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ABSTRACT

Given a set Σ of spheres in E
d, with d ≥ 3 and d odd, having

a fixed number of m distinct radii ρ1, ρ2, . . . , ρm, we show
that the worst-case combinatorial complexity of the convex

hull CHd(Σ) of Σ is Θ(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ), where ni is the
number of spheres in Σ with radius ρi. Our bound refines
the worst-case upper and lower bounds on the worst-case
combinatorial complexity of CHd(Σ) for all odd d ≥ 3.
To prove the lower bound, we construct a set of Θ(n1+n2)

spheres in E
d, with d ≥ 3 odd, where ni spheres have radius

ρi, i = 1, 2, and ρ2 6= ρ1, such that their convex hull has

combinatorial complexity Ω(n1n
⌊ d

2
⌋

2 + n2n
⌊ d

2
⌋

1 ). Our con-
struction is then generalized to the case where the spheres
have m ≥ 3 distinct radii.
For the upper bound, we reduce the sphere convex hull

problem to the problem of computing the worst-case com-
binatorial complexity of the convex hull of a set of m d-
dimensional convex polytopes lying on m parallel hyper-
planes in E

d+1, where d ≥ 3 odd, a problem which is of in-
dependent interest. More precisely, we show that the worst-
case combinatorial complexity of the convex hull of a set
{P1,P2, . . . ,Pm} of m d-dimensional convex polytopes lying

on m parallel hyperplanes of Ed+1 is O(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ),
where ni is the number of vertices of Pi. This bound is an
improvement over the worst-case bound on the combinato-
rial complexity of the convex hull of a point set where we
impose no restriction on the points’ configuration; using the
lower bound construction for the sphere convex hull prob-
lem, it is also shown to be tight for all odd d ≥ 3.
Finally: (1) we briefly discuss how to compute convex

hulls of spheres with a fixed number of distinct radii, or
convex hulls of a fixed number of polytopes lying on paral-
lel hyperplanes; (2) we show how our tight bounds for the
parallel polytope convex hull problem, yield tight bounds
on the combinatorial complexity of the Minkowski sum of
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two convex polytopes in E
d; and (3) we state some open

problems and directions for future work.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms

Algorithms, Theory
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1. INTRODUCTION AND RESULTS
Let Σ be a set of n spheres in E

d, d ≥ 2, where the dimen-
sion d is fixed. We call Π a supporting hyperplane of Σ if it
has non-empty intersection with Σ and Σ is contained in one
of the two closed halfspaces bounded by Π. We call H a sup-
porting halfspace of the set Σ if it contains all spheres in Σ
and is limited by a supporting hyperplane Π of Σ. The inter-
section of all supporting halfspaces of Σ is called the convex
hull CHd(Σ) of Σ. The definition of convex hulls detailed
above is applicable not only to spheres, but also to any finite
set of compact geometric objects in E

d. In the case of points,
i.e., if we have a set P of n points in E

d, the worst-case com-

binatorial complexity1 of CHd(P ) is known to be Θ(n⌊ d

2
⌋).

Moreover, there exist worst-case optimal algorithms for con-

structing CHd(P ) that run in O(n⌊ d

2
⌋ + n log n) time, e.g.,

see [15, 25, 2, 24, 12]. Since the complexity of CHd(P ) may

vary from O(1) to Θ(n⌊ d

2
⌋), a lot of work has been devoted

to the design of output-sensitive algorithms for constructing
CHd(P ), i.e., algorithms the running time of which depends
on the size of the output convex hull CHd(P ), e.g., see [11,
17, 27, 19, 21, 13, 1, 8, 9, 10]. For a nice overview of the
various algorithms for computing the convex hull of points
sets, the interested reader may refer to the paper by Erick-
son [14], while Avis, Bremner and Seidel [4] have a very nice
discussion about the effectiveness of output-sensitive convex
hull algorithms for point sets.
1In the rest of the paper, and unless otherwise stated, we
use the term “complexity” to refer to “combinatorial com-
plexity”.



Results about the convex hull of non-linear objects are
very limited. Aurenhammer [3] showed that the worst-case
complexity of the power diagram of a set of n spheres in

E
d, d ≥ 2, is O(n⌈ d

2
⌉), which also implies the same upper

bound for the worst-case complexity for the convex hull of
the sphere set. Rappaport [26] devised an O(n log n) algo-
rithm for computing the convex hull of a set of discs on
the plane, which is worst-case optimal. Boissonnat et al.

[6] give an O(n⌈ d

2
⌉ + n log n) algorithm for computing the

convex hull of a set of n spheres in E
d, d ≥ 2, which is

worst-case optimal in three and even dimensions, since they
also show that the worst-case complexity of the convex hull
of n spheres in E

3 is Θ(n2). Finally, their results hold true
for the case of homothetic convex objects. Boissonnat and
Karavelas [7] settled a conjecture in [6]: they proved that
the worst-case complexity of a set of n spheres in E

d, d ≥ 2,

is Θ(n⌈ d

2
⌉), which also implied that the algorithm presented

in [6] is optimal for all d. As far as output-sensitive algo-
rithms are concerned, Boissonnat, Cérézo and Duquesne [5]
showed how to construct the convex hull of a set of n three-
dimensional spheres in O(nf) time, where f is the size of
the output convex hull, while Nielsen and Yvinec [23] dis-
cuss optimal or almost optimal output-sensitive convex hull
algorithms for planar convex objects.
In this paper we consider the problem of computing the

complexity of the convex hull of a set of spheres, when the
spheres have a fixed number of distinct radii. This problem
has been posed by Boissonnat and Karavelas [7], and it is
meaningful for odd dimensions only: in even dimensions the
complexity of both the convex hull of n points and the con-

vex hull of n spheres is Θ(n⌊ d

2
⌋) = Θ(n⌈ d

2
⌉), i.e., the two

bounds match.
Consider a set of n spheres Σ in E

d, where d ≥ 3 and
d odd, such that the spheres in Σ have a fixed number m
of distinct radii ρ1, ρ2, . . . , ρm. Let ni be the number of
spheres in Σ with radius ρi. We say that ρλ dominates Σ
if nλ = Θ(n). We further say that Σ is uniquely (resp.,
strongly) dominated, if, for some λ, ρλ dominates Σ, and
ni = o(n) (resp., ni = O(1)), for all i 6= λ. Using this termi-
nology, we can qualitatively express our results as follows.
Firstly, if Σ is strongly dominated, then, from the combi-
natorial complexity point of view, CHd(Σ) behaves as if we
had a set of points, or equivalently a set of spheres with
the same radius. If, however, Σ is dominated by at least
two radii, CHd(Σ) behaves as in the generic case, where we
impose no restriction on the number of distinct radii in Σ.
Finally, if Σ is uniquely dominated (but not strongly dom-
inated), the complexity of CHd(Σ) stands in-between the
two extremes above: the complexity of CHd(Σ) is asymptot-
ically larger than the points’ case (or when we have spheres
with the same radius), and asymptotically smaller than the
generic case, where we impose no restriction on the num-
ber of distinct radii in Σ. From the quantitative point of
view, our results refine the results in [7] for any odd di-
mension d ≥ 3 as follows. We prove that the worst-case

complexity of CHd(Σ) is Θ(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ). This tight
bound constitutes an improvement over the generic worst-
case complexity of CHd(Σ) if Σ is uniquely dominated, since

in this case the complexity of CHd(Σ) is o(n⌈ d

2
⌉). On the

other hard, it matches the generic worst-case complexity of
CHd(Σ), if Σ is dominated by at least two radii: in this case

the worst-case complexity of CHd(Σ) becomes Θ(n⌈ d

2
⌉). Fi-

nally, if Σ is strongly dominated, the complexity of CHd(Σ)

is Θ(n⌊ d

2
⌋), i.e., it matches the worst-case complexity of con-

vex hulls of point sets (or sets of spheres where all spheres
have the same radius).

To establish the lower bound for the complexity of CHd(Σ)
we construct a set Σ of Θ(n1+n2) spheres in E

d, for any odd
d ≥ 3, where n1 spheres have radius ρ1 and n2 spheres have
radius ρ2 6= ρ1, such that worst-case complexity of CHd(Σ)

is Ω(n1n
⌊ d

2
⌋

2 +n2n
⌊ d

2
⌋

1 ). This construction is then generalized
to sets of spheres having a fixed number of m ≥ 3 distinct
radii. More precisely, we construct a set Σ of n =

∑m
i=1 ni

spheres, where ni spheres have radius ρi, with the ρi’s be-
ing pairwise distinct, such that the worst-case complexity of

CHd(Σ) is Ω(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ).
To prove our upper bound we use a lifting map, intro-

duced in [6], that lifts spheres σi = (ci, ri) in E
d to points

pi = (ci, ri) in E
d+1. The convex hull CHd(Σ) is then the

intersection of the hyperplane {xd+1 = 0} with the Minkow-
ski sum of the convex hull CHd+1(P ) and the hypercone
λ0, where P is the point set {p1, p2, . . . , pn} in E

d+1, and
λ0 is the lower half hypercone with arbitrary apex, ver-
tical axis and angle at the apex equal to π

4
. When the

spheres in Σ have a fixed number m of distinct radii, the
points of P lie on m hyperplanes parallel to the hyperplane
{xd+1 = 0}. In this setting, computing the complexity of
CHd(Σ) amounts to computing the complexity of the convex
hull of m convex polytopes lying on m parallel hyperplanes
of E

d+1. This observation gives rise to the second major
result in this paper, which is of independent interest, and
gives as corollary a tight bound on the worst-case complex-
ity of the Minkowski sum of two convex d-polytopes. Given a
set P = {P1,P2, . . . ,Pm} of m convex d-polytopes in E

d+1,
with d ≥ 3 and d odd, we show that the worst-case complex-

ity of the convex hull CHd+1(P) is Θ(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ),
where ni is the number of vertices of Pi. Our upper bound
proof is by induction on the number m of parallel hyper-
planes. The lower bound follows from the lower bound on
the complexity of the convex hull of spheres having m dis-
tinct radii. Our bound constitutes an improvement over
the worst-case complexity of convex hulls of points sets, if
a single polytope of P has Θ(n) vertices, whereas all other
polytopes have o(n) vertices, where n is the total number
of vertices of all m polytopes, while it matches the worst-
case complexity of convex hulls of points sets if at least two
polytopes have Θ(n) vertices.

The rest of our paper is structured as follows: In Section
2 we detail our inductive proof of the upper bound on the
worst-case complexity of the convex hull of convex polytopes
lying on parallel hyperplanes. In Section 3 we prove our
upper bound on the worst-case complexity of the convex
hull of a set of spheres. Next we present our lower bound
construction for any odd d ≥ 3 in two steps: first for sphere
sets with two distinct radii and then for sphere sets with
m ≥ 3 distinct radii. We end the section by discussing how
this lower bound yields a tight lower bound for the problem
of the previous section. Finally, in Section 4 we summarize
our results, we briefly discuss how to compute convex hulls
of parallel polytopes and convex hull of spheres, we explain
how our results yield tight bounds for the complexity of the
Minkowski sum of two convex polytopes, and end with some
open problems.



2. CONVEX HULLS OF CONVEX POLY-

TOPES LYING ON PARALLEL HYPER-

PLANES
A convex polytope, or simply polytope, P in E

d is the con-
vex hull of a finite set of points P in E

d. A polytope P can
equivalently be described as the intersection of all the closed
halfspaces containing P . A face of P is an intersection of P
with hyperplanes for which the polytope is contained in one
of the two closed halfspaces determined by the hyperplane.
The dimension of a face of P is the dimension of its affine
hull. A k-face of P is a k-dimensional face of P. We con-
sider the polytope itself as a trivial d-dimensional face; all
the other faces are called proper faces. We will use the term
d-polytope to refer to a polytope the trivial face of which is
d-dimensional. For a d-polytope P, the 0-faces of P are its
vertices, the 1-faces of P are its edges, the (d − 2)-faces of
P are called ridges, while the (d− 1)-faces are called facets.
For 0 ≤ k ≤ d we denote by fk(P) the number of k-faces of
P. Note that every k-face F of P is also a k-polytope whose
faces are all the faces of P contained in F . A k-simplex in
E
d, k ≤ d, is the convex hull of any k+1 affinely independent

points in E
d. A polytope is called simplicial if all its proper

faces are simplices. Equivalently, P is simplicial if for every
vertex v of P and every face F ∈ P, v does not belong to
the affine hull of the vertices in F\{v}.
The f -vector (f−1(P), f0(P), . . . , fd−1(P)) of a simplicial

d-polytope P is defined as the (d + 1)-dimensional vector
consisting of the number fk(P) of k-faces of P, −1 ≤ k ≤ d,
where f−1(P) = 1 refers to the empty set. The h-vector
(h0(P), h1(P), . . . , hd(P)) of a simplicial d-polytope P is de-
fined as the (d + 1)-dimensional vector, where hk(P) :=
∑k

i=0(−1)k−i
(

d−i
d−k

)

fi−1(P), 0 ≤ k ≤ d. The number hk(P)
counts the number of facets of P in a shelling of P, whose
restriction has size k; this number is independent of the
particular shelling chosen (cf. [28, Theorem 8.19]). It is
easy to verify from the defining equations of the hk(P)’s
that the elements of the f -vector determine the elements
of the h-vector and vice versa. Moreover, the elements of
the f -vector (or, equivalently, the h-vector) are not linearly
independent; they satisfy the so called Dehn-Sommerville
equations, which can be written in a very concise form as:
hk(P) = hd−k(P), 0 ≤ k ≤ d. An important implication of
the existence of the Dehn-Sommerville equations is that if
we know the face numbers fk(P) for all 0 ≤ k ≤ ⌊ d

2
⌋ − 1,

we can determine the remaining face numbers fk(P) for all
⌊ d
2
⌋ ≤ k ≤ d− 1.
In what follows we recall some facts from [16, Section 5.2]

that will be of use to us later. Let P be a d-polytope in
E
d, F a facet of P, and H the supporting hyperplane of F

(with respect to P). For an arbitrary point p in E
d, we say

that p is beyond (resp., beneath) the facet F of P, if p lies
in the open halfspace of H that does not contain P (resp.,
contains the interior of P). Furthermore, we say that an
arbitrary point v′ is beyond the vertex v of P if for every
facet F of P containing v, v′ is beyond F , while for every
facet F of P not containing v, v′ is beneath F . The vertices
of the polytope P ′ = CHd((P\{v}) ∪ {v′}) are the same
with those of P, except for v which has been replaced by v′.
In this case we say that P ′ is obtained from P by pulling
v to v′. The vertex v′ of P ′ does not belong to the affine
hull of the vertices in F ′\{v′} for every face F ′ of P ′. The
following result is well-known.

Theorem 1 ([20, 22]). Let P be a d-polytope.
(i) The d-polytope P ′ we obtain by pulling a vertex of P

has the same number of vertices with P, and fk(P) ≤
fk(P ′) for all 1 ≤ k ≤ d− 1.

(ii) The d-polytope P ′ we obtain by successively pulling
each of the vertices of P is simplicial, has the same
number of vertices with P, and fk(P) ≤ fk(P ′) for all
1 ≤ k ≤ d− 1.

In the rest of the paper, when we refer to parallel hy-
perplanes we assume that they have the same unit normal
vector, i.e., they have the same orientation. Moreover, if two
hyperplanes Π and Π′ are parallel, we say that Π′ is above
Π if Π′ lies in the positive open halfspace delimited by Π.

Let P = {P1,P2, . . . ,Pm} be a set of m d-polytopes lying
on m parallel hyperplanes Π1,Π2, . . . ,Πm of Ed+1, respec-
tively. Throughout this section we assume that m ≥ 2 is
fixed, and that Πj is above Πi for all j > i. We denote by
Pi the set of vertices of Pi, by ni the cardinality of Pi, and
by P the union P = P1∪P2∪ . . .∪Pm. Let P = CHd+1(P );
note that, for each i, not all vertices in Pi are necessarily ver-
tices of P. Furthermore, among the polytopes in P, only
P1 and Pm are faces of P.

The theorem that follows is the adaptation of Theorem 1
in the context of m parallel polytopes. Again, we want to
perturb the points in P so that P ′ (the polytope we obtain
after perturbing the points in P ) is simplicial with fk(P) ≤
fk(P ′) for k ≥ 1, but we want to retain the property that the
points lying on a hyperplane Πi, if perturbed, are replaced
by points that lie on the same hyperplane. This is almost
possible. More precisely, all the faces of the polytope P ′ are
simplicial, with the possible exception of P ′

1 = P ′ ∩ Π1 and
P ′

m = P ′ ∩Πm. Please refer to Section A.1 of the Appendix
for the corresponding proof.

Lemma 2. Let P = {P1,P2, . . . ,Pm} be a set of m ≥ 2
d-polytopes lying on m parallel hyperplanes Π1,Π2, . . . ,Πm

of Ed+1, respectively, where Πj is above Πi for all j > i. Let
Pi be the vertex set of Pi, 1 ≤ i ≤ m, P = P1 ∪P2 . . .∪Pm,
and P = CHd+1(P ). The points in P can be perturbed in
such a way that:
(i) the points of P in each hyperplane Πi remain in Πi,

1 ≤ i ≤ m,
(ii) all the faces of P ′, except possibly the facets P ′

1 and
P ′

m, are simplices, and,
(iii) fk(P) ≤ fk(P ′) for all 1 ≤ k ≤ d,
where P ′ is the polytope we obtain after having perturbed the
vertices of P in P .

In view of Lemma 2, it suffices to restrict our attention
to sets of polytopes P, where P is simplicial with the pos-
sible exception of its two facets P1 and Pm. Let Π̃ be any
hyperplane between and parallel to the hyperplanes Πm−1

and Πm and consider the intersection P̃ := P ∩ Π̃ (see
Fig. 1). Let F be the set of faces of P having non-empty

intersection with Π̃. Note that P̃ is a d-polytope, which
is, in general, non-simplicial, and whose proper non-trivial
faces are intersections of the form F ∩ Π̃ where F ∈ F .
Let A = (α1, α2, . . . , αm) and B = (β1, β2, . . . , βm) be two
vectors in N

m. We say that A 4 B if αi ≤ βi for all
1 ≤ i ≤ m, and denote by |A| the sum of the elements
of A, i.e., |A| =∑m

i=1 αi. The following lemma provides an
upper bound on the number of k-faces of F . The proof may
be found in Section A.2 of the Appendix.



P1

P2

P3

P4

P̃

Π1

Π2

Π3

Π4

Π̃

F

L

Figure 1: An example of four polytopes lying on four parallel hyperplanes of E
d. The white vertices are not

vertices of P. The polytopes P2 and P3 are shown in black. All faces of L are shown in green (only the facet
P1 is shown), whereas all faces of P4 are shown in red. The faces in blue are faces of F , whereas the faces in

brown are faces of P̃ = P ∩ Π̃.

Lemma 3. The number of k-faces of F is bounded from
above as follows:

fk(F) ≤
∑

(0,...,0,1)4A4(k,...,k)
|A|=k+1

m
∏

i=1

(

f0(Pi)

αi

)

, 1 ≤ k ≤ d,

where αi is the i-th coordinate of the vector A ∈ N
m.

Exploiting the bounds from Lemma 3 for 1 ≤ k ≤ ⌊ d
2
⌋,

and using the Dehn-Sommerville equations of an appropri-
ately defined simplicial (d+1)-polytope containing all faces
in F , we derive appropriate asymptotic bounds on fk(F),
1 ≤ k ≤ d. Our results are summarized in the following
lemma, the proof of which may be found in Section A.3 of
the Appendix.

Lemma 4. Let ni = f0(Pi), 1 ≤ i ≤ m. The following
asymptotic bounds hold:
(i) fk(F) = O(nk

m

∑m−1
i=1 ni + nm

∑m−1
i=1 nk

i ), for all 1 ≤
k ≤ ⌊ d

2
⌋.

(ii) fk(F) = O(n
⌊ d

2
⌋

m

∑m−1
i=1 ni + nm

∑m−1
i=1 n

⌊ d

2
⌋

i ), for all

⌊ d+1
2

⌋ ≤ k ≤ d.

We now arrive at the main theorem of this section, con-
cerning the worst-case complexity of the convex hull of a set
of m polytopes lying on m parallel hyperplanes.

Theorem 5. Let P = {P1,P2, . . . ,Pm} be a set of a
fixed number of m ≥ 2 d-polytopes, lying on m parallel hy-
perplanes of Ed+1, where d ≥ 3 and d is odd. The worst-case

complexity of CHd+1(P) is Θ(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ), where

ni = f0(Pi), 1 ≤ i ≤ m.

Proof. Let T (m) denote the worst-case complexity of
CHd+1(P). We are going to prove, by induction on m, that

for all m ≥ 1, T (m) ≤ c (
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j +
∑m

i=1 n
⌊ d

2
⌋

i ),
where c is some appropriately large constant that depends
only on d.

The case m = 1 is trivial since the complexity of a d-

polytope with n1 vertices is O(n
⌊ d

2
⌋

1 ). Let us now assume
that m ≥ 2 and that our statement holds for m − 1; we
shall prove it for m. To this end, we consider a set of m
d-polytopes P = {P1,P2, . . . ,Pm}, lying on m parallel hy-
perplanes Π1, . . . ,Πm of Ed+1, such that Πj is above Πi for
all j > i. Let ni = f0(Pi), 1 ≤ i ≤ m, and denote by P the

convex hull CHd+1(P). Consider a hyperplane Π̃ parallel

to Πm−1 and Πm and between them, and let P̃ = P ∩ Π̃
(refer to Fig. 1). We denote by L the set of faces F of P
such that F 6∈ Pm and F ∩ Π̃ = ∅, and by F the set of faces
F of P with F ∩ Π̃ 6= ∅. Clearly, the set of faces of P is
equal to the disjoint union of L, F and the set of faces of
Pm. By the induction hypothesis we have that the number
of faces of CHd+1(P\{Pm}) is at most T (m−1). Since the



faces in L are faces of CHd+1(P\{Pm}), we have that the
complexity of L is at most T (m−1). Furthermore, since Pm

is a d-polytope, its complexity is O(n
⌊ d

2
⌋

m ). Combining these
bounds with the bounds on the number of k-faces of F from
Lemma 4, we arrive at the following recurrence relation for
T (m):

T (m) ≤ T (m−1)+O(n
⌊ d

2
⌋

m )+O(n
⌊ d

2
⌋

m

m−1
∑

i=1

ni+nm

m−1
∑

i=1

n
⌊ d

2
⌋

i ).

It is straightforward to verify that T (m) satisfies: T (m) ≤
c (
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j +
∑m

i=1 n
⌊ d

2
⌋

i ), for some appropriately

large constant c (that depends only on d); this establishes
the upper bound.
The proof of the lower bound for odd d ≥ 3 is deferred

until Subsection 3.2 (see Corollary 9).

3. CONVEX HULLS OF SPHERES WITH A

FIXED NUMBER OF DISTINCT RADII
In this section we derive tight upper and lower bounds

on the worst-case complexity of the convex hull of a set of
spheres in E

d having m distinct radii, where m is considered
to be fixed.
Let Σ be a set of n spheres σk = (ck, rk), 1 ≤ k ≤ n, in E

d,
and let CHd(Σ) be the convex hull of the spheres in Σ. A
face of circularity ℓ of CHd(Σ), 0 ≤ ℓ ≤ d− 1, is a maximal
connected portion of the boundary of CHd(Σ) consisting of
points where the supporting hyperplanes are tangent to a
given set of (d − ℓ) spheres of Σ. In the special case where
all spheres have the same radius, CHd(Σ) is combinatorially
equivalent to the convex hull CHd(K) of the centers K of
spheres in Σ, in the sense that each face of circularity ℓ of
CHd(Σ) corresponds to a unique (d−ℓ−1)-face of CHd(K),
for 0 ≤ ℓ ≤ d− 1.
We consider here the case where the radii rk can take m

distinct values, i.e., rk ∈ {ρ1, ρ2, . . . , ρm}. Without loss of
generality we may assume that 0 < ρ1 < ρ2 < . . . < ρm. We
identify E

d with the hyperplane H0 = {xd+1 = 0} of Ed+1

and we call the (d + 1)-axis of Ed+1 the vertical axis, while
the expression above will refer to the (d+1)-coordinate. Let
Πi, 1 ≤ i ≤ m, be the hyperplane {xd+1 = ρi} in E

d+1,
and let P be the point set in E

d+1 obtained by mapping
each sphere σk to the point pk = (ck, rk). Let Pi denote the
subset of P containing points that belong to the hyperplane
Πi, and let ni be the cardinality of Pi. We denote by P the
convex hull of the points in P (i.e., P = CHd+1(P )). We
further denote by Pi the convex hull of the points in Pi (i.e.,
Pi = CHd(Pi)); more precisely, we identify Πi with E

d, and
then define Pi to be the convex hull of the points in Pi, seen
as points in E

d. We use P to denote the set of the Pi’s.
Let P̂i be the subset of Pi that defines Pi (i.e., the points in

P̂i are the vertices of Pi and thus Pi = CHd(P̂i)), and let

n̂i ≤ ni be the cardinality of P̂i. Finally, let P̂ =
⋃m

i=1 P̂i

and P̂ = CHd+1(P̂ ). Notice that it is possible that P 6= P̂;

such a situation will arise if P1 6= P̂1 (resp., Pm 6= P̂m), in
which case the intersection of P with Π1 (resp., Πm) will
consist of more than one d-face of P. On the other hand P
and P̂ have the same interior.
Let λ0 be the half lower hypercone in E

d+1 with arbitrary
apex, vertical axis, and angle at the apex equal to π

4
. By

λ(p) we denote the translated copy of λ0 with apex at p;
observe that the intersection of the hypercone λ(pk) with

the hyperplane H0 is identical to the sphere σk. Let Λ be
the set of the lower half hypercones {λ(p1), λ(p2), . . . , λ(pn)}
in E

d+1 associated with the spheres of Σ. The intersection
of the convex hull CHd+1(Λ) with H0 is equal to CHd(Σ).

Let O′ be a point in the interior of P. We then have the
following:

Theorem 6 ([6, Theorem 1]). Any hyperplane of Ed

supporting CHd(Σ) is the intersection with H0 of a unique
hyperplane H of Ed+1 satisfying the following three proper-
ties:

1. H supports P,
2. H is the translated copy of a hyperplane tangent to λ0

along one of its generatrices,
3. H is above O′.

Conversely, let H be a hyperplane of E
d+1 satisfying the

above three properties. Its intersection with H0 is a hyper-
plane of Ed supporting CHd(Σ).

Theorem 6 implies an injection ϕ : CHd(Σ) → P that
maps each face of circularity (d − ℓ − 1) of CHd(Σ) to a
unique ℓ-face of P, for 0 ≤ ℓ ≤ d − 1. Theorem 6 also
implies that points in Pi\P̂i, 1 ≤ i ≤ m, can never be
points on a supporting hyperplane H of P satisfying the
three properties of the theorem. Therefore, ϕ is, in fact, an
injection that maps each face of circularity (d − ℓ − 1) of

CHd(Σ) to a unique ℓ-face of P̂, 0 ≤ ℓ ≤ d − 1. Observe

that P̂ is the convex hull of the set P of m convex poly-
topes lying onm parallel hyperplanes of Ed+1. By employing
Theorem 5 of Section 2, we deduce that P̂’s complexity is

O(
∑

1≤i 6=j≤m n̂in̂
⌊ d

2
⌋

j ) = O(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ), which, via

the injection ϕ : CHd(Σ) → P̂, is also an upper bound for
the worst-case complexity of CHd(Σ).

3.1 Lower bound construction with two dis-
tinct radii

For any even dimension 2δ, the trigonometric moment
curve γtr

2δ(t) in E
2δ is the curve:

γ
tr

2δ(t) = (cos t, sin t, cos 2t, sin 2t, . . . , cos δt, sin δt),

t ∈ [0, π). Notice that points on γtr

2δ(t) are points on the
sphere of E

2δ centered at the origin with radius equal to√
δ. For any set P of n points on γtr

2δ(t), the convex hull
CH2δ(P ) is a polytope Q combinatorially equivalent to the
cyclic polytope C2δ(n) (cf. [16, 28]). Therefore, f2δ−1(Q) =
Θ(nδ).

Suppose now that the ambient space is E
d, where d ≥ 3

is odd. Let H1 be H2 be the hyperplanes {xd = z1} and

{xd = z2}, where z1, z2 ∈ R and z2 > z1 + 2(n2 + 2)
√
δ;

the quantity n2 will be defined below. Consider a set Σ1

of n1 + 1 points, treated as spheres of Ed of zero radius, on
the (d−1)-dimensional trigonometric moment curve γtr

d−1(t)
embedded in H1 (please refer to Fig. 2(left)). Among the
n1 + 1 points, the first n1 points are chosen with t ∈ (0, π

2
),

whereas for the remaining point we require that t ∈ (π
2
, π).

This implies that the x1-coordinate of the first n1 points of
Σ1 is positive, whereas the x1-coordinate of the last point of
Σ1 is negative. Let Σ2 be the projection, along the xd-axis,
of Σ1 on the hyperplane H2. Clearly, the n1+1 points of Σ2

in H2 lie on the (d − 1)-dimensional trigonometric moment
curve γtr

d−1(t) embedded in H2. The points of Σi, i = 1, 2, lie

on a (d− 2)-dimensional sphere of Ed, centered at the point



(0, 0, . . . , 0, zi), with radius
√
δ. Moreover, the number of

facets of the polytope Qi = CHd−1(Σi) is Θ(n
⌊ d−1

2
⌋

1 ) =

Θ(n
⌊ d

2
⌋

1 ). The convex hull of the 2(n1 +1) points of Σ1 ∪Σ2

is a prism ∆. ∆ consists of Θ(n
⌊ d

2
⌋

1 ) facets not lying on H1

or H2, called the vertical facets of the prism, the (d − 1)-
face of CHd−1(Σ1), called the bottom facet, and the (d− 1)-
face of CHd−1(Σ2), called the top facet. For each vertical
facet F of ∆, we denote by ~νF the unit normal vector of
F pointing outside ∆, and by F+ (resp., F−) the positive
(resp., negative) open halfspace delimited by the supporting
hyperplane of F . Regarding the ridges of ∆, those that
are intersections of vertical facets of ∆ will be referred to
as vertical ridges. Notice that the vertical ridges of ∆ are
perpendicular to H1 and H2.
Let Y be the oriented hyperplane {x1 = 0} with unit

normal vector ~ν = (1, 0, . . . , 0). Let also Y + and Y − be the
positive and negative open halfspaces of Ed delimited by Y ,
respectively. Y contains the xd-axis, and is perpendicular
to the hyperplanes H1 and H2. Recall that n1 points of
Σi are contained in Y +, whereas exactly one point of Σi

is contained in Y −. Clearly, Y is in general position with
respect to ∆, Q1 and Q2. Let Q̃i be the intersection of Qi

with Y , and let Fi be the set of faces of Qi intersected by
Y . Q̃i is a (d− 2)-polytope, and its number of vertices is at
most n1, since Y cuts at most n1 edges of Qi. This implies

that the complexity of Q̃i is O(n
⌊ d−2

2
⌋

1 ) = O(n
⌊ d

2
⌋−1

1 ); the
same bound holds for Fi. Since there are no facets of ∆
in Y − (Y − contains a single vertex of Qi), and since the

number of facets of Qi is Θ(n
⌊ d

2
⌋

1 ), we conclude that the

number of facets of Qi contained in Y + is also Θ(n
⌊ d

2
⌋

1 ); the
same bound holds for the number of vertical facets of ∆ in
Y +.
Define now a set Σ3 = {σ0, σ1, . . . , σn2+1} of n2+2 spheres

in E
d, where σk = (ck, ρ), and ck = (0, . . . , 0, (2k + 1)

√
δ),

0 ≤ k ≤ n2+1. In other words, the sphere σk is centered on
the xd-axis, with the d-th coordinate of its center ck being
(2k+ 1)

√
δ, while its radius is ρ. We choose ρ to be smaller

than
√
δ, but large enough so that each sphere σi satisfies

the following two properties:
(1) it does not intersect any of the ridges of ∆ (including

the vertical ridges of ∆), and
(2) it intersects the interior of all vertical facets of ∆.

Notice also that for this choice for ρ, none of the spheres
in Σ3 intersects the hyperplanes H1 and H2 (recall that

z2 > z1 +2(n2 +2)
√
δ), while the spheres in Σ3 are pairwise

disjoint; these two observations, however, are not critical for
our construction.
We are now going to perturb the centers of the spheres

in Σ3 to get a new set of spheres Σ′
3 (see Fig. 2(right)).

Define σ′
k to be the sphere with radius ρ and center c′k =

ck + (
∑k

ℓ=0
ε
2ℓ
)~ν = ck + ε(2 − 1

2k
)~ν, where 0 < ε ≪ 1. The

quantity ε is chosen so that the spheres in Σ′
3 satisfy almost

the same conditions as the spheres in Σ3. In particular, we
require that condition (1) is still satisfied, while we relax
the requirement on condition (2): we now require that σ′

k

intersects the interior of all vertical facets of ∆ contained in
Y +. In addition to the two conditions above, we also require
that for each k, 0 ≤ k ≤ n2 + 1, the (d − 2)-dimensional
sphere σk ∩σ′

k is contained in F− for all vertical facets F of
∆ in Y +.

We will now show that for each pair (σ′
k, F ), where 1 ≤

k ≤ n2 and F is a vertical facet of ∆ in Y +, the spherical
cap F+ ∩σ′

k induces a face of circularity (d− 1) in CHd(Σ).
Let F1 and F2 be the ridges of ∆ on the boundary of F
contained in the top and bottom facet, respectively. Finally,
let Sk be the supporting hyperplane of σk parallel to F ;
we consider Sk to be oriented as F (i.e., the unit normal
vector of Sk is ~νF ), and thus σk lies in the closure of the
negative halfspace delimited by Sk. Notice that Sk is also a
supporting hyperplane for Σ3. Let S

′
k be the hyperplane we

get by translating Sk by the vector ε(2− 1
2k

)~ν. S′
k supports

σ′
k, but fails to be a supporting hyperplane for Σ′

3. More
precisely, S′

k intersects all spheres σ′
j with j > k, whereas

all spheres σ′
j with j < k, are contained in the negative open

halfspace delimited by S′
k. We can, however, perturb S′

k so
that it supports Σ′

3: simply slide S′
k on sphere σ′

k towards F1,
while maintaining the property that it remains parallel to F1

and F2. We keep sliding S′
k until it has empty intersection

with any sphere σ′
j with j > k. Notice that due to the way

we have perturbed the centers of the spheres in Σ3 to get
Σ′

3, the new hyperplane S′′
k we get via this transformation is

a supporting hyperplane for Σ′
3. In fact, S′′

k is a supporting
hyperplane for the sphere set Σ = Σ1 ∪ Σ2 ∪ Σ′

3 (it touches
CHd(Σ) at σ′

k only), which implies that S′′
k corresponds to

a unique face of circularity (d− 1) on CHd(Σ).
The same construction can be done for all k with 1 ≤

k ≤ n2, and for all vertical facets of ∆ in Y +. Since we

have Θ(n
⌊ d

2
⌋

1 ) vertical facets of ∆ in Y +, we can construct

n2Θ(n
⌊ d

2
⌋

1 ) distinct supporting hyperplanes of CHd(Σ), cor-
responding to distinct faces of circularity (d−1) on CHd(Σ).

Hence the complexity of CHd(Σ) is Ω(n2n
⌊ d

2
⌋

1 ). Without loss
of generality, we may assume that n2 ≤ n1, in which case

we have n2n
⌊ d

2
⌋

1 ≥ 1
2
(n2n

⌊ d

2
⌋

1 +n1n
⌊ d

2
⌋

2 ). Hence, we arrive at
the following:

Theorem 7. Fix some odd d ≥ 3. There exists a set Σ of
spheres in E

d, consisting of ni spheres of radius ρi, i = 1, 2,
with ρ1 6= ρ2, such that the complexity of the convex hull

CHd(Σ) is Ω(n1n
⌊ d

2
⌋

2 + n2n
⌊ d

2
⌋

1 ).

3.2 Lower bound construction with m distinct
radii

We can easily generalize the lower bound construction of
the previous subsection in the case where we have ni spheres
of radius ρi, 1 ≤ i ≤ m, m ≥ 3, and the radii ρi are consid-
ered to be mutually distinct.

As in the previous subsection, the ambient space is E
d,

where d ≥ 3 is odd. Let N1 =
∑m

i=2 ni and N2 = n1. We
construct the set Σ = Σ1 ∪ Σ2 ∪ Σ′

3 as in the previous sub-
section, where Σ1 and Σ2 contain each N1 + 1 points, and
Σ′

3 contains N2 + 2 spheres of some appropriate radius ρ
(recall that in the construction of the previous subsection

ρ ≈
√

d−1
2

≥ 1). We then replace ni among the N1 points

of Σ1 (resp., Σ2) contained in Y + by spheres with the same
center and radius equal to ri, where 0 < r ≪ 1. Further-
more, we replace the unique point of Σ1 (resp., Σ2) in Y −

by a sphere of the same center and radius r2. We choose r
small enough so that the following two conditions hold:
(1) the prism ∆r = CHd(Σ1∪Σ2) is combinatorially equiv-

alent2 to the prism ∆0 (this is the prism we get for
2Combinatorial equivalence here means that each face of
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Figure 2: The lower bound construction in the case of two radii. The points in Σ1 (resp., Σ2) are shown in
black (resp., white). The hyperplane Y is shown in green, while the prism ∆ is shown in black. The facet F
in blue is one of the vertical facets of ∆ in Y +. The sphere sets Σ3 (left) and Σ′

3 (right) are shown in red.
The red spherical caps on the left correspond to a unique supporting hyperplane of CHd(Σ1 ∪ Σ2 ∪ Σ3). The
red spherical caps on the right correspond to faces of CHd(Σ1 ∪ Σ2 ∪ Σ′

3) of circularity (d− 1).

r = 0, which is the prism ∆ of the previous subsec-
tion), and

(2) the two requirements for the spheres in Σ′
3 are still

satisfied: each σ′
k does not intersect any of the ridges of

∆r, while each σ′
k intersects the interior of all vertical

facets of ∆r contained in Y +.
As described in the previous subsection, the convex hull
CHd(Σ) of the set Σ = Σ1 ∪Σ2 ∪Σ′

3 of 2(N1 + 1) +N2 + 2

spheres hasN2Θ(N
⌊ d

2
⌋

1 ) faces of circularity (d−1), and hence

its complexity is Ω(N2N
⌊ d

2
⌋

1 ) = Ω(n1(
∑m

i=2 ni)
⌊ d

2
⌋). With-

out loss of generality we may assume that n2 ≥ n1 ≥ ni for
all 3 ≤ i ≤ m, in which case we have:

n1(
m
∑

i=2

ni)
⌊ d

2
⌋ ≥ n1n

⌊ d

2
⌋

2 ≥ 1

m(m− 1)
(
∑

1≤i 6=j≤m

nin
⌊ d

2
⌋

j ).

circularity ℓ of ∆r corresponds to a unique (d − ℓ − 1)-face
of ∆0.

Since m is fixed, we conclude that the complexity of CHd(Σ)

is Ω(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ).

Theorem 8. Fix some odd d ≥ 3. There exists a set
Σ of spheres in E

d, consisting of ni spheres of radius ρi,
1 ≤ i ≤ m, with ρ1 < ρ2 < . . . < ρm and m ≥ 3 fixed, such

that the complexity of CHd(Σ) is Ω(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ).

Consider again the injection ϕ : CHd(Σ) → P̂. We have
shown above that the worst-case complexity of CHd(Σ) is

Ω(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ), when d ≥ 3 is odd and m ≥ 2 is
fixed. Since ϕ is injective, this lower bound also applies to
the complexity of P̂. This establishes our lower bound claim
in Theorem 5:

Corollary 9. Let P = {P1,P2, . . . ,Pm} be a set of m
d-polytopes, lying on m parallel hyperplanes of E

d+1, with



d ≥ 3, d odd, and both d and m are fixed. The worst-case

complexity of CHd+1(P) is Ω(
∑

1≤i 6=j≤m nin
⌊ d

2
⌋

j ), where

ni = f0(Pi), 1 ≤ i ≤ m.

4. SUMMARY AND OPEN PROBLEMS
In this paper we have considered the problem of comput-

ing the worst-case complexity of the convex hull CHd+1(P)
of a set P = {P1,P2, . . . ,Pm} of m convex d-polytopes ly-
ing on m parallel hyperplanes of Ed+1, for any odd d ≥ 3.
Denoting by ni the number of vertices of Pi, we have shown
that the worst-case complexity of the convex hull CHd+1(P)

is O(
∑

1≤j 6=j≤m nin
⌊ d

2
⌋

j ). This result suggests that, in or-

der to compute CHd+1(P), it pays off to apply an output-
sensitive convex hull algorithm to the set of vertices in P.
Indeed, for any odd d ≥ 5 Seidel’s shelling algorithm [27], or
its modification by Matoušek and Schwarzkopf [21], results

in a O((
∑

1≤j 6=j≤m nin
⌊ d

2
⌋

j ) log n) time algorithm, where n =
∑m

i=1 ni. For d = 3, the divide-and-conquer algorithm by
Chan, Snoeyink and Yap [10] can be competitive against
Matoušek and Schwarzkopf’s algorithm; hence, we may com-
pute CH4(P) in O(min{n4/3+ǫ + (

∑

1≤i 6=j≤m ninj) log n,

(
∑

1≤i 6=j≤m ninj) log
2 n}) time, for any fixed ǫ > 0. The

above algorithms are nearly optimal for any odd d ≥ 3; it
remains an open problem to compute CHd+1(P) in worst-

case optimal O(
∑

1≤j 6=j≤m nin
⌊ d

2
⌋

j + n log n) time.
A direct consequence of our bound on the complexity of

CHd+1(P) is a tight asymptotic bound on the worst-case
complexity of the (weighted) Minkowski sum of two poly-
topes in any odd dimension d ≥ 3. More precisely, con-
sider a n-vertex d-polytope P and a m-vertex d-polytope
Q, and embed them on the hyperplanes {xd+1 = 0} and
{xd+1 = 1} of Ed+1, respectively. The weighted Minkowski
sum (1−λ)P ⊕λQ, λ ∈ (0, 1), is combinatorially equivalent
to the intersection of CHd+1({P,Q}) with the hyperplane
{xd+1 = λ}, whereas the Minkowski sum P ⊕ Q is noth-
ing but 1

2
P ⊕ 1

2
Q, scaled by a factor of 2. Applying our

results, we deduce that the complexity of (1 − λ)P ⊕ λQ
(resp., P ⊕Q) is Θ(nm⌊ d

2
⌋ +mn⌊ d

2
⌋) for any odd d ≥ 3. We

would like to extend this tight bound to (weighted) Minkow-
ski sums where the number of summands is greater than 2.
Capitalizing on our result on the complexity of convex

hulls of convex polytopes lying on parallel hyperplanes, we
have shown that the worst-case complexity of the convex hull
CHd(Σ) of a set Σ of n spheres in E

d with a fixed number

of m distinct radii ρ1, ρ2, . . . , ρm is O(
∑

1≤j 6=j≤m nin
⌊ d

2
⌋

j ),
for any odd d ≥ 3, where ni is the number of spheres
with radius ρi. By means of an appropriate construction,
described in Subsections 3.1 and 3.2, we have shown that
the upper bound above is asymptotically tight, implying
that our upper bound for CHd+1(P) is also tight. By
slightly, but crucially, modifying the algorithm of Boissonnat

et al. [6], CHd(Σ) may be computed in O(n⌊ d

2
⌋ + n log n+

Td+1(n1, . . . , nm)) time, where Td+1(n1, . . . , nm) stands for
the time needed to compute the convex hull ofm d-polytopes
lying onm parallel hyperplanes in E

d+1, where the i-th poly-
tope has ni vertices (see [18, Section 5] for details).
Finally, Boissonnat and Karavelas [7] have shown that

convex hulls of spheres in E
d and additively weighted Voronoi

cells in E
d are combinatorially equivalent. This equivalence

suggests that we should be able to refine the worst-case com-

plexity of an additively weighted Voronoi cell in any odd
dimension, when the number of distinct radii of the spheres
involved is considered fixed.
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APPENDIX

A. PROOFS OF LEMMAS 2, 3 AND 4

A.1 Proof of Lemma 2

Proof. We construct P ′ in three steps. Firstly, we prop-
erly perturb the points in Π1 so that P ′

1 is simplicial, then
we do the same for the points in Πm, and, finally, we pull
every vertex of P in Πi for 2 ≤ i ≤ m− 1.
Let v ∈ Π1 and choose any v′ in Π1 beyond all the facets

of P other than P1 that contain v. If we focus our attention
on the hyperplane Π1 and on the polytope P1 ∈ Π1 we
have that v is a vertex of P1 and v′ is some point beyond
all the facets of P1 containing v. We consider the polytope
P ′ = CHd+1((P\{v})∪{v′}). In view of [16, Theorems 5.1.1
& 5.1.2] the k-faces of P ′ are either:
(i) k-faces of P ′

1, or
(ii) k-faces of P not in Π1 that do not contain v, or

(iii) faces of the form CHd+1({v′} ∪Gk−1), where Gk−1 is
a (k − 1)-face not containing v of a facet F 6∈ Π1 of P
containing v.

The number of k-faces of P ′ does not change due to Case
(ii). The number of k-faces of P ′ may increase in Case (iii) if
Gk−1 is contained in a non-simplicial k-face of P, otherwise
it does not increase. Finally, Case (i) is a consequence of
Theorem 1(i).

We set P := P ′ and we repeat the above procedure for
every point v ∈ P1. After having perturbed all points in
P1 we obtain a polytope P ′ such that P ′

1 is a simplicial
polytope. Moreover, we have the additional properties that
fk(P) ≤ fk(P ′), for k ≥ 1, and that for every v′ ∈ Π1 and
for each face F ′ ∈ P ′ not lying in Π1, the point v′ does not
lie in the affine hull of the vertices in F ′\{v′}. We repeat
exactly the same procedure on the points of Πm. Again, we
denote by P the polytope we obtain after having perturbed
the points in P1 and Pm.

It is left to pull the points in the remaining hyperplanes; in
fact, we need only perturb the points in P that are vertices
of P. Consider a vertex v of P, such that v ∈ Pi for some 2 ≤
i ≤ m−1. Let v′ be any point in Πi that lies beyond all the
facets of P containing v. The choice of such a v′ is possible
since Πi is a hyperplane containing v but not a supporting
hyperplane of P. The polytope P ′ = CHd+1((P\{v})∪{v′})
is the one we obtain by pulling the vertex v to v′ and thus
from Theorem 1(i) we have fk(P) ≤ fk(P ′) for all k ≥ 1.
We continue the same procedure for every vertex v of P in
Πi, and 2 ≤ i ≤ m− 1. After having pulled all the vertices
of P in Πi, for 2 ≤ i ≤ m − 1, we obtain a polytope P ′

with the property that for every vertex v′ of P ′ in Πi, with
2 ≤ i ≤ m− 1, and for every face F ′ ∈ P ′, the point v′ does
not lie in the affine hull of the vertices in F ′\{v′}.

Summarizing all of the above, we deduce that, after hav-
ing perturbed all the vertices of P in P , we get a polytope
P ′ with the same number of vertices as P, such that: (1)
fk(P) ≤ fk(P ′) for all k ≥ 1, (2) P ′

1 and P ′
m are simplicial,

and (3) for every vertex v′ of P ′ and every face F ′ ∈ P ′,
such that F ′ does not lie in Π1 or Πm, the vertex v′ does
not lie in the affine hull of the vertices in F ′\{v′}. The lat-
ter implies that all the faces of P ′, not in Π1 or Πm, are
simplices. This completes our proof.

A.2 Proof of Lemma 3

Proof. According to Lemma 2, it suffices to consider the
case where P is simplicial except possibly for its facets P1

and Pm. In this context, a k-face F ∈ F is simplicial and it is
defined by k+1 vertices of P , where at least one vertex comes
from Pm, whereas the remaining k vertices are vertices of
P1, P2, . . . , Pm−1. Let αi be the number of vertices of F
from Pi. Clearly, we have 0 ≤ αi ≤ k for 1 ≤ i ≤ m − 1,
1 ≤ αm ≤ k, and α1+α2+ . . .+αm = k+1. The maximum
number of possible (αi − 1)-faces of Pi is

(

f0(Pi)
αi

)

, which

implies that the maximum possible number of k-faces of F
is
∏m

i=1

(

f0(Pi)
αi

)

. Summing over all possible values for the

αi’s we get the desired expression.

A.3 Proof of Lemma 4
We start with a few of definitions that will be used in

the proof. A polytopal complex C is a finite collection of
polytopes in E

d such that (i) ∅ ∈ C, (ii) if P ∈ C then
all the faces of P are also in C and (iii) the intersection
P ∩ Q for two polytopes in C is a face of both P and Q.



The dimension dim(C) of C is the largest dimension of a
polytope in C. A polytopal complex is called pure if all
its maximal (with respect to inclusion) faces have the same
dimension. In this case the maximal faces are called the
facets of C. We will use the term d-complex to refer to a
pure polytopal complex whose facets are d-dimensional. A
polytopal complex is simplicial if all its faces are simplices.
Finally, a polytopal complex C′ is called a subcomplex of a
polytopal complex C if all faces of C′ are also faces of C.
One important class of polytopal complexes arise from

polytopes. More precisely, a d-polytope P, together with
all its faces and the empty set, form a polytopal d-complex,
denoted by C(P). The only maximal face of C(P), which is
clearly the only facet of C(P), is the polytope P itself. More-
over, all proper faces of P form a pure polytopal complex,
called the boundary complex C(∂P). The facets of C(∂P) are
just the facets of P, and its dimension is dim(P)−1 = d−1.
Given a polytope P and a vertex v of P, the star of v is

the polytopal complex of all faces of P that contain v, and
their faces. The link of v is the subcomplex of the star of v
consisting of all the faces of the star of v that do not contain
v.
We are now ready to state the proof of Lemma 4.

Proof. Since
(

ni

αi

)

= Θ(nαi

i ) for αi fixed (recall that αi ≤
k ≤ d, and d is fixed), part (i) of the lemma is a direct
consequence of Lemma 3 for 1 ≤ k ≤ ⌊ d

2
⌋ and the fact that

m is fixed. The rest of the proof is concerned with part (ii)
of the lemma.
Let K be the polytopal complex whose facets are the d-

faces F ∈ F . Clearly, K is a pure simplicial d-complex. Let
L be the set of faces F of P such that F 6∈ Pm and F∩Π̃ = ∅.
Finally, let ∂L = K∩L. Let y (resp., z) be a point below Π1

(resp., above Πm), such that the vertices of P1 (resp., Pm)
are the only vertices of P visible from y (resp., z). Let Q be
the set of points consisting of y, z, the vertices of ∂L and
the vertices of Pm, and let Q = CHd+1(Q). Observe that
the faces of F are all faces of Q. To see that, first notice
that a supporting hyperplane HF for a face F ∈ F , seen as
a face of P, is also a supporting hyperplane for Q, since all
vertices in Q\{y, z} are also vertices of P, whereas y (resp.,
z) is not visible by the vertices of Pm (resp., ∂L), and thus y
(resp., z) has to lie in the same halfspace, with respect HF ,
as P. The faces of Q that are not faces of F are the faces in
the star Sy of y and the star Sz of z. To verify this, consider
a k-face F of ∂L, and let F1 be a face in F that contains F .
Let H1 be a supporting hyperplane of F1 with respect to P.
Tilt H1 until it hits the point y, while keeping H1 incident to
F1, and call H ′

1 this tilted hyperplane. H ′
1 is a supporting

hyperplane for y and the vertex set of ∂L, and thus is a
supporting hyperplane for Q. The same argument can be
applied for the star of z. In fact, ∂L (resp., the boundary
complex ∂Pm of Pm) is nothing but the link of y (resp., z)
in Q.
It is easy to realize that the set of proper k-faces of Q

is the disjoint union of the k-faces of F , Sy and Sz. This
implies that, for 0 ≤ k ≤ d:

fk(Q) = fk(F) + fk(Sy) + fk(Sz), (1)
where f0(F) = 0. The k-faces of Q in Sz are either k-faces
of ∂Pm or k-faces defined by z and a (k − 1)-face of ∂Pm.
In fact, there exists a bijection between the (k − 1)-faces of
∂Pm and the k-faces of Sz containing z. Hence, we have, for
0 ≤ k ≤ d:

fk(Sz) = fk(∂Pm) + fk−1(∂Pm), (2)

where f−1(∂Pm) = 1 and fd(∂Pm) = 0. Analogously, the
k-faces of Q in Sy are either k-faces of ∂L or k-faces defined
by y and a (k − 1)-face of ∂L. As for Sz, there exists a
bijection between the (k − 1)-faces of ∂L and the k-faces of
Sy containing z. Hence, we have, for 0 ≤ k ≤ d:

fk(Sy) = fk(∂L) + fk−1(∂L), (3)

where f−1(∂L) = 1 and fd(∂L) = 0.
Let us now turn our attention on deriving bounds for the

face numbers fk(Q). Since ∂Pm is the boundary complex of
the nm-vertex d-polytope Pm, we have, for 0 ≤ k ≤ d:

fk(∂Pm) = O(n
⌊ d

2
⌋

m ). (4)

In an analogous manner, since ∂L is the link of y in Q, it
is combinatorially equivalent to a subcomplex of the bound-
ary complex of a d-polytope defined over

∑m−1
i=1 ni vertices.

Therefore, for 0 ≤ k ≤ d:

fk(∂L) = O((

m−1
∑

i=1

ni)
⌊ d

2
⌋) = O(

m−1
∑

i=1

n
⌊ d

2
⌋

i ). (5)

Combining part (i) of the lemma with relations (1)-(5),
we get the following bounds for the lower-dimensional face
numbers of Q, i.e., for 0 ≤ k ≤ ⌊ d

2
⌋:

fk(Q) = O(n
⌊ d

2
⌋

m

m−1
∑

i=1

ni + nm

m−1
∑

i=1

n
⌊ d

2
⌋

i ). (6)

However, Q is a simplicial (d+1)-polytope, since the facets
of K are simplicial, and since all facets of Sy and Sz are
simplicial (the facets of Sy and Sz are defined via simplicial
(d − 1)-faces of P and the points y and z, respectively).
Let us recall the defining equations for the elements of the
h-vector of Q in terms of the elements of the f -vector of Q:

hk(Q) =

k
∑

i=0

(−1)k−i

(

d+ 1− i

d+ 1− k

)

fi−1(Q), (7)

0 ≤ k ≤ d+1. Combining equations (7) with relations (6), as
well as the fact that f−1(Q) = 1, we get, for 0 ≤ k ≤ ⌊ d+1

2
⌋:

hk(Q) = O(n
⌊ d

2
⌋

m

m−1
∑

i=1

ni + nm

m−1
∑

i=1

n
⌊ d

2
⌋

i ). (8)

We are now going to use the Dehn-Sommerville equations for
Q to bound the number of k-faces fk(Q) ofQ, for k ≥ ⌊ d+1

2
⌋.

The Dehn-Sommerville equations can be rewritten as follows
(cf. [28, Section 8.4]), for ⌊ d+1

2
⌋ ≤ k ≤ d+ 1:

fk−1(Q) =

d+1

2
∑ ∗

i=0

((

d+ 1− i

k − i

)

+

(

i

k − d− 1 + i

))

hi(Q),

(9)

where the symbol

δ

2
∑ ∗

i=0

denotes the sum where the last term

is halved if and only if the quantity δ
2
is integral (which is our

case since in our setting δ = d+1, which is even). Combining
relations (8) and (9), we get, for ⌊ d+1

2
⌋ ≤ k ≤ d+ 1:

fk−1(Q) = O(n
⌊ d

2
⌋

m

m−1
∑

i=1

ni + nm

m−1
∑

i=1

n
⌊ d

2
⌋

i ). (10)

Now using relation (1) with the bounds for fk(Sy) and fk(Sz)
from relations (2)-(5), we arrive at the following bounds on
the number of k-faces of F for ⌊ d+1

2
⌋ ≤ k ≤ d:

fk(F) = O(n
⌊ d

2
⌋

m

m−1
∑

i=1

ni + nm

m−1
∑

i=1

n
⌊ d

2
⌋

i ). (11)

This establishes part (ii) of the lemma.


