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Abstract. In this paper we present a dynamic algorithm for the con-
struction of the additively weighted Voronoi diagram of a set of weighted
points in the plane. The novelty in our approach is that we use the dual
of the additively weighted Voronoi diagram to represent it. This per-
mits us to perform both insertions and deletions of sites easily. Given
a set B of n sites, among which h sites have a non-empty cell, our
algorithm constructs the additively weighted Voronoi diagram of B in
O(nT (h) + h log h) expected time, where T (k) is the time to locate the
nearest neighbor of a query site within a set of k sites. Deletions can be
performed for all sites whether or not their cell is empty. The space re-
quirements for the presented algorithm is O(n). Our algorithm is simple
to implement and experimental results suggest an O(n log h) behavior.

1 Introduction

One of the most well studied structures in computational geometry is the Voronoi
diagram for a set of sites. Applications include retraction motion planning,
collision detection, computer graphics or even networking and communication
networks. There have been various generalizations of the standard Euclidean
Voronoi diagram, including generalizations to Lp metrics, convex distance func-
tions, the power distance, which yields the power diagram, and others. The sites
considered include points, convex polygons, line segments, circles and more gen-
eral smooth convex objects.

In this paper we are interested in the Additively Weighted Voronoi diagram or,
in short, AW-Voronoi diagram. We are given a set of points and a set of weights
associated with them. Let d(·, ·) denote the Euclidean distance. We define the
distance δ(p, B) between a point p on the Euclidean plane E2 and a weighted
point B = {b, r} as δ(p, B) = d(p, b)−r. If the weights are positive, the additively
weighted Voronoi diagram can be viewed geometrically as the Voronoi diagram
for a set of circles, the centers of which are the points and the radii of which are
the corresponding weights. Points outside a circle have positive distance with
respect to the circle, whereas points inside a circle have negative distance. The
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Voronoi diagram does not change if all the weights are translated by the same
quantity. Hence, in the sequel we assume that all the weights are positive. In
the same context we use the term site to denote interchangeably a weighted
point or the corresponding circle. We also define the distance between two sites
B1 = {b1, r1}, B2 = {b2, r2} on the plane to be δ(B1, B2) = d(b1, b2) − r1 − r2.
Note that δ(B1, B2) is negative if the two sites (circles) intersect at two points or
if one is inside the other. If we assign every point on the plane to its closest site,
we get a subdivision of the plane into regions. The closures of these regions are
called Voronoi cells. The one-dimensional connected sets of points that belong
to exactly two Voronoi cells are called Voronoi edges, whereas points that belong
to at least three Voronoi cells are called Voronoi vertices. The collection of cells,
edges and vertices is called the Voronoi diagram. A bisector between two sites
is the locus of points that are equidistant from both sites. Unlike the case of
the Euclidean Voronoi diagram of points in an AW-Voronoi diagram the cell of
a given site may be empty. Such a site is called trivial. We can actually fully
characterize trivial sites: a site is trivial if it is fully contained inside another
site.

The first algorithm for computing the AW-Voronoi diagram appeared in [1].
The running time of the algorithm is O(nc

√
log n), where c is a constant, and it

works only in the case of disjoint sites. The same authors presented in [2] another
algorithm for constructing the AW-Voronoi diagram, which runs in O(n log2 n)
time. This algorithm uses the divide-and-conquer paradigm and works again
only for disjoint sites. A detailed description of the geometric properties of the
AW-Voronoi diagram, as well as an algorithm that treats intersecting sites can
be found in [3]. The algorithm runs in O(n log2 n) time, and also uses the divide-
and-conquer paradigm. A sweep-line algorithm is described in [4] for solving the
same problem. The set of sites is first transformed to a set of points by means
of a special transformation, and then a sweep-line method is applied to the
point set. The sweep-line algorithm runs in time O(n log n). Aurenhammer [5]
suggests a lifting map of the two-dimensional problem to three dimensions, and
reduces the problem of computing the AW-Voronoi Voronoi diagram in 2D to
computing the power diagram of a set of spheres in 3D. The algorithm runs in
O(n2) time, but it is the first algorithm for constructing the AW-Voronoi diagram
that generalizes to dimension d ≥ 3. If we do not have trivial sites, every pair of
sites has a bisector. In this case, the AW-Voronoi diagram is a concrete type of an
Abstract Voronoi diagram [6], for which optimal divide-and-conquer O(n log n)
algorithms exist. Incremental algorithms that run in O(n log n) expected time
also exist for abstract Voronoi diagrams (see [7, 8]). The algorithm in [8] allows
the insertion of sites with empty Voronoi cell. However, it does not allow for
deletions and the data structures used are a bit involved. More specifically, the
Voronoi diagram itself is represented as a planar map and a history graph is used
to find the conflicts of the new site with the existing Voronoi diagram. Finally,
an off-line algorithm that constructs the Delaunay triangulation of the centers
of the sites and then performs edge-flips in order to restore the AW-Delaunay



graph is presented in [9]. Again this algorithm does not allow the deletion of
sites, and moreover it does not handle the case of trivial sites.

In this paper we present a fully dynamic algorithm for the construction of the
AW-Voronoi diagram. Our algorithm resembles the algorithm in [8], but, it also
has several differences. Firstly, we do not represent the AW-Voronoi diagram, but
rather its dual. The dual of the AW-Voronoi diagram is a planar graph of linear
size [3], which we call the Additively Weighted Delaunay graph or AW-Delaunay
graph, for short. Moreover, under the non-degeneracy assumption that there are
no points in the plane equidistant to more than 3 sites, the AW-Delaunay graph
has triangular faces. Our algorithm requires no assumption about degeneracies.
It implicitly uses a perturbation scheme which simulates non-degeneracies and
yields an AW-Delaunay graph with triangular faces. Hence, representing the
AW-Voronoi diagram can be done in a much simpler way compared to [8]. In [8]
the insertion is done in two stages. First the history graph is used to find the
conflicts of the new site with the existing AW-Voronoi diagram. Then both the
planar map representation of the AW-Voronoi diagram and the history graph
are updated, in order to incorporate the Voronoi cell of the new site. In our
algorithm the insertion of the new site is done in three stages. The first stage
finds the nearest neighbor of the new site in the existing AW-Voronoi diagram.
Using the nearest neighbor, the second stage determines if the new site is trivial.
Starting from the nearest neighbor of the new site, the third stage finds all the
Voronoi edges in conflict with the new site and then reconstructs the AW-Voronoi
diagram. This is done using the dual graph. Another novelty of our algorithm is
that it permits the deletion of sites, which is not the case in [8].

The remainder of the paper is structured as follows. In Section 2 we define the
AW-Voronoi and its dual. We review some of the known properties of the AW-
Voronoi diagram and provide definitions used in the remainder of the paper. In
Section 3 we show how to insert a new site, and discuss how we deal with trivial
sites. In Section 4 we describe how to delete sites. In Section 5 we briefly discuss
the predicates involved in our algorithm and present experimental results. A
more detailed analysis of the predicates and how to compute them can be found
in [10]. Section 6 is devoted to conclusions and directions for further research.
Due to space limitations the proofs of the lemmas and theorems are omitted.
this version of the paper. The interested reader can find these proofs in [11].

2 Preliminaries

Let B be a set of sites Bj , with centers bj and radii rj . For each j 6= i, let
Hij = {y ∈ E2 : δ(y, Bi) ≤ δ(y, Bj)}. Then the (closed) Voronoi cell Vi of Bi is
defined to be Vi = ∩i 6=jHij . The connected set of points that belong to exactly
two Voronoi cells are called Voronoi edges, whereas points that belong to at least
three Voronoi cells are called Voronoi vertices. The AW-Voronoi diagram V(B)
of B is defined as the collection of the Voronoi cells, edges and vertices. The
Voronoi skeleton V1(B) of B is defined as the union of the Voronoi edges and
Voronoi vertices of V(B). The AW-Voronoi diagram is a subdivision of the plane



Fig. 1. Left: the AW-Voronoi diagram for a set of 12 sites, among which 2 sites are
trivial. Non-trivial sites are shown in gray. Trivial sites are shown in light gray. The
Voronoi skeleton is shown in black. Right: a planar embedding of the AW-Delaunay
graph of the same set of sites. The edges of the AW-Delaunay graph are shown in black.

[3, Property 1]. The Voronoi edges are straight or hyperbolic arcs and each cell
is star-shaped with respect to the center of the corresponding site [3, Properties
3 and 4]). In the case of the usual Euclidean Voronoi diagram for a set of points,
every point has a non-empty Voronoi cell. In AW-Voronoi diagrams there may
exist sites with empty Voronoi cells. In particular, the Voronoi cell Vi of a site
Bi is empty if and only if Bi is contained in another site Bj [3, Property 2]. A
site whose Voronoi cell has empty interior is called trivial, whereas a site whose
Voronoi cell has non-empty interior is called non-trivial (see Fig. 1(left)).

We call AW-Delaunay graph, and denote by D(B), the dual graph of the
AW-Voronoi diagram V(B). There is a vertex in D(B) for each non-trivial site
Bi in B. Let Bi and Bj be two sites whose Voronoi cells Vi and Vj are adjacent.
We denote by αkl

ij the Voronoi edge in Vi ∩ Vj whose endpoints are the Voronoi
vertices equidistant to Bi, Bj , Bk and Bi, Bj , Bl, respectively. There exists an
edge ekl

ij in D(B) connecting Bi and Bj for each edge αkl
ij of V(B) in Vi ∩Vj . The

fact that we have a planar embedding of linear size for the AW-Delaunay graph
[3, Property 7] immediately implies that the size of the AW-Voronoi diagram is
O(n). The Voronoi skeleton may consist of more than one connected component
[3, Property 9], whereas the dual graph is always connected. If we do not have
any degeneracies, the AW-Delaunay graph has the property that all but its outer
face have exactly three edges. However, it may contain vertices of degree 2, i.e.,
we have triangular faces with two edges in common. If the Voronoi skeleton
consists of more than one connected component the AW-Delaunay graph may
also have vertices of degree 1, which are the dual of Voronoi cells with no vertices
(e.g., the Voronoi cell at the top left corner of Fig. 1(left)). To simplify the
representation of the AW-Delaunay graph we add a fictitious site called the site
at infinity. This amounts to adding a Voronoi vertex on each unbounded edge



of V1(B). These additional vertices are then connected through Voronoi edges
forming the boundary of the infinite site cell. In this compactified version, the
Voronoi skeleton consists of only one connected component, and the previously
non-connected components are now connected through the edges of the Voronoi
cell of the site at infinity. The compactified AW-Delaunay graph corresponds to
the original AW-Delaunay graph plus edges connecting the sites on the convex
hull of B with the site at infinity. In the absence of degeneracies, all faces of the
compactified AW-Delaunay graph have exactly three edges, but this graph may
still have vertices of degree 2. From now on when we refer to the AW-Voronoi
diagram or the AW-Delaunay graph, we refer to their compactified versions (see
Fig. 1(right)). Degenerate cases arise when there are points equidistant to more
than three sites. Then, the AW-Delaunay graph has faces with more than three
edges. This is entirely analogous to the situation for the usual Delaunay diagram
for a set of points with subsets of more than three cocircular points. In such a
case, a graph with triangular faces can be obtained from the AW-Delaunay graph
through an arbitrary triangulation of the faces with more than three edges. Our
algorithm uses an implicit perturbation scheme and produces in fact such a
triangulated AW-Delaunay graph.

Let Bi and Bj be two sites such that no one is contained inside the other. A
circle tangent to Bi and Bj that neither contains any of them nor is contained
in any of them is called an exterior bitangent Voronoi circle. A circle tangent to
Bi and Bj that lies in Bi ∩Bj is an interior bitangent Voronoi circle. Similarly,
a circle tangent to three sites Bi, Bj and Bk is an exterior tritangent Voronoi
circle if it neither contains any of Bi, Bj and Bk nor is contained in any of them.
A circle tangent to Bi, Bj and Bk is called an interior tritangent Voronoi circle
if it is included in Bi ∩Bj ∩Bk. A triple of sites Bi, Bj and Bk can have up to
two tritangent Voronoi circles, either exterior or interior. This is equivalent to
stating that the AW-Voronoi diagram of three sites can have up to two Voronoi
vertices [3, Property 5]. Let πij denote the bisector of the sites Bi and Bj . As we
already mentioned πij can be a line or a hyperbola. We define the orientation of
πij to be such that bi is always to the left of πij . The orientation of πij defines an
ordering on the points of πij , which we denote by ≺ij . Let oij be the intersection
of πij with the segment bibj . We can parameterize πij as follows: if oij ≺ij p
then ζij(p) = δ(p, Bi) − δ(oij , Bi); otherwise ζij(p) = −(δ(p, Bi) − δ(oij , Bi)).
The function ζij(·) is a 1–1 and onto mapping from πij to R. The shadow region
Sij(B) of a site B with respect to the bisector πij of Bi and Bj is the locus of
points c on πij such that δ(B,Cij(c)) < 0, where Cij(c) is the bitangent Voronoi
circle of Bi and Bj centered at c. Let S̃ij(B) denote the set of parameter values
ζij(c), where c ∈ Sij(B). It is easy to verify that S̃ij(B) can be of the form ∅,
(−∞,∞), (−∞, a), (b,∞), (a, b) and (−∞, a) ∪ (b,∞), where a, b ∈ R.

Let αkl
ij be an edge of V(B) on the bisector πij . Let Cijk and Cijl be the

tritangent Voronoi circles associated with the endpoints of αkl
ij . We denote by cijk

(resp. cijl) the center of Cijk (resp. Cijl). Under the mapping ζij(·), αkl
ij maps to

the interval α̃kl
ij = [ξijl, ξijk] ⊂ R. We define the conflict region Rkl

ij (B) of B with
respect to the edge αkl

ij to be the intersection Rkl
ij (B) = αkl

ij ∩Sij(B). We say that



B is in conflict with αkl
ij if Rkl

ij (B) 6= ∅. Under the mapping by ζij(·), the conflict
region Rkl

ij (B) maps to the intersection R̃kl
ij (B) = α̃kl

ij ∩ S̃ij(B). R̃kl
ij (B) can be

one of the following types : (1) R̃kl
ij (B) = ∅. We say that B is not in conflict with

αkl
ij . (2) R̃kl

ij (B) consists of two disjoint intervals, including respectively ξijk and
ξijl. We say that B is in conflict with both vertices of αkl

ij . (3) R̃kl
ij (B) consists of

a single connected interval. We further distinguish between the following cases :
(a) α̃kl

ij = R̃kl
ij (B). We say that B is in conflict with the entire edge αkl

ij . (b)
R̃kl

ij (B) contains either ξijk or ξijl, but not both. We say that B is in conflict
with one vertex of αkl

ij . (c) R̃kl
ij (B) 6= ∅ but contains neither ξijk nor ξijl. We say

that B is in conflict with the interior of αkl
ij . Finally we define the conflict region

RB(B) of B with respect to B as the union RB(B) =
⋃

αkl
ij∈V(B) Rkl

ij (B). It is
easy to verify that RB(B) = VB∪{B}(B) ∩ V1(B), where VB∪{B}(B) denotes the
Voronoi cell of B in V(B ∪ {B}).

3 Inserting a site incrementally

In this section we present the incremental algorithm. Let again B be our set
of n sites and let us assume that we have already constructed the AW-Voronoi
diagram for a subset Bm of B. Here m denotes the number of sites in Bm. We now
want to insert a site B 6∈ Bm. The insertion is done in the following steps : (i)
locate the nearest neighbor NN(B) of B in Bm; (ii) test if B is trivial; (iii) find
the conflict region of B and repair the AW-Delaunay graph. We postpone the
discussion on the location of the nearest neighbor until the end of this section.

The first test we have to do is to determine whether B is trivial or not. This
can easily be done once we know the nearest neighbor NN(B) of B, since B
is trivial if and only if B ⊂ NN(B) [11, Lemma 1]. Let Rm(B) be the conflict
region of B with respect to Bm. Let ∂Rm(B) denote the boundary of Rm(B).
Rm(B) is a subset of V1(Bm) and ∂Rm(B) is a set of points on edges of V1(Bm).
Points in ∂Rm(B) are the vertices of the Voronoi cell VB of B in V(Bm+1), where
Bm+1 = Bm∪{B}. It has been shown in [8, Lemma 1] that Rm(B) is connected.
Thus, the aim is to discover the boundary ∂Rm(B) of Rm(B), since then we can
repair the AW-Voronoi diagram in exactly the same way as in [8]. The idea is to
perform a depth first search (DFS) on V1(Bm) to discover Rm(B) and ∂Rm(B),
starting from a point on the skeleton that is known to be in conflict with B. Let
L denote the boundary of the currently discovered portion of Rm(B). Initially
L = ∅. We are going to represent points in L by the Voronoi edges that contain
them. We want the points of ∂Rm(B) to appear in L in the order that they
appear on the boundary of the Voronoi region VB of B in V(Bm+1). Without
loss of generality we can choose this order to be the counter-clockwise ordering
of the vertices on the boundary of VB .

As we mentioned in the previous paragraph, we need to find a first point on
the Voronoi skeleton V1(Bm), that is in conflict with B. This point is going to
serve as the starting point for the DFS. It can be shown that if B is a non-trivial
site, then B has to be in conflict with at least one of the edges of the Voronoi cell



Fig. 2. Left: The AW-Voronoi diagram for a set of sites (gray) and the conflict region
(black) of a new site (also black). The portion of the Voronoi skeleton that does not
belong to the conflict region of the new site is shown in light gray. Right: The AW-
Voronoi diagram after the insertion of the new site. Non-trivial sites, including the new
site, are shown in gray. The site in light gray is inside the new site and has become
trivial. The Voronoi skeleton is shown in black.

VNN(B) of NN(B) in V(Bm) [11, Lemma 2]. Hence, we can simply walk on the
boundary of VNN(B), until we find a Voronoi edge in conflict with B. Let α be the
first edge, of the boundary of VNN(B) that we found to be in conflict with B. If B
is in conflict with the interior of α, we have discovered the entire conflict region
Rm(B). In this case L consists of two copies of α with different orientations.
Otherwise, B has to be in conflict with at least one of the two Voronoi vertices
of α. In this case we set L to be the edges adjacent to that Voronoi vertex in
counter-clockwise order. The DFS will then recursively visit all vertices in conflict
with B. Suppose that we have arrived at a Voronoi vertex v (which is a node on
the Voronoi skeleton). Firstly, we mark it. Then we look at all the Voronoi edges
α adjacent to it. Let v′ be the Voronoi vertex of α that is different from v. We
consider the following two cases : (1) v′ has not been marked. If B is in conflict
with the entire edge α, then we replace α in L by the remaining Voronoi edges
adjacent to v′, in counter-clockwise order. We then continue recursively on v′. If
B is not in conflict with the entire edge α, we have reached an edge α containing
a point of ∂Rm(B). The list L remains unchanged and the DFS backtracks.
(2) v′ has already been marked. If B is in conflict with the entire edge α, have
found a cycle in Rm(B), or equivalently, B contains a site in Bm, which will
become trivial. Since α currently belongs to L, but does not contain any points
of ∂Rm(B), we remove it from L. The DFS then backtracks. If B is not in conflict
with the entire edge α, then B is in conflict with both vertices of α. Hence α
contains two points of ∂Rm(B) in its interior. The list L remains unchanged and
the DFS backtracks. Note that in this case α appears twice in L, once per point
in ∂Rm(B) that it contains. Fig. 2(top left) shows an example of a conflict region



which triggers all the possible cases of the above search algorithm. In our case,
the AW-Voronoi diagram is represented through its dual AW-Delaunay graph.
It is thus convenient to restate the algorithm for finding the boundary ∂Rm(B)
of the conflict region Rm(B) in terms of the AW-Delaunay graph. This is done
in the long version of this paper (cf. [11]).

In case of degeneracies, the algorithm uses a perturbation scheme described
by the following lazy strategy. Any new site which is found tangent to a tritan-
gent Voronoi circle is considered as not being in conflict with the corresponding
Voronoi vertex. Then any Voronoi vertex remains a degree 3 vertex and the dual
AW-Delaunay graph is always triangular. This graph, however, is not canonical,
but depends on the insertion order of the sites.

During the insertion procedure trivial sites can appear in two possible ways.
Either the new site B to be inserted is trivial, or B contains existing sites, which
after the insertion of B will become trivial. When deletion of sites is allowed,
B may contain other sites which will become non-trivial if B is deleted. For
this reason we need to keep track of trivial sites. Since a site is trivial if and
only if it is contained inside some other site, there exists a natural parent-child
relationship between trivial and non-trivial sites. In particular, we can associate
every trivial site to a non-trivial site that contains it. If a trivial site is contained
in more than one non-trivial sites, we can choose the parent of the trivial site
arbitrarily. A natural choice for storing trivial sites is to maintain, for every non-
trivial site, a list containing all trivial sites that have the non-trivial site as their
parent. Let B+

m be the subset of non-trivial sites of Bm, and let B−m = Bm \ B+
m.

For some B′ ∈ B+
m, we define Ltr(B′) to be the list of trivial sites in B−m that

have B′ as their parent. We note by Lm the set of all lists Ltr(B′) for B′ ∈ B+
m,

and correspondingly Lm+1 the set of all Ltr(B′) for B′ ∈ B+
m+1. When a new

site B is inserted and B is found to be trivial, we simply add B to Ltr(NN(B)).
If B is non-trivial, let B−m(B) be the set of sites in B+

m that are contained in B.
Since after the insertion of B all sites in B−m(B) become trivial, we add every
B′′ ∈ B−m(B) to Ltr(B). Moreover, for every B′′ ∈ B−m(B) we move all sites in
Ltr(B′′) to Ltr(B). The following theorem subsumes the run time analysis of
our algorithm. A detailed proof can be found in [11].

Theorem 1. Let B be a set of n sites among which h are non-trivial. We can
construct the AW-Voronoi diagram incrementally in O(nT (h)+h log h) expected
time, where T (k) is the time to locate the nearest neighbor of a query site within
a set of k sites.

We now turn our discussion on the location of the nearest neighbor. The
nearest neighbor location of B in fact reduces to the location of the center b
of B in V(Bm). We can do that as follows. Select a site B′ ∈ Bm at random.
Look at all the neighbors of B′ in the AW-Delaunay graph. If there exists a
B′′ such that δ(B,B′′) < δ(B,B′), then B′ cannot be the nearest neighbor of
B. In this case we replace B′ by B′′ and restart our procedure. If none of the
neighbors of B′ is closer to B than B′, then NN(B) = B′. The time to find
the nearest neighbor using the above procedure is trivially O(h), where h is the



number of non-trivial sites in B. However, we can speed-up the nearest-neighbor
location by maintaining a hierarchy of AW-Delaunay graphs as is done in [12]
for the Delaunay triangulation for points. The details can be found in [11]. The
randomized time analysis for the location and insertion of a point in the Delaunay
hierarchy has been given in [12]. Unfortunately, this analysis does not generalize
to the AW-Delaunay hierarchy. Our experimental results, however, show that we
do get a speed-up and that in practice the nearest-neighbor location is done in
time O(log h), which gives a total running time of O(n log h) (see Section 5).

4 Deleting a site

Suppose that we have been given a set B of sites for which we have already
constructed the AW-Voronoi diagram V(B). Let also B ∈ B be a site that we
want to delete from V(B). In this section we describe how to perform the deletion.

Suppose that B is non-trivial. Let Bγ be the set of neighbors of VB in D(B).
Let also L+

tr(B) be the set of sites in Ltr(B) that become non-trivial after the
deletion of B. Finally, let L−tr(B) = Ltr(B) \ L+

tr(B), Bs = Bγ ∪ Ltr(B) and
B+

s = Bγ ∪ L+
tr(B). The main observation is that the second nearest neighbor

of each point in VB is one of the sites in B+
s . Moreover, every site in L−tr(B)

is inside one of the sites in B+
s [11, Lemma 6]. Consequently, the AW-Voronoi

diagram after the deletion of B can be found by constructing the AW-Voronoi
diagram of Bγ ∪ Ltr(B). More precisely, if b is a degree 3 vertex in D(B) and
|Ltr(B)| = 0, we simply remove from D(B) the vertex corresponding to B as
well as all its incident edges. If b is a degree 2 vertex in D(B) and |Ltr(B)| = 0,
we again remove from D(B) the vertex vB corresponding to B as well as all its
incident edges. In addition, we collapse the edges e and e′, where e and e′ are
the two edges of the star of vB that are not incident to vB . If the degree of b
in D(B) is at least 4 or if |Ltr(B)| > 0, we construct V(Bs) and then we find
the nearest neighbor of B in Bs. Once the nearest neighbor has been found we
compute the conflict region of B in Bs by means of the procedure described in
Section 3. Let ∂∗Rs(B) be the representation, by means of the dual edges, of
the conflict region of B in Bs. The edges in ∂∗Rs(B) are the dual of the AW-
Voronoi edges in ∂Rs(B). The triangles inside ∂∗Rs(B) are the triangles that
must appear in the interior of the boundary of the star of B when B is deleted
from D(B). Therefore we can use these triangles to construct D(B \ {B}), or
equivalently V(B \ {B}). Finally, all lists in L(B+

s ) must be merged with their
corresponding lists in L(B \ {B}).

Suppose that B is trivial. In this case we have to find the non-trivial site B′

such that B ∈ Ltr(B′) and then delete B from Ltr(B′). Since B ⊂ NN(B), B
must be in the list of some B′, which is in the same connected component of the
union of sites as NN(B). It has been shown that the subgraph K(B) of D(B) that
consists of all edges of D(B) connecting intersecting sites, is a spanning subgraph
of the connectivity graph of the set of sites [13, Chapter 5]. The deletion of a
trivial site can, thus, be done as follows : (i) find the nearest neighbor NN(B)
of B; (ii) walk on the connected component C of NN(B) in the graph K(B) and



for every site B′ ∈ C that contains B, test if B ∈ Ltr(B′); (iii) once the site B′,
such that B ∈ Ltr(B′), is found, delete B from Ltr(B′). The following theorem
discusses the cost of deleting a site. A detailed analysis can be found in [11].

Theorem 2. Let B be a set of n sites, among which h are non-trivial. Let B ∈ B,
and let Ltr(B) be the list of trivial sites whose parent is B. If B is non-trivial, it
can be deleted from V(B) in expected time O((d+ t)T (d+ t′)+(d+ t′) log(d+ t′)),
where d is the degree of B in D(B), t is the cardinality of Ltr(B) and t′ is the
number of sites in Ltr(B) that become non-trivial after the deletion of B. If B
is trivial it can be deleted from L(B) in worst case time O(n).

5 Predicates and implementation

For the purposes of computing the algebraic degree of the predicates used in our
algorithm, we assume that each site is given by its center and its radius. The
predicates that we use are the following :

1. Given two sites B1 and B2, and a query site B, determine if B is closer to B1

or B2. This is equivalent to comparing the distances δ(b, B1) and δ(b, B2).
This predicate is used during the nearest neighbor location phase and it is
of algebraic degree 4 in the input quantities.

2. Given a site B1 and a query site B, determine if B ⊂ B1. This is equivalent
to the expression δ(B,B1) < −2r, where r is the radius of B. This predicate
is used during the insertion procedure in order to determine whether the
query site is trivial. The algebraic degree of the predicate is 2.

3. Given two sites B1 and B2 determine if they intersect. This predicate is used
during the deletion of a trivial site, and its algebraic degree is 2.

4. Given two sites B1 and B2 and a tritangent Voronoi circle C345 determine
the result of the orientation test CCW(b1, b2, c345), where b1, b2 and c345 are
the centers of B1, B2 and C345, respectively. This predicate is used in order
to find the first conflict of a new site B given its nearest neighbor NN(B).
The evaluation of this predicate is discussed in [10], where is it also shown
that its algebraic degree is 14.

5. Given a Voronoi edge α and a query site B, determine the type of the conflict
region of B with α. This predicate is used in order to discover the conflict
region of B with respect to the existing AW-Voronoi diagram. A method for
evaluating this predicate is presented in [10]. The corresponding algebraic
degree is shown to be 16 in the input quantities, using techniques from Sturm
sequences theory.

We have implemented two versions of our algorithm, which differ only on how
the nearest neighbor location is done. The first one does the nearest neighbor
location using the simple procedure described in Section 3. The second imple-
mentation maintains a hierarchy of AW-Delaunay graphs. The predicates are
evaluated exactly and have been implemented using two scenarios. The two sce-
narios are adapted, respectively, to number types that support the operations



n h h/n T1 T2 T1/(n log h) T2/(n log h)

10 000 10 000 1.00 4.75 3.59 1.18× 10−4 0.90× 10−4

10 000 7 973 0.80 4.46 3.65 1.14× 10−4 0.94× 10−4

10 000 5 017 0.50 3.64 3.02 0.98× 10−4 0.82× 10−4

100 000 99 995 1.00 85.17 38.42 1.70× 10−4 0.77× 10−4

100 000 79 861 0.80 83.37 38.52 1.70× 10−4 0.79× 10−4

100 000 49 614 0.50 67.15 32.19 1.43× 10−4 0.68× 10−4

1 000 000 999 351 1.00 > 36 min 425.38 − 0.71× 10−4

1 000 000 800 290 0.80 2 130.49 445.58 3.61× 10−4 0.75× 10−4

1 000 000 497 866 0.50 1 715.94 386.47 3.01× 10−4 0.68× 10−4

Table 1. The running times of the two algorithms as a function of the size n of the
input set and the number of non-trivial sites h. T1 indicates the time for the algorithm
with one level of the AW-Voronoi diagram and T2 indicates the running time for an
hierarchy of AW-Voronoi diagrams. Unless otherwise indicated, both T1 and T2 are
given in seconds. The experiments were performed on a Pentium-III 1GHz running
Linux.

{+,−,×, /,
√

} and {+,−,×} exactly. Both algorithms were implemented in
C++, following the design of the library Cgal [14]. Our C++ code also sup-
ports Cgal’s dynamic filtering [15], which is also used in our experiments. Fi-
nally, our experimental results were produced using the implementations of the
predicates that do not use square roots for their evaluation. The two algorithms
were tested on random circle sets of size n ∈ {104, 105, 106} (see Table 1). The
centers were uniformly distributed in the square [−M,M ] × [−M,M ], where
M = 106. The radii of the circles were uniformly distributed in the interval
[0, R], were R was chosen appropriately so as to achieve different ratios h/n.
In particular, we chose R so that the ratio h/n is approximately equal to the
values in the set {1.00, 0.80, 0.50}. The last column of Table 1 suggests that our
algorithm runs in time O(n log h) if we use the AW-Delaunay hierarchy. The al-
gorithm with one level of the AW-Delaunay graph performs well for small inputs,
but it is not a good choice for data sets where n is large and h = Θ(n).

6 Conclusion

This paper proposes a dynamic algorithm to compute the additively weighted
Voronoi diagram for a set of weighted points in the plane. The algorithm repre-
sents the AW-Voronoi diagram through its dual graph, the AW-Delaunay graph
and allows the user to perform dynamically insertions and deletions of sites.
Given a set of n sites, among which h have non-empty cell, our algorithm con-
structs the AW-Voronoi diagram in expected time O(nT (h) + h log h), where
T (k) is the time to locate the nearest neighbor of a site within a set of k sites
with non-empty Voronoi cell. Two methods are proposed to locate the nearest
neighbor of a given site. The first one uses no additional data structure, performs
a simple walk in the AW-Delaunay graph and locates the nearest neighbor in



O(h) worst case time. The second method maintains a hierarchy of AW-Delaunay
graphs, analog to the Delaunay hierarchy, and uses this hierarchy to perform the
nearest neighbor location. Although the analysis of the Delaunay hierarchy does
not extend to the case of the AW-Delaunay hierarchy, experimental results sug-
gest that such a hierarchy allows to answer a nearest neighbor query in O(log h)
time. Our algorithm performs deletions of non-trivial sites in almost optimal
time. However, deletions of trivial sites are not done very efficiently and this
point should be improved in further studies.

Further works also include generalization of our method to more general
classes of objects, such as convex objects. More generally, one can think of char-
acterizing classes of abstract Voronoi diagrams that can be computed using the
method proposed here, i.e., without using a history or conflict graph. Another
natural direction of future research is the generalization of the presented algo-
rithm for the construction of AW-Voronoi diagrams in higher dimensions.
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