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Abstract
We derive tight expressions for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski
sum, P1+⋯+Pr, of r convex d-polytopes P1, . . . , Pr in Rd, where d ≥ 2 and r < d, as a (recursively
defined) function on the number of vertices of the polytopes. Our results coincide with those
recently proved by Adiprasito and Sanyal [1]. In contrast to Adiprasito and Sanyal’s approach,
which uses tools from Combinatorial Commutative Algebra, our approach is purely geometric
and uses basic notions such as f - and h-vector calculus, stellar subdivisions and shellings, and
generalizes the methodology used in [10] and [9] for proving upper bounds on the f -vector of
the Minkowski sum of two and three convex polytopes, respectively. The key idea behind our
approach is to express the Minkowski sum P1 + ⋯ + Pr as a section of the Cayley polytope C
of the summands; bounding the k-faces of P1 + ⋯ + Pr reduces to bounding the subset of the
(k + r − 1)-faces of C that contain vertices from each of the r polytopes. We end our paper with
a sketch of an explicit construction that establishes the tightness of the upper bounds.
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1 Introduction

Given two sets A and B in Rd, d ≥ 2, their Minkowski sum A+B is the set {a+b ∣ a ∈ A, b ∈ B}.
The Minkowski sum definition can be extended naturally to any number of summands:
A[r] ∶= A1 +A2 +⋯ +Ar = {a1 + a2 +⋯ + ar ∣ ai ∈ Ai,1 ≤ i ≤ r}. Minkowski sums have a wide
range of applications, including algebraic geometry, computational commutative algebra,
collision detection, computer-aided design, graphics, robot motion planning and game theory,
just to name a few (see also [1], [9] and the references therein).

In this paper we focus on convex polytopes, and we are interested in computing the
worst-case complexity of their Minkowski sum. More precisely, given r d-polytopes P1, . . . , Pr
in Rd, we seek tight bounds on the number of k-faces fk(P[r]), 0 ≤ k ≤ d − 1, of their
Minkowski sum P[r] ∶= P1 +P2 +⋯+Pr. This problem, which can be seen as a generalization
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of the Upper Bound Theorem (UBT) for polytopes [14], has a history of more than 20 years.
Gritzmann and Sturmfels [7] were the first to consider the problem, and gave a complete
answer for it, for any number of d-polytopes in Rd, in terms of the number of non-parallel
edges of the r polytopes. More than 10 years later, Fukuda and Weibel [5] proved tight upper
bounds on the number of k-faces of the Minkowski sum of two 3-polytopes, expressed either
in terms of the number of vertices or number of facets of the summands. Fogel, Halperin,
and Weibel [4] extended one of the results in [5], and expressed the number of facets of the
Minkowski sum of r 3-polytopes in terms of the number of facets of the summands. Quite
recently Weibel [16] provided a relation for the number of k-faces of the Minkowski sum of
r ≥ d summands in terms of the k-faces of the Minkowski sums of subsets of size at most
d− 1 of these summands. This result should be viewed in conjunction with a result by Sanyal
[15] stating that the number of vertices of the Minkowski sum of r d-polytopes, where r ≥ d,
is strictly less than the product of the vertices of the summands (whereas for r < d this is
indeed possible). About 3 years ago, the authors of this paper proved the first tight upper
bound on the number of k-faces for the Minkowski sum of two d-polytopes in Rd, for any
d ≥ 2 and for all 0 ≤ k ≤ d − 1 (cf. [10]), a result which was subsequently extended to three
summands in collaboration with Konaxis (cf. [9]).

In a recent paper, Adiprasito and Sanyal [1] provide the complete resolution of the Upper
Bound Theorem for Minkowski sums (UBTM). In particular, they show that there exists,
what they call, a Minkowski-neighborly family of r d-polytopes N1, . . . ,Nr, with f0(Ni) = ni,
1 ≤ i ≤ r, such that for any r d-polytopes P1, P2, . . . , Pr ⊂ Rd with f0(Pi) = ni, 1 ≤ i ≤ r,
fk(P[r]) is bounded by above by fk(N[r]), for all 0 ≤ k ≤ d−1. The majority of the arguments
in the UBTM proof by Adiprasito and Sanyal make use of powerful tools from Combinatorial
Commutative Algebra. The high-level layout of the proof is analogous to McMullen’s proof
of the UBT, as well as the proofs of the UBTM in [10] and [9] for two and three summands,
respectively:

1. Consider the Cayley polytope C ⊂ Rd+r−1 of the r polytopes P1, P2, . . . , Pr, and identify
their Minkowski sum as a section of C with an appropriately defined d-flat W . Let
F ⊂ Rd+r−1 be the faces of C that intersect W , and let K be the closure of F under subface
inclusion (K is a (d + r − 1)-polytopal complex). By the Cayley trick, there is a bijection
between the faces of F and the faces of P[r]; as a result, to bound the number of faces of
P[r] it suffices to bound the number of faces of F .

2. Define the h-vector h(F) of F , and prove the Dehn-Sommerville equations for h(F),
relating its elements to the elements of h(K).

3. Prove a recurrence relation for the elements of h(F).
4. Use the recurrence relation above to prove upper bounds for hk(F), for all 0 ≤ k ≤ ⌊d+r−1

2 ⌋.
5. Prove upper bounds for hk(K), for all 0 ≤ k ≤ ⌊d+r−1

2 ⌋.
6. Provide necessary and sufficient conditions under which the elements of both h(F) and
h(K) are maximized for all k. These conditions are conditions on the lower half of the
h-vector of F . Due to the relation between the f - and h-vectors of F , these are also
conditions for the maximality of the elements of f(F).

7. Describe a family of polytopes for which the necessary and sufficient conditions hold;
clearly, such a family establishes the tightness of the upper bounds.

In Adiprasito and Sanyal’s proof steps 2, 3 and 4 are proved by introducing a powerful new
theory that they call the relative Stanley-Reisner theory for simplicial complexes. The focus
of this theory is on relative simplicial complexes, and is able to reveal properties of such
complexes not only under topological restrictions, but also account for their combinatorial
and geometric structure. To apply their theory, Adiprasito and Sanyal consider the simplicial
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complex K and then define F as a relative simplicial complex (they call them the Cayley and
relative Cayley complex, respectively). They then apply their relative Stanley-Reisner theory
to F to establish the Dehn-Sommerville equations of step 2, the recurrence relation of step
3 and finally the upper bounds for h(F) in 4. Steps 5 and 6 are done by clever algebraic
manipulation of the h-vectors of F and K, by exploiting the geometric properties of K, and
by making use of the recurrence relation in step 3. Step 7 is reduced to results by Matschke,
Pfeifle, and Pilaud [13] and Weibel [16].

Our contribution. In what follows, we provide a completely geometric proof of the UBTM,
that generalizes the technique we used in [10] and [9] for two and three summands to the case
of r summands, when r < d. Instead of relying on algebraic tools, we use basic notions from
combinatorial geometry, such as stellar subdivisions and shellings. Our proof, in essence,
differs from that of Adiprasito and Sanyal in steps 2, 3, 4 and 5 of the layout above (the
remaining steps do not use tools from Combinatorial Commutative Algebra anyway).

In more detail, to prove the various intermediate results, towards the UBTM, we consider
the Cayley polytope C and we perform a series of stellar subdivisions to get a simplicial
polytope Q. From the analysis of the combinatorial structure of Q, we derive the Dehn-
Sommerville equations of step 2 (see Sections 3 and 4), as well as the recurrence relation of
step 3 (see Section 5). This recurrence relation is then used for establishing the upper bounds
for the elements of h(F) and h(K) (see Section 6). We end with a construction similar to
the one presented in [13, Theorem 2.6], that establishes the tightness of the upper bounds
(see Section 7). Due to space limitations, the majority of the proofs have been omitted; the
interested reader may refer to the full version of the paper [11].

2 Preliminaries

Let P be a d-dimensional polytope, or d-polytope for short. Its dimension is the dimension
of its affine span. The faces of P are ∅, P , and the intersections of P with its supporting
hyperplanes. The ∅ and P faces are called improper, while the remaining faces are called
proper. Each face of P is itself a polytope, and a face of dimension k is called a k-face. Faces
of P of dimension 0, 1, d−2 and d−1 are called vertices, edges, ridges, and facets, respectively.

A d-dimensional polytopal complex or, simply, d-complex, C is a finite collection of
polytopes in Rd such that (i) ∅ ∈ C , (ii) if P ∈ C then all the faces of P are also in C and
(iii) the intersection P ∩Q for two polytopes P and Q in C is a face of both. The dimension
dim(C ) of C is the largest dimension of a polytope in C . A polytopal complex is called pure
if all its maximal (with respect to inclusion) faces have the same dimension. In this case the
maximal faces are called the facets of C . A polytopal complex is simplicial if all its faces
are simplices. A polytopal complex C ′ is called a subcomplex of a polytopal complex C if
all faces of C ′ are also faces of C . For a polytopal complex C , the star of v in C , denoted
by star(v,C ), is the subcomplex of C consisting of all faces that contain v, and their faces.
The link of v, denoted by C /v, is the subcomplex of star(v,C ) consisting of all the faces of
star(v,C ) that do not contain v.

A d-polytope P , together with all its faces, forms a d-complex, denoted by C (P ). The
polytope P itself is the only maximal face of C (P ), i.e., the only facet of C (P ), and is called
the trivial face of C (P ). Moreover, all proper faces of P form a pure (d − 1)-complex, called
the boundary complex C (∂P ), or simply ∂P , of P . The facets of ∂P are just the facets of P .

For a (d − 1)-complex C , its f -vector is defined as f(C ) = (f−1, f0, f1, . . . , fd−1), where
fk = fk(C ) denotes the number of k-faces of P and f−1(C ) ∶= 1 corresponds to the empty face
of C . From the f -vector of C we define its h-vector as the vector h(C ) = (h0, h1, . . . , hd),



4 A geometric approach for the upper bound theorem for Minkowski sums

where hk = hk(C ) ∶= ∑
k
i=0(−1)k−i(d−i

d−k
)fi−1(C ), 0 ≤ k ≤ d.

Denote by Y a generic subset of faces of a polytopal complex C , and define its dimension
dim(Y) as the maximum of the dimensions of its faces. Let dim(Y) = δ − 1; then we may
define (if not already properly defined), the h-vector h(Y) of Y as:

hk(Y) =
δ

∑
i=0

(−1)k−i(δ − i
δ − k

)fi−1(Y). (2.1)

We can further define the m-order g-vector of Y according to the following recursive formula:

g
(m)

k (Y) =

⎧⎪⎪
⎨
⎪⎪⎩

hk(Y), m = 0,
g
(m−1)
k (Y) − g

(m−1)
k−1 (Y), m > 0.

(2.2)

Clearly, g(m)(Y) is nothing but the backward m-order finite difference of h(Y); therefore:

g
(m)

k (Y) =
m

∑
i=0

(−1)i(m
i
)hk−i(Y), k,m ≥ 0. (2.3)

Observe that for m = 0 we get the h-vector of Y, while for m = 1 we get what is typically
defined as the g-vector.

The relation between the f - and h-vector of Y is better manipulated using generating
functions. We define the f -polynomial and h-polynomial of Y as follows:

f(Y; t) =
δ

∑
i=0
fi−1t

δ−i
= fδ−1 + fδ−2t+⋯+ f−1t

δ, h(Y; t) =
δ

∑
i=0
hit

δ−i
= hδ + hδ−1t+⋯+ h0t

δ,

where, we simplified fi(Y) and hi(Y) to fi and hi. In this set-up, the relation between the
f -vector and h-vector (cf. (2.1)) can be expressed as:

f(Y; t) = h(Y; t + 1), or, equivalently, as h(Y; t) = f(Y; t − 1). (2.4)

2.1 The Cayley embedding, the Cayley polytope and the Cayley trick
Let P1, P2, . . . , Pr be r d-polytopes with vertex sets V1,V2, . . . ,Vr, respectively. Let e0,e1,

. . . ,er−1 be an affine basis of Rr−1 and call µi ∶ Rd → Rr−1 × Rd the affine inclusion given
by µi(x) = (ei−1,x), 1 ≤ i ≤ r. The Cayley embedding C(V1,V2, . . . ,Vr) of the point sets V1,

V2, . . . ,Vr is defined as C(V1,V2, . . . ,Vr) = ⋃
r
i=1 µi(Vi). The polytope corresponding to the

convex hull conv(C(V1,V2, . . . ,Vr)) of the Cayley embedding C(V1,V2, . . . ,Vr) of V1,V2, . . . ,

Vr is typically referred to as the Cayley polytope of P1, P2, . . . , Pr.
The following lemma, known as the Cayley trick for Minkowski sums, relates the Minkowski

sum of the polytopes P1, P2, . . . , Pr with their Cayley polytope.

▸ Lemma 2.1 ([8, Lemma 3.2]). Let P1, P2, . . . , Pr be r d-polytopes with vertex sets V1,V2,

. . . ,Vr ⊂ Rd. Moreover, let W be the d-flat defined as { 1
r
e0 + ⋯ + 1

r
er−1} ×Rd ⊂ Rr−1 ×Rd.

Then, the Minkowski sum P[r] has the following representation as a section of the Cayley
embedding C(V1,V2, . . . ,Vr) in Rr−1 ×Rd:

P[r] ≅ C(V1,V2, . . . ,Vr) ∩W

∶= {conv{(ei−1,v) ∣ 1 ≤ i ≤ r} ∩W ∶ (ei−1,v) ∈ C(V1,V2, . . . ,Vr),1 ≤ i ≤ r}.

Moreover, F is a facet of P[r] if and only if it is of the form F = F ′ ∩W for a facet F ′ of
C(V1,V2, . . . ,Vr) containing at least one point (ei−1,v) for all 1 ≤ i ≤ r.
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Let C[r] be the Cayley polytope of P1, P2, . . . , Pr, and call F[r] the set of faces of C[r]
that have non-empty intersection with the d-flat W . A direct consequence of Lemma 2.1 is a
bijection between the (k − 1)-faces of W and the (k − r)-faces of F[r], for r ≤ k ≤ d + r − 1.
This further implies that:

fk−1(F[r]) = fk−r(P[r]), for all r ≤ k ≤ d + r − 1. (2.5)

In what follows, to keep the notation lean, we identify Vi ∶= µi(Vi) with its pre-image Vi.
For any ∅ ⊂ R ⊆ [r], we denote by CR the Cayley polytope of the polytopes Pi where i ∈ R. In
particular, if R = {i} for some i ∈ [r], then C{i} ≡ Pi. We shall assume below that C[r] is “as
simplicial as possible”. This means that we consider all faces of C[r] to be simplicial, except
possibly for the trivial faces {CR}

1, ∅ ⊂ R ⊆ [r]. Otherwise, we can employ the so called
bottom-vertex triangulation [12, Section 6.5, pp. 160–161] to triangulate all proper faces of
C[r] except for the trivial ones, i.e., {CR}, ∅ ⊂ R ⊆ [r]. The resulting complex is polytopal
(cf. [2]) with all its faces being simplices, except possibly for the trivial ones. Moreover, it
has the same number of vertices as C[r], while the number of its k-faces is never less than
the number of k-faces of C[r].

For each ∅ ⊂ R ⊆ [r], we denote by FR the set of faces of CR having at least one vertex
from each Vi, i ∈ R, and we call it the set of mixed faces of CR. We trivially have that
F{i} ≡ ∂Pi. We define the dimension of FR to be the maximum dimension of the faces in
FR, i.e., dim(FR) = maxF ∈FR dim(F ) = d + ∣R∣ − 2. Under the “as simplicial as possible”
assumption above, the faces in FR are simplices. We denote by KR the closure, under subface
inclusion, of FR. By construction, KR contains: (1) all faces in FR, (2) all faces that are
subfaces of faces in FR, and (3) the empty set. It is easy to see that KR does not contain any
of the trivial faces {CS}, ∅ ⊂ S ⊆ R, and thus, KR is a pure simplicial (d + ∣R∣ − 2)-complex.
It is also easy to verify that:

fk(KR) = ∑
∅⊂S⊆R

fk(FS), −1 ≤ k ≤ d + ∣R∣ − 2, (2.6)

where in order for the above equation to hold for k = −1, we set f−1(FS) = (−1)∣S∣−1 for
all ∅ ⊂ S ⊆ R. In what follows we use the convention that fk(FR) = 0, for any k < −1 or
k > d + ∣R∣ − 2.

A general form of the Inclusion-Exclusion Principle states that if f and g are two
functions defined over the subsets of a finite set A, such that f(A) = ∑∅⊂B⊆A g(B), then
g(A) = ∑∅⊂B⊆A(−1)∣A∣−∣B∣f(B) [6, Theorem 12.1]. Applying this principle to (2.6), we deduce
that:

fk(FR) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣ fk(KS), −1 ≤ k ≤ d + ∣R∣ − 2. (2.7)

In the majority of our proofs that involve evaluation of f - and h-vectors, we use generating
functions as they significantly simplify calculations. The starting point is to evaluate f(KR; t)
(resp., f(FR; t)) in terms of the generating functions f(FS ; t) (resp., f(KS ; t)), ∅ ⊂ S ⊆ R,
for each fixed choice of ∅ ⊂ R ⊆ [r]. Then, using (2.4) we derive the analogous relations
between their h-vectors.

1 We denote by {CR} the polytope CR as a trivial face itself (without its non-trivial faces).
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Recalling that dim(KR) = d + ∣R∣ − 2 and dim(FS) = d + ∣S∣ − 2 we have:

f(KR; t) =
d+∣R∣−1
∑
k=0

fk−1(KR)t
d+∣R∣−1−k (2.6)

=

d+∣R∣−1
∑
k=0

∑
∅⊂S⊆R

fk−1(FS)t
d+∣R∣−1−k

= ∑
∅⊂S⊆R

t∣R∣−∣S∣
d+∣R∣−1
∑
k=0

fk−1(FS)t
d+∣S∣−1−k

= ∑
∅⊂S⊆R

t∣R∣−∣S∣f(FS ; t).
(2.8)

Rewriting the above relation as t−∣R∣f(KR; t) = ∑∅⊂S⊆R t
−∣S∣f(FS ; t) and using Möbious

inversion, we get:

f(FR; t) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣t∣R∣−∣S∣f(KS ; t). (2.9)

Setting t ∶= t − 1 in (2.8) we have:

h(KR; t) = f(KR; t − 1) = ∑
∅⊂S⊆R

(t − 1)∣R∣−∣S∣f(FS ; t − 1)

= ∑
∅⊂S⊆R

(t − 1)∣R∣−∣S∣h(FS ; t) = ∑
∅⊂S⊆R

g(∣R∣−∣S∣)
(FS ; t).

(2.10)

Similarly, from (2.9) we obtain:

h(FR; t) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣g(∣R∣−∣S∣)
(KS ; t). (2.11)

Comparing coefficients in the above generating functions, we deduce that:

hk(KR) = ∑
∅⊂S⊆R

g
(∣R∣−∣S∣)
k (FS), for all 0 ≤ k ≤ d + ∣R∣ − 1, and (2.12)

hk(FR) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣g
(∣R∣−∣S∣)
k (KS), for all 0 ≤ k ≤ d + ∣R∣ − 1. (2.13)

3 The construction of the auxiliary simplicial polytope Q[r]

The proper faces of the Cayley polytope C[r] of P1, . . . , Pr are the faces in each FR, ∅ ⊂ R ⊆ [r]

as well as all trivial faces {CR} with ∅ ⊂ R ⊂ [r]. Since the latter are not necessarily simplices,
the Cayley polytope C[r] may not be simplicial. In order to exploit the combinatorial structure
of C[r], we add auxiliary points on C[r] so that the resulting polytope, denoted by Q[r], is
simplicial.

The main tool for describing our construction is stellar subdivisions. Let P ⊂ Rd be a
d-polytope, and consider a point yF in the relative interior of a face F of ∂P . The stellar
subdivision st(yF , ∂P ) of ∂P over F , replaces F by the set of faces {yF , F

′} where F ′ is a
non-trivial face of F . It is a well-known fact that stellar subdivisions preserve polytopality
(cf. [3, pp. 70–73]), in the sense that the newly constructed complex is combinatorially
equivalent to a polytope each facet of which lies on a distinct supporting hyperplane.

Our goal is to triangulate each face {CR}, ∅ ⊂ R ⊂ [r], of C[r] so that the boundaries of
the resulting complexes, denoted by QS , ∅ ⊂ S ⊆ [r], are simplicial polytopes. We obtain
this by performing a series of stellar subdivisions. First set QS ∶= CS , for all ∅ ⊂ S ⊆ [r].
Then, we add auxiliary vertices as follows:

for s from 1 to r − 1
for all S ⊆ [r] with ∣S∣ = s

choose yS ∈ relint(QS)
for all T with S ⊂ T ⊆ [r]

QT ∶= st(yS ,QT )

(3.1)
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The recursive step of the previous definition is well defined due to the fact that for any fixed
s, the order in which we add the auxiliary points yS is independent of the S chosen, since the
relative interiors of all QS with ∣S∣ = s are pairwise disjoint. At the end of the s-th iteration,
the faces of each QT of dimension less than d+ s− 1 are simplices. At the end of the iterative
procedure above, and in view of the fact that stellar subdivisions preserve polytopality, the
above construction results in simplicial (d + ∣R∣ − 1)-polytopes QR, for all ∅ ⊂ R ⊆ [r].

The next lemma shows how the iterated stellar subdivisions performed in (3.1) are
captured in the enumerative structure of QR.

▸ Lemma 3.1. For all ∅ ⊂ R ⊆ [r] we have:

f(∂QR; t) = f(FR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣

∑
i=0

i!Si+1
∣R∣−∣S∣+1t

∣R∣−∣S∣−if(FS ; t), (3.2)

f(∂QR; t) = f(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−2
∑
i=0

(i + 1)!Si+1
∣R∣−∣S∣t

∣R∣−∣S∣−if(KS ; t), (3.3)

where Skm = 1
k! ∑

k
i=0(−1)k−i(k

i
)im, m ≥ k ≥ 0, are the Stirling numbers of the second kind.

The h-vector relations stemming from the f -vector relations above are the subject of the
following lemma.

▸ Lemma 3.2. For all ∅ ⊂ R ⊆ [r] we have:

h(∂QR; t) = h(FR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

tj+1 h(FS ; t), (3.4)

h(∂QR; t) = h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

tj h(KS ; t), (3.5)

where Ekm = ∑
k
i=0(−1)i(m+1

i
)(k + 1 − i)m, m ≥ k + 1 > 0, are the Eulerian numbers.

4 The Dehn-Sommerville equations

A very important structural property of the Cayley polytope CR is, what we call, the
Dehn-Sommerville equations. For a single polytope they reduce to the well-known Dehn-
Sommerville equations, whereas for two or more summands they relate the h-vectors of
the sets FR and KR. The Dehn-Sommerville equations for CR are one of the major key
ingredients for establishing our upper bounds, as they permit us to reason for the maximality
of the elements of h(FR) and h(KR) by considering only the lower halves of these vectors.

▸ Theorem 4.1 (Dehn-Sommerville equations). Let CR be the Cayley polytope of the d-polytopes
Pi, i ∈ R. Then, the following relations hold:

td+∣R∣−1h(FR; 1
t
) = h(KR; t) (4.1)

or, equivalently,

hd+∣R∣−1−k(FR) = hk(KR), 0 ≤ k ≤ d + ∣R∣ − 1. (4.2)

Proof. We prove our claim by induction on the size of R, the case ∣R∣ = 1 being the Dehn-
Sommerville equations for a d-polytope. We next assume that our claim holds for all ∅ ⊂ S ⊂ R
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and prove it for R. The ordinary Dehn-Sommerville relations, written in generating function
form, for the (simplicial) (d + ∣R∣ − 1)-polytope QR imply that:

h(∂QR; t) = td+∣R∣−1h(∂QR; 1
t
). (4.3)

In view of relation (3.4) of Lemma 3.2, the right-hand side of (4.3) becomes:

td+∣R∣−1h(FR; 1
t
) + td+∣R∣−1

∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

t−j−1h(FS ; 1
t
). (4.4)

Using relation (3.5), along with the induction hypothesis, the left-hand side of (4.3) becomes:

h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

tjh(KS ; t) (4.5)

= h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

t∣R∣−∣S∣−j−1h(KS ; t) (4.6)

= h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

t∣R∣−∣S∣−j−1td+∣S∣−1h(FS ; 1
t
)

= h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

td+∣R∣−j−2h(FS ; 1
t
), (4.7)

where to go from (4.5) to (4.6) we changed variables and used the well-known symmetry of
the Eulerian numbers, namely, Ekm = Em−k−1

m , for all m ≥ k + 1 > 0.
Now, substituting (4.4) and (4.7) in (4.3), we deduce that td+∣R∣−1h(FR; 1

t
) = h(KR; t),

which is, coefficient-wise, equivalent to (4.2). ◂

5 The recurrence relation for h(FR)
The subject of this section is the generalization, for the h-vector of FR, ∅ ⊂ R ⊆ [r], of the
recurrence relation

(k + 1)hk+1(∂P ) + (d − k)hk(∂P ) ≤ nhk(∂P ), 0 ≤ k ≤ d − 1, (5.1)

that holds true for any simplicial d-polytope P ⊂ Rd. This is the content of the next theorem.

▸ Theorem 5.1 (Recurrence inequality). For any ∅ ⊂ R ⊆ [r] we have:

hk+1(FR) ≤
nR − d − ∣R∣ + 1 + k

k + 1
hk(FR) + ∑

i∈R

ni
k + 1

gk(FR∖{i}), 0 ≤ k ≤ d+ ∣R∣ − 2, (5.2)

where: (1) nR = ∑i∈R ni, and, (2) gk(F∅) = gk(∅) = 0, for all k.

Sketch of proof. To prove the inequality in the statement of the theorem, we generalize
McMullen’s steps in the proof of his Upper Bound theorem [14].

Our starting point is relation (5.1) applied to the simplicial (d + ∣R∣ − 1)-polytope QR,
expressed in terms of generating functions:

(d + ∣R∣ − 1)h(∂QR; t) + (1 − t)h′(∂QR; t) = ∑
v∈vert(∂QR)

h(∂QR/v; t). (5.3)
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Exploiting the combinatorial structure of QR in order to express: (1) h(∂QR) in terms of
h(FS), ∅ ⊂ S ⊆ R, and (2) h(∂QR/v) in terms of h(FS/v), ∅ ⊂ S ⊆ R, and h(FS), ∅ ⊂ S ⊂ R,
relation (5.3) yields:

(d + ∣R∣ − 1)h(FR; t) + (1 − t)h′(FR; t) = ∑
v∈VR

h(FR/v; t),

the element-wise form of which is:

(k + 1)hk+1(FR) + (d + ∣R∣ − 1 − k)hk(FR) = ∑
v∈VR

hk(FR/v), 0 ≤ k ≤ d + ∣R∣ − 2.

Noticing that hk(FR/v) is equal to ∑∅⊂S⊆R(−1)∣R∣−∣S∣
∑v∈VS g

(∣R∣−∣S∣)
k (KS/v) (by the Inclusion-

Exclusion Principle; see also relations (2.12) and (2.13)), and using a particular shelling of
∂QR, we show that:

∑
∅⊂S⊆R

(−1)∣R∣−∣S∣
∑
v∈VS

g
(∣R∣−∣S∣)
k (KS/v) ≤ ∑

∅⊂S⊆R

(−1)∣R∣−∣S∣
∑
v∈VS

g
(∣R∣−∣S∣)
k (KS).

The right-hand side of the above relation simplifies to nR hk(FR)+∑i∈R ni gk(FR∖{i}), which
in turn suggests the following inequality:

(k + 1)hk+1(FR) + (d + ∣R∣ − 1 − k)hk(FR) ≤ nR hk(FR) + ∑
i∈R

ni gk(FR∖{i}) (5.4)

that holds true for all 0 ≤ k ≤ d + ∣R∣ − 2. Solving in terms of hk+1(FR) results in (5.2). ◂

6 Upper bounds

Let S1, . . . , Sr be a partition of a set S into r sets. We say that A ⊆ ⋃
1≤i≤r

Si is a spanning
subset of S if A ∩ Si ≠ ∅ for all 1 ≤ i ≤ r.

▸ Definition 6.1. Let Pi, i ∈ R, be d-polytopes with vertex sets Vi, i ∈ R. We say that their
Cayley polytope CR isR-neighborly if every spanning subset of ⋃i∈R Vi of size ∣R∣ ≤ ` ≤ ⌊

d+∣R∣−1
2 ⌋

is a face of CR (or, equivalently, a face of FR). We say that the Cayley polytope CR is
Minkowski-neighborly if, for every ∅ ⊂ S ⊆ R, the Cayley polytope CS is S-neighborly.

The following lemma characterizes R-neighborly Cayley polytopes in terms of the f - and
h-vector of FR.

▸ Lemma 6.2. The following are equivalent:

(i) CR is R-neighborly,
(ii) f`−1(FR) = ∑∅⊂S⊆R(−1)∣R∣−∣S∣(

nS
`
), for all 0 ≤ ` ≤ ⌊

d+∣R∣−1
2 ⌋,

(iii) h`(FR) = ∑∅⊂S⊆R(−1)∣R∣−∣S∣(
nS−d−∣R∣+`

`
), for all 0 ≤ ` ≤ ⌊

d+∣R∣−1
2 ⌋,

where ni is the number of vertices of Pi and nS = ∑i∈S ni.

From the recurrence relation in Theorem 5.1 we arrive at the following theorem. The
proof is by induction on k.

▸ Theorem 6.3. For any ∅ ⊂ R ⊆ [r] and 0 ≤ k ≤ d + ∣R∣ − 1, we have:

gk(FR) ≤ ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣(
nS−d−∣R∣−1+k

k
), and (6.1)

hk(FR) ≤ ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣(
nS−d−∣R∣+k

k
), (6.2)

where nS = ∑i∈S ni. Equalities hold for all 0 ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋ if and only if the Cayley polytope
CR is R-neighborly.
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Before proceeding with proving upper bounds for the h-vectors of FR and KR we need to
define the following functions.

▸ Definition 6.4. Let d ≥ 2, ∅ ⊂ R ⊆ [r], m ≥ 0, 0 ≤ k ≤ d + ∣R∣ − 1, and ni ∈ N, i ∈ R, with
ni ≥ d + 1. We define the functions Φ(m)

k,d (nR) and Ψk,d(nR) via the following conditions:

1. Φ(0)
k,d(nR) = ∑∅⊂S⊆R(−1)∣R∣−∣S∣(

nS−d−∣R∣+k
k

), 0 ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋,

2. Φ(m)

k,d (nR) = Φ(m−1)
k,d (nR) −Φ(m−1)

k−1,d (nR), m > 0,

3. Ψk,d(nR) = ∑∅⊂S⊆R Φ(∣R∣−∣S∣)
k,d (nS),

4. Φ(0)
k,d(nR) = Ψd+∣R∣−1−k,d(nR),

where nR stands for the ∣R∣-dimensional vector whose elements are the values ni, i ∈ R.

Notice that Φ(0)
k,d(nR) and Ψk,d(nR) are well defined, though in a recursive manner (in

the size of R), since for any k > ⌊
d+∣R∣−1

2 ⌋, we have:

Φ(0)
k,d(nR) = Ψd+∣R∣−1−k,d(nR) = ∑

∅⊂S⊆R

Φ(∣R∣−∣S∣)

d+∣R∣−1−k,d(nS)

= Φ(0)
d+∣R∣−1−k,d(nR) + ∑

∅⊂S⊂R

Φ(∣R∣−∣S∣)

d+∣R∣−1−k,d(nS)

= ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣(
nS−k−1
d+∣R∣−1−k) + ∑

∅⊂S⊂R

Φ(∣R∣−∣S∣)

d+∣R∣−1−k,d(nS), (6.3)

where the second sum in (6.3) is to be understood as 0 when ∣R∣ = 1. In other words,
Φ(0)
k,d(nR), and, thus, also Φ(m)

k,d (nR) for any m > 0, is fully defined for some R and any k,
once we know the values Φ(`)

k,d(nS) for all ∅ ⊂ S ⊂ R, for all 0 ≤ k ≤ d + ∣S∣ − 1, and for all
1 ≤ ` ≤ ∣R∣ − 1. Moreover, it is easy to verify that Φ(0)

k,d(nR) satisfies the following recurrence
relation:

Φ(0)
k+1,d(nR) =

nR − d − ∣R∣ + k + 1
k + 1

Φ(0)
k,d(nR)+∑

i∈R

ni
k + 1

Φ(1)
k,d(nR∖{i}), 0 ≤ k < ⌊

d+∣R∣−1
2 ⌋. (6.4)

The next theorem provides upper bounds for the h-vectors of FR and KR, as well as
necessary and sufficient conditions for these upper bounds to be attained.

▸ Theorem 6.5. For all 0 ≤ k ≤ d + ∣R∣ − 1, we have:

(i) hk(FR) ≤ Φ(0)
k,d(nR),

(ii) hk(KR) ≤ Ψk,d(nR).
Equalities hold for all k if and only if the Cayley polytope CR is Minkowski-neighborly.

Proof. To prove the upper bounds we use recursion on the size of ∣R∣. For ∣R∣ = 1, the
result for both hk(FR) and hk(KR) comes from the UBT for d-polytopes. For ∣R∣ > 1, we
assume that the bounds hold for all S with ∅ ⊂ S ⊂ R, and for all k with 0 ≤ k ≤ d + ∣S∣ − 1.
Furthermore, the upper bound for hk(FR) for k ≤ ⌊

d+∣R∣−1
2 ⌋ is immediate from Theorem 6.3.

To prove the upper bound for hk(KR), 0 ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋, we use the following expansion for
hk(KR) (cf. [1, Lemma 5.14]):

hk(KR) =
⌊
∣R∣
2 ⌋

∑
j=0

∣R∣−2j
∑

s=c−2j−1
∑
S⊆R
∣S∣=s

(
∣R∣ − s

2j
)(hk−2j(FS) −

1
2j + 1 ∑i∈S

hk−2j−1(FS∖{i}))

+

⌊
∣R∣
2 ⌋

∑
j=0

∑
S⊂R

∣S∣=c−2j+1

(
∣R∣ − ∣S∣

2j
)(hk−2j(FS) −

1
2j + 1 ∑i∈S

hk−2j−1(FS∖{i})) ,

(6.5)
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where c depends on k, d and ∣R∣. Under the assumption that r < d, it is easy to show that:

hk−2j(FS) −
1

2j + 1 ∑i∈S
hk−2j−1(FS∖{i}) ≤ Φ(0)

k−2j,d(nS) −
1

2j + 1 ∑i∈S
Φ(0)
k−2j−1,d(nS∖{i}). (6.6)

Substituting the upper bound from (6.6) in (6.5), and reversing the derivation logic for (6.5),
we deduce that hk(KR) ≤ Ψk,d(nR).

For k > ⌊
d+∣R∣−1

2 ⌋ we have:

hk(FR) = hd+∣R∣−1−k(KR) ≤ Ψd+∣R∣−1−k,d(nR) = Φ(0)
k,d(nR), and,

hk(KR) = hd+∣R∣−1−k(FR) ≤ Φ(0)
d+∣R∣−1−k,d(nR) = Ψk,d(nR).

The necessary and sufficient conditions are easy consequences of the equality claim in
Theorem 6.3. ◂

For any d ≥ 2, ∅ ⊂ R ⊆ [r], 0 ≤ k ≤ d + ∣R∣ − 1, and ni ∈ N, i ∈ R, with ni ≥ d + 1, let

Ξk,d(nR) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣fk(Cd+∣R∣−1(nS)) +
⌊
d+∣R∣−2

2 ⌋

∑
i=0

(
i

k−d−∣R∣+1+i) ∑
∅⊂S⊂R

Φ(∣R∣−∣S∣)
i,d (nS),

where Cδ(n) stands for the cyclic δ-polytope with n vertices. It is straightforward to verify
that for 0 ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋, Ξk,d(nR) simplifies to ∑∅⊂S⊆R(−1)∣R∣−∣S∣(

nS
k
). We are finally ready

to state and prove the main result of the paper.

▸ Theorem 6.6. Let P1, . . . , Pr be r d-polytopes, r < d, with n1, . . . , nr vertices respectively.
Then, for all 1 ≤ k ≤ d, we have:

fk−1(P[r]) ≤ Ξk+r,d(n[r]).

Equality holds for all 0 ≤ k ≤ d if and only if the Cayley polytope C[r] of P1, . . . , Pr is
Minkowski-neighborly.

Proof. We start by recalling that:

fk−1(F[r]) =
d+r−1
∑
i=0

(
d+r−1−i
k−i

)hi(F[r]).

In view of Theorem 6.5, the above expression is bounded from above by:

⌊ d+r−1
2 ⌋

∑
i=0

(
d+r−1−i
k−i

)Φ(0)
i,d (n[r]) +

d+r−1
∑

i=⌊ d+r−1
2 ⌋+1

(
d+r−1−i
k−i

)Φ(0)
i,d (n[r]) (6.7)

=

⌊ d+r−1
2 ⌋

∑
i=0

(
d+r−1−i
k−i

)Φ(0)
i,d (n[r]) +

⌊ d+r−2
2 ⌋

∑
i=0

(
i

k−d−r+1+i) ∑
∅⊂R⊆[r]

Φ(r−∣R∣)

i,d (nR) (6.8)

=

d+r−1
2

∑
∗

i=0
((
d+r−1−i
k−i

) + (
i

k−d−r+1+i)) ∑
∅⊂R⊆[r]

(−1)r−∣R∣(
nR−d−r+i

i
)

+

⌊ d+r−2
2 ⌋

∑
i=0

(
i

k−d−r+1+i) ∑
∅⊂R⊂[r]

Φ(r−∣R∣)

i,d (nR) (6.9)

= ∑
∅⊂R⊆[r]

(−1)r−∣R∣fk(Cd+r−1(nR)) +
⌊ d+r−2

2 ⌋

∑
i=0

(
j

k−d−r+1+i) ∑
∅⊂R⊂[r]

Φ(r−∣R∣)

i,d (nR), (6.10)

where to go:
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from (6.7) to (6.8) we changed the variable of the second sum from i to d + r − 1 − i, and
used conditions 3 and 4 of Definition 6.4,
from (6.8) to (6.9) we wrote the explicit expression of Φ(0)

i,d (n[r]) from relation (6.3),
from (6.9) to (6.10) we used that the number of (k−1)-faces of a cyclic δ-polytope with n

vertices is ∑
∗
δ
2
i=0 ((

δ−i
k−i

) + (
i

k−δ+i
)) (

n−δ−1+i
i

), where
δ
2

∑
∗

i=0
Ti denotes the sum of the elements

T0, T1, . . . , T⌊ δ2 ⌋ where the last term is halved if δ is even.

Finally, observing that the expression in (6.10) is nothing but Ξk,d(n[r]), and recalling
that fk−1(F[r]) = fk−r(P[r]), we arrive at the upper bound in the statement of the theorem.
The equality claim is immediate from Theorem 6.5. ◂

7 Tight bound construction

In this section we show that the bounds in Theorem 6.6 are tight. Before getting into the
technical details, we outline our approach. We start by considering the (d−r+1)-dimensional
moment curve, which we embed in r distinct subspaces of Rd. We consider the r copies of the
(d− r + 1)-dimensional moment curve as different curves, and we perturb them appropriately,
so that they become d-dimensional moment-like curves. The perturbation is controlled via a
non-negative parameter ζ, which will be chosen appropriately. We then choose points on
these r moment-like curves, all parameterized by a positive parameter τ , which will again be
chosen appropriately. These points are the vertices of r d-polytopes P1, P2, . . . , Pr, and we
show that, for all ∅ ⊂ R ⊆ [r], the number of (k − 1)-faces of FR, where ∣R∣ ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋,

becomes equal to Ξk,d(nR) for small enough positive values of ζ and τ . Our construction
produces projected prodsimplicial-neighborly polytopes (cf. [13]). For ζ = 0 our polytopes are
essentially the same as those in [13, Theorem 2.6], while for ζ > 0 we get deformed versions
of those polytopes. The positivity of ζ allows us to ensure the tightness of the upper bound
on fk(P[r]), not only for small, but also for large values of k.

At a more technical level, the proof that fk−1(FR) = Ξk,d(nR), for all ∣R∣ ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋,
is performed in two steps. We first consider the cyclic (d − r + 1)-polytopes P̂1, . . . , P̂r,
embedded in appropriate subspaces of Rd. The P̂i’s are the unperturbed, with respect to ζ,
versions of the d-polytopes P1, P2, . . . , Pr (i.e., the polytope P̂i is the polytope we get from Pi,
when we set ζ equal to zero). For each ∅ ⊂ R ⊆ [r] we denote by ĈR the Cayley polytope of
P̂i, i ∈ R, seen as a polytope in Rd, and we focus on the set F̂R of its mixed faces. Recall that
the polytopes P̂i, i ∈ R, are parameterized by the parameter τ ; we show that there exists a
sufficiently small positive value τ⋆ for τ , for which the number of (k − 1)-faces of F̂R is equal
to Ξk,d(nR) for all ∣R∣ ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋. For τ equal to τ⋆, we consider the polytopes P1, P2,

. . . , Pr (with τ set to τ⋆), and show that for sufficiently small ζ (denoted by ζ◊), fk−1(FR)

is equal to Ξk,d(nR).
In the remainder of this section we describe our construction in detail. For each 1 ≤ i ≤ r,

we define the d-dimensional moment-like curve2:

γi(t; ζ) =
i−th coordinate

(ζtd−r+2, . . . , ζtd−r+i, t, ζtd−r+i+2, . . . , ζtd+1, t2, . . . , td−r+1
),

and the d-polytope

2 The curve γi(t; ζ), ζ > 0, is the image under an invertible linear transformation, of the curve γ̂i(t) =
(t, t2, . . . , td−r+i, td−r+i+2, . . . , td+1

). Polytopes whose vertices are n distinct points on this curve are
combinatorially equivalent to the cyclic d-polytope with n vertices.
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Pi ∶= conv ({γi(yi,1; ζ), . . . ,γi(yi,ni ; ζ)}) , (7.1)

where the parameters yi,j belong to the sets Yi = {yi,1, . . . , yi,ni}, 1 ≤ i ≤ r, whose elements
are determined as follows. Choose

n[r] + d + r arbitrary real numbers xi,j and Ms, such that:
0 < xi,1 < xi,1 + ε < xi,2 < xi,2 + ε < ⋯ < xi,ni + ε, for 1 ≤ i ≤ r − 1,
0 < xr,1 < xr,1 + ε < xr,2 < xr,2 + ε < ⋯ < xr,nr + ε <M

′
1 < ⋯ <M ′

d+r,
where ε > 0 is sufficiently small and xi,ni < xi+1,1 for all i, and
r non-negative integers β1, β2, . . . , βr, such that β1 > β2 > ⋯ > βr−1 > βr ≥ 0.

We then set yi,j ∶= xi,jτ
βi , ỹi,j ∶= (xi,j + ε)τ

βi and Mi ∶= M ′
iτ
βr , where τ is a positive

parameter. The yi,j ’s, ỹi,j ’s and Mi’s are used to define determinants whose value is positive
for a small enough value of τ . The positivity of these determinants is crucial in defining
supporting hyperplanes for the Cayley polytopes ĈR and CR in Lemmas 7.1 and 7.2 below.

Next, for each 1 ≤ i ≤ r, we define P̂i ∶= limζ→0+ Pi. Clearly, each P̂i is a cyclic (d − r + 1)-
polytope embedded in the (d − r + 1)-flat Fi of Rd, where Fi = {xj = 0 ∣ 1 ≤ j ≤ r and j ≠ i}.
The following lemma establishes the first step towards our construction.

▸ Lemma 7.1. There exists a sufficiently small positive value τ⋆ for τ , such that, for any
∅ ⊂ R ⊆ [r], the set of mixed faces F̂R of the Cayley polytope of the polytopes P̂1, . . . , P̂r
constructed above, has

fk−1(F̂R) = Ξk,d(nR), ∣R∣ ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋.

Proof. Let Ui be the set of vertices of P̂i for 1 ≤ i ≤ r and set U ∶= ∪ri=1Ui. The objective in
the proof is, for each ∅ ⊂ R ⊆ [r] and each spanning subset U of the partition U = ∪i∈RUi, to
exhibit a supporting hyperplane of the (d+∣R∣−1)-dimensional Cayley polytope ĈR, containing
exactly the vertices in U . In that respect, our approach is similar in spirit to the proof
showing, by defining supporting hyperplanes constructed from Vandermonde determinants,
that the cyclic n-vertex d-polytope Cd(n) is neighborly (see, e.g., [17, Corollary 0.8]).

In our proof we need to involve the parameter ζ before taking the limit ζ → 0+. This is due
to the fact that, when ∅ ⊂ R ⊂ [r], the information of the relative position of the polytopes
P̂i, i ∈ R, is lost if we set ζ = 0 from the very first step. To describe our construction, we
write each spanning subset U of U as the disjoint union of non-empty sets Ui, i ∈ R, where
Ui = U ∩Ui and ∣Ui∣ = κi ≤ ni. For this particular U , we define the linear equation:

HU(x) = lim
ζ→0+

(−1)
∣R∣(∣R∣−1)

2 +σ(R)ζ ∣R∣−rDU(x; ζ), (7.2)

where x = (x1, x2, . . . , xd+∣R∣−1), and DU(x; ζ) is the (d + ∣R∣) × (d + ∣R∣) determinant:
whose first column is (1,x)⊺,
the next κi, i ∈ R, pairs of columns are (1,ei−1,γi(yi,j ; ζ))⊺ and (1,ei−1,γi(ỹi,j ; ζ))⊺

where e0, . . . ,e∣R∣−1 is the standard affine basis of R∣R∣−1, yi,j ∈ {y ∈ Yi ∣ γi(y; 0) ∈ Ui}, and
the last s ∶= d + ∣R∣ − 1 − ∑i∈R κi columns are (1,e∣R∣−1,γ ∣R∣−1(Mi; ζ))⊺, 1 ≤ i ≤ s; these
columns exist only if s > 0.

The quantity σ(R) above is a non-negative integer counting the total number of row swaps
required to shift, for all j ∈ [r] ∖R, the (∣R∣ + j)-th row of DU(x; ζ) to the bottom of the
determinant, so that the powers of yi,j in each column are in increasing order (notice that if
R ≡ [r] no such row swaps are required). Moreover, σ(R) depends only on R and not on the
choice of the spanning subset U of U.

The equation HU(x) = 0 is the equation of a hyperplane in Rd+∣R∣−1 that passes through
the points in U . We claim that, for any choice of U , and for all vertices u in U ∖U , we have
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HU(u) > 0. To prove our claim, notice first that, for each j ∈ [r] ∖R, the (∣R∣ + j)-th row
of the determinant DU(u; ζ) will contain the parameters yd−r+1+j

i,j , ỹd−r+1+j
i,j and Md−r+1+j

i ,
multiplied by ζ. After extracting ζ from each of these rows and shifting them to their proper
position (i.e., the position where the powers along each column increase), we will have a
term ζr−∣R∣ and a sign (−1)σ(R) (induced from the σ(R) row swaps required altogether).
These terms cancel out with the term (−1)σ(R)ζ ∣R∣−r in (7.2). We can, therefore, transform
HU(u) in the form of the determinant DN(Z;α1, . . . , αm), Z = {zi,j ∣ 1 ≤ i ≤ ρ,1 ≤ j ≤ νi},
N = (ν1, ν2, . . . , νm), 0 ≤ α1 < α2 < ⋯ < αm, shown below:

DN(Z;α1, . . . , αm) ∶= (−1)
ρ(ρ−1)

2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

zα1
1,1 ⋯ zα1

1,ν1
0 ⋯ 0 ⋯ 0 ⋯ 0

0 ⋯ 0 zα1
2,1 ⋯ zα1

2,ν2
⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

0 ⋯ 0 0 ⋯ 0 ⋯ zα1
ρ,1 ⋯ zα1

ρ,ν1

zα2
1,1 ⋯ zα2

1,ν1
0 ⋯ 0 ⋯ 0 ⋯ 0

0 ⋯ 0 zα2
2,1 ⋯ zα2

2,ν2
⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

0 ⋯ 0 0 ⋯ 0 ⋯ zα2
ρ,1 ⋯ zα2

ρ,νn

zα3
1,1 ⋯ zα3

1,ν1
zα3

2,1 ⋯ zα3
2,ν2

⋯ zα3
n,1 ⋯ zα3

n,νn

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

zαm1,1 ⋯ zαm1,ν1
zαm2,1 ⋯ zαm2,ν2

⋯ zαmρ,1 ⋯ zαmρ,νn

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

,

by means of the following determinant transformations:

(i) By subtracting rows 2 to ∣R∣ of HU(u) from its first row.
(ii) By shifting the first column of HU(u) to the right, so that all columns of HU(u) are

arranged in increasing order with respect to their parameters zi,j . Clearly, this can be
done with an even number of column swaps.

The determinant DN(Z;α1, . . . , αm) is strictly positive for all τ between 0 and some value
τ̂(R,U,u), that, depends (only) on the choice of R, U and u. Since there is a finite
number of possible such determinants, the value τ̂⋆ ∶= minR,U,u τ̂(R,U,u) is necessarily
positive. Choosing some τ⋆ ∈ (0, τ̂⋆) makes all these determinants simultaneously positive;
this completes our proof. ◂

The following lemma establishes the second (and last) step of our construction.

▸ Lemma 7.2. There exists a sufficiently small positive value ζ◊ for ζ, such that, for any
∅ ⊂ R ⊆ [r], the set FR of mixed faces of the Cayley polytope CR of the polytopes P1, . . . , Pr
in (7.1) has

fk−1(FR) = Ξk,d(nR), for all ∣R∣ ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋.

Proof. Briefly speaking, the value ζ◊ is determined by replacing the limit ζ → 0+ in the
previous proof, by a specific value of ζ for which the determinants we consider are positive.

More precisely, let Ui be the set of vertices of Pi, 1 ≤ i ≤ r, and set U ∶= ∪ri=1Ui. Our goal
is, for each ∅ ⊂ R ⊆ [r] and each spanning subset U of the partition U = ∪i∈RUi, to exhibit a
supporting hyperplane of the Cayley polytope CR, containing exactly the vertices in U . To
this end, we define the hyperplane H̃U(x; ζ) = 0, x = (x1, x2, . . . , xd+∣R∣−1), with

H̃U(x; ζ) = (−1)
∣R∣(∣R∣−1)

2 +σ(R)ζ ∣R∣−rDU(x; ζ), ζ > 0, (7.3)

where DU(x; ζ) is the determinant in the proof of Lemma 7.1, where we have set τ to τ⋆.
Clearly, for each u ∈ U ∖ U , we have limζ→0+ H̃U(u; ζ) = HU(u) > 0. This immediately
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implies that for each combination of R, U and u there exists a value ζ̂(R,U,u) such that,
for all ζ ∈ (0, ζ̂(R,U,u)), H̃U(u; ζ) > 0. Since the number of possible combinations for R, U
and u is finite, the minimum ζ̂◊ ∶= minR,U,u{ζ̂(R,U,u)} is well defined and positive. Taking
ζ◊ to be any value in (0, ζ̂◊), satisfies our demands. ◂
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