computed in

O(n) time and space, whereas an edge 2-dominating set of size
⌊ 2n+1

5
⌋ can be computed in O(n2) time and O(n) space. Based

on these results we prove that, in order to monitor a piecewise-
convex polygon P with n ≥ 2 vertices: (1) ⌊n+1

3
⌋ mobile guards

or ⌊ 2n+1

5
⌋ edge guards are always sufficient, and (2) ⌊n

3
⌋ mobile or

edge guards are sometimes necessary. A mobile (resp., edge) guard
set for P of size ⌊n+1

3
⌋ (resp., ⌊ 2n+1

5
⌋ or ⌊ 3n

7
⌋) can be computed

in O(n log n + T (n)) time and O(n) space, where T (n) denotes
the time for computing a diagonal (resp., edge) 2-dominating set of
size ⌊n+1

3
⌋ (resp., ⌊ 2n+1

5
⌋ or ⌊ 3n

7
⌋) for a triangulation graph with

n vertices.
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1 Introduction

In recent years computational geometry has made a shift towards
curvilinear objects. Recent works have addressed both combina-
torial properties and algorithmic aspects, as well as the necessary
algebraic techniques for resolving predicates involving curvilinear
objects. The pertinent literature is quite extensive; the interested
reader may consult the recent book edited by Boissonnat and
Teillaud [Boissonnat and Teillaud 2007] for a collection of recent
results for various classical computational geometry problems in-
volving curvilinear objects. Despite the apparent shift towards the
curvilinear world, and despite the vast range of application areas
for art gallery problems, including robotics [Kuc and Siegel 1987;
Xie et al. 1986], motion planning [Lozano-Pérez and Wesley 1979;
Mitchell 1989], computer vision [Stenstrom and Connolly 1986;
Yachida 1986; Avis and ElGindy 1983; Toussaint 1980],
graphics [McKenna 1987; Chazelle and Incerpi 1984],
CAD/CAM [Bronsvoort 1988; Eo and Kyung 1989] and
wireless networks [Eppstein et al. 2007], there are very few
works addressing the well-known art gallery and illumi-
nation class of problems when the objects involved are
curvilinear [Urrutia and Zaks 1989; Coullard et al. 1989;
Czyzowicz et al. 1994; Czyzowicz et al. 1995;
Karavelas and Tsigaridas 2008].

The original art gallery problem was posted by Klee to Chvátal:
given a simple polygon P with n vertices, how many vertex
guards are required in order to monitor the interior of P ? Chvátal
[Chvátal 1975] proved that ⌊n

3
⌋ vertex guards are always sufficient

and sometimes necessary, while Fisk [Fisk 1978], a few years later,
gave exactly the same result using a much simpler proof tech-
nique based on 3-coloring a triangulation of the polygon. In the
context of curvilinear polygons, i.e., polygons the edges of which
may be line segments or arcs of curves, Karavelas and Tsigaridas
[Karavelas and Tsigaridas 2008] have shown that is always possi-
ble to monitor piecewise-convex polygons (i.e., polygons that are
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locally convex, except possibly at the vertices, and their edges are
convex arcs) with ⌊ 2n

3
⌋ vertex guards, whereas there exist classes

of such polygons that require a minimum of ⌊ 4n
7
⌋−1 vertex or ⌊n

2
⌋

point guards. They also show that 2n − 4 point guards are always
sufficient and sometimes necessary in order to monitor piecewise-
concave polygons, i.e., polygons that are locally concave, except
possibly at the vertices, and their edges are convex arcs.

Soon after the first results on monitoring polygons with vertex or
point guards, other types of guarding models where considered.
Toussaint introduced in 1981 the notion of edge guards. A point
p in the interior of the polygon is considered to be monitored if it
is visible from at least one point of an edge in the guard set. Edge
guards were introduced as a guarding model in which guards were
allowed to move along the edges of the polygon. Another varia-
tion, dating back to 1983, is due to O’Rourke: guards are allowed
to move along the edges or diagonals of the polygon. This type
of guards is called mobile guards. Toussaint conjectured that, ex-
cept for a few polygons, ⌊n

4
⌋ edge guards are always sufficient.

There are only two known counterexamples to this conjecture, with
n = 7, 11, due to Paige and Shermer [Shermer 1992], requiring
⌊n+1

4
⌋ edge guards, whereas there exists a family of polygons that

require ⌊n
4
⌋ edge guards. The first step towards Toussaint’s con-

jecture was made by O’Rourke [O’Rourke 1983; O’Rourke 1987]
who proved that ⌊n

4
⌋ mobile guards are always sufficient and occa-

sionally necessary in order to monitor any polygon with n vertices.
The technique of O’Rourke, for proving the upper bound, amounts
to reducing the problem of monitoring a simple polygon to that of
dominating a triangulation graph of the polygon. A triangulation
graph is a maximal outerplanar graph, all internal faces of which are
triangles. Dominance means that at least one of the vertices of each
triangle in the triangulation graph is incident to a mobile guard. The
reduction to the problem of triangulation graph dominance is appli-
cable to the case of edge guards. Shermer [Shermer 1992] settled
the problem of dominating triangulation graphs with edge guards
by showing that ⌊ 3n

10
⌋ edge guards are always sufficient and some-

times necessary, except for n = 3, 6 or 13, in which case one extra
edge guard may be necessary; this, also, constitutes the best known
upper bound on the number of edge guards that are sufficient in
order to monitor an n-vertex polygon.

In this paper we consider the problem of monitoring piecewise-
convex polygons with edge or mobile guards; in our context,
a mobile guard is either an edge or a straight-line diagonal of
the polygon. Our proof technique capitalizes on the technique
used by O’Rourke to prove tight bounds on the number of mo-
bile guards that are sufficient for monitoring straight-line polygons
[O’Rourke 1987]. Unlike O’Rourke’s paradigm, where the solu-
tion for the dominance problem is trivially a solution for the geo-
metric guarding problem, in our paradigm we first reduce the ge-
ometric problem to a combinatorial problem, and then map of the
solution for the combinatorial problem to a solution for the geomet-
ric problem. More precisely, in order to monitor piecewise-convex
polygons with mobile or edge guards, we first reduce the prob-
lem of monitoring a piecewise-convex polygon P to the problem
of 2-dominating a constrained triangulation graph. Given a trian-
gulation graph TP of a polygon P , a set of edges and/or diagonals
of TP is a 2-dominating set of TP if every triangle in TP has at
least two of its vertices incident to an edge or diagonal in the 2-
dominating set. We prove that ⌊n+1

3
⌋ diagonal guards (i.e., edges

or diagonals of TP ) are always sufficient and sometimes necessary
in order to 2-dominate TP , whereas ⌊ 2n+1

5
⌋ edge guards are always

sufficient and ⌊ 2n
5
⌋ edge guards are sometimes necessary in order

to 2-dominate TP . The proofs of sufficiency are inductive on the
number of vertices of P . In the case of diagonal 2-dominance, our
proof yields a linear time and space algorithm. In the case of edge
2-dominance, the inductive step incorporates edge contraction op-

erations, thus yielding an O(n2) time and O(n) space algorithm,
where n is the size of P . A linear time and space algorithm can be
attained by slightly relaxing the size of the edge 2-dominating set.
More precisely, we have shown that we can 2-dominate TP with
⌊ 3n

7
⌋ edges; the proof does not make use of edge contractions and

is analogous, though more complicated, to the proof, presented in
this paper, for the case of diagonal 2-dominance.

Focusing back to the geometric guarding problem, the triangulation
graph TP of the piecewise-convex polygon P is a constrained trian-
gulation graph: we require that certain diagonals of TP are present.
The remaining non-triangular subpolygons of TP are straight-line
polygons and may be triangulated arbitrarily. For the edge guard-
ing problem, any edge 2-dominating set computed for TP is also
an edge guard set for P . A diagonal 2-dominating set D of TP ,
however, may contain diagonals of TP that are not embeddable as
straight-line diagonals of P . To produce a mobile guard set for P ,
we keep all edges and straight-line diagonals of P in D and map
non-straight-line diagonals in D to edges of P . In summary, we
can compute: (1) a mobile guard set for P of size at most ⌊n+1

3
⌋

in O(n log n) time and O(n) space; (2) an edge guard set for P of
size at most ⌊ 2n+1

5
⌋ in O(n2) time and O(n) space; (3) an edge

guard set for P of size at most ⌊ 3n
7
⌋ in O(n log n) time and O(n)

space. Finally, we show that ⌊n
3
⌋ edge or mobile guards are some-

times necessary in order to monitor P .

The rest of the paper is structured as follows. Section 2 is de-
voted to 2-dominance of triangulation graphs using diagonal or
edge guards. In Section 3 we discuss the problem of monitoring
piecewise-convex polygons with mobile or edge guards. Finally, in
Section 4 we conclude with a discussion of our results and open
problems.

2 2-dominance of triangulation graphs

Given a polygon P with n vertices, its triangulation graph TP is
a maximal outerplanar graph, i.e., a Hamiltonian planar graph con-
sisting of n vertices and 2n − 3 edges, all internal faces of which
are triangles (cycles of size 3). The triangulation graph of a straight-
line polygon, i.e., a polygon the edges of which are line segments,
is the planar graph we get when the polygon has been triangulated.

A dominating set D of a triangulation graph TP is a set of vertices,
edges or diagonals of TP such that at least one of the vertices of
each triangle in TP belongs to D. An edge (resp., diagonal) domi-
nating set of TP is a dominating set of TP consisting of only edges
(resp., edges or diagonals) of P . A 2-dominating set D of TP is a
dominating set of TP that has the property that every triangle in TP

has at least two of its vertices in D. In a similar manner, an edge
(resp., diagonal) 2-dominating set of TP is a 2-dominating set of
TP consisting only of edges (resp., edges or diagonals) of TP .

Before proceeding with the main results of this section, we state the
following lemma, which is a direct generalization of Lemmas 1.1
and 3.6 in [O’Rourke 1987].

Lemma 1 Consider an integer λ ≥ 2. Let P be a polygon of
n ≥ 2λ vertices, and TP a triangulation graph of P . There exists
a diagonal d in TP that partitions TP into two pieces, one of which
contains k arcs corresponding to edges of P , where λ ≤ k ≤
2(λ − 1).

Proof. Choose d to be a diagonal of TP that separates off a min-
imum number of polygon edges that is at least λ. Let k ≥ λ be
this minimum number, and label the vertices of P with the labels
0, 1, . . . , n − 1, such that d is (0, k). The diagonal d supports a
triangle whose apex is at vertex t, 0 ≤ t ≤ k. Since k is minimal
t ≤ λ − 1 and k − t ≤ λ − 1. Thus, λ ≤ k ≤ 2(λ − 1). �



Diagonal guards Using Lemma 1 for λ = 4, yields the follow-
ing theorem concerning the worst-case number of diagonals that
are sufficient and necessary in order to 2-dominate a triangulation
graph. The inductive proof that follows is not the simplest pos-
sible. The interested reader may find a much simpler alternative
proof in [Karavelas 2008]. The simpler proof, however, makes use
of edge contractions, which make it unsuitable as a basis for a linear
time and space algorithm. On the other hand, the proof presented
below can be implemented in linear time and space, as will be dis-
cussed below. The proof that follows is a detailed, rather technical,
case-by-case analysis; we present it, however, uncondensed, so as
to illustrate the details that pertain to our linear time and space al-
gorithm.

Theorem 2 Every triangulation graph TP of a polygon P with
n ≥ 3 vertices can be 2-dominated by ⌊n+1

3
⌋ diagonal guards.

This bound is tight in the worst-case.

Proof. The proof for 3 ≤ n ≤ 7 is straightforward and is omitted.
Let us now assume that n ≥ 8 and that the theorem holds for all
n′ such that 3 ≤ n′ < n. By means of Lemma 1 with λ = 4,
there exists a diagonal d that partitions TP into two triangulation
graphs T1 and T2, where T1 contains k boundary edges of TP with
4 ≤ k ≤ 6. Let vi, 0 ≤ i ≤ k, be the k + 1 vertices of T1, as we
encounter them while traversing P counterclockwise, and let v0vk

be the common edge of T1 and T2. For each value of k we are going
to define a diagonal 2-dominating set D for TP of size ⌊n+1

3
⌋. In

what follows dij denotes the diagonal vivj , whereas ei denotes the

edge vivi+1
1. Consider each value of k separately.

k = 4. In this case T2 contains n − 3 vertices. By our induction
hypothesis we can 2-dominate T2 with f(n − 3) = ⌊n+1

3
⌋ − 1

diagonal guards. Let D2 be the diagonal 2-dominating set for
T2. At least one of v0 and v4 is in D2. The cases are symmet-
ric, so we can assume without loss of generality that v0 ∈ D2.
Consider the following cases (see Fig. 12):
d13 ∈ T1. Set D = D2 ∪ {d13}.
d24 ∈ T1. Set D = D2 ∪ {d24}.
d02, d03 ∈ T1. Set D = D2 ∪ {e2}.

k = 5. The presence of diagonals d04 and d15 would violate the
minimality of k. Let t be the triangle supported by d in T1. The
apex v of this triangle can either be v2 or v3. The two cases
are symmetric, so we assume, without loss of generality that the
apex of t is v2. Consider the triangulation graph T ′ = T2 ∪{t}.
It has n − 3 vertices, hence, by our induction hypothesis, it can
be 2-dominated with f(n − 3) = ⌊n+1

3
⌋ − 1 diagonal guards.

Let D′ be the 2-dominating set for T ′. Consider the following
cases (see Fig. 2):
d02 ∈ D2. Set D = D′ ∪ {e3}.
d02 6∈ D2. If d25 ∈ D′, set D = (D′ \ {d25}) ∪ {d02, e4}.

Otherwise, v2 cannot belong to D′ (both edges of T ′ incident
to v2 do not belong to D′). However, the triangle t is 2-
dominated in T ′, which implies that both v0 and v5 belong
to D′. Hence, set D = D′ ∪ {e2}.

k = 6. The presence of diagonals d04, d05, d16 and d26 would
violate the minimality of k. Let t be the triangle supported by
d in T1. The apex v of this triangle must be v3. Let t′ be the
second triangle in T1 beyond t supported by the diagonal d03,
and let v′ be its vertex opposite to d03. Symmetrically, let t′′

be the second triangle in T1 beyond t supported by the diago-
nal d36, and let v′′ be its vertex opposite to d36. Consider the
triangulation graph T ′ = T2 ∪ {t, t′}. It has n − 3 vertices,
hence, by our induction hypothesis, it can be 2-dominated with

1Indices are considered to be evaluated modulo n.
2In all figures, edges/diagonals in a dominating/guard set are shown as

thick solid/dashed lines, while vertices in a dominating/guard set are trans-

parent.

v0v0 v0

v1v1 v1

v2v2 v2

v3v3v3

v4v4 v4 dd d

Figure 1: The case k = 4. Left: d13 ∈ T1. Middle: d24 ∈ T1.
Right: d02, d03 ∈ T1.
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v2 v2 v2v3 v3 v3
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v5 v5 v5d dd

tt t

Figure 2: The case k = 5. Left: d02 ∈ D′. Middle: d02 6∈ D′ and
d25 ∈ D′. Right: d02, d25 6∈ D′.

f(n − 3) = ⌊n+1

3
⌋ − 1 diagonal guards. Let D′ be the 2-

dominating set for T ′.
Let us first consider the case v′ ≡ v2. Let d′′ be the unique
diagonal of the quadrilateral v3v4v5v6. Consider the following
cases (see Fig. 3):
d02 ∈ D′. Set D = D′ ∪ {d′′}.
d02 6∈ D′. We further distinguish between the following two

cases:
d36 ∈ D′. If v0 ∈ D′, simply set D = (D′ \ {d36}) ∪

{e2, e5}. If v0 6∈ D′, the diagonal d03 cannot belong
to D′. Therefore, in order for the triangle t′ to be 2-
dominated by D′, we must have that e2 in D′. Thus,
set D = (D′ \ {d36}) ∪ {e0, e5}.

d36 6∈ D′. In order for t′ to be 2-dominated by D′ we
must have that either d03 ∈ D′ or e2 ∈ D′. If d03 ∈
D′, set D = (D′ \ {d03}) ∪ {d02, d

′′}; otherwise, set
D = (D′ \ {e2}) ∪ {d02, d

′′}.
The situation is entirely symmetric if v′′ ≡ v4. Hence, the only
remaining case is the case where v′ ≡ v1 and v′′ ≡ v5. Con-
sider the following cases (see Fig. 4):
d13 ∈ D′. Set D = D′ ∪ {e5}.
d13 6∈ D′. We further distinguish between the following two

cases:
d03 ∈ D′. Set D = (D′ \ {d03}) ∪ {e0, d35}.

v0 v0v0 v0

v1v1 v1 v1

v2v2v2 v2

v3v3v3 v3

v4v4 v4v4

v5 v5v5v5

v6 v6v6 v6 d ddd

d
′′

d
′′

t t t t

t
′

t
′

t
′

t
′

Figure 3: The case k = 6 with v′ ≡ v2. Left: d02 ∈ D′; it is
assumed in this subfigure that d′′ ≡ d35. Middle left: d02 6∈ D′

and d36 ∈ D′ and v0 ∈ D′. Middle right: d02 6∈ D′ and d36 ∈ D′

and v0 6∈ D′. Right: d02, d36 6∈ D′; it is assumed in this subfigure

that d′′ ≡ d46.

v0v0

v1 v1

v2 v2

v3v3

v4 v4

v5 v5

v6 v6d d

t t
t
′

t
′

Figure 4: The case k = 6 with v′ ≡ v1 and v′′ ≡ v5. Left:
d13 ∈ D′; also d13, d03, e0 6∈ D′. Right: d13 6∈ D′ and d03 ∈ D′;
also d13, d03 6∈ D′ and e0 ∈ D′.



T1 T2

T3

v0

v1

v2

v3

v4

v5

v3m+1

v3m
v3m−1

v3m−2

v3m−3

v3m−4

v3m−5
v3m−6

Figure 5: Three triangulation graphs Ti, i = 1, 2, 3, with n =
3m + i − 1 vertices, respectively. All three triangulation graphs
require at least ⌊n+1

3
⌋ diagonal guards in order to be 2-dominated.

d03 6∈ D′. If e0 ∈ D′, set D = D′ ∪ {d35}. Otherwise,
i.e., if e0 6∈ D′, v1 cannot be in D′. Since the triangle
t′ is 2-dominated in D′, both v0 and v3 have to belong
to D′. Since the diagonal d03 does not belong to D′, the
diagonal d36 has to belong to D′ in order for v3 to be in
D′. Thus, set D = (D′ \ {d36}) ∪ {d13, e5}.

Let us now turn our attention to establishing the lower bound. Con-
sider the triangulation graphs Ti, i = 1, 2, 3, with n = 3m + i − 1
vertices, shown in Fig. 5, and let Di be the diagonal 2-dominating
set of Ti. The central part of Ti is triangulated arbitrarily. No-
tice that each subgraph of Ti, shown in either light or dark gray,
requires at least one among its edges or diagonals to be in Di in
order to be 2-dominated. This observation immediately establishes
a lower bound of ⌊n

3
⌋.

Let us now assume that |D3| = ⌊n
3
⌋. Under this assumption,

each shaded subgraph in T3 must have exactly one among its
edges/diagonals in D3. Moreover, none of the diagonals in the
central part of T3 (not shown in Fig. 5(bottom)) can belong to
D3, since then we would have |D3| > ⌊n

3
⌋. Consider the trian-

gulated hexagon H := v0v3m−3v3m−2v3m−1v3mv3m+1. In order
for H to be 2-dominated with exactly one of its edges/diagonals,
both v0 and v3m−3 have to be in D3 due to edges/diagonals in the
neighboring shaded subgraphs, while the unique edge or diagonal
of H in D3 must be the diagonal d3m−2,3m. Since we require that
v3m−3 must belong to D3 via an edge/diagonal of the quadrilateral
v3m−6v3m−5v3m−4vem−3, and at the same time we require that
exactly one of the edges/diagonals of v3m−6v3m−5v3m−4vem−3 to
be in D3, e3m−4 must belong to D3 and v3m−6 must be in D3 due
to an edge/diagonal in the quadrilateral v3m−9v3m−8v3m−7vem−6.
Cascading this argument, we conclude that, since v3 must belong
to D3 due to an edge/diagonal of the quadrilateral v0v1v2v3, and at
the same time exactly one of the edges/diagonals of v0v1v2v3 must
be in D3, e2 must belong to D3 and v0 must belong to D3 due to an
edge/diagonal in H . This yields a contradiction, since the unique
edge/diagonal of H in D3 is d3m−2,3m, which is, obviously, not
incident to v0. �

The proof of Theorem 2 can almost immediately be transformed
into a linear time and space algorithm. The triangulation graph TP

of P is assumed to be represented via a half-edge representation.
Half-edges and vertices in our representation are assumed to have
additional flags for indicating whether a half-edge is a boundary

ddd d

Figure 6: The four possible configurations for the dual trees ∆1 for
4 ≤ k ≤ 6, shown as thick solid lines. The diagonal d separates
T1 from T2.

edge of the polygon, or whether a half-edge or a vertex of TP is
marked as being in the diagonal 2-dominating set of TP . Under
these assumptions, adding or removing a half-edge or a vertex from
the sought-for 2-dominating set, querying a half-edge or a vertex
for membership in the 2-dominating set, as well as forming the tri-
angulation graph for the recursive calls, all take O(1) time.

Consider a diagonal d that separates TP into two triangulation
graphs T1 and T2, where T1 contains k = 4, 5 or 6 edges of P ;
recall from the proof of Lemma 1 (for λ = 4) that the value of k is
minimal. Let ∆ be the dual tree of TP , ∆1 (resp., ∆2) the dual tree
of T1 (resp., T2) and ∆′

1 = ∆1 ∪ {d′}, where d′ is the dual edge
of d in ∆. ∆1 consists of a subtree of ∆ with 2, 3 or 4 edges of
∆, connected with the rest of ∆ via a degree-2 or a degree-3 node
(see Fig. 6). Moreover, for n ≥ 13, the subtrees ∆′

1 corresponding
to different diagonals d of TP must be edge disjoint (otherwise the
number of vertices of P would be less than 13).

Having made these observations we can now describe the algorithm
for computing the diagonal 2-dominating set D for TP . We first
describe the initialization steps: (1) initialize D to be empty; (2)
create a queue Q, and initialize it to be empty. Q will consist of
diagonals of TP ; (3) for each diagonal d of TP determine whether
it separates off 4, 5 or 6 edges of P in TP and its size is minimal.
In other words, determine if the dual edge d′ of d in ∆ is adjacent
to subtrees of the form shown in Fig. 6. If so, put d in Q.

The recursive part of the algorithm is as follows:

1. If the number of vertices of TP is less than 13, find a diagonal
2-dominating set D and return.

2. If Q is not empty:
(a) Pop a diagonal d out of Q.
(b) If T2 has less than 13 vertices, empty the queue Q and

find a 2-dominating set D2 for T2. Based on D2, and
according to the cases in the proof of Theorem 2, compute
D and return.

(c) Determine the case in the proof of Theorem 2, to which d

corresponds. Let T̂ be the triangulation graph for which
we are supposed to find the 2-dominating set recursively,

and let ∆̂ be the dual tree of T̂ . Let V be the set of vertices
in (∆̂∩∆′

1). For any v ∈ V determine if v is a leaf-node

to a subtree of ∆̂ like the subtrees in Fig. 6. If so, add the
corresponding diagonal to Q.

(d) Recursively, find a diagonal 2-dominating D̂ for T̂ , using
Q as the queue.

(e) Construct from D̂ a diagonal 2-dominating set D for TP

and return.

It is straightforward to verify that the time T (n) spent for the
recursive part of our algorithm satisfies the recursion T (n) =
T (n − 3) + O(1), which gives T (n) = O(n). Since initialization
takes linear time, and our space requirements are obviously linear
in the size of P (we do not duplicate parts of TP for the recursive
calls, but rather set appropriately the boundary flags for some half-
edges), we arrive at the following theorem.

Theorem 3 Given the triangulation graph TP of a polygon P with



n ≥ 3 vertices, we can compute a diagonal 2-dominating set for
TP of size at most ⌊n+1

3
⌋ in O(n) time and space.

Edge guards Applying Lemma 1 for λ = 5 we can prove that
⌊ 2n+1

5
⌋ edge guards are sufficient in order to 2-dominate the tri-

angulation of an n-vertex piecewise-convex polygon. The proof is
similar to the proof of Theorem 2; however, exactly like the simple
(omitted) proof of Theorem 2, it makes use of edge contractions,
yielding an O(n2) time and O(n) space algorithm. A linear time
and space algorithm is feasible by relaxing the requirement on the
size of the edge 2-dominating set. More precisely, applying Lemma
1 for λ = 6, we have shown that we can 2-dominate the triangula-
tion graph of a piecewise-convex polygon with ⌊ 3n

7
⌋ edge guards.

Although this result is weaker, it does not use edge contractions.
We can, thus, devise a linear time and space algorithm for com-
puting an edge 2-dominating set of size at most ⌊ 3n

7
⌋, in exactly

the same manner as in the case of diagonal 2-dominance. The fol-
lowing theorem summarizes our results, including our worst-case
lower bound on the number of edge guards required to 2-dominate
the triangulation graph of a piecewise-convex polygon.

Theorem 4 ([Karavelas 2008]) Given the triangulation graph TP

of a polygon P with n ≥ 3 vertices, we can either compute: (1)
an edge 2-dominating set for TP of size at most ⌊ 2n+1

5
⌋ (except for

n = 4, where one additional edge is required) in O(n2) time and

O(n) space, or (2) an edge 2-dominating set for TP of size at most
⌊ 3n

7
⌋ (except for n = 4, where one additional edge is required) in

O(n) time and space. Finally, there exists a family of triangulation
graphs with n ≥ 5 vertices that require ⌊ 2n

5
⌋ edge guards in order

to be 2-dominated.

3 Piecewise-convex polygons

Let v1, . . . , vn, n ≥ 2, be a sequence of points and a1, . . . , an

a set of curvilinear arcs, such that ai has as endpoints the points
vi and vi+1. We will assume that the arcs ai and aj , i 6= j, do
not intersect, except when j = i − 1 or j = i + 1, in which
case they intersect only at the points vi and vi+1, respectively. We
define a curvilinear polygon P to be the closed region of the plane
delimited by the arcs ai. The points vi are called the vertices of P .
An arc ai is a convex arc if every line on the plane intersects ai at
at most two points or along a line segment. A polygon P is called
a locally convex polygon if P is locally convex except possibly at
its vertices (see Fig. 7(left)). A polygon P is called a piecewise-
convex polygon, if it is locally convex and its edges are convex arcs
(see Fig. 7(right)).

Let ai be an edge of a piecewise-convex polygon P with endpoints
vi and vi+1. We call the convex region ri delimited by ai and
vivi+1 a room, where xy denotes the line segment from x to y.
A room is called degenerate if the arc ai is a line segment. For
p, q ∈ ai, pq is called a chord of ai; the chord of ri is vivi+1.
An empty room is a non-degenerate room that does not contain any
vertex of P in the interior of ri or in the interior of vivi+1. A
non-empty room is a non-degenerate room that contains at least one

Figure 7: Left: A locally convex polygon. Right: A piecewise-
convex polygon.

Figure 8: Left: A piecewise-convex polygon P . Right: The tri-
angulation graph TP of P . The boundary edges of TP are shown
as thick solid lines. The crescents of P are shown in light gray,
whereas the stars of P are shown in dark gray.

vertex of P in the interior of ri or in the interior of vivi+1.

We say that a point p in the interior of a piecewise-convex polygon
P is visible from a point q if pq lies in the closure of P . We say that
P is monitored by a guard set G if every point in P is visible from
at least one point belonging to some guard in G. An edge (resp.,
mobile) guard is an edge (resp., edge or diagonal) of P belonging
to a guard set G of P . An edge (resp., mobile) guard set is a guard
set that consists of only edge (resp., mobile) guards.

Let P be a piecewise-convex polygon with n ≥ 3 vertices. Con-
sider a convex arc ai of P , with endpoints vi and vi+1, and let ri

be the corresponding room. If ri is a non-empty room, let Xi be
the set of vertices of P that lie in the interior of vivi+1, and let Ri

be the set of vertices of P in the interior of ri or in Xi. If Ri 6= Xi,
let Ci be the set of vertices in the convex hull of the vertex set
(Ri \ Xi) ∪ {vi, vi+1}; if Ri = Xi, let Ci = Xi ∪ {vi, vi+1}.
Finally, let C∗

i = Ci \ {vi, vi+1}. If ri is an empty room, let
Ci = {vi, vi+1} and C∗

i = ∅. Let TP be the sought-for triangu-
lation graph of P . The vertex set of TP is the set of vertices of
P . The edges and diagonals of TP , as well as their embedding, are
defined as follows (see also Fig. 8):

• If ai is a line segment or ri is an empty room, the edge
(vi, vi+1) is an edge in TP , and is embedded as vivi+1.

• If ri is a non-empty room, the following edges or diagonals
belong to TP :
1. (vi, vi+1),
2. (ci,j , ci,j+1), for 1 ≤ j ≤ Ki − 1, where Ki = |Ci|,

ci,1 ≡ vi and ci,Ki
≡ vi+1. The remaining ci,j’s are the

vertices of P in C∗

i as we encounter them when walking
inside ri and on the convex hull of the point set Ci from vi

to vi+1, and
3. (vi, ci,j), for 3 ≤ j ≤ Ki − 1, provided that Ki ≥ 4. We

call these diagonals weak diagonals.
The diagonals (ci,j , ci,j+1), 1 ≤ j ≤ Ki − 1 are embedded
as ci,j , ci,j+1, whereas the diagonals (vi, ci,j), 3 ≤ j ≤ Ki −
1, are embedded as curvilinear segments. Finally, the edges
(vi, vi+1) are embedded as curvilinear segments, namely, the
arcs ai.

The edges (vi, vi+1), along with the diagonals (ci,j , ci,j+1), 1 ≤
j ≤ Ki−1, partition P into subpolygons of two types: (1) subpoly-
gons that lie entirely inside a non-empty room, called crescents,
and (2) subpolygons delimited by edges of the polygon P , as well
as diagonals of the type (ci,j , ci,j+1), called stars. In general, a
piecewise-convex polygon may only have crescents, or only stars,
or both. The crescents are triangulated by means of the diagonals
(vi, ci,j), 3 ≤ j ≤ Ki − 1. To finish the definition of the trian-
gulation graph TP , we simply need to triangulate all stars inside
P . Since stars are straight-line polygons, any polygon triangulation
algorithm may be used to triangulate them.

In direct analogy to the types of subpolygons we can have inside P ,
we have two possible types of triangles in TP : (1) triangles inside
stars, called star triangles, and (2) triangles inside a crescent, called
crescent triangles. Crescent triangles have at least one edge that is



a weak diagonal, except when the number of vertices of P in the
interior of the corresponding room r is exactly one, in which case
none of the three edges of the unique crescent triangle in r is a weak
diagonal. A crescent triangle that has at least one weak diagonal
among its edges is called a weak triangle.

Mobile guards Let GTP
be a diagonal 2-dominating set of TP .

Based on GTP
we define a set G of edges or straight-line diagonals

of P as follows (see also Fig. 9): (1) add to G every non-weak
diagonal of GTP

, and (2) for every weak diagonal in GTP
, add

to G the edge of P delimiting the crescent that contains the weak
diagonal. Clearly, |G| ≤ |GTP

|.

Lemma 5 Let P be a piecewise-convex polygon with n ≥ 3 ver-
tices, TP its constrained triangulation graph, and GTP

a diagonal
2-dominating set of TP . The set G of mobile guards, defined by
mapping every non-weak diagonal of GTP

to itself, and every weak
diagonal d of GTP

to the corresponding convex arc of P delimiting
the crescent that contains d, is a mobile guard set for P .

Proof. Let q be a point in the interior of P . q is either inside: (1)
an empty room ri of P , (2) a star triangle ts of TP , (3) a non-weak
crescent triangle tnw of TP , or (4) a weak crescent triangle tw of
TP . In any of the four cases, q is visible from at least two vertices
u1 and u2 of TP that are connected via an edge or a diagonal in
TP . In the first case, q is visible from the two endpoints vi and
vi+1 of ai. In the second case, q is visible from all three vertices
of ts. The third case arises when q is inside a non-empty room rj

with |C∗

j | = 1 (tnw is the unique crescent triangle in rj ), in which
case q is visible from at least two of the three vertices vj , vj+1 and
cj,1. Finally, in the fourth case, q has to lie inside the crescent of a
non-empty room rj with |C∗

j | ≥ 2, and is visible from at least two
consecutive vertices cj,k and cj,k+1 of Cj .

Since G is a diagonal 2-dominating set for TP , and (u1, u2) ∈
TP , at least one of u1 and u2 belongs to GTP

. Without loss of
generality, let us assume that u1 ∈ GTP

. If u1 ∈ G, q is monitored
by u1. If u1 6∈ G, u1 has to be an endpoint of a weak diagonal
dw in GTP

. Let rℓ be the room, inside the crescent of which lies
dw. Since dw ∈ GTP

, we have that aℓ ∈ G. If q lies inside the
crescent of the room rℓ (this can only happen in case (4) above), q
is visible from aℓ, and thus monitored by aℓ. Otherwise, u1 cannot
be an endpoint of aℓ (aℓ ∈ G, whereas u1 6∈ G), which implies that
u1 ∈ C∗

ℓ , i.e., u1 ≡ cℓ,m, with 2 ≤ m ≤ Kℓ − 1. But then q lies
inside the cone with apex cℓ,m, delimited by the rays cℓ,mcℓ,m−1

and cℓ,mcℓ,m+1, and containing at least one of vℓ and vℓ+1 in its
interior. Since, q is visible from the intersection point of the line
qu1 with aℓ, q is monitored by aℓ. �

Our approach for computing the mobile guard set G of P con-
sists of three major steps: (1) Construct the constrained triangu-
lation TP of P ; (2) Compute a diagonal 2-dominating set GTP

for the triangulation graph TP ; (3) Map GTP
to G. The sets

C∗

i , needed in order to construct the constrained triangulation TP

of P can be computed in O(n log n) time and O(n) space (cf.
[Karavelas and Tsigaridas 2008]). Once we have the sets C∗

i , the
constrained triangulation TP of P can be constructed in linear time
and space. By Theorem 3, computing GTP

takes linear time; fur-

Figure 9: Left: a diagonal 2-dominating set for the triangulation
graph TP from Fig. 8. Right: the corresponding mobile guard set.

thermore |GTP
| ≤ ⌊n+1

3
⌋, which implies that |G| ≤ ⌊n+1

3
⌋. Fi-

nally, the construction of G from GTP
takes O(n) time and space:

for every diagonal d in GTP
we need to determine if it is a weak

diagonal, in which case we need to add the edge of P delimiting
the crescent in which d lies to G; by appropriate bookkeeping at
the time of construction of TP these operations can take O(1) per
diagonal. Summarizing, by Theorem 2, Lemma 5 and our analysis
above, we arrive at the following theorem. The case n = 2 can be
trivially established.

Theorem 6 Let P be a piecewise-convex polygon with n ≥ 2 ver-
tices. We can compute a mobile guard set for P of size at most
⌊n+1

3
⌋ in O(n log n) time and O(n) space.

Edge guards Let GTP
be and edge 2-dominating set of TP (see

Fig. 10). The set G of edge guards, defined by mapping every edge
in GTP

to the corresponding convex arc of P , is an edge guard set
for P (cf. [Karavelas 2008]).

By Theorem 4, we can either compute an edge 2-dominating set
GTP

of size ⌊ 2n+1

5
⌋ in O(n2) time and O(n) space, or an edge

2-dominating set GTP
of size ⌊ 3n

7
⌋ (except for n = 4 where one

additional edge is needed) in linear time and space. Since TP can be
computed in O(n log n) time and O(n) space, and |G| = |GTP

|,
we arrive at the following theorem. The case n = 2 is trivial, since
in this case any of the two edges of P is an edge guard set for P .

Theorem 7 Let P be a piecewise-convex polygon with n ≥ 2 ver-
tices. We can either: (1) compute an edge guard set for P of size

⌊ 2n+1

5
⌋ (except for n = 4, where one additional edge guard is re-

quired) in O(n2) time and O(n) space, or (2) compute an edge
guard set for P of size ⌊ 3n

7
⌋ (except for n = 2, 4, where one addi-

tional edge guard is required) in O(n log n) time and O(n) space.

Lower bound construction Consider the piecewise-convex
polygon P of Fig. 11. Each spike consists of three edges, namely,
two line segments and a convex arc. In order for points in the non-
empty room of the convex arc to be monitored, either one of the
three edges of the spike, or a diagonal at least one endpoint of which
is an endpoint of the convex arc, has to be in any guard set of P : the
chosen edge or diagonal in a spike cannot monitor the non-empty
room inside another spike of P . Since P consists of k spikes, yield-
ing n = 3k vertices, we need at least k edge or mobile guards to

Figure 10: Left: an edge 2-dominating set for the triangulation
graph TP from Fig. 8. Right: the corresponding edge guard set.

Figure 11: The lower bound construction: the polygon shown con-
tains n = 3k vertices, and requires k = ⌊n

3
⌋ edge or mobile guards

in order to be monitored.



monitor P . We, thus, conclude that P requires at least ⌊n
3
⌋ edge or

mobile guards in order to be monitored.

4 Discussion and open problems

As far as the problem of 2-dominance of triangulation graphs is
concerned, we have not yet found a way to compute an edge 2-
dominating set of size at most ⌊ 2n+1

5
⌋ in o(n2) time, whereas we

have shown that is it is possible to compute an edge 2-dominating
set of size at most ⌊ 3n

7
⌋ in linear time and space. It, thus, remains

an open problem how to compute an edge 2-dominating set of size
at most ⌊ 2n+1

5
⌋ in o(n2) time and linear space. Moreover, we con-

jecture that there exist triangulation graphs that require a minimum
of ⌊ 2n+1

5
⌋ edge guards; thus far we have found such triangulation

graphs for n = 7, 12, 17, 22.

Once a 2-dominating set D has been found for the constrained trian-
gulation graph of a piecewise-convex polygon P , we either prove
that D is also a guard set for P (this is the case for edge guards)
or we map D to a mobile guard set for P . In the case of edge
guards, the piecewise-convex polygon is actually monitored by the
endpoints of the edges in the guard set. In the case of mobile guards,
interior points of the edges may also be needed in order to monitor
the interior of the polygon. The latter observation should be con-
trasted against the corresponding results for the class of straight-
line polygons, where, for both edge and mobile guards, the poly-
gon is essentially monitored by the endpoints of these guards (cf.
[O’Rourke 1987]). Another important observation, due to the lower
bound in Theorem 4, is that the proof technique of this paper cannot
possibly yield better results for the edge guarding problem. If we
are to close the gap between the upper and lower bounds, a funda-
mentally different technique will have to used.

Thus far we have limited our attention to the class of piecewise-
convex polygons. It would be interesting to attain similar results for
locally concave polygons (i.e., curvilinear polygons that are locally
concave except possibly at the vertices), for piecewise-concave
polygons (i.e., locally concave polygons the edges of which are
convex arcs), or for curvilinear polygons with holes.
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