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Abstract

Given a set Σ of spheres in E
d, with d ≥ 3 and d odd, having a constant number of m distinct

radii ρ1, ρ2, . . . , ρm, we show that the worst-case combinatorial complexity of the convex hull of Σ

is Θ(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ), where ni is the number of spheres in Σ with radius ρi.

To prove the lower bound, we construct a set of Θ(n1+n2) spheres in E
d, with d ≥ 3 odd, where

ni spheres have radius ρi, i = 1, 2, and ρ2 6= ρ1, such that their convex hull has combinatorial

complexity Ω(n1n
⌊ d
2
⌋

2 +n2n
⌊ d
2
⌋

1 ). Our construction is then generalized to the case where the spheres
have m ≥ 3 distinct radii.

For the upper bound, we reduce the sphere convex hull problem to the problem of computing
the worst-case combinatorial complexity of the convex hull of a set of m disjoint d-dimensional
convex polytopes in E

d+1, where d ≥ 3 odd, a problem which is of independent interest. More
precisely, we show that the worst-case combinatorial complexity of the convex hull of a set of m

disjoint d-dimensional convex polytopes in E
d+1 is O(

∑
1≤i6=j≤m nin

⌊ d
2
⌋

j ), where ni is the number
of vertices of the i-th polytope. Using the lower bound construction for the sphere convex hull
problem, it is also shown to be tight for all odd d ≥ 3.

Finally, we discuss how to compute convex hulls of spheres with a constant number of distinct
radii, or convex hulls of a constant number of disjoint convex polytopes.
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1. Introduction and results

Let Σ be a set of n spheres in E
d, d ≥ 2, where the dimension d is considered constant. We

call Π a supporting hyperplane of Σ if it has non-empty intersection with Σ and Σ is contained in
one of the two closed halfspaces bounded by Π. We call H a supporting halfspace of the set Σ if it
contains all spheres in Σ and is bounded by a supporting hyperplane Π of Σ. The intersection of
all supporting halfspaces of Σ is called the convex hull CHd(Σ) of Σ. The definition of convex hulls
detailed above is applicable not only to spheres, but also to any finite set of compact geometric
objects in E

d. In the case of points, i.e., if we have a set P of n points in E
d, the worst-case

combinatorial complexity1 of CHd(P ) is known to be Θ(n⌊ d
2
⌋). Moreover, there exist worst-case

✩A short version of this paper has appeared in [1].
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1In the rest of the paper, and unless otherwise stated, we use the term “complexity” to refer to “combinatorial

complexity”.
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optimal algorithms for constructing CHd(P ) that run in O(n⌊ d
2
⌋ + n logn) time, e.g., see [2–6].

Since the complexity of CHd(P ) may vary from O(1) to Θ(n⌊ d
2
⌋), a lot of work has been devoted to

the design of output-sensitive algorithms for constructing CHd(P ), i.e., algorithms whose running
times depend on the size of the output convex hull CHd(P ), e.g., see [7–16]. For a nice overview
of the various algorithms for computing the convex hull of points sets, the interested reader may
refer to the paper by Erickson [17], while Avis, Bremner and Seidel [18] have a very nice discussion
about the effectiveness of output-sensitive convex hull algorithms for point sets.

Results about the convex hull of non-linear objects are very limited. Aurenhammer [19] showed

that the worst-case complexity of the power diagram of a set of n spheres in E
d, d ≥ 2, is O(n⌈ d

2
⌉).

A direct consequence of this result is that the worst-case complexity of a single additively weighted
Voronoi cell or the convex hull of a set of n spheres is O(n⌈ d

2
⌉). Rappaport [20] devised anO(n log n)

algorithm for computing the convex hull of a set of discs on the plane, which is worst-case optimal.
Boissonnat et al. [21] gave an O(n⌈ d

2
⌉+n logn) algorithm for computing the convex hull of a set of

n spheres in E
d, d ≥ 2, which is worst-case optimal in three and also in even dimensions, since they

also showed that the worst-case complexity of the convex hull of n spheres in E
3 is Θ(n2). Finally,

their results hold true for the case of homothetic convex objects. Boissonnat and Karavelas [22]
settled a conjecture in [21]: they proved that the worst-case complexity of the convex hull of a

set of n spheres in E
d, d ≥ 2, is Θ(n⌈ d

2
⌉), which also implied that the algorithm presented in [21]

is optimal for all d. As far as output-sensitive algorithms are concerned, Boissonnat, Cérézo and
Duquesne [23] showed how to construct the convex hull of a set of n three-dimensional spheres in
O(nf) time, where f is the size of the output convex hull, while Nielsen and Yvinec [24] discussed
optimal or almost optimal output-sensitive convex hull algorithms for planar convex objects.

In this paper we consider the problem of determining the complexity of the convex hull of a
set of spheres, when the spheres have a constant number of distinct radii. This problem has been
posed by Boissonnat and Karavelas [22], and it is meaningful for odd dimensions only: in even
dimensions the complexity of both the convex hull of n points and the convex hull of n spheres is
Θ(n⌊ d

2
⌋) = Θ(n⌈ d

2
⌉), i.e., the two bounds match.

Consider a set of n spheres Σ in E
d, where d ≥ 3 and d odd, such that the spheres in Σ have a

constant numberm of distinct radii ρ1, ρ2, . . . , ρm. Let ni be the number of spheres in Σ with radius

ρi. In this paper we prove that the worst-case complexity of CHd(Σ) is Θ(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ). Our
result refines the result in [22] for any odd dimension d ≥ 3. To better explain our bounds, both
qualitatively and quantitatively, we first introduce some terminology. We say that ρλ dominates
Σ if nλ = Θ(n). We further say that Σ is uniquely (resp., strongly) dominated, if, for some λ,
ρλ dominates Σ, and ni = o(n) (resp., ni = O(1)), for all i 6= λ. Using this terminology, we can
express our results as follows. Firstly, if Σ is strongly dominated, then, from the combinatorial
complexity point of view, CHd(Σ) behaves as if we had a set of points, or equivalently a set of

spheres with the same radius, since in this case the complexity of CHd(Σ) is Θ(n⌊ d
2
⌋). If, however,

Σ is dominated by at least two radii, the complexity of CHd(Σ) is Θ(n⌈ d
2
⌉), that is CHd(Σ)

behaves as in the generic case, where we impose no restriction on the number of distinct radii in
Σ. Finally, if Σ is uniquely dominated (but not strongly dominated), the complexity of CHd(Σ) is

o(n⌈ d
2
⌉) and ω(n⌊ d

2
⌋), i.e., it stands in-between the two extremes above: the complexity of CHd(Σ)

is asymptotically larger than the case of points (or when we have spheres with the same radius),
and asymptotically smaller than the generic case, where we impose no restriction on the number
of distinct radii in Σ.

To establish the lower bound for the complexity of CHd(Σ), we construct a set Σ of Θ(n1+n2)
spheres in E

d, for any odd d ≥ 3, where n1 spheres have radius ρ1 and n2 spheres have radius

ρ2 6= ρ1, such that worst-case complexity of CHd(Σ) is Ω(n1n
⌊ d
2
⌋

2 + n2n
⌊ d
2
⌋

1 ). This construction
is then generalized to sets of spheres having a constant number of m ≥ 3 distinct radii. More
precisely, we construct a set Σ of n =

∑m
i=1 ni spheres, where ni spheres have radius ρi, with the ρi’s

being pairwise distinct, such that the worst-case complexity of CHd(Σ) is Ω(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ).
To prove our upper bound we use a lifting map, introduced in [21], that lifts spheres σi = (ci, ri)

in E
d to points pi = (ci, ri) in E

d+1. The convex hull CHd(Σ) is then the intersection of the
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hyperplane {xd+1 = 0} with the Minkowski sum of the convex hull CHd+1(P ) and the hypercone
λ0, where P is the point set {p1, p2, . . . , pn} in E

d+1, and λ0 is the lower half hypercone with
arbitrary apex, vertical axis and angle at the apex equal to π

4 . When the spheres in Σ have a
constant numberm of distinct radii, the points of P lie onm hyperplanes parallel to the hyperplane
{xd+1 = 0}. In this setting, computing the complexity of CHd(Σ) amounts to computing the
complexity of the convex hull of m convex disjoint d-polytopes in E

d+1. This observation gives
rise to the second major result in this paper, which is of independent interest: given a set P =
{P1,P2, . . . ,Pm} of m disjoint convex d-polytopes in E

d+1, with d ≥ 3 and d odd, we show that

the worst-case complexity of the convex hull CHd+1(P) is Θ(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ), where ni is the
number of vertices of Pi. For our upper bound we make the boundary of CHd+1(P) simplicial by

considering its bottom-vertex triangulation. The resulting complex, denoted by ∂P̂, is a simplicial
combinatorial d-sphere, for which we show that the number of its (k − 1)-faces, fk−1(∂P̂), is

O(
∑

1≤i6=j≤m nin
min{k−1,⌊ d

2
⌋}

j +
∑m

i=1 n
min{k,⌊ d

2
⌋

i ), for all 0 ≤ k ≤ ⌊d+1
2 ⌋; for ⌊d+1

2 ⌋ < k ≤ d + 1

the upper bound for fk−1(∂P̂) follows directly from the Dehn-Sommerville equations for ∂P̂. On
the other hand, the lower bound for the complexity of P follows from the lower bound on the
complexity of the convex hull of spheres having m distinct radii. For d ≥ 3 and d odd, our bound
constitutes an improvement over the worst-case complexity of convex hulls of point sets, if a single
polytope of P has Θ(n) vertices, whereas all other polytopes have o(n) vertices (n is the total
number of vertices of all m polytopes), while it matches the worst-case complexity of convex hulls
of point sets if at least two polytopes have Θ(n) vertices.

The rest of our paper is structured as follows: In Section 2 we detail our proof of the upper
bound on the worst-case complexity of the convex hull of m disjoint d-polytopes in E

d+1, while in
Section 3 we discuss how to compute this convex hull. In Section 4 we prove our upper bound on
the worst-case complexity of the convex hull of a set of spheres. Next we present our lower bound
construction for any odd d ≥ 3 in two steps: first for sphere sets with two distinct radii and then
for sphere sets with m ≥ 3 distinct radii. We end the section by discussing how this lower bound
yields a tight lower bound for the problem of the Section 2. In Section 5 we explain how to modify
the algorithm by Boissonnat et al. [21] so as to almost optimally compute the convex hull of a
set of spheres with a constant number of distinct radii. Finally, in Section 6 we summarize our
results and state some open problems.

2. Convex hulls of disjoint convex polytopes

A convex polytope, or simply polytope, P in E
d is the convex hull of a finite set of points P

in E
d. A polytope P can equivalently be described as the intersection of all the closed halfspaces

containing P . A face of P is an intersection of P with hyperplanes for which the polytope is
contained in one of the two closed halfspaces determined by the hyperplane. The dimension of
a face of P is the dimension of its affine hull. A k-face of P is a k-dimensional face of P . We
consider the polytope a trivial face of itself; all the other faces are called proper faces. We will
use the term d-polytope to refer to a polytope the trivial face of which is d-dimensional. For a
d-polytope P , the 0-faces of P are its vertices, the (d − 2)-faces of P are called ridges, while the
(d − 1)-faces are called facets. For 0 ≤ k ≤ d, we denote by fk(P) the number of k-faces of P .
Note that every k-face F of P is also a k-polytope whose faces are all the faces of P contained in
F .

A polytope is called simplicial if all its proper faces are simplices, where a simplex in E
d is the

convex hull of any 0 ≤ k ≤ d+ 1 affinely independent points in E
d.

A polytopal complex C is a finite collection of polytopes in E
d such that (i) ∅ ∈ C, (ii) if P ∈ C

then all the faces of P are also in C and (iii) the intersection P ∩ Q for two polytopes in C is
a face of both P and Q. The dimension dim(C) of C is the largest dimension of a polytope in
C. A polytopal complex is called pure if all its maximal (with respect to inclusion) faces have
the same dimension. We will use the term d-complex to refer to a pure polytopal complex whose
maximal faces are d-dimensional. A polytopal complex is simplicial if all its faces are simplices.
One important class of polytopal complexes arise from polytopes. More precisely, a d-polytope P ,

3



together with all its faces and the empty set, form a polytopal d-complex, denoted by C(P). The
only maximal face of C(P) is the polytope P itself. Moreover, all proper faces of P form a pure
polytopal complex, called the boundary complex C(∂P). The maximal faces of C(∂P) are just the
facets of P , and its dimension is dim(P)− 1 = d− 1.

The f -vector (f−1(P), f0(P), . . . , fd−1(P)) of a d-polytope P is defined as the (d+1)-dimension-
al vector consisting of the number fk(P) of k-faces of P , −1 ≤ k ≤ d, where f−1(P) = 1 refers to
the empty set. The h-vector (h0(P), h1(P), . . . , hd(P)) of a d-polytope P is defined as the (d+1)-

dimensional vector, where hk(P) :=
∑k

i=0(−1)k−i
(
d−i
d−k

)
fi−1(P) for 0 ≤ k ≤ d. Thus the h-vector is

a linear transform of the f -vector. It turns out that this transform is invertible and the f vector can
be expressed as fi−1(P) =

∑k=d
k=0

(
d−k
i−k

)
hk(P) for 0 ≤ i ≤ d. For simplicial polytopes the elements

of the f -vector are not independent; they satisfy the so-called Dehn-Sommerville equations, which
can be written in a very concise form in terms of the h-vector of P : hk(P) = hd−k(P), 0 ≤ k ≤ d.
An important implication of the existence of the Dehn-Sommerville equations is that if we know
the face numbers fk(P) for all 0 ≤ k ≤ ⌊d

2⌋ − 1, we can determine the remaining face numbers

fk(P) for all ⌊d
2⌋ ≤ k ≤ d− 1.

A simplicial combinatorial d-sphere (resp., d-ball), or, simply, simplicial d-sphere (resp., d-
ball), is a simplicial complex that is homeomorphic to the d-dimensional sphere (resp., ball). The
boundary complex of a simplicial d-polytope is a simplicial (d− 1)-sphere; the converse is not true
in general: there are simplicial 4-spheres that are not polytopal (i.e., not realizable as boundary
complexes of polytopes. What is of interest for this paper, however, are two facts about simplicial
spheres (cf. [25, 26]):

(1) They satisfy the Dehn-Sommerville equations, i.e., for any simplicial (d − 1)-sphere S we
have hk(S) = hd−k(S), 0 ≤ k ≤ d.

(2) The Upper Bound Conjecture holds for simplicial spheres (thus becoming the Upper Bound
Theorem for simplicial spheres). More precisely, given an n-vertex simplicial (d− 1)-sphere

S, then for all −1 ≤ k ≤ d−1, we have fk(S) ≤ fk(Cd(n)) = O(nmin{k+1,⌊ d
2
⌋}), where Cd(n)

stands for the cyclic d-polytope with n vertices.

For a d-polytope Q its bottom-vertex triangulation Q̂ is a simplicial complex defined on the
vertex set of Q as follows (see [27]): If d ≤ 1 then Q̂ = Q. If d > 1 let v be the “lowest” vertex of
Q (assume that Q is oriented such that all vertices are at distinct “heights”); for each facet F of

Q that does not contain v consider each (d − 1)-simplex ∆ in its bottom-vertex triangulation F̂

and include the d-simplex spanned by ∆ and v (along with its faces) in Q̂. It is well known that

Q̂ forms a simplicial d-ball and its boundary complex ∂Q̂ constitutes a simplicial (d− 1)-sphere.
Let P = {P1,P2, . . . ,Pm} be a set of m disjoint d-polytopes in E

d+1, where m ≥ 2 and m
is constant. We denote by Pi the set of vertices of Pi, by ni the cardinality of Pi, and by P the
union P = P1 ∪ P2 ∪ . . . ∪ Pm. We are interested in the number of faces of the bottom-vertex
triangulation P̂i.

Lemma 1. For all k, with 0 ≤ k ≤ d+ 1, we have fk−1(P̂i) = O(n
min{k,⌊ d

2
⌋}

i ).

Proof. First note that since ∂P̂i is a simplicial (d − 1)-sphere with ni vertices the Upper Bound

Theorem implies that fk−1(∂P̂i) = O(n
min{k,⌊ d

2
⌋}

i ) for 0 ≤ k ≤ d.

For k ≤ 1 the claim of the lemma is trivial. For k > 1 each (k − 1)-face of P̂i is either in the

boundary complex ∂P̂i or not. The number of such boundary faces is

fk−1(∂P̂i) = O(n
min{k,⌊ d

2
⌋}

i ) .

Each non-boundary (k− 1)-face is spanned by the bottom-vertex v of Pi and a unique (k− 2)-face

in ∂P̂i. Thus the number of such non-boundary (k − 1)-faces is bounded by

fk−2(∂P̂i) = O(n
min{k−1,⌊ d

2
⌋}

i ) = O(n
min{k,⌊ d

2
⌋}

i ) ,

which completes the proof.
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Let P = CHd+1(P ), and let ∂P̂ be the simplicial d-complex formed by constructing the bottom-

vertex triangulation of ∂P . Clearly, for all 0 ≤ k ≤ d+ 1, fk−1(P) = fk−1(∂P) ≤ fk−1(∂P̂), so in

order to bound the number of faces of P , it suffices to bound the number of faces of ∂P̂.

Lemma 2. For all 0 ≤ k ≤ d+ 1, we have

fk−1(∂P̂) = O


 ∑

1≤i6=j≤m

nin
min{k−1,⌊ d

2
⌋}

j +
m∑

i=1

n
min{k,⌊ d

2
⌋}

i


 .

Proof. The bound trivially holds for k = 0. Below, we will only consider positive values for k.
Furthermore, we will assume, without loss of generality, that n1 ≥ n2 ≥ · · · ≥ nm.

Since ∂P̂ is a simplicial d-sphere, it suffices to bound the number of (k − 1)-faces of ∂P̂ for
all 0 ≤ k ≤ ⌊d+1

2 ⌋; for k with ⌊d+1
2 ⌋ < k ≤ d + 1, the bounds follow from the Dehn-Sommerville

equations for ∂P̂.
Let F be a (k−1)-face of ∂P̂ . Since ∂P̂ is simplicial, F is a (k−1)-simplex, i.e., it is defined by

k vertices in P . Moreover, F intersects each P̂i in a (ki−1)-face with ki vertices. This immediately
gives the following trivial combinatorial upper bound:

fk−1(∂P̂) ≤
∑

k1+k2+···+km=k

m∏

i=1

fki−1(P̂i). (1)

Let K = (k1, k2, . . . , km), |K| =
∑m

i=1 ki, and denote by dim(K) the number of non-zero
elements of K. Using this notation, relation (1) can be rewritten as:

fk−1(∂P̂) ≤
∑

(0,...,0)4K4(⌊ d+1

2
⌋,...,⌊ d+1

2
⌋)

|K|=k

m∏

i=1

fki−1(P̂i), (2)

where the notation A 4 B means that each coordinate of A is smaller or equal than the correspond-
ing coordinate of B. We consider each term in the right-hand side sum of (2) individually, and,
in particular, we distinguish between the case where K consists of a single positive element (i.e.,
dim(K) = 1), and the case where K consists of at least two positive elements (i.e., dim(K) ≥ 2).

dim(K) = 1. Let kj > 0, whereas ki = 0, for all i 6= j. Clearly, in this case, kj = k. Since

f−1(P̂i) = 1, 1 ≤ i ≤ m, and recalling that d is odd, we have:

m∏

i=1

fki−1(P̂i) = fkj−1(P̂j) = fk−1(P̂j) = O(n
min{k,⌊ d

2
⌋}

j ) = O(n
min{k,⌊ d

2
⌋}

1 ),

where the last two equalities above come from Lemma 1 and the fact that nj ≤ n1, for all
j ≥ 1.

dim(K) ≥ 2. Let kj1 , kj2 > 0, with j1 < j2. Clearly, j2 ≥ 2, which means that nj2 ≤ n2 ≤ n1.

In this case we have fki−1(P̂i) = O(nki

i ) = O(nki

1 ), for all i 6= j2. Moreover, fkj2
−1(P̂j2) =

O(n
kj2

j2
) = O(n

kj2
−1

j2
nj2) = O(n

kj2
−1

1 n2). Hence:

m∏

i=1

fki−1(P̂i) = fkj2
−1(P̂j2) ·

∏

i6=j2

fki−1(P̂i) = O(n
kj2

−1
1 n2) ·

∏

i6=j2

O(nki

1 )

= O(n
|K|−1
1 n2) = O(nk−1

1 n2) = O(n
min{k−1,⌊ d

2
⌋}

1 n2),

where we used the fact that |K| = k, and that k − 1 ≤ ⌊d+1
2 ⌋ − 1 = ⌊d

2⌋ (since d is odd).
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We can now split the right-hand side sum in (2) in two parts: the terms for which dim(K) = 1
and the terms for which dim(K) ≥ 2. Using the bounds derived above for each term in the sum,
and noting that since m is constant the number of terms in the right-hand side sum in (2) is also
constant, we deduce that

fk−1(∂P̂) = O(n
min{k−1,⌊ d

2
⌋}

1 n2) +O(n
min{k,⌊ d

2
⌋}

1 )

= O


 ∑

1≤i6=j≤m

nin
min{k−1,⌊ d

2
⌋}

j +

m∑

i=1

n
min{k,⌊ d

2
⌋}

i


 .

By Lemma 2, and the fact that the number of faces of ∂P is bounded from above by the
number of faces of ∂P̂, we deduce that the worst-case complexity of the convex hull CHd+1(P) is

O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ). As we will see in Subsection 4.4 (see Corollary 12), this bound is asymp-
totically tight for any odd d ≥ 3. Hence:

Theorem 3. Let P = {P1,P2, . . . ,Pm} be a set of a constant number of m ≥ 2 disjoint d-
polytopes in E

d+1, where d ≥ 3 and d is odd. The worst-case complexity of the convex hull

CHd+1(P) is Θ(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ), where ni = f0(Pi), 1 ≤ i ≤ m.

Remark 4. The proof of Lemma 2, and thus the upper bound in Theorem 3, still holds under
much weaker assumptions on the polytopes Pi. Their dimension can be at most d, instead of
exactly d, and they can even intersect arbitrarily, as long as the intersection of a face of P with a
face of some Pi is a face of both P and Pi (this is, for example, the case if the m polytopes in P

form a polytopal complex in E
d+1 of dimension at most d).

3. Computing the convex hull of disjoint convex polytopes

In view of Theorem 3, when we have two d-polytopes Pi and Pj, where d ≥ 3 and d odd,
such that ni = Θ(n) and nj = Θ(n), respectively, we cannot compute CHd+1(P) faster than the

worst-case optimal algorithm by Chazelle [6], which, in our setting, runs in O(n⌊ d+1

2
⌋) time. If this

is not the case, however, it might pay off to use an output-sensitive algorithm for constructing the
convex hull of the point set P formed by the vertices of the Pi’s. In Table 1 we summarize the
various convex hull algorithms that are applicable in our case, and we report on their asymptotic
complexity, both in the generic setting, as well as the case where we have a constant number m
of disjoint d-polytopes in E

d+1. In the first four rows of the table we focus on 3-polytopes in E
4.

In rows 5 to 7 of the table we consider both deterministic and randomized algorithms that can be
used for any d ≥ 3 odd, whereas in the last two rows of the table we have improved bounds for
d ≥ 5 odd, for the algorithms reported on the first two rows of the table.

Below we distinguish between 3-polytopes in E
4 and d-polytopes in E

d+1, where d ≥ 5 and
d odd. In the rest of the section f will denote the number of facets of the output convex hull

computed, whereas F will denote the quantity F =
∑

1≤i6=j≤m nin
⌊ d

2
⌋

j . Moreover, for simplicity of

notation, we will use α to denote the quantity ⌊d+1
2 ⌋; the case d = 3 is, thus, equivalent to α = 2,

whereas the case d ≥ 5 and d odd is equivalent to α ≥ 3. Finally, in our analysis below we will
assume, without loss of generality, that n1 ≥ n2 ≥ · · · ≥ nm; under this assumption, and given

that m is constant, we have that n1 = Θ(n), while for F we have: F = Θ(n2n
⌊ d
2
⌋

1 ) = Θ(n2n
⌊ d
2
⌋) =

Θ(n2n
α−1).

Three-dimensional polytopes in E
4. One of the earliest algorithms is Seidel’s shelling algorithm

[9] that runs in O(n2 + f logn) time. The preprocessing step of Seidel’s algorithm was later
on improved by Matoušek and Schwarzkopf [11], resulting in an O(n2−2/(α+1)+ǫ + f logn) time
algorithm, for any fixed ǫ > 0, which for α = 2 gives an O(n4/3+ǫ+f logn) time algorithm. Chan,
Snoeyink and Yap [16] describe a divide-and-conquer algorithm for constructing four-dimensional
convex hulls in O((n+ f) log2 f) time. Finally, Chan [15] improved the gift-wrapping algorithm of
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Algorithm/Reference α = ⌊d+1

2
⌋ Complexity type Time (general) Time (our case)

Seidel [9] 2 Worst-case O(n2 + f log n) O(n2 + F logn)

Matoušek and Schwarzkopf [11] 2 Worst-case O(n4/3+ǫ + f logn) O(n4/3+ǫ + F logn)

Chan, Snoeyink and Yap [16] 2 Worst-case O((n + f) log2 f) O(F log2 n)

Modified gift-wrapping (this
paper)

2 Worst-case N/A O(F logn) {⋆}

Chazelle [6] ≥ 2 Worst-case O(nα) O(nα)

Chan [15] ≥ 2 Worst-case
O(n log f +

(nf)α/(α+1) logO(1) n)
O((nF )α/(α+1) logO(1) n)

Clarkson and Shor [28] ≥ 2 Expected O(nα) O(F ) {⋆}

Seidel [9] ≥ 3 Worst-case O(n2 + f log n) O(F logn)

Matoušek and Schwarzkopf [11] ≥ 3 Worst-case O(n2−2/(α+1)+ǫ + f logn) O(F logn)

Table 1: The various algorithms that can be applied in our setting. The dimension d is always at least 3 and odd, and n always denotes the number of points for which
the convex hull is computed. The last two columns display the time complexities of the various algorithms considered in the generic case (no restrictions on the points’
configuration), and the case of disjoint convex polytopes (our case), respectively. The algorithms and complexities in the first three rows are specific to four dimensions (d = 3
or, equivalently, α = 2), the algorithms and complexities in the middle four rows are applicable for any d ≥ 3 odd (α ≥ 2), whereas the algorithms and complexities in the
lower two rows are valid for d ≥ 5 only (i.e., for α ≥ 3). For output-sensitive algorithms, f is the number of facets of the output convex hull, whereas in the last column F

denotes the quantity F =
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j =
∑

1≤i6=j≤m nin
α−1

j . Note that α ≥ 2, F = Ω(n⌊ d
2
⌋) = Ω(nα−1), and F = O(n⌊ d+1

2
⌋) = O(nα). The complexities marked as

{⋆} in the last column either refer to an algorithm presented in this paper or to an analysis performed in this paper.
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Chand and Kapur [7], yielding an O(n log f + (nf)1−1/(α+1) logO(1) n) time algorithm, which, for

α = 2 has time complexity O(n log f +(nf)2/3 logO(1) n) time. In the disjoint 3-polytopes setting,
we have f = O(F ) = O(n2n), which yields the complexities shown in rows 1–3 and 5–6 of the last
column in Table 1. In particular, for Chan’s algorithm [15], we have the following bound for its
time complexity:

O(n logF + (nF )1−1/(2+1) logO(1) n) = O(n log (n2n) + (n2n2)
2/3 logO(1) n)

= O(n log n+ n4/3n
2/3
2 logO(1) n)

= O(n4/3n
2/3
2 logO(1) n).

Among the output-sensitive algorithms discussed above, it is clear that the algorithm by Matoušek
and Schwarzkopf has better time complexity than by that Seidel. The algorithm by Chan, as well
as that by Chan, Snoeyink and Yap, can yield better asymptotic complexities than Matoušek
and Schwarzkopf’s algorithm for a certain range for the size of n2 (e.g., for n2 = O(1), Ma-
toušek and Schwarzkopf’s algorithm has complexity O(n4/3+ǫ), Chan’s algorithm has complexity

O(n4/3 logO(1) n), while the algorithm of Chan, Snoeyink and Yap has complexity O(n log2 n)).
However, it is always the case that the asymptotic complexity of Chan, Snoeyink and Yap’s algo-
rithm is better than that of Chan’s algorithm.

In what follows we describe a custom modification of Chand and Kapur’s gift-wrapping al-
gorithm that applies ideas similar to those in Chan’s optimal output-sensitive algorithm for 3-
dimensional convex hulls [14]. The algorithm has worst-case time complexity O(F logn), hence
outperforming all algorithms discussed above, except possibly the worst-case optimal algorithm
by Chazelle. Consider each point set Pi separately, and compute the polytope Pi, as well as its
Dobkin-Kirkpatrick hierarchy [29]. Then, perform the standard gift-wrapping algorithm on the
4-dimensional set P as follows. First compute an initial facet f0 of CH4(P ). Until all facets of
CH4(P ) have been computed, perform, as usual, the gift-wrapping steps of the algorithm: at
each gift-wrapping step, consider a facet f of CH4(P ) that has already been computed. Let tj ,
j = 1, 2, 3, 4, be the four triangles of f , and for each triangle tj determine a point q ∈ P such
that f ′ = CH3(tj ∪ {q}) has the maximum possible angle with f . The maximum-angle query is
done by considering each polytope Pi separately: for each Pi we determine the point qi such that
CH3(tj ∪{qi}) has the maximum possible angle with f . Then, among all qi’s, 1 ≤ i ≤ m, choose q
to be the point that produces a tetrahedron that maximizes the angle with f . Unless f ′ has already
been detected, add f ′ to the list of computed facets. Computing Pi takes O(ni logni) time, which
gives a total of O(n log n) for computing all m polytopes. The Dobkin-Kirkpatrick hierarchy can
be computed in linear time in the size of the polytope, i.e., all such hierarchies can be computed
in O(n) total time. At each gift-wrapping step we consider four triangles, while for each triangle
we consider each polytope Pi, 1 ≤ i ≤ m. For each such polytope we perform a maximum-angle
query, which can be done in O(log ni) time using the polytope’s Dobkin-Kirkpatrick hierarchy.
Since m is constant, the cost of computing all qi’s is

∑m
i=1 O(log ni) = O(log n), while determining

q among the qi’s takes O(m) = O(1) time. As a result, each gift-wrapping step of the algorithm
takes O(log n) time. To compute f0 we need three gift-wrapping steps, i.e., the starting facet for
the gift-wrapping algorithm can be computed in O(log n) time also. The number of gift-wrapping
steps is proportional to the number of facets of CH4(P ). Since this is in O(F ), we conclude that
the time complexity of the gift-wrapping algorithm described above is O(F logn).

d-dimensional polytopes in E
d+1, where d ≥ 5 odd. In dimension d ≥ 5 and d odd we have

F = Ω(n2). The complexity of the applicable worst-case algorithms, whether output-sensitive or
not, is shown in rows 5–6 and 8–9 of Table 1. Notice that for d ≥ 5 odd, or equivalently α ≥ 3, the
running time of Seidel’s [9] or Matoušek and Schwarzkopf’s [11] algorithm is O(F logn). Regarding

8



Chan’s output-sensitive algorithm [15], its time complexity becomes:

O(n logF + (nF )1−1/(α+1) logO(1) n) = O(n logF + (nF )α/(α+1) logO(1) n)

= O(n log n+ (n2n
α)α/(α+1) logO(1) n)

= O(n
α/(α+1)
2 nα2/(α+1) logO(1) n).

Since α ≥ 3 and n ≥ n2, we have n
α/(α+1)
2 nα2/(α+1) ≥ n2n

α−1, which implies that Chan’s
algorithm does not yield a better asymptotic complexity that the algorithm by Seidel or that
by Matoušek and Schwarzkopf. This remains true even if the improvement ideas of the previous
paragraph are applied.

Expected complexity. Another option is to apply Clarkson and Shor’s randomized incremental
algorithm for computing d-dimensional convex hulls [28] (refer also to row 7 of Table 1). The algo-
rithm in [28] runs in O(n) ·

∑n
r=1

Cr

r2 expected time, where Cr denotes the expected combinatorial
complexity of the convex hull of a random subset, of size r, of the input set of points.

Let Ni be a random variable indicating the number of points from Pi contained in a random
subset of P of size r. Clearly Ex[Ni] = (r/n)ni. It is now tempting to apply Theorem 3 to those
expectations to claim that

Cr = O


 ∑

1≤i6=j≤m

Ex[Ni]Ex[Nj]
α−1


 = O

(( r
n

)α
nin

α−1
j

)
.

Although the resulting upper bound is correct, the argument is fallacious since actually

Cr = O


Ex


 ∑

1≤i6=j≤m

NiN
α−1
j




 = O


 ∑

1≤i6=j≤m

Ex
[
Ni ·N

α−1
j

]

 ,

and in general Ex[NiN
α−1
j ] 6= O

(
Ex[Ni]Ex[Nj ]

α−1
)
. However, in the case at hand this asymptotic

bound actually holds.
To see this note that determining Ex[NiN

α−1
j ] is asymptotically the same as determining

Eij = Ex[
(
Ni

1

)(
Nj

β

)
], where β = α− 1. Let p(ri, rj) be the probability that a random r-subset of P

contains exactly ri points from Pi and rj points from Pj and the remaining r′ = r− ri − rj points
from the other Pk’s. We have

Eij = Ex

[(
Ni

1

)(
Nj

β

)]
=

∑

ri+rj+r′=r

ri,rj,r
′≥0

p(ri, rj)

(
ri
1

)(
rj
β

)
.

We have p(ri, rj) =
(
ni

ri

)(
nj

rj

)(
n′

r′

)
/
(
n
r

)
, where n′ = n− ni − nj and r′ = r − ri − rj . Thus we have

Eij =
∑

ri+rj+r′=r

ri,rj ,r
′≥0

(
ni

ri

)(
nj

rj

)(
n′

r′

)
(
n
r

)
(
ri
1

)(
rj
β

)
.

Applying the binomial identity
(
A
B

)(
B
C

)
=
(
A
C

)(
A−C
B−C

)
three times, namely

(
ni

ri

)(
ri
1

)
=
(
ni

1

)(
ni−1
ri−1

)
,(

nj

rj

)(rj
β

)
=
(nj

β

)(nj−β
rj−β

)
,
(
n
r

)(
r

β+1

)
=
(

n
β+1

)(
n−β−1
r−β−1

)
, this sum turns into

(
r

β+1

)
(

n
β+1

)
(
ni

1

)(
nj

β

) ∑

ri+rj+r′=r

ri,rj,r
′≥0

(
ni−1
ri−1

)(nj−β
rj−β

)(
n′

r′

)
(
n−β−1
r−β−1

) .
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The last sum evaluates to 1 since it essentially counts all ways of choosing subsets of size r−β− 1
from a set of size n− β− 1 that is partitioned into sets of size ni − 1, nj − β, and n′. Thus we get

Eij =

(
r

β+1

)
(

n
β+1

)
(
ni

1

)(
nj

β

)
= O

(( r
n

)α
nin

α−1
j

)
. (3)

From Theorem 3 we now get that the expected complexity of the convex hull of a random
subset of P of size r is

Cr = O


Ex


 ∑

1≤i6=j≤m

NiN
α−1
j




 = O


 ∑

1≤i6=j≤m

Ex[NiN
α−1
j ]


 ,

which by (3) is

O



( r
n

)α ∑

1≤i6=j≤m

nin
α−1
j


 = O

(( r
n

)α
F
)
.

The complexity of Clarkson and Shor’s algorithm thus becomes:

O

(
n ·

n∑

r=1

1

r2

( r
n

)α
F

)
= O

(
n1−αF ·

n∑

r=1

rα−2

)
= O(n1−αF · n(α−2)+1) = O(F ).

Summarizing our analysis above of the various possible algorithms, we arrive at the following
theorem.

Theorem 5. Let P = {P1,P2, . . . ,Pm} be a set of m disjoint d-polytopes in E
d+1, where d ≥ 3

and d odd. Let ni = f0(Pi), 1 ≤ i ≤ m, and n =
∑m

i=1 ni. We can compute the convex hull

CHd+1(P) in O(min{n⌊ d+1

2
⌋, (
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ) logn}) worst-case time, and O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j )
expected time.

4. Convex hulls of spheres with a constant number of distinct radii

In this section we derive tight upper and lower bounds on the worst-case complexity of the
convex hull of a set of spheres in E

d having a constant number m ≥ 2 of distinct radii.

4.1. Upper bounds

Let Σ be a set of n spheres σk = (ck, rk), 1 ≤ k ≤ n, in E
d, and let CHd(Σ) be the convex hull

of the spheres in Σ. We will assume that the spheres are in non-degenerate position in the sense no
d+2 of the vectors σk are affinely dependent unless they all agree in their last component (which
specifies the radius). It will become clear later that this non-degeneracy condition implies that
no hyperplane is tangent to more than d spheres from Σ. Algorithmically this non-degeneracy
condition can be enforced by symbolically perturbing the centers of the spheres.

A facet of circularity ℓ of CHd(Σ), 0 ≤ ℓ ≤ d − 1, is a maximal connected portion of the
boundary of CHd(Σ) consisting of points where the supporting hyperplanes are tangent to a given
set of (d− ℓ) spheres of Σ. In the special case where all spheres have the same radius, CHd(Σ) is
combinatorially equivalent to the convex hull CHd(C) of the set C of centers of the spheres in Σ,
in the sense that each facet of circularity ℓ of CHd(Σ) corresponds to a unique (d− ℓ− 1)-face of
CHd(C), for 0 ≤ ℓ ≤ d− 1.

We consider here the case where the radii rk can take m distinct values, i.e., rk ∈ {ρ1, ρ2, . . . ,
ρm}. Without loss of generality we may assume that 0 < ρ1 < ρ2 < . . . < ρm. We identify E

d

with the hyperplane H0 = {xd+1 = 0} of Ed+1 and we call the (d + 1)-axis of Ed+1 the vertical
axis, while the expression above will refer to the (d + 1)-coordinate. Let Πi, 1 ≤ i ≤ m, be the
hyperplane {xd+1 = ρi} in E

d+1, and let P be the point set in E
d+1 obtained by mapping each

sphere σk to the point pk = (ck, rk) ∈ E
d+1. Let Pi denote the subset of P containing points that
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belong to the hyperplane Πi, and let ni be the cardinality of Pi. We denote by P the convex hull
of the points in P (i.e., P = CHd+1(P )). We further denote by Pi the convex hull of the points
in Pi (i.e., Pi = CHd(Pi)); more precisely, we identify Πi with E

d, and then define Pi to be the
convex hull of the points in Pi, seen as points in E

d. We use P to denote the set of the Pi’s. Note
that by our non-degeneracy assumption all facets of the (d + 1)-polytope P are simplices except
possibly the “top” and “bottom” facets which correspond to P1 and Pm.

Let λ0 be the half lower hypercone in E
d+1 with arbitrary apex, vertical axis, and angle between

axis and directrices equal to π
4 . By λ(p) we denote the translated copy of λ0 with apex at p; observe

that the intersection of the hypercone λ(pk) with the hyperplane H0 is identical to the sphere σk.
Let Λ be the set of the lower half hypercones {λ(p1), λ(p2), . . . , λ(pn)} in E

d+1 associated with the
spheres of Σ. The intersection of the convex hull CHd+1(Λ) with H0 is equal to CHd(Σ).

Let us call a hyperplane H tilted iff its normal is at angle π/4 with the vertical axis. Note that
H is tilted iff it is tangent to a translate λ of λ0 along a generatrix of λ. Let O′ be a point in the
interior of P . We then have the following:

Theorem 6 ([21, Theorem 1]). Any hyperplane of Ed supporting CHd(Σ) is the intersection with
H0 of a unique hyperplane H of Ed+1 satisfying the following three properties:

1. H supports P,
2. H is tilted,
3. H is above O′.

Conversely, let H be a hyperplane of Ed+1 satisfying the above three properties. Its intersection
with H0 is a hyperplane of Ed supporting CHd(Σ).

Boissonnat et al. [21] then use polarity to obtain the dual polar of P . Given a hyperplane
H ∈ E

d+1, we denote by H⋆ its dual point, and given a point p ∈ E
d+1, we denote by p⋆ its dual

hyperplane and by p⋆− the halfspace bounded by p⋆ containing O′. Then, according to [21], the
following proposition holds:

Proposition 7 ([21, Proposition]).

1. The polytope P⋆ = p1
⋆− ∩ p2

⋆− ∩ · · · pn
⋆− of Ed+1 is dual to the polytope P, i.e., there is

a bijection between the ℓ-faces of P and the (d − ℓ)-faces of P⋆ which reverses the relation
of inclusion. Each hyperplane supporting P along an ℓ-face F has its polar point on the
corresponding (d− ℓ)-face F ⋆ of P⋆.

2. The polar set of the tilted hyperplanes is a hypercone K with apex at O′, a vertical axis, and
an angle between axis and directrices equal to π/4.

3. The polar set of the hyperplanes above O′ is the half space x′
d+1 > 0.

A consequence of the above proposition is the following (again, following the arguments in
[21]): the polar set of the hyperplanes that

1. support the convex hull of the points in P ,
2. are tilted, and
3. are above O′

is the set S = P+ ∩K ∩ {x′
d+1 > 0}, where P+ is the boundary of P⋆. In other words, the points

in S correspond one-to-one with the hyperplanes that support the set of spheres Σ. In particular,
if F is a face of P⋆ defined the duals of points pi1 , . . . , piℓ and x ∈ F ∩K ∩ {x′

d+1 > 0}, then x
corresponds to a hyperplane that supports Σ in spheres σi1 , . . . , σiℓ , and connected components
of such x’s correspond to faces of the convex hull of Σ.

Note that F ∩K can have many connected components (e.g. think of intersecting a polygon
and a circular or parabolic curve). However, the intersection of a simplex and cone K can consist
of only a constant number of components. Thus if P+ is triangulated into N simplices, then the
number of connected components in S can be at most O(N), and hence the number of faces of
the convex hull CHd(Σ) is O(N). In the following we show that N is sufficiently small if we use
the bottom-vertex triangulation of P⋆.
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Lemma 8. The bottom-vertex triangulation of P⋆ contains at most N = O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j )
simplices.

Proof. For a polytope (or polytopal complex) Q let us denote with f(Q) the total number of all its
faces (of all dimensions). For a simple polytope Q it is easy to show that the number of simplices
in the bottom-vertex triangulation is O(f(Q)). However this fails to be the case for non-simple
polytopes, and note that P⋆ need not be simple, since P need not be simplicial: the “top” and
“bottom” facets corresponding to P1 and Pm need not be simplices.

For a polytope Q let
˚̂
Q denote its barycentric subdivision, which is a triangulation of Q that is

defined as follows: if Q has dimension 0, i.e. it is a point, then
˚̂
Q = Q. If d > 0 pick a point c in the

relative interior of Q, and for each facet G of Q and each simplex ∆ in its barycentric subdivision
˚̂
G, include the simplex spanned by ∆ and c in

˚̂
Q. It is well known that for a d-polytope Q the

d-simplices in
˚̂
Q correspond one-to-one with increasing maximal chains in the face lattice of Q.

Since the face lattice of Q and its dual Q⋆ are the same except for inclusion reversion it follows

that
˚̂
Q and

˚̂
Q⋆ have the same number of d-faces and actually f(

˚̂
Q) = f(

˚̂
Q⋆) holds.

Let Q̂ be a bottom-vertex triangulation of Q. From the definitions it is clear that we have

f(Q̂) ≤ f(
˚̂
Q). For our lemma we therefore get

f(P̂⋆) ≤ f(
˚̂
P⋆) = f(

˚̂
P) ,

and it remains to bound f(
˚̂
P).

For this purpose note first – taking d as constant – that for a d-simplex S we have f(
˚̂
S) = O(1).

Next note that for any polytope Q we have f(
˚̂
Q) ≤ 2 ·

∑
G facet of Q f(

˚̂
G). This implies that

for a simplicial polytope Q we have f(
˚̂
Q) = O(f (Q)), and this also implies that in our case

at hand f(
˚̂
P) = O(f (P)), since at most 2 facets of P are not simplices, while their boundary

complexes are simplicial by our non-degeneracy assumption. But by Theorem 3 we have f(P) =

O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ).

Summarizing we can state:

Theorem 9. Let a set Σ of spheres in E
d, consisting of ni spheres of radius ρi, 1 ≤ i ≤ m, with

m ≥ 2 constant. The worst-case complexity of the convex hull CHd(Σ) is O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ).

4.2. Balanced polytopes

In this subsection we describe a family of even-dimensional polytopes, called balanced polytopes,
that play a crucial role in our lower bound construction for the sphere convex hull problem (see
next subsection). A balanced polytope P in E

d, d = 2δ, with n vertices, has the following property:
there exists a subset B of the facets of P , such that:

1. the facets in B are simplicial,

2. the cardinality of B is Θ(nδ) = Θ(n⌊ d
2
⌋), and

3. there exists a (d− 1)-sphere Σ, such that for every facet F in B, Σ intersects the interior of
F , but none of the ridges of P that belong to the boundary of F .

We will call a facet in B a balanced facet of P , while B will be called, naturally, the set of balanced
facets of P . As we will see in the next subsection, our lower bound construction is based the
existence of the set of balanced facets, and we will exploit their properties.

For any even dimension d = 2δ, consider δ unit circles C1, . . . , Cδ, with their centers at the
origin and Cj lying in the plane spanned by the x2j−1 − x2j axes. We are going to place points
on each Cj as follows. Let ν = ⌊n

δ ⌋, and ν′ = n − νδ = n (mod δ). For each j, 1 ≤ j ≤ δ − 1,
we place ν points on Cj so that they form a regular ν-gon. On Cδ, we place ν + ν′ points, where
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the first ν points are placed so that they create a regular ν-gon, while the remaining ν′ points are
placed arbitrarily on Cδ between the ν-th and the first point of Cδ. More precisely, for each Cj ,
1 ≤ j ≤ δ, the k-th vertex, 0 ≤ k ≤ ν − 1, is (cos(tk), sin(tk)), tk = 2kπ

ν , embedded in the x2j−1

and x2j axes.
Let P be the convex hull of all the vertices of all circles Cj , 1 ≤ j ≤ δ, and notice that the

vertices of P lie on the unit sphere S
d−1 centered at the origin of Ed. Call B the set of vertex

subsets of P created by taking two points from each Cj , 1 ≤ j ≤ δ, where the indices of these
two points are consecutive and at most ν (in other words we consider the first ν − 1 edges per
Cj). It is easy to verify that each vertex subset in B defines a simplicial facet for P . Hence, we
can identify the vertex subsets in B with the associated facets of P . Moreover, the number of the
vertex subsets (or facets) in B is (ν − 1)δ, which means that B contains Θ(nδ) facets. We will
show below that the facets in B are balanced facets.

Let F be a facet of P in B, and recall that each pair of points in F coming from the same circle
Cj have parameter values tk and tk+1, for some k, where tk = 2kπ

ν . Call θ the difference between
tk+1 and tk, i.e., θ = tk+1 − tk = 2π

ν . We may assume, without loss of generality, that the j-th
pair of points of F come from the circle Cj and that the corresponding parameter values are tj,1
and tj,2, where tj,2 − tj,1 = θ. Call b the barycenter of F , i.e.,

b =
1

d




δ∑

j=1

(cos tj,1 + cos tj,2)e2j−1 +

δ∑

j=1

(sin tj,1 + sin tj,2)e2j


 .

It is now fairly easy to verify that for any vertex v of F , we have ‖b − v‖22 = 1 − 1
d (1 + cos θ).

Moreover, ‖b‖22 = 1
d(1 + cos θ). Hence, b is equidistant from each vertex of F , which implies that

b is the circumcenter of the unique, since F is a (d− 1)-simplex, circumscribing (d− 1)-sphere of
the vertex set of F . Moreover, b is forcibly the point of F closest to the origin. To see this, first
note that b is by construction (as the barycenter) an interior point of F (the important point here
is that b is a point in the closure F and not in the complement of the closure of F with respect
to its affine hull). Second, observe that b is also the point of the supporting hyperplane HF of F
closest to the origin: recall that the points in F lie on the unit sphere S

d−1 in E
d, and hence also

on the intersection S of HF with S
d−1; the center of S, which is b, is by construction the point

closest to the origin.
Summarizing the analysis above, we deduce that the distance of F from the origin is ( 1d(1 +

cos θ))1/2, and this distance is realized with a point in the interior of F . Furthermore, notice that
the distance of F from the origin is, in fact, independent from the choice of F in B. In other
words, the (d− 1)-sphere Σ centered at the origin with radius ( 1d (1+cos θ))1/2 touches every facet
F ∈ B at an interior point of F and lies in the same halfspace, with respect to the supporting
hyperplane HF of F , as P . Consider, now, a sphere Σ′, centered also at the origin, with radius
( 1d (1 + cos θ))1/2 + ε′, where ε′ > 0. If we choose ε′ small enough, Σ′ intersects the interior of
every facet F in B, but none of the ridges on the boundary of F . In other words, every F in B
is a balanced facet of P , and B is the set of balanced facets of P satisfying the three properties
mentioned at the beginning of this subsection.

4.3. Lower bound construction with two distinct radii

We will now exploit the construction of balanced polytopes of the previous subsection, in order
to construct a set Σ of Θ(n1 + n2) spheres in E

d, with d ≥ 3 and d odd, where ni spheres have

radius ρi, i = 1, 2, and such that the complexity of CHd(Σ) is Ω(n1n
⌊ d
2
⌋

2 + n2n
⌊ d
2
⌋

1 ).
In what follows we assume that the ambient space is E

d, where d ≥ 3 is odd, and let δ =
⌊d−1

2 ⌋ = ⌊d
2⌋. Let H1 and H2 be the hyperplanes {xd = z1} and {xd = z2}, where z1, z2 ∈ R, and

z2 > z1+2(n2+1); the quantity n2 will be defined below. Consider a set Σi, i = 1, 2, of n1 points,
treated as spheres of Ed of zero radius, on the (d− 2)-dimensional unit sphere S

d−2 embedded in
Hi and centered at the origin of Hi (please refer to Fig. 1(left), as well as Fig. 2 for the view of
the construction from the positive xd-axis). In other words, the points of Σi lie on the (d − 2)-
dimensional unit sphere of Ed, centered at (0, 0, . . . , 0, zi). The n1 points in Σi are chosen as in
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Subsection 4.2, and call Qi their convex hull. By construction, Qi is a balanced (d− 1)-polytope,
and call Bi the set of balanced facets of Qi. Recall that Bi has cardinality (⌊n1

δ ⌋ − 1)δ, and that

each vertex subset in Qi corresponds to a simplicial facet of Qi, thus yielding Θ(nδ
1) = Θ(n

⌊ d
2
⌋

1 )
facets for Qi. Finally, observe that Q2 is a translated copy of Q1 along the xd-axis and vice versa.

The convex hull of the 2n1 points of Σ1 ∪ Σ2 is a prism ∆. The prism ∆ consists of Θ(n
⌊ d
2
⌋

1 )
facets not lying on H1 or H2, called the vertical facets, the (d− 1)-face of CHd−1(Σ1), called the
bottom facet, and the (d− 1)-face of CHd−1(Σ2), called the top facet. For each vertical facet F of
∆, we denote by ~νF the unit normal vector of F pointing outside ∆, and by F+ (resp., F−) the
positive (resp., negative) open halfspace delimited by the supporting hyperplane of F . Regarding
the ridges of ∆, those that are intersections of vertical facets of ∆ will be referred to as vertical
ridges. Notice that the vertical ridges of ∆ are perpendicular to H1 and H2. For each ridge of
∆ in B1, there is a unique corresponding ridge in B2 (they are translated copies of each other),
and together they form a vertical facet for ∆. We are going to denote by B∆ the set of vertical
facets of ∆ with ridges in B1 and B2, and we are going to call the vertical facets of ∆ in B∆ the

balanced vertical facets of ∆. Since B1 and B2 have cardinality Θ(n
⌊ d
2
⌋

1 ), the same bound holds for
the cardinality of B∆.

Let Y be the oriented hyperplane {x1 = 0} with unit normal vector ~ν = (1, 0, . . . , 0). Let
also Y + be the closed positive halfspace of Ed delimited by Y . Y contains the xd-axis, and is
perpendicular to the hyperplanes H1 and H2. Recall that the points of Σi have been chosen to
lie on unit circles Cj , lying on the plane spanned by the x2j−1 − x2j axes, 1 ≤ j ≤ δ. Due to
the way that the point set Σi has been constructed, at least ⌊ 1

2⌊
n1

δ ⌋⌋ of the points in C1 are

contained in Y +. This further implies that at least (⌊ 1
2⌊

n1

δ ⌋⌋ − 1) · (⌊n1

δ ⌋ − 1)δ−1 balanced facets

of Qi are contained in Y +. We thus conclude that the number of balanced facets of Qi in Y + is

Θ(nδ
1) = Θ(n

⌊ d
2
⌋

1 ); the same bound clearly holds for the number of balanced vertical facets of ∆
in Y −.

Define now a set Σ3 = {σ0, σ1, . . . , σn2+1} of n2 + 2 spheres in E
d, where σk = (ck, ρ), and

ck = (0, . . . , 0, 2k + 1), 0 ≤ k ≤ n2 + 1. In other words, the sphere σk is centered on the xd-axis,
with the d-th coordinate of its center ck being (2k+1), while its radius is ρ. The radius ρ of σk is
chosen so that its projection on H1 or H2 defines a (d− 2)-ball that intersects the balanced facets
of Q1 or Q2, respectively, but none of the ridges incident to these balanced facets. Following the
analysis in Subsection 4.2, such a choice for ρ is indeed possible: set ρ = ( 1

d−1(1 + cos θ))1/2 + ε′,

where θ = 2π
n1

, and ε′ > 0 is chosen small enough. As a result of this choice for ρ, each sphere σk

satisfies the following two properties:

(1) it does not intersect any of the ridges incident to the balanced vertical facets of ∆, and

(2) it intersects the interior of all balanced vertical facets of ∆.

Notice also that none of the spheres in Σ3 intersects the hyperplanes H1 and H2 (recall that
z2 > z1+2(n2+2)), while the spheres in Σ3 are pairwise disjoint; these two observations, however,
are not critical for our construction.

We are now going to perturb the centers of the spheres in Σ3 to get a new set of spheres Σ′
3

(see Fig. 1(right), as well as Fig. 3 for the view of the construction from the positive xd-axis).

Define σ′
k to be the sphere with radius ρ and center c′k = ck+(

∑k
ℓ=0

ε
2ℓ
)~ν = ck+ε(2− 1

2k
)~ν, where

0 < ε ≪ 1. The quantity ε is chosen so that the spheres in Σ′
3 satisfy almost the same conditions

as the spheres in Σ3. In particular, we require that condition (1) is still satisfied, while we relax
the requirement on condition (2): we now require that σ′

k intersects the interior of all balanced

vertical facets of ∆ that are contained in Y +. In addition to the two conditions above, we also
require that for each k, 0 ≤ k ≤ n2 +1, the (d− 2)-dimensional sphere σk ∩ σ′

k is contained in F−

for all balanced vertical facets F of ∆ that are contained in Y +.
We will now show that for each pair (σ′

k, F ), where 1 ≤ k ≤ n2 and F is a balanced vertical

facet of ∆ in Y +, the spherical cap F+ ∩ σ′
k induces a facet of circularity (d − 1) in CHd(Σ).

Let F1 and F2 be the ridges of ∆ on the boundary of F contained in the top and bottom facet,
respectively. Finally, let Sk be the supporting hyperplane of σk parallel to F ; we consider Sk
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Y Y

x1 x1

xd xd

~ν ~ν

~νF ~νF

F F

Figure 1: The lower bound construction in the case of two radii. The points in Σ1 (resp., Σ2) are shown in black
(resp., white). The hyperplane Y is shown in green, while the prism ∆ is shown in black. The facet F in blue is
one of the vertical facets of ∆ in Y +. The sphere sets Σ3 (left) and Σ′

3
(right) are shown in red. The red spherical

caps on the left correspond to a unique supporting hyperplane of CHd(Σ1 ∪ Σ2 ∪ Σ3). The red spherical caps on
the right correspond to facets of CHd(Σ1 ∪ Σ2 ∪ Σ′

3
) of circularity (d− 1).
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Y

x1

~ν

~νF

F

Figure 2: View from the positive xd-axis of the construction in Fig. 1(left). The silhouettes of all spheres in Σ3

coincide.
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Y

x1

~ν

~νF

F

Figure 3: View from the positive xd-axis of the construction in Fig. 1(right).

17



to be oriented as F (i.e., the unit normal vector of Sk is ~νF ), and thus σk lies in the closure of
the negative halfspace delimited by Sk. Notice that Sk is also a supporting hyperplane for Σ3.
Let S′

k be the hyperplane we get by translating Sk by the vector ε(2 − 1
2k
)~ν. S′

k supports σ′
k,

but fails to be a supporting hyperplane for Σ′
3. More precisely, S′

k intersects all spheres σ′
j with

j > k, whereas all spheres σ′
j with j < k, are contained in the negative open halfspace delimited

by S′
k. We can, however, perturb S′

k so that it supports Σ′
3: simply slide S′

k on sphere σ′
k towards

F1, while maintaining the property that it remains parallel to F1 and F2. We keep sliding S′
k

until it has empty intersection with any sphere σ′
j with j > k. Notice that due to the way we

have perturbed the centers of the spheres in Σ3 to get Σ′
3, the new hyperplane S′′

k we get via this
transformation is a supporting hyperplane for Σ′

3. In fact, S′′
k is a supporting hyperplane for the

sphere set Σ = Σ1 ∪ Σ2 ∪ Σ′
3 (it touches CHd(Σ) at σ

′
k only), which implies that S′′

k corresponds
to a unique facet of circularity (d− 1) on CHd(Σ).

The same construction can be done for all k with 1 ≤ k ≤ n2, and for all balanced vertical

facets of ∆ in Y +. Since we have Θ(n
⌊ d
2
⌋

1 ) balanced vertical facets of ∆ in Y +, we can construct n2 ·

Θ(n
⌊ d
2
⌋

1 ) distinct supporting hyperplanes of CHd(Σ), corresponding to distinct facets of circularity

(d − 1) on CHd(Σ). Hence the complexity of CHd(Σ) is Ω(n2n
⌊ d

2
⌋

1 ). Without loss of generality,

we may assume that n2 ≤ n1, in which case we have n2n
⌊ d
2
⌋

1 ≥ 1
2 (n2n

⌊ d
2
⌋

1 + n1n
⌊ d
2
⌋

2 ). Hence, we
arrive at the following:

Theorem 10. Fix some odd d ≥ 3. There exists a set Σ of spheres in E
d, consisting of ni

spheres of radius ρi, i = 1, 2, with ρ1 6= ρ2, such that the complexity of the convex hull CHd(Σ) is

Ω(n1n
⌊ d

2
⌋

2 + n2n
⌊ d

2
⌋

1 ).

4.4. Lower bound construction with m distinct radii

We can easily generalize the lower bound construction of the previous subsection in the case
where we have ni spheres of radius ρi, 1 ≤ i ≤ m, m ≥ 3, and the radii ρi are considered to be
mutually distinct.

As in the previous subsection, the ambient space is Ed, where d ≥ 3 is odd. Let N1 =
∑m

i=2 ni

and N2 = n1. We construct the set Σ = Σ1 ∪Σ2 ∪Σ′
3 as in the previous subsection where Σ1 and

Σ2 contain each N1 points and Σ′
3 contains N2 + 2 spheres of some appropriate radius ρ (recall

that in the construction of the previous subsection ρ ≈ ( 1
d−1(1 + cos θ))1/2 ≥ 1√

d−1
). We then

replace ni among the N1 points of Σ1 (resp., Σ2) by spheres with the same center and radius equal
to ri, where 0 < r ≪ 1√

d−1
and 2 ≤ i ≤ m. We choose r small enough so that the following two

conditions hold:

(1) the prism ∆r = CHd(Σ1 ∪ Σ2) is combinatorially equivalent2 to the prism ∆0 (this is the
prism we get for r = 0, which is the prism ∆ of the previous subsection), and

(2) the two requirements for the spheres in Σ′
3 are still satisfied: each σ′

k does not intersect any
of the ridges3 of the balanced vertical facets of ∆r, while each σ′

k intersects the interior of

all balanced vertical facets of ∆r in Y +.

As described in the previous subsection, the convex hull CHd(Σ) of the set Σ = Σ1 ∪ Σ2 ∪ Σ′
3 of

2N1 + N2 + 2 spheres has N2 · Θ(N
⌊ d
2
⌋

1 ) facets of circularity (d − 1), and hence its complexity is

Ω(N2N
⌊ d
2
⌋

1 ) = Ω(n1(
∑m

i=2 ni)
⌊ d

2
⌋). Without loss of generality we may assume that n2 ≥ n1 ≥ ni

for all 3 ≤ i ≤ m, in which case we have: n1(
∑m

i=2 ni)
⌊ d

2
⌋ ≥ n1n

⌊ d
2
⌋

2 ≥ 1
m(m−1) (

∑
1≤i6=j≤m nin

⌊ d
2
⌋

j ).

Since m is constant, we conclude that the complexity of CHd(Σ) is Ω(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ).

2Combinatorial equivalence here means that each facet of circularity ℓ of ∆r corresponds to a unique (d− ℓ−1)-
face of ∆0.

3Since ∆r is no longer a polytope, ∆r does not have any ridges (resp., vertical facets), but rather facets of
circularity d− 2 (resp., d− 1) that are associated with ridges (resp., vertical facets) of ∆0. On the other hand, due
to the combinatorial equivalence of ∆r and ∆0 the term “ridges” (resp., “vertical facets”) can be safely used here.
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Theorem 11. Fix some odd d ≥ 3. There exists a set Σ of spheres in E
d, consisting of ni spheres

of radius ρi, 1 ≤ i ≤ m, with m ≥ 3 constant, such that the complexity of the convex hull CHd(Σ)

is Ω(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ).

This theorem immediately also implies a lower bound on the worst case complexity of the
convex hull of disjoint d-polytopes in E

d+1. We have shown above that the total number Z of

faces of CHd(Σ) is Ω(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ), where d ≥ 3 odd and m ≥ 2. When proving Theorem 9
we showed that Z = O(X), where X is the number of faces of the convex hull of m disjoint
d-polytopes in E

d+1. But Z = O(X) is equivalent to X = Ω(Z). Thus the construction above,
which yields a large number of faces for the convex hull of spheres, also yields a large number of
faces for the corresponding convex hull of disjoint d-polytopes. This establishes our lower bound
claim in Theorem 3:

Corollary 12. Let P = {P1,P2, . . . ,Pm} be a set of m ≥ 2 disjoint d-polytopes in E
d+1, with

d ≥ 3, d odd, where both d and m are constant. The worst-case complexity of CHd+1(P) is

Ω(
∑

1≤i6=j≤m nin
⌊ d

2
⌋

j ), where ni = f0(Pi), 1 ≤ i ≤ m.

5. Computing convex hulls of spheres

In this section we focus our attention on the computation of the convex hull CHd(Σ) of Σ. We
use the same notation as in Section 4.1. Given a set Σ of n spheres in E

d, we saw in Section 4.1 that
the faces of CHd(Σ) can be gleaned from the intersection of the boundary of a (d + 1)-polytope
with a spherical cone. Using the notation of that section, we need to compute P⋆∩K∩{x′

d+1 > 0}.
Boissonnat et al. [21] have used this property in order to propose an algorithm for computing

CHd(Σ) in O(n⌈ d
2
⌉+n logn) time for any d ≥ 2. Below, we describe a slightly modified algorithm

that takes into account the fact that the radii of the spheres in Σ can take on a constant number
of m ≥ 2 distinct values and that also explicates how to intersect a face of P⋆ with K, which is a
non-trivial operation since such an intersection may consist of many connected components.

Our algorithm consists of the following six steps, where we use the notation from Section 4.1:

1. For all i with 1 ≤ i ≤ m: determine the set Pi = P ∩ Πi and construct the convex hull
Pi = CHd(Pi).

2. Compute the polytope P = CHd+1(P ), and choose a point O′ inside P .

3. Compute the polar polytope P⋆ of P with respect to O′.

4. Compute a bottom-vertex triangulation ∆ of P⋆.

5. For each simplex D in ∆ compute the intersection D ∩K ∩ {x′
d+1 > 0}.

6. From all these intersections recover the incidence graph of the facets in CHd(Σ).

Determining all the sets Pi takes Θ(n) time, whereas constructing the polytope Pi takes

O(n
⌊ d

2
⌋

i + ni logni) time. We thus conclude that step 1 of the algorithm takes O(n⌊ d
2
⌋ + n logn)

time. Let X be the number of faces of P . Step 2 computes P and takes time at least Ω(X).
Finding the point O′ and computing P⋆ from P can be done in O(X) time. The bottom-vertex
triangulation ∆ can be computed in time O(X) also, moreover the number of its simplices is O(X).
In Step 5 constant time needs to be afforded for each simplex, leading to O(X) time overall for
this step. Finally, Step 6 can be completed in time O(X) also. Thus the time taken for Steps 1
and 2 dominate the running time of the entire algorithm and we get the following:

Theorem 13. Let Σ be a set of n spheres in E
d, having a constant number of m distinct radii

ρ1, ρ2, . . . , ρm, with d ≥ 3, d odd. Let ni be the number of spheres in Σ with radius ρi, 1 ≤ i ≤
m. We can compute the convex hull CHd(Σ) in O(n⌊ d

2
⌋ + n logn + Td+1(n1, n2 . . . , nm)) time,

where Td+1(n1, n2 . . . , nm) stands for the time to compute the convex hull of m disjoint d-polytopes
P1,P2, . . . ,Pm in E

d+1, with ni = f0(Pi), 1 ≤ i ≤ m.
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As described in Section 3, for any d ≥ 3 and d odd, CHd+1({P1,P2, . . . ,Pm}) can be computed

in O(min{n⌊d+1

2
⌋, F logn}) worst-case time and O(F ) expected time, where F =

∑
1≤i6=j≤m nin

⌊ d
2
⌋

j .

Hence, for any odd d ≥ 3, we can compute the convex hull CHd(Σ) inO(min{n⌊d+1

2
⌋, (
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ) log n})

worst-case time, and in O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ) expected time.

6. Summary and open problems

In this paper we have considered the problem of computing the worst-case complexity of the
convex hull CHd+1(P) of a set P = {P1,P2, . . . ,Pm} of m disjoint convex d-polytopes in E

d+1,
for any odd d ≥ 3. Denoting by ni the number of vertices of Pi, we have shown that the worst-

case complexity of CHd+1(P) is O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ). This result suggests that, in order to
compute CHd+1(P), it might pay off to apply an output-sensitive convex hull algorithm to the
set of vertices in P. Indeed, we show that for any odd d ≥ 3, we can compute CHd+1(P)

in O(min{n⌊d+1

2
⌋, (
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ) log n}) worst-case time. The above algorithms are nearly
optimal for any odd d ≥ 3; it remains an open problem to compute CHd+1(P) in worst-case

optimal O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j + n logn) time. This optimal complexity can be achieved, however,
by applying Clarkson and Shor’s randomized incremental construction paradigm for convex hulls.

Following this paradigm, we show that CHd+1(P) can be computed in O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j )
expected time.

Capitalizing on our result on the complexity of convex hulls of disjoint convex polytopes, we
have shown that the worst-case complexity of the convex hull CHd(Σ) of a set Σ of n spheres in

E
d, with a constant number m of distinct radii ρ1, . . . , ρm, is O(

∑
1≤i6=j≤m nin

⌊ d
2
⌋

j ), for any odd
d ≥ 3, where ni is the number of spheres with radius ρi. By means of an appropriate construction,
described in Subsections 4.2–4.4, we have shown that the upper bound above is asymptotically
tight, implying that our upper bound for CHd+1(P) is also tight. By slightly, but crucially,

modifying the algorithm of Boissonnat et al. [21], CHd(Σ) may be computed in O(n⌊ d
2
⌋+n logn+

Td+1(n1, . . . , nm)) time, where Td+1(n1, . . . , nm) stands for the time needed to compute the convex
hull of m disjoint d-polytopes in E

d+1, where the i-th polytope has ni vertices (cf. Section
5). Applying our bounds for Td+1(n1, . . . , nm) mentioned above, we can compute CHd(Σ) in

O(min{n⌊ d+1

2
⌋, (
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ) logn}) worst-case time, and in O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j ) expected
time. As in the disjoint polytopes’ case, it remains an open problem to compute CHd(Σ) in

optimal O(
∑

1≤i6=j≤m nin
⌊ d
2
⌋

j + n logn) worst-case time.

Finally, Boissonnat and Karavelas [22] have shown that convex hulls of spheres in E
d and

additively weighted Voronoi cells in E
d are combinatorially equivalent. This equivalence suggests

that we should be able to refine the worst-case complexity of an additively weighted Voronoi cell
in any odd dimension, when the number of distinct radii of the spheres involved is considered
constant.
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[12] B. Chazelle, J. Matoušek, Derandomizing an output-sensitive convex hull algorithm in three dimensions,

Comput. Geom. Theory Appl. 5 (1995) 27–32.
[13] N. M. Amato, E. A. Ramos, On computing Voronoi diagrams by divide-prune-and-conquer, in: Proc. 12th

Annu. ACM Sympos. Comput. Geom., 1996, pp. 166–175.
[14] T. M. Chan, Optimal output-sensitive convex hull algorithms in two and three dimensions, Discrete Comput.

Geom. 16 (4) (1996) 361–368.
[15] T. M. Chan, Output-sensitive results on convex hulls, extreme points, and related problems, Discrete Comput.

Geom. 16 (4) (1996) 369–387.
[16] T. M. Chan, J. Snoeyink, C.-K. Yap, Primal dividing and dual pruning: Output-sensitive construction of

four-dimensional polytopes and three-dimensional Voronoi diagrams, Discrete Comput. Geom. 18 (4) (1997)
433–454.

[17] J. Erickson, New lower bounds for convex hull problems in odd dimensions, SIAM J. Comput. 28 (4) (1999)
1198–1214.

[18] D. Avis, D. Bremner, R. Seidel, How good are convex hull algorithms?, Comput. Geom. Theory Appl. 7 (5–6)
(1997) 265–302.

[19] F. Aurenhammer, Power diagrams: properties, algorithms and applications, SIAM J. Comput. 16 (1) (1987)
78–96.

[20] D. Rappaport, A convex hull algorithm for discs, and applications, Comput. Geom. Theory Appl. 1 (3) (1992)
171–181.
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