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Abstract

In this paper we consider the problem of monitoring an art gallery modeled as a polygon, the edges of which
are arcs of curves, with edge or mobile guards. Our focus is on piecewise-convex polygons, i.e., polygons
that are locally convex, except possibly at the vertices, and their edges are convex arcs.

We transform the problem of monitoring a piecewise-convex polygon to the problem of 2-dominating
a properly defined triangulation graph with edges or diagonals, where 2-dominance requires that every
triangle in the triangulation graph has at least two of its vertices in its 2-dominating set. We show that:
(1) ⌊n+1

3
⌋ diagonal guards are always sufficient and sometimes necessary, and (2) ⌊ 2n+1

5
⌋ edge guards are

always sufficient and sometimes necessary, in order to 2-dominate a triangulation graph. Furthermore, we
show how to compute: (1) a diagonal 2-dominating set of size ⌊n+1

3
⌋ in linear time and space, (2) an edge

2-dominating set of size ⌊ 2n+1
5

⌋ in O(n2) time and O(n) space, and (3) an edge 2-dominating set of size
⌊ 3n

7
⌋ in O(n) time and space.
Based on the above-mentioned results, we prove that, for piecewise-convex polygons, we can compute:

(1) a mobile guard set of size ⌊n+1
3

⌋ in O(n log n) time, (2) an edge guard set of size ⌊ 2n+1
5

⌋ in O(n2) time,
and (3) an edge guard set of size ⌊ 3n

7
⌋ in O(n log n) time. All space requirements are linear. Finally, we

show that ⌊n
3
⌋ mobile or ⌈n

3
⌉ edge guards are sometimes necessary.

When restricting our attention to monotone piecewise-convex polygons, the bounds mentioned above
drop: ⌈n+1

4
⌉ edge or mobile guards are always sufficient and sometimes necessary; such an edge or mobile

guard set, of size at most ⌈n+1
4

⌉, can be computed in O(n) time and space.
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1. Introduction

In recent years Computational Geometry has made a shift towards curvilinear objects. Recent works
have addressed both combinatorial properties and algorithmic aspects of such problems, as well as the
necessary algebraic techniques required to tackle the predicates used in the algorithms involving these
objects. The pertinent literature is quite extensive; the interested reader may consult the recent book edited
by Boissonnat and Teillaud [2] for a collection of recent results for various classical Computational Geometry
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problems involving curvilinear objects. Despite the apparent shift towards the curvilinear world, and despite
the vast range of application areas for art gallery problems, including robotics [3, 4], motion planning [5, 6],
computer vision [7–10], graphics [11, 12], CAD/CAM [13, 14] and wireless networks [15], there are very few
works dealing with the well-known art gallery and illumination class of problems when the objects involved
are curvilinear [16–22].

The original art gallery problem was posted by Klee to Chvátal: given a simple polygon P with n

vertices, what is the minimum number of point guards that are required in order to monitor the interior of
P? Chvátal [23] proved that ⌊n

3
⌋ vertex guards are always sufficient and sometimes necessary, while Fisk

[24], a few years later, gave exactly the same result using a much simpler proof technique based on polygon
triangulation and coloring the vertices of the triangulated polygon with three colors. Lee and Lin [25] showed
that computing the minimum number of vertex guards for a simple polygon is NP-hard, which is also the
case for point guards as shown by Aggarwal [26]. In the context of curvilinear polygons, i.e., polygons the
edges of which may be linear segments or arcs of curves, Karavelas, Tóth and Tsigaridas [21] have shown
that ⌊ 2n

3
⌋ vertex guards are always sufficient and sometimes necessary in order to monitor piecewise-convex

polygons (i.e., locally convex polygons, except possibly at the vertices, the edges of which are convex arcs),
whereas ⌈n

2
⌉ point guards are sometimes necessary. In the same paper it is also shown that 2n − 4 point

guards are always sufficient and sometimes necessary in order to monitor piecewise-concave polygons, i.e.,
locally concave polygons, except possibly at the vertices, the edges of which are convex arcs. In the special
case of monotone piecewise-convex polygons, i.e., polygons for which there exists a line L such that every
line L⊥ perpendicular to L intersects the polygon at at most two connected components, then ⌊n

2
⌋+1 vertex

or ⌊n
2
⌋ point guards are always sufficient and sometimes necessary [20]. Cano-Vila, Longi and Urrutia [22]

have also studied the problem of monitoring piecewise-convex polygons with vertex or point guards. More
precisely, they have indicated an alternative way for proving the upper bound in [21] for the case of vertex
guards, and have improved the upper bound for the case of point guards to ⌊ 5n

8
⌋.

Soon after the first results on monitoring polygons with vertex or point guards, other types of guarding
models where considered. Toussaint introduced in 1981 the notion of edge guards. A point p in the interior
of the polygon is considered to be monitored if it is visible from at least one point of an edge in the guard
set. Edge guards where introduced as a guarding model in which guards where allowed to move along the
edges of the polygon. Another variation, dating back to 1983, is due to O’Rourke: guards are allowed
to move along any diagonal of the polygon. This type of guards has been called mobile guards. Toussaint
conjectured that, except for a few polygons, ⌊n

4
⌋ edge guards are always sufficient. There are only two known

counterexamples to this conjecture, with n = 7, 11, due to Paige and Shermer (cf. [27]), requiring ⌊n+1
4

⌋
edge guards. The first step towards Toussaint’s conjecture was made by O’Rourke [28, 29] who proved that
⌊n

4
⌋ mobile guards are always sufficient and occasionally necessary in order to monitor any polygon with n

vertices. The technique by O’Rourke amounts to reducing the problem of monitoring a simple polygon to
that of dominating a triangulation graph of the polygon. A triangulation graph is a maximal outerplanar
graph, all internal faces of which are triangles. Dominance in this context means that at least one of the
vertices of each triangle in the triangulation graph is an endpoint of a mobile guard. Shermer [27] settled
the problem of monitoring triangulation graphs with edge guards by showing that ⌊ 3n

10
⌋ edge guards are

always sufficient and sometimes necessary, except for n = 3, 6 or 13, in which case one extra edge guard may
be necessary. When considering orthogonal polygons, i.e., polygons the edges of which are axes-aligned,
the afore-mentioned upper and lower bounds drop. Aggarwal [26] showed that ⌊ 3n+4

16
⌋ mobile guards are

sufficient and sometimes necessary in order to monitor orthogonal polygons with n vertices, a bound that
was later on matched for edge guards by Bjorling-Sachs [30]. Finally, Györi, Hoffmann, Kriegel and Shermer
[31] showed that when an orthogonal polygon with n vertices contains h holes, ⌊ 3n+4h+4

16
⌋ mobile guards are

sufficient and sometimes necessary in order to monitor it.
In this paper we consider the problem of monitoring piecewise-convex polygons with edge or mobile

guards. In our context an edge guard is an edge of the polygon, whereas a mobile guard is an edge or a
diagonal of the polygon (a diagonal is a straight-line segment inside the polygon connecting two polygon
vertices). Our proof technique capitalizes on the technique used by O’Rourke to prove tight bounds on the
number of mobile guards that are necessary and sufficient for monitoring linear polygons [29]. As we have
already mentioned above, O’Rourke’s paradigm reduces the geometric guarding problem to a problem of
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diagonal dominance for the triangulation graph of the linear polygon; the solution for the dominance problem
is also a solution for the original geometric mobile guarding problem. In our case, the paradigm involves
two steps: firstly the reduction of the geometric problem to an appropriately defined combinatorial problem,
and secondly mapping the solution of the combinatorial problem to a solution for the geometric problem.
More precisely, in order to monitor piecewise-convex polygons with mobile or edge guards, we first reduce
the problem of monitoring our piecewise-convex polygon P to the problem of 2-dominating an appropriately
defined triangulation graph. Given a triangulation graph TP of a polygon P , a set of edges/diagonals of TP

is a 2-dominating set of TP if every triangle in TP has at least two of its vertices incident to an edge/diagonal
in the 2-dominating set. We prove that ⌊n+1

3
⌋ diagonal guards or ⌊ 2n+1

5
⌋ edge guards are always sufficient

and sometimes necessary in order to 2-dominate TP . The proofs of sufficiency are inductive on the number
of vertices of P . In the case of diagonal 2-dominance, our proof yields a linear time and space algorithm.

In the case of edge 2-dominance, the inductive step incorporates edge contraction operations, thus yielding
an O(n2) time and O(n) space algorithm, where n is the number of vertices of P . A linear time and space
algorithm can be attained by slightly relaxing the size of the edge 2-dominating set. More precisely, we show
inductively that we can 2-dominate TP with ⌊ 3n

7
⌋ edges; the proof is similar, though more complicated, to the

proof presented for the case of diagonal 2-dominance. As in the diagonal 2-dominance case, it does not make
use of edge contraction operations, thus permitting us to transform it to a linear time and space algorithm.
As a final note, the proof of sufficiency for the diagonal 2-dominance problem is not the simplest possible; in
Section A of the Appendix we present a much simpler alternate proof. The drawback of this alternate proof
is that it makes use of edge contractions, rendering it unsuitable as the basis for a time-efficient algorithm;
we present it, however, for the sake of completeness.

Focusing back to the geometric guarding problem, the triangulation graph TP of the piecewise-convex
polygon P is a constrained triangulation graph: based on the geometry of P , we require that certain diagonals
of TP are present; the remaining non-triangular subpolygons of TP may be triangulated arbitrarily. For the
edge guarding problem, we prove that any edge 2-dominating set computed for TP is also an edge guard
set for P . Unlike edge guards, a diagonal 2-dominating set computed for TP is mapped to a set of mobile
guards of P , since the 2-dominating set for TP may contain diagonals of TP that are not embeddable as
straight-line diagonals of P . Using our results on 2-dominance of triangulation graphs, we then prove that:
(1) we can compute a mobile guard set for P of size at most ⌊n+1

3
⌋ in O(n log n) time and O(n) space, (2)

we can compute an edge guard set for P of size at most ⌊ 2n+1
5

⌋ in O(n2) time and O(n) space, and (3) we
can compute an edge guard set for P of size at most ⌊ 3n

7
⌋ in O(n log n) time and O(n) space. Finally, we

show that ⌊n
3
⌋ mobile or ⌈n

3
⌉ edge guards are sometimes necessary in order to monitor a piecewise-convex

polygon P .
In the special case of monotone piecewise-convex polygons, i.e., piecewise-convex polygons with the

property that there exists a line L such that any line perpendicular to L intersects the piecewise-convex
polygon at at most two connected components, the upper and lower bounds on the number of edge/mobile
guards presented above can be further improved. We show that ⌈n+1

4
⌉ edge or mobile guards are always

sufficient and sometimes necessary, while an edge or mobile guard set of that size can be computed in linear
time and space. The same results also hold for monotone locally convex polygons. Tables 1 and 2 summarize
the known results relevant to the problems considered in this paper, as well as our results.

The rest of the paper is structured as follows. In Section 2 we prove our matching upper and lower
bounds on the number of diagonals required in order to 2-dominate a triangulation graph and show how
such a 2-dominating set can be computed in linear time and space. The next section, Section 3 deals with
the problem of 2-dominance of triangulation graphs with edge guards. We first prove our matching upper
and lower bounds on the number of edges required in order to 2-dominate a triangulation graph. We then
prove our relaxed bound and show how the proof is transformed into a linear time and space algorithm.
In Section 4 we show how to construct the triangulation graph TP of a piecewise-convex polygon P . We
describe how a diagonal 2-dominating set of TP is mapped to a mobile guard set for P . We also show
that an edge 2-dominating set for TP is also an edge guard set for P . Algorithmic considerations are also
discussed. We end this section by providing lower bound constructions for both guarding problems. The
special case of monotone piecewise-convex polygons is treated in Section 5. Finally in Section 6 we conclude
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Polygon type Guard type
Upper

bound

Lower

bound
Reference

vertex/point ⌊n
3
⌋ [23, 24]

linear edge ⌊ 3n
10
⌋† ⌊n

4
⌋ [27],[28]

mobile ⌊n
4
⌋ [28]

orthogonal
mobile ⌊ 3n+4

16
⌋ [26]

edge ⌊ 3n+4
16

⌋ [30]

orthogonal with h holes mobile ⌊ 3n+4h+4
16

⌋ [31]

piecewise-convex
vertex ⌊ 2n

3
⌋ [21]

point ⌊ 5n
8
⌋ ⌈n

2
⌉ [22],[21]

monotone piecewise-convex
vertex ⌊n

2
⌋ + 1

point ⌊n
2
⌋

[20]

piecewise-concave point 2n− 4 [21]

piecewise-convex
edge ⌊ 2n+1

5
⌋‡ ⌈n

3
⌉

this paper
mobile ⌊n+1

3
⌋ ⌊n

3
⌋

monotone piecewise-convex edge/mobile ⌈n+1
4

⌉

monotone locally convex edge/mobile ⌈n+1
4

⌉

Table 1: Upper and lower bounds for the number of guards required to monitor a polygon with n vertices.
We focus on types of polygons and types of guards that are relevant to this paper. The upper part of the
table contains previous results, whereas the lower part contains the results in this paper.

Dominance type Guard type
Upper & lower

bound
Reference

dominance
diagonal ⌊n

4
⌋ [28]

edge ⌊ 3n
10
⌋† [27]

2-dominance
diagonal ⌊n+1

3
⌋

this paper
edge ⌊ 2n+1

5
⌋‡

Table 2: Upper and lower bounds for the number of guards required to dominate or 2-dominate the trian-
gulation graph of a polygon with n vertices. The upper part of the table refers to previously known results,
whereas the lower part to the results presented in this paper.

with a discussion of our results and open problems.

†Except for n = 3, 6 or 13, where an extra guard may be required.
‡Except for n = 4, where an additional guard is required.
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2. 2-dominance of triangulation graphs: diagonal guards

A triangulation graph T is a maximal outerplanar graph, i.e., a Hamiltonian planar graph with n vertices
and 2n − 3 edges, all internal faces of which are triangles (see Fig. 1(top left)). The unique Hamiltonian
cycle in T is the cycle that bounds the outer face. The edges that do not belong to the Hamiltonian cycle
are called diagonals, whereas the term edge is used to refer to the edges of the Hamiltonian cycle. Given
an n-vertex linear polygon P , i.e., a polygon the edges of which are line segments, its triangulation graph,
denoted by TP , is the planar graph we get when the polygon has been triangulated.

A dominating set D of a triangulation graph T is a set of vertices, edges or diagonals of T such that
at least one of the vertices of each triangle in T belongs to D (see Fig. 1(top right)1). An edge (resp.,
diagonal) dominating set of T is a dominating set of T consisting of only edges (resp., edges or diagonals)
of T . A 2-dominating set D of T is a dominating set of T that has the property that every triangle in T

has at least two of its vertices in D. In a similar manner, an edge (resp., diagonal) 2-dominating set of T is
a 2-dominating set of T consisting only of edges (resp., edges or diagonals) of T (see Fig. 1(bottom row)).

1Unless otherwise stated, in all figures, edges/diagonals in a dominating/guard set are shown as thick solid/dashed lines,
while vertices in a dominating/guard set are transparent.

Figure 1: A triangulation graph T with n = 10 vertices and various dominating sets. The diagonals of T

are shown with dashed lines, whereas the edges of the Hamiltonian cycle in T are shown with solid lines.
Vertices in a dominating set are transparent, whereas edges (resp., diagonals) in a dominating set are shown
with thick solid (resp., dashed) lines. Top left: the triangulation graph T . Top right: a dominating set of T

consisting of a vertex and a diagonal. Bottom left: an edge 2-dominating set of T . Bottom right: a diagonal
2-dominating set of T .
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In the rest of the paper we shall only refer to triangulation graphs of polygons. Let us, initially, state
the following lemma, which is a direct generalization of Lemmas 1.1 and 3.6 in [29].

Lemma 1. Consider an integer λ ≥ 2. Let P be a polygon of n ≥ 2λ vertices, and TP a triangulation
graph of P . There exists a diagonal d in TP that partitions TP into two pieces, one of which contains k arcs
corresponding to edges of P , where λ ≤ k ≤ 2(λ − 1).

Proof. Choose d to be a diagonal of TP that separates off a minimum number of polygon edges that is at
least λ. Let k ≥ λ be this minimum number, and label the vertices of P with the labels 0, 1, . . . , n− 1, such
that d is (0, k). The diagonal d supports a triangle whose apex is at vertex t, 0 ≤ t ≤ k. Since k is minimal
t ≤ λ − 1 and k − t ≤ λ − 1. Thus, λ ≤ k ≤ 2(λ − 1).

Before proceeding with the first main result of this section, we state an intermediate lemma dealing with
the diagonal 2-dominance problem for small values of n.

Lemma 2. Every triangulation graph TP with 3 ≤ n ≤ 7 vertices, corresponding to a polygon P , can be
2-dominated by ⌊n+1

3
⌋ diagonal guards.

Proof. Let vi, 1 ≤ i ≤ n be the vertices of TP , and let ei be the edge vivi+1
2. For each of the five values for

n we are going to define a diagonal 2-dominating set D of size ⌊n+1
3

⌋.

n = 3. Trivial: let D consist of any of the three edges of TP .

n = 4. Again trivial: let D consist of the unique diagonal d of TP .

n = 5. Let D consist of the two diagonals of the pentagon. D is a 2-dominating set for TP , since the two
ears have two of their vertices in D, whereas the third triangle in TP has all three vertices in D.

n = 6. Let t be an ear of TP , and let e′ and e′′ be the edges of P incident to t that do not belong to t (see
Fig. 2(left)). Set D = {e′, e′′}; D is a diagonal 2-dominating set for TP , since the triangulation graph
TP \ {t} has all but one of its vertices in D, whereas t has two of its vertices in D.

n = 7. Let t1 and t2 be two ears of TP , and let d1 and d2 be the diagonals of TP supporting these ears.
The two possible relative positions of t1 and t2 are shown in Fig. 2: either d1 and d2 share a vertex,
or d1 and d2 do not share any vertices of P . In the former case, let e be the edge of P incident to
d1 that is not an edge of t1 or t2. Set D = {e, d2}; D is a diagonal 2-dominating set for TP , since
t1 is 2-dominated by vertices of e and d2, t2 is 2-dominated by the two vertices of d2, whereas the
triangulation graph TP \ {t1, t2} has four of its five vertices in D. In the latter case, set D = {d1, d2};
D is a diagonal 2-dominating set for TP , since t1 is 2-dominated by the two vertices of d1, t2 is 2-
dominated by the two vertices of d2, whereas the triangulation graph TP \ {t1, t2} has four of its five
vertices in D.

2Indices are considered to be evaluated modulo n.

t
t1t1

t2

t2

e e d1d1

d2

d2

e′

e′′

Figure 2: Proof of Lemma 2 for n = 6, 7. Left: the case n = 6. Middle: the case n = 7 and d1, d2 share a
vertex. Right: the case n = 7 and d1, d2 do not share a vertex.
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Using Lemma 1 for λ = 4, yields the following theorem concerning the worst-case number of diagonals
that are sufficient and necessary in order to 2-dominate a triangulation graph. The inductive proof that
follows is not the simplest possible. The interested reader may find a much simpler alternative proof in
Section A of the Appendix. The proof in Section A, however, makes use of edge contractions (to be
discussed in detail in Section 3), which make it unsuitable as a basis for a linear time and space algorithm.
On the other hand, the proof presented below can be implemented in linear time and space, as will be
discussed in Section 2.1. The proof below is a detailed, rather technical, case-by-case analysis; we present
it, however, uncondensed, so as to illustrate the details that pertain to our linear time and space algorithm.

Theorem 3. Every triangulation graph TP of a polygon P with n ≥ 3 vertices can be 2-dominated by ⌊n+1
3

⌋
diagonal guards. This bound is tight in the worst-case.

Proof. In Lemma 2, we have shown the result for 3 ≤ n ≤ 7. Let us now assume that n ≥ 8 and that the
theorem holds for all n′ such that 3 ≤ n′ < n. By means of Lemma 1 with λ = 4, there exists a diagonal
d that partitions TP into two triangulation graphs T1 and T2, where T1 contains k boundary edges of TP

with 4 ≤ k ≤ 6. Let vi, 0 ≤ i ≤ k, be the k + 1 vertices of T1, as we encounter them while traversing P

counterclockwise, and let v0vk be the common edge of T1 and T2. For each value of k we are going to define
a diagonal 2-dominating set D for TP of size ⌊n+1

3
⌋. In what follows dij denotes the diagonal vivj , whereas

ei denotes the edge vivi+1. Consider each value of k separately.

k = 4. In this case T2 contains n − 3 vertices. By our induction hypothesis we can 2-dominate T2 with
f(n−3) = ⌊n+1

3
⌋−1 diagonal guards. Let D2 be the diagonal 2-dominating set for T2. At least one of

v0 and v4 is in D2. The cases are symmetric, so we can assume without loss of generality that v0 ∈ D2.
Consider the following cases (see Fig. 3):

d13 ∈ T1. Set D = D2 ∪ {d13}.

d24 ∈ T1. Set D = D2 ∪ {d24}.

d02, d03 ∈ T1. Set D = D2 ∪ {e2}.

v0v0 v0

v1v1 v1

v2v2 v2

v3v3v3

v4v4 v4 dd d

Figure 3: Proof of Theorem 3: the case k = 4. Left: d13 ∈ T1. Middle: d24 ∈ T1. Right: d02, d03 ∈ T1.

k = 5. The presence of diagonals d04 and d15 would violate the minimality of k. Let t be the triangle
supported by d in T1. The apex v of this triangle can either be v2 or v3. The two cases are symmetric,
so we assume, without loss of generality that the apex of t is v2. Consider the triangulation graph
T ′ = T2 ∪ {t}. It has n − 3 vertices, hence, by our induction hypothesis, it can be 2-dominated with
f(n− 3) = ⌊n+1

3
⌋ − 1 diagonal guards. Let D′ be the 2-dominating set for T ′. Consider the following

cases (see Fig. 4):

d02 ∈ D2. Set D = D′ ∪ {e3}.

7



v0v0 v0

v1v1 v1

v2 v2 v2v3 v3 v3

v4 v4 v4

v5 v5 v5d dd

tt t

Figure 4: Proof of Theorem 3: the case k = 5. Left: d02 ∈ D′. Middle: d02 6∈ D′ and d25 ∈ D′. Right:
d02, d25 6∈ D′.

d02 6∈ D2. If d25 ∈ D′, set D = (D′ \ {d25}) ∪ {d02, e4}. Otherwise, v2 cannot belong to D′ (both
edges of T ′ incident to v2 do not belong to D′). However, the triangle t is 2-dominated in T ′,
which implies that both v0 and v5 belong to D′. Hence, set D = D′ ∪ {e2}.

k = 6. The presence of diagonals d04, d05, d16 and d26 would violate the minimality of k. Let t be the
triangle supported by d in T1. The apex v of this triangle must be v3. Let t′ be the second triangle in
T1 beyond t supported by the diagonal d03, and let v′ be its vertex opposite to d03. Symmetrically, let
t′′ be the second triangle in T1 beyond t supported by the diagonal d36, and let v′′ be its vertex opposite
to d36. Consider the triangulation graphs T ′ = T2 ∪ {t, t′} and T ′′ = T2 ∪ {t, t′′}. T ′ and T ′′ have
n−3 vertices, hence, by our induction hypothesis, they can be 2-dominated with f(n−3) = ⌊n+1

3
⌋−1

diagonal guards. Let D′ (resp., D′′) be the 2-dominating set for T ′ (resp., T ′′).

Let us first consider the case v′ ≡ v2. Let d′′ be the unique diagonal of the quadrilateral v3v4v5v6.
Consider the following cases (see Fig. 5):

d02 ∈ D′. Set D = D′ ∪ {d′′}.

d02 6∈ D′. We further distinguish between the following two cases:

d36 ∈ D′. If v0 ∈ D′, simply set D = (D′ \ {d36})∪ {e2, e5}. If v0 6∈ D′, the diagonal d03 cannot
belong to D′. Therefore, in order for the triangle t′ to be 2-dominated by D′, we must have
that e2 in D′. Thus, set D = (D′ \ {d36}) ∪ {e0, e5}.

d36 6∈ D′. In order for t′ to be 2-dominated by D′ we must have that either d03 ∈ D′ or e2 ∈ D′.
If d03 ∈ D′, set D = (D′ \ {d03}) ∪ {d02, d

′′}; otherwise, set D = (D′ \ {e2}) ∪ {d02, d
′′}.

Let us now consider the case v′ ≡ v1. We first consider the situation v′′ ≡ v4. Consider the following
cases (see Fig. 6):

d46 ∈ D′′. Set D = D′′ ∪ {d13}.

d46 6∈ D′′. We further distinguish between the following two cases:

d03 ∈ D′′. If v6 ∈ D′′, simply set D = (D′′ \ {d03}) ∪ {e0, e3}. If v6 6∈ D′′, the diagonal d36

cannot belong to D′′. Therefore, in order for the triangle t′′ to be 2-dominated by D′′, we
must have that e3 in D′′. Thus, set D = (D′′ \ {d03}) ∪ {e0, e5}.

d03 6∈ D′′. In order for t′′ to be 2-dominated by D′′ we must have that either d36 ∈ D′′ or e3 ∈
D′′. If d36 ∈ D′′, set D = (D′′\{d36})∪{d13, d46}; otherwise, set D = (D′′\{e3})∪{d13, d46}.

The only remaining case is the case where v′ ≡ v1 and v′′ ≡ v5. Consider the following cases (see Fig.
7):

d13 ∈ D′. Set D = D′ ∪ {e5}.
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v0 v0v0v0

v0 v0 v0v0

v1

v1

v1

v1

v1v1

v1v1

v2

v2

v2

v2

v2 v2

v2v2

v3

v3

v3

v3

v3 v3

v3v3

v4

v4

v4v4 v4

v4 v4v4

v5

v5v5

v5

v5

v5

v5

v5

v6v6

v6

v6

v6 v6 v6

v6

dd

d

d

d dd

d

d′′

d′′ d′′

d′′d′′

d′′

d′′

d′′

t t

tt t

tt

t

t′ t′ t′

t′t′

t′

t′ t′

Figure 5: Proof of Theorem 3: the case k = 6 with v′ ≡ v2. Top row: v′′ ≡ v5. Bottom row: v′′ ≡ v4. Left
column: d02 ∈ D′. Middle left column: d02 6∈ D′ and d36 ∈ D′ and v0 ∈ D′. Middle right column: d02 6∈ D′

and d36 ∈ D′ and v0 6∈ D′. Right column: d02, d36 6∈ D′.

v0 v0v0 v0

v1v1 v1 v1

v2v2 v2 v2

v3v3 v3 v3

v4 v4v4v4

v5 v5v5v5

v6 v6v6 v6 d dd d

tt tt

t′ t′ t′ t′

t′′ t′′ t′′t′′

Figure 6: Proof of Theorem 3: the case k = 6 with v′ ≡ v1 and v′′ ≡ v4. Left: d46 ∈ D′′. Middle left:
d46 6∈ D′′ and d03 ∈ D′′ and v6 ∈ D′′. Middle right: d46 6∈ D′′ and d03 ∈ D′′ and v6 6∈ D′′. Right:
d03, d46 6∈ D′′.

v0v0

v1 v1

v2 v2

v3v3

v4 v4

v5 v5

v6 v6d d

t t
t′t′

Figure 7: Proof of Theorem 3: the case k = 6 with v′ ≡ v1 and v′′ ≡ v5. Left: d13 ∈ D′; also d13, d03, e0 6∈ D′.
Right: d13 6∈ D′ and d03 ∈ D′; also d13, d03 6∈ D′ and e0 ∈ D′.
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d13 6∈ D′. We further distinguish between the following two cases:

d03 ∈ D′. Set D = (D′ \ {d03}) ∪ {e0, d35}.

d03 6∈ D′. If e0 ∈ D′, set D = D′ ∪ {d35}. Otherwise, i.e., if e0 6∈ D′, v1 cannot be in D′. Since
the triangle t′ is 2-dominated in D′, both v0 and v3 have to belong to D′. Since the diagonal
d03 does not belong to D′, the diagonal d36 has to belong to D′ in order for v3 to be in D′.
Thus, set D = (D′ \ {d36}) ∪ {d13, e5}.

Let us now turn our attention to establishing the lower bound. Consider the triangulation graphs Ti,
i = 1, 2, 3, with n = 3m + i − 1 vertices, shown in Fig. 8, and let Di be the diagonal 2-dominating set of
Ti. The central part of Ti is triangulated arbitrarily. Notice that each subgraph of Ti, shown in either light
or dark gray, requires at least one among its edges or diagonals to be in Di in order to be 2-dominated.

T1 T2

T3

v0

v1

v2

v3

v4

v5

v3m+1

v3m

v3m−1

v3m−2

v3m−3

v3m−4

v3m−5

v3m−6

Figure 8: Three triangulation graphs Ti, i = 1, 2, 3, with n = 3m + i − 1 vertices, respectively (the central
part of the graph is triangulated arbitrarily). All three triangulation graphs require at least ⌊n+1

3
⌋ diagonal

guards in order to be 2-dominated.
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Consider, for example, the quadrilateral v0v1v2v3 of T3 (the situation for all other subgraphs shown in
light gray is analogous, whereas the subgraphs shown in dark gray have at least as many vertices as those
shown in light gray, and, thus, could not possibly be 2-dominated with fewer diagonal guards with respect
to the subgraphs shown in light gray). Even if both v0 and v3 belong to D3 due to edges or diagonals of
the neighboring shaded subgraphs, or due to diagonals of the central part of T3, the triangle v0v1v2 is not
2-dominated unless either one of the edges e0, e1, e2, or the diagonal d02 belongs to D3. This observation
immediately establishes a lower bound of ⌊n

3
⌋.

Let us now assume that |D3| = ⌊n
3
⌋. Notice that, under this assumption, each shaded subgraph in T3

must have exactly one among its edges or diagonals in D3. Moreover, none of the diagonals in the central
part of T3 (not shown in Fig. 8(bottom)) can belong to D3, since then the size of D3 would be greater
than ⌊n

3
⌋. Consider the triangulated hexagon H := v0v3m−3v3m−2v3m−1v3mv3m+1. In order for H to be

2-dominated with exactly one of its edges or diagonals, both v0 and v3m−3 have to be in D3 due to edges
or diagonals in the neighboring shaded subgraphs, while the unique edge or diagonal of H in D3 must be
the diagonal d3m−2,3m. Since we require that v3m−3 must belong to D3 via an edge or diagonal of the
quadrilateral v3m−6v3m−5v3m−4v3m−3, and at the same time we require that exactly one of the edges or
diagonals of v3m−6v3m−5v3m−4v3m−3 to be in D3, the edge e3m−4 must belong to D3 and v3m−6 must be in
D3 due to an edge or diagonal in the quadrilateral v3m−9v3m−8v3m−7v3m−6. Cascading this argument, we
conclude that, since v3 must belong to D3 due to an edge or diagonal of the quadrilateral v0v1v2v3, and at
the same time exactly one of the edges or diagonals of v0v1v2v3 must be in D3, the edge e2 must belong to
D3 and v0 must belong to D3 due to an edge or diagonal in the hexagon H . But this yields a contradiction,
since the unique edge or diagonal of H in D3 is d3m−2,3m, which is not incident to v0. Hence T3 requires
⌊n+1

3
⌋ diagonal guards in order to be monitored.

2.1. Computing diagonal 2-dominating sets

The proof of Theorem 3 can almost immediately be transformed into an O(n) time and space algorithm.
The triangulation graph TP of P is assumed to be represented via a half-edge representation. Half-edges
and vertices in our representation are assumed to have additional flags for indicating whether a half-edge is
a boundary edge of the polygon, or whether a half-edge or a vertex of TP is marked as being in the diagonal
2-dominating set of TP . Under these assumptions, adding or removing a half-edge or a vertex from the
sought-for 2-dominating set, querying a half-edge or a vertex for membership in the 2-dominating set, as
well as forming the triangulation graph for the recursive calls, all take O(1) time.

Consider a diagonal d that separates TP into two triangulation graphs T1 and T2, where T1 contains
k = 4, 5 or 6 edges of P ; recall from the proof of Lemma 1 (for λ = 4) that the value of k is minimal. Let
∆ be the dual tree of TP , ∆1 the dual tree of T1 and ∆′

1 = ∆1 ∪ {d′}, where d′ is the dual edge of d in ∆.
∆1 consists of a subtree of ∆ with 2, 3 or 4 edges of ∆, connected with the rest of ∆ via a degree-2 or a

ddd d

Figure 9: The four possible configurations for the dual trees ∆1 for 4 ≤ k ≤ 6, shown as thick solid lines.
The diagonal d separates T1 from T2. The triangulations shown are indicative: all other triangulations yield
isomorphic trees.
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degree-3 node (see Fig. 9). Moreover, for n ≥ 13, the subtrees ∆′
1 corresponding to different diagonals d of

TP must be edge disjoint (otherwise the number of vertices of P would be less than 13).
Having made these observations we can now describe the algorithm for computing the diagonal 2-

dominating set D for TP . We first describe the initialization steps:

1. Initialize D to be empty.
2. Create a queue Q, and initialize it to be empty. Q will consist of diagonals of TP .
3. For each diagonal d of TP determine whether it separates off k edges of P in TP , with 4 ≤ k ≤ 6 and

k being minimal. In other words, determine if the dual edge d′ of d in ∆ is adjacent to subtrees of the
form shown in Fig. 9. If so, put d in Q.

The recursive part of the algorithm is as follows:

1. If the number of vertices of TP is less than 13, find a diagonal 2-dominating set D and return.
2. If Q is not empty:

(a) Pop a diagonal d out of Q.
(b) If T2 has less than 13 vertices, empty the queue Q and find a 2-dominating set D2 for T2. Based

on D2, and according to the cases in the proof of Theorem 3, compute D and return.
(c) Using the cases in the proof of Theorem 3, determine the triangulation graph T̂ for which we

are supposed to find the 2-dominating set recursively, and let ∆̂ be the dual tree of T̂ . Let V be
the set of vertices in ∆̂ ∩ ∆′

1. For any v ∈ V determine if v is a leaf-node to a subtree of ∆̂ like
the subtrees in Fig. 9. If so, add the appropriate diagonal to Q. Neither one of the trees ∆̂ and
∆̂ ∩ ∆′

1, nor the set V are computed explicitly; the set V is, in fact, evaluated using the cases in
the proof of Theorem 3 without computing ∆̂ ∩ ∆′

1.
(d) Recursively, find a diagonal 2-dominating D̂ for T̂ , using Q as the queue.
(e) Construct from D̂ a diagonal 2-dominating set D for TP and return.

The initialization part of our algorithm takes linear time, since Step 2 of the initialization takes constant
time per diagonal. Let T (n) be the time spent for the recursive part of our algorithm. Step 1 of the recursive
part obviously takes constant time. Step 2 of the recursive part takes T (n− 3)+ O(1) time. Let us be more
precise. Popping a diagonal from Q takes O(1) time. Step 2(b) takes O(1) time since we need to solve our
problem for a constant value of n. Determining the case for d takes O(1) time. V has constant size and
can be computed in constant time, while checking for new diagonals to be added to the queue Q, as well as
adding them to Q also takes O(1) time. Therefore, Step 2(c) costs O(1) time. Step 2(d) is the recursive call,
so it takes T (n− 3) time. Clearly, Step 2(e) takes O(1) time, since constructing D is a matter of updating
some flags.

From the analysis above we conclude that the cost T (n) for the recursive part of our algorithm satisfies
the recursive relation

T (n) =

{

T (n − 3) + O(1), n ≥ 13

O(1), 3 ≤ n ≤ 12

which yields T (n) = O(n). Since initialization takes linear time, and our space requirements are obviously
linear in the size of P (we do not duplicate parts of TP for the recursive calls, but rather set appropriately
the boundary flags for some half-edges), we arrive at the following theorem.

Theorem 4. Given the triangulation graph TP of a polygon P with n ≥ 3 vertices, we can compute a
diagonal 2-dominating set for TP of size at most ⌊n+1

3
⌋ in O(n) time and space.

3. 2-dominance of triangulation graphs: edge guards

Let TP be a triangulation graph of a polygon P , and let u and v be two nodes of TP connected via an
edge e. The contraction of e is a transformation that removes the nodes u and v and replaces them with a
new node x, that is adjacent to every node that u and v was adjacent to. The contraction transformation
can be used to prove the following lemma, which is the analogue of Lemma 3.2 in [29] in the context of
2-dominance.
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Lemma 5. Suppose f(n) diagonal (resp., edge) guards are always sufficient to 2-dominate an n-node tri-
angulation graph. If TP is an arbitrary triangulation graph of a polygon P , v any vertex of P and e any of
the two incident edges of v, then TP can be 2-dominated with f(n− 1) diagonal (resp., edge) guards, plus a
vertex guard at v. Moreover, e, if specified, does not belong to the 2-dominating set of TP .

Proof. Let u be the chosen vertex at which the guard is to be placed. If the edge e is specified, let v be the
node adjacent to u across e; otherwise, let e be any of two the edges of P incident to u, and v the node
adjacent to u across e. Let te be the triangle of TP adjacent to e and let w be the third vertex of te, besides
u and v. Edge contract TP across e, producing the triangulation graph T ′

P of n − 1 nodes. Since T ′
P is a

triangulation graph of a polygon (cf. Lemma 3.1 in [29]), it can be 2-dominated by f(n− 1) diagonal (resp.,
edge) guards.

Let x be the node of T ′
P that replaced u and v, and let D′ be the 2-dominating set of T ′

P consisting of
f(n − 1) diagonal (resp., edge) guards. Suppose that no guard is placed at x, that is x is not an endpoint
of a edge or diagonal (resp., edge) in D′. Then D = D′ ∪ {u} is a dominating set for TP , since the guard at
u dominates te, whereas the remaining triangles of TP are dominated by edges or diagonals (resp. edges) in
D′. Moreover, every triangle in TP , except the triangles adjacent to u or v, has two of its vertices in D′, and
thus in D. Since x is not in D′, all the vertices of T ′

P adjacent to x have to be in D′. Hence, all triangles
adjacent to u or v, except te have two of their vertices in D′ and thus in D. Finally, te has also two vertices
in D, namely u and w. Thus, D is a 2-dominating set for TP .

Suppose now that a guard is used at x in D′. If xw is an edge or diagonal guard in D′, assign xw to
vw. Every other edge or diagonal guard g in D′ incident to x, if any, becomes an edge or diagonal guard in
D, incident to either u or v, depending on whether g is incident to u or v in TP . As in the previous case,
every triangle in TP is dominated and has at least two of its vertices in D. More precisely, every triangle
in T ′

P not containing x has two of its vertices in D′ and thus in D. Every triangle t′ in T ′
P containing x is

now a triangle in TP containing either u or v or both (this is the case for te). Therefore every triangle in
TP , except te, that contains u or v has one vertex in D′ plus either u or v. Clearly, te has both u and v in
D.

Before proceeding with the first main result of this section, let us state and prove an intermediate lemma
concerning edge 2-dominating sets for small values of n.

Lemma 6. Every triangulation graph TP with 3 ≤ n ≤ 9 vertices, corresponding to a polygon P , can be
2-dominated by ⌊ 2n+1

5
⌋ edge guards, except for n = 4, where one additional guard is required.

Proof. Let vi, 1 ≤ i ≤ n be the vertices of TP , and let ei be the edge vivi+1. For each value of n we are
going to define an edge 2-dominating set D of size ⌊ 2n+1

5
⌋.

n ∈ {3, 4, 5, 7}. Set D to be the set of edges of P with odd index.

n = 6. See proof of Lemma 2.

n = 8. Let t1 and t2 be two ears of TP and consider their relative positions as shown in Fig. 10. In each
case define the set D as shown in Fig. 10.

n = 9. Since n ≥ 6, by means of Lemma 1 with λ = 3, there exists diagonal d that partitions TP into two
triangulation graphs T1 and T2, where T1 contains k boundary edges of TP , 3 ≤ k ≤ 4. Let d ≡ d0k be
the common edge of T1 and T2, where dij denotes the diagonal vivj . Consider each of the two values
of k separately (see also Fig. 11):

k = 3. Let t be the triangle adjacent to the diagonal d03 in T2 and let v be its apex. The cases v ≡ v4,
v ≡ v8 and v ≡ v5, v ≡ v7 are symmetric, so we only need to consider the cases v ∈ {v4, v5, v6}:

v ≡ v4. Let t′ be the triangle incident to d04 in the hexagon v0v4v5v6v7v8, and let v′ be its apex.
Consider the subcases:

v′ ≡ v5. Set D = {e2, e5, e8}.
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t1

t1t1

t2t2
t2

Figure 10: Proof of Lemma 6 for n = 8. The shaded triangles t1 and t2 are two ears of TP . The subfigures
correspond to the three possible relative positions of t1 and t2 in TP .
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Figure 11: Proof of Lemma 6 for n = 9. Top row (left to right): k = 3, v ≡ v4 and v′ ≡ v5; k = 3, v ≡ v4

and v′ ≡ v6; k = 3, v ≡ v4 and v′ ≡ v7. Middle row (left to right): k = 3, v ≡ v4, v′ ≡ v8 and v′′ ≡ v5;
k = 3, v ≡ v4, v′ ≡ v8 and v′′ ≡ v6; k = 3, v ≡ v4, v′ ≡ v8 and v′′ ≡ v7. Bottom row (left to right): k = 3
and v ≡ v5; k = 3 and v ≡ v6; k = 4.
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v′ ∈ {v6, v7}. Set D = {e0, e3, e6}.

v′ ≡ v8. Let t′′ 6= t′ be the triangle supported by d48 and let v′′ be its apex. If v′′ ≡ v5, set
D = {e2, e5, e8}. Otherwise, if v′′ ∈ {v6, v7}, set D = {e0, e3, e6}.

v ∈ {v5, v6}. Set D = {e2, e5, e8}.

k = 4. By the minimality of k, the apex of the triangle supported by d04 in T1 must be v2. Again,
by the minimality of k, the diagonals d47, d58 and d06 cannot exist. This implies that either
d48 or d05 must belong to TP . The two cases are symmetric, so we can assume, without loss of
generality, that d48 ∈ TP . Again, by the minimality of k, the diagonals d46 and d68 must be in
TP . In this case set D = {e2, e5, e8}.

In the next two theorems we state and prove the first two main results of this section concerning worst-
case upper and lower bounds on the number of edge guards required in order to 2-dominate a triangulation
graph.

Theorem 7. Let P be a polygon with n ≥ 3 vertices and TP its triangulation graph. ⌊ 2n+1
5

⌋ edge guards
are always sufficient in order to 2-dominate TP , except for n = 4, where one additional guard is required.

Proof. In Lemma 6, we have shown the result for 3 ≤ n ≤ 9. Let us now assume that n ≥ 10 and that the
theorem holds for all n′ such that 5 ≤ n′ < n. By means of Lemma 1 with λ = 5, there exists diagonal d that
partitions TP into two triangulation graphs T1 and T2, where T1 contains k boundary edges of TP , 5 ≤ k ≤ 8.
Let v0, . . . , vk be the k +1 vertices of T1, as we encounter them while traversing P counterclockwise, and let
v0vk be the common edge of T1 and T2. For each value of k we are going to define an edge 2-dominating set
D for TP of size ⌊ 2n+1

5
⌋. In what follows dij denotes the diagonal vivj , whereas ei denotes the edge vivi+1.

Consider each of the four values of k separately:

k = 5. Let t be the triangle supported by d in T1, and let v be the apex of this triangle. |T2| = n − 4,
and by Lemma 5 there exists a 2-dominating set D0 (resp., D5) for T2, consisting of f(n − 5) edge
guards plus v0 (resp., v5), such that d 6∈ D0 (resp., d 6∈ D5). If v ∈ {v3, v4}, set D = D0 ∪ {e0, e3}. If
v ∈ {v1, v2}, set D = D5 ∪ {e1, e4} (see Fig. 12).

v0v0 v0 v0

v1v1 v1v1

v2v2 v2v2 v3v3 v3v3

v4v4 v4v4

v5 v5v5 v5 dd dd

tt
tt

Figure 12: Proof of Theorem 7: the case k = 5. Left two: v ∈ {v3, v4}. Right two: v ∈ {v1, v2}.

k = 6. The presence of diagonals d05 or d16 would violate the minimality of k. Let t be the triangle
supported by d in T1. The apex v of this triangle should be v2, v3 or v4. The cases v ≡ v2 and v ≡ v4

are symmetric, so we only consider the cases v ≡ v2 and v ≡ v3. Since T2 has n − 5 vertices, by our
induction hypothesis we have that T2 can be dominated with f(n− 5) = ⌊ 2n+1

5
⌋ − 2 edge guards. Let

D2 be the edge 2-dominating set for T2. Consider the following cases (see also Fig. 13):

d06 ∈ D2. Set D = (D2 \ {d06}) ∪ {e0, e2, e5}.

d06 6∈ D2. Since D2 is a 2-dominating set for T2, either v0 or v6 belongs to D2. If v0 ∈ D2, set
D = D2 ∪ {e2, e4}. Otherwise, v6 ∈ D2, in which case set D = D2 ∪ {e1, e3}.
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Figure 13: Proof of Theorem 7: the case k = 6. Top row: the apex of t is v2. Bottom row: the apex of t is
v3. Left column: d06 ∈ D2. Middle column: d06 6∈ D2, v0 ∈ D2. Right column: d06 6∈ D2, v6 ∈ D2.

k = 7. The presence of diagonals d06, d05, d17 or d27 would violate the minimality of k. Let t be the triangle
supported by d in T1. The apex v of this triangle is either v3 or v4. The two cases are symmetric, so we
can assume without loss of generality that the apex of t is v3 (see Fig. 14). Consider the triangulation
graph T ′ = T2 ∪ {t}. It has n − 5 vertices and, by our induction hypothesis, it can be 2-dominated
with f(n− 5) = ⌊ 2n+1

5
⌋− 2 edge guards. Let D′ be the 2-dominating set of T ′. Consider the following

two cases:

dd

t t

v0v0

v1v1

v2 v2

v3v3 v4v4

v5 v5

v6 v6

v7v7

Figure 14: Proof of Theorem 7: the case k = 7. Left: |D′ ∩ {d03, d37}| ≥ 1. Right: d03, d37 6∈ D′.
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|D′ ∩ {d03, d37}| ≥ 1. Set D = (D′ \ {d03, d37}) ∪ {e0, e3, e6}.

d03, d37 6∈ D′. In this case v3 cannot be in D′, since either d03 or d37 would have to be in D′. This

d
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Figure 15: Proof of Theorem 7: the case k = 8. Rows (top to bottom): v′ ≡ v1; v′ ≡ v2; v′ ≡ v3. Top row
(left to right): d14, d48 ∈ D′; d14 ∈ D′, d48 6∈ D′, v8 ∈ D′, and also d14, d48 6∈ D′; d14 ∈ D′, d48 6∈ D′, v0 ∈ D′,
and also d14 6∈ D′, d48 ∈ D′. Middle row (left to right): |{d02, d24, d48} ∩ D′| ≥ 2; d02 ∈ D′, d24, d48 6∈ D′,
and also d24 ∈ D′, d02, d48 6∈ D′, v8 ∈ D′; d24 ∈ D′, d02, d48 6∈ D′, v0 ∈ D′, and also d48 ∈ D′, d02, d24 6∈ D′.
Bottom row (left to right): d03, d48 ∈ D′, and also d03 ∈ D′, d48 6∈ D′, e3 ∈ D′, as well as d03 6∈ D′, d48 ∈ D′,
e3 ∈ D′; d03 ∈ D′, d48 6∈ D′, e3 6∈ D′, and also d03, d48 6∈ D′, v8 ∈ D′; d03 6∈ D′, d48 ∈ D′, e3 6∈ D′, and also
d03, d48 6∈ D′, v0 ∈ D′.
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implies that both v0 and v7 have to be in D′ (2-dominance of t). Set D = D′ ∪ {e2, e4}.

k = 8. The presence of diagonals d07, d06, d05, d18, d28 or d38 would violate the minimality of k. Thus,
the apex of the triangle t in T1 that is supported by d is v4. Let t′ 6= t be the triangle incident to
d04, and let v′ be its vertex opposite d04. Clearly, v′ ∈ {v1, v2, v3}. Consider the triangulation graph
T ′ = T2 ∪ {t, t′}. It has n − 5 vertices and, by our induction hypothesis, it can be 2-dominated with
f(n−5) = ⌊ 2n+1

5
⌋−2 edge guards. Let D′ be the 2-dominating set of T ′. Consider the following cases

(see also Fig. 15):

v′ ≡ v1. Consider the following subcases:

d14, d48 ∈ D′. Set D = (D′ \ {d14, d48}) ∪ {e0, e3, e5, e7}.

d14 ∈ D′, d48 6∈ D′. If v8 ∈ D′, set D = (D′ \ {d14}) ∪{e0, e3, e5}. Otherwise, v0 ∈ D′ (2-
dominance of t), in which case set D = (D′ \ {d14}) ∪ {e2, e4, e7}.

d14 6∈ D′, d48 ∈ D′. In this case either v0 or v1 belongs to D′ (2-dominance of t′). Since d14 6∈
D′, we must have that either v0 ∈ D′ or e0 ∈ D′, which implies, in either case, that v0 ∈ D′.
Hence, set D = (D′ \ {d48}) ∪ {e2, e4, e7}.

d14, d48 6∈ D′. In this case v4 6∈ D′, which implies that v0, v1, v8 ∈ D′. But then e0 ∈ D′.
Therefore, set D = D′ ∪ {e3, e5}.

v′ ≡ v2. Notice that in this case it is not possible that d02, d24, d48 6∈ D′, since then v2, v4 6∈ D′, which
contradicts the 2-dominance of t′ by D′ in T ′. Consider the remaining subcases:

|{d02, d24, d48} ∩ D′| ≥ 2. Set D = (D′ \ {d02, d24, d48}) ∪ {e0, e3, e5, e7}.

d02 ∈ D′, d24, d48 6∈ D′. Then v4 6∈ D′, which implies that v8 ∈ D′ (2-dominance of t). Set
D = (D′ \ {d02}) ∪ {e0, e3, e5}.

d24 ∈ D′, d02, d48 6∈ D′. v0 or v8 belongs to D′ (2-dominance of t). If v0 ∈ D′, set D =
(D′ \ {d24}) ∪ {e2, e4, e7}. Otherwise, if v8 ∈ D′, set D = (D′ \ {d24}) ∪ {e0, e3, e5}.

d48 ∈ D′, d02, d24 6∈ D′. Then v2 6∈ D′, which implies that v0 ∈ D′ (2-dominance of t′). Set
D = (D′ \ {d48}) ∪ {e2, e4, e7}.

v′ ≡ v4. Consider the following subcases:

d03, d48 ∈ D′. Set D = (D′ \ {d03, d48}) ∪ {e0, e3, e5, e7}.

d03 ∈ D′, d48 6∈ D′. If e3 ∈ D′, set D = (D′ \ {d03}) ∪{e0, e5, e7}. Otherwise, v4 6∈ D′, i.e.,
both v0 and v8 belong to D′. Set D = (D′ \ {d03}) ∪ {e0, e3, e5}.

d03 6∈ D′, d48 ∈ D′. If e3 ∈ D′, set D = (D′ \ {d48}) ∪{e0, e5, e7}. Otherwise, v3 6∈ D′, i.e., v0

belongs to D′ (2-dominance of t′). Set D = (D′ \ {d48}) ∪ {e2, e4, e7}.

d03, d48 6∈ D′. Since d03, d48 6∈ D′, t′ can be 2-dominated in D′ only if e3 ∈ D′. Now, if v8 ∈ D′,
set D = D′ ∪ {e0, e5}; otherwise, i.e., if v8 6∈ D′, v0 has to be in D′, in which case set
D = (D′ \ {e3}) ∪ {e2, e4, e7}.

Theorem 8. There exists a family of triangulation graphs with n ≥ 3 vertices any edge 2-dominating set of
which has cardinality at least ⌊ 2n+1

5
⌋, except for n = 4, where any edge 2-dominating set has cardinality at

least 2.

Proof. Our claim is trivial for n ∈ {3, 4}. We are first going to prove the lower bound for all n = 5m + k,
where m ≥ 1 and k ∈ {0, 1, 3, 4}. The case n = 5m + 2, for m ≥ 1, is a bit more complicated and is dealt
with separately.

Consider the triangulation graphs Γ5m, Γ5m+1, Γ5m+3 and Γ5m+4, m ≥ 1, shown in Fig. 16. The central
part of these graphs is triangulated arbitrarily. Γ5m+i, i = 0, 1, 3, 4, consists of n = 5m + i vertices, and
requires a minimum of two edge guards per hexagon shown in light gray (this is true even if the two vertices
of these hexagons that also belong to the neighboring shaded polygons are in the 2-dominating set due to
edges of these polygons). Moreover, Γ5m and Γ5m+1 require two more edge guards for the hexagon and
heptagon, respectively, shown in dark gray, whereas Γ5m+3 and Γ5m+4 require three more edge guards for
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Γ5m Γ5m+1

Γ5m+3 Γ5m+4

Figure 16: The triangulation graphs Γ5m+i, i = 0, 1, 3, 4, with n = 5m + i vertices, respectively (the central
parts of the graphs are triangulated arbitrarily). All four triangulation graphs require at least ⌊ 2n+1

5
⌋ edge

guards in order to be 2-dominated.

the enneagon and decagon shown in dark gray (this is true even if the two vertices of these polygons that
also belong to the neighboring shaded polygons are in the 2-dominating set due to edges of these polygons).
Hence, Γ5m, Γ5m+1, Γ5m+3 and Γ5m+4 require ⌊ 2n+1

5
⌋ edge guards in order to be 2-dominated.

To prove the lower bound for all remaining n ≥ 7, we are going to inductively construct a family of
triangulation graphs Γ5m+2, m ≥ 1, as follows. The triangulation graph Γ7 is shown in Fig. 17(top left).
Γ12 is constructed by gluing two copies Γ′

7 and Γ′′
7 of Γ7 along the edge e0 of Γ′

7 and the edge e6 of Γ′′
7 , such

that the vertex v0 (resp., v1) of Γ′
7 is identified with the vertex v0 (resp., v6) of Γ′′

7 (see Fig. 17(top right)).
In Γ12, v0 is the vertex that used to be v0 in both Γ′

7 and Γ′′
7 , while all other vertices are numbered in the

counterclockwise sense. Γ5m+7, m ≥ 2, is constructed by gluing Γ5m+2 with Γ7 along the edge e0 of Γ5m+2

and the edge e6 of Γ7, such that the vertex v0 (resp., v1) of Γ5m+2 is identified with the vertex v0 (resp.,
v6) of Γ7 (see Fig. 17(bottom row) for Γ17 and Γ22). In Γ5m+7, v0 is the vertex that used to be v0 in both
Γ5m+2 and Γ7, while all other vertices are numbered in the counterclockwise sense.

We are now ready to proceed with our proof of the lower bound for the triangulation graphs Γ5m+2,
m ≥ 1. More precisely, we will show, by induction on m, that every edge 2-dominating set of the triangulation
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Figure 17: The triangulation graphs Γ7, Γ12, Γ17 and Γ22, with n = 7, 12, 17 and 22 vertices, respectively.
Each of these graphs requires ⌊ 2n+1

5
⌋ edge guards in order to be 2-dominated. The shaded part of the graph

Γn, n = 12, 17, 22, corresponds to the graph Γ7 that is glued to Γn−5 in order to construct Γn.

graph Γ5m+2 has size at least 2m + 1. We start by the base case, i.e., m = 1. Γ7 cannot be 2-dominated by
less than three edges, since then we would be able to find an edge e of Γ7 such that its two endpoints are
not in the edge 2-dominating set of Γ7, and thus the triangle of Γ7 incident to e would not be 2-dominated.
Let us now assume that our claim holds true for some m ≥ 1, i.e., every edge 2-dominating set of Γ5m+2

has size at least 2m + 1.
Consider the triangulation graph Γ5m+7. Let D be an edge 2-dominating set for Γ5m+7, and let us

assume that |D| < 2(m + 1) + 1, i.e., |D| ≤ 2m + 2. Let T1 and T2 be the triangulation graphs that
we get by cutting Γ5m+7 along the diagonal d06, with T2 being the one containing the vertex v1 (see Fig.
18(left)), and, moreover, let T3 and T4 be the triangulation graphs that we get by cutting Γ5m+7 along
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Figure 18: The triangulation graph Γ5m+7. The shaded subgraphs of Γ5m+7 are the triangulation graphs
T2 and T3, while the non-shaded subgraphs of Γ5m+7 are the triangulation graph T1 and T4, respectively.
In the right subfigure we also depict some of the edges in D when D2 = {e2, e5}.

the diagonal d0,5m+1, with T4 being the one containing the vertex v1 (see Fig. 18(right)). Notice that T1

and T4 (resp., T2 and T3) are isomorphic to Γ5m+2 (resp., Γ7). Let D1 (resp., D2) be the subset of D

containing the edges of D in T1 (resp., T2), and define D3 and D4 analogously. Finally, notice that the sets
D′

1 = D1 ∪ {d06} and D′
4 = D4 ∪ {d0,5m+1} are edge 2-dominating sets of T1 and T4, respectively. It is easy

to verify that |D2| ≥ 2 (resp., |D3| ≥ 2), since otherwise we would be able to find an edge in {e1, e2, e3, e4}
(resp., {e5m+2, e5m+3, e5m+4, e5m+5}) such that its two endpoints are not endpoints of edges in D; notice
that this is true even if both v0 and v6 (resp., v0 and v5m+1) belong to D due to edges in D1 (resp., D4).
Consider the following cases:

|D2| ≥ 3. In this case we have |D1| = |D| − |D2| ≤ (2m + 2) − 3 = 2m − 1, which further implies that
|D′

1| = |D1| + 1 ≤ 2m. This contradicts our inductive assumption, since D′
1 is an edge 2-dominating

set of T1, and thus of Γ5m+2.

|D2| = 2. In this case |D1| = |D| − |D2| ≤ (2m + 2) − 2 = 2m < 2m + 1. Observe that D2 can only be
one of the following four subsets of {e0, e1, . . . , e5} of size two: {e1, e3}, {e1, e4}, {e2, e4} and {e2, e5}.
All other subsets of size two of {e0, e1, . . . , e5}, except {e0, e3}, are such that there exists an edge in
{e1, e2, e3, e4} with the property that its two endpoints are not endpoints of edges in D. Lastly, if
D2 was equal to {e0, e3}, the triangle v0v2v5 would not be 2-dominated by D. Consider the following
subcases:

D2 ∈ {{e1, e3}, {e1, e4}, {e2, e4}}. Refer to Fig. 18(left). Notice that none of the vertices of edges
in D2 is a vertex of a triangle in T1, i.e., the vertices of edges in D2 do not contribute to the
2-domination of triangles in T1. This further implies that the triangles in T1 are essentially 2-
dominated by the edges in D1, which suggests the existence of an edge 2-dominating set for Γ5m+2

of size |D1| = 2m < 2m + 1, a contradiction with respect to our inductive hypothesis.

D2 = {e2, e5}. Refer to Fig. 18(right). In order for the triangle v0v1v2 to be 2-dominated we must
have that e5m+6 ∈ D1, and, more importantly, that e5m+6 ∈ D3. Recall that |D3| ≥ 2; we
argue that in this case |D3| ≥ 3. To verify that, suppose that |D3| = 2. Then the unique
edge in D3 \ {e5m+6} cannot be one of e5m+1, e5m+2, e5m+4 or e5m+5, since then we would
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be able to find an edge in {e5m+2, e5m+3, e5m+4, e5m+5}, such that its two endpoints are not
endpoints of edges in D; moreover, if the unique edge in D3 \ {e5m+6} is e5m+3, the triangle
v0v5m+2v5m+5 is not 2-dominated by D. Since |D3| ≥ 3, we get that the size of D4 has to be
|D4| = |D| − |D3| ≤ (2m + 2) − 3 = 2m − 1, which gives that |D′

4| = |D4| + 1 ≤ 2m. As for the
case |D2| ≥ 3 above, the bound on the size of |D′

4| contradicts our inductive assumption, since
D′

4 is an edge 2-dominating set of T4, and thus of Γ5m+2.

3.1. Computing edge 2-dominating sets in linear time

Unlike the case of diagonal 2-dominating sets, the proof of Theorem 7 uses edge contractions, which
yields an O(n2) time and O(n) space algorithm. A linear time and space algorithm is, however, feasible by
relaxing the requirement on the size of the edge 2-dominating set. More precisely, we prove in this subsection
that we can 2-dominate a triangulation graph with ⌊ 3n

7
⌋ edge guards. Although this result is weaker with

respect to the result of Theorem 7, the proof technique is analogous to the technique in the proof of Theorem
3, i.e., it does not use edge contractions. Consequently, in analogy to the considerations of Section 2.1, we
can devise a linear time and space algorithm for computing an edge 2-dominating set of size at most ⌊ 3n

7
⌋.

Theorem 9. Every triangulation graph TP of a polygon P with n ≥ 3 vertices can be 2-dominated by ⌊ 3n
7
⌋

edge guards, except for n = 4, where one additional guard is required.

Proof. By Theorem 7, and since ⌊ 2n+1
5

⌋ = ⌊ 3n
7
⌋ for all 3 ≤ n ≤ 11, we conclude that our theorem holds true

for all n, with 3 ≤ n ≤ 11.
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Figure 19: Proof of Theorem 9: the case k = 6. Top row (left to right): d06 ∈ D2; d06 6∈ D2, v0, v6 ∈ D2.
Middle row (left to right): d06 6∈ D2, v0 ∈ D2, v6 6∈ D2 and v ∈ {v2, v3, v4, v5}. Bottom row (left to right):
d06 6∈ D2, v0 ∈ D2, v6 6∈ D2, v ≡ v1 and v′ ∈ {v2, v3, v4, v5}.

22



Let us now assume that n ≥ 12 and that the theorem holds for all n′ such that 5 ≤ n′ < n. By Lemma
1 with λ = 6, there exists a diagonal d that partitions TP into two triangulation graphs T1 and T2, where
T1 contains k boundary edges of TP with 6 ≤ k ≤ 10. Let vi, 0 ≤ i ≤ k, be the k + 1 vertices of T1, as we
encounter them while traversing P counterclockwise, and let v0vk be the common edge of T1 and T2. For
each value of k we are going to define an edge 2-dominating set D for TP of size ⌊ 3n

7
⌋. In what follows dij

denotes the diagonal vivj , whereas ei denotes the edge vivi+1. Consider each value of k separately.

k = 6. In this case T2 contains n − 5 vertices. By our induction hypothesis we can dominate T2 with
f(n− 5) ≤ ⌊ 3n

7
⌋ − 2 edge guards. Let D2 be the edge 2-dominating set for T2. Consider the following

cases: (see Fig. 19):

d06 ∈ D2. Set D = (D2 \ {d06}) ∪ {e0, e2, e5}.

d06 6∈ D2. Since T2 is 2-dominated by D2, at least one of the vertices v0 and v6 belongs to D2. We
distinguish between the following subcases:

v0, v6 ∈ D2. Set D = D2 ∪ {e1, e4}.

v0 ∈ D2, v6 6∈ D2. Let t be the triangle supported by d in T1 and let v be its vertex opposite
to d. If v ∈ {v2, v3, v4, v5}, set D = D2 ∪ {e2, e4}. If v ≡ v1, let t′ be the second triangle
supported by d16 beyond the triangle t, and let v′ be its vertex opposite to d16. If v′ ∈ {v2, v3},
set D = D2 ∪ {e2, e5}. Otherwise, i.e., if v′ ∈ {v4, v5}, set D = D2 ∪ {e1, e4}.
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Figure 20: Proof of Theorem 9: the case k = 7. Top and middle rows: v ≡ v2. Bottom row: v ≡ v3. Top row
(left to right): d02, d27 ∈ D′; d02 6∈ D′, d27 ∈ D′; d02, d27 6∈ D′. Middle row (left to right): d02 ∈ D′, d27 6∈ D′

and v′ ∈ {v3, v4, v5, v6}. Bottom row (left to right): d02 ∈ D′ or d27 ∈ D′; d02, d27 6∈ D′.
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v0 6∈ D2, v6 ∈ D2. This case is symmetric to the previous one. Let t be the triangle supported
by d in T1 and let v be its vertex opposite to d. If v ∈ {v1, v2, v3, v4}, set D = D2 ∪ {e1, e3}.
If v ≡ v5, let t′ be the second triangle supported by d05 beyond the triangle t, and let v′ be its
vertex opposite to d05. If v′ ∈ {v1, v2}, set D = D2∪{e1, e4}. Otherwise, i.e., if v′ ∈ {v3, v4},
set D = D2 ∪ {e0, e3}.

k = 7. The presence of diagonals d06 or d17 would violate the minimality of k. Let t be the triangle
supported by d in T1 and let v its vertex opposite to d. Consider the triangulation graph T ′ = T2∪{t}.
It has n−5 vertices, hence, by our induction hypothesis, it can be 2-dominated with f(n−5) ≤ ⌊ 3n

7
⌋−2

edge guards. Let D′ be the 2-dominating set for T ′. Clearly, v ∈ {v2, v3, v4, v5}; furthermore notice
that the cases v ≡ v2 and v ≡ v5, and v ≡ v3 and v ≡ v4 are symmetric. We, therefore, consider only
the cases v ≡ v2 and v ≡ v3 (see Fig. 20):

v ≡ v2. We distinguish between the following subcases:

d02, d27 ∈ D′. Set D = (D′ \ {d02, d27}) ∪ {e0, e2, e4, e6}.

d02 ∈ D′, d27 6∈ D′. Let t′ 6= t be the triangle supported by d27, and let v′ be its vertex opposite
to d27. If v′ ∈ {v3, v4}, set D = (D′ \ {d02}) ∪ {e0, e3, e6}. Otherwise, if v′ ∈ {v5, v6}, set
D = (D′ \ {d02}) ∪ {e0, e2, e5}.

d02 6∈ D′, d27 ∈ D′. Set D = (D′ \ {d27}) ∪ {e1, e4, e6}.

d02, d27 6∈ D′. In this case v2 cannot belong to D′. Hence in order for t to be 2-dominated we
must have that v0, v7 ∈ D′. Hence, set D = D′ ∪ {e2, e5}.

v ≡ v3. Consider the following subcases:

d02 or d27 ∈ D′. Set D = (D2 \ {d02, d27}) ∪ {e0, e3, e6}.

d02, d27 6∈ D′. In this case v3 cannot belong to D′. Hence in order for t to be 2-dominated we
must have that v0, v7 ∈ D′. Hence, set D = D′ ∪ {e2, e5}.

k = 8. The presence of diagonals d07, d06, d18 or d28 would violate the minimality of k. Let t be the triangle
supported by d in T1 and let v its vertex opposite to d. In this case T2 contains n− 7 vertices, hence,
it can be 2-dominated with f(n − 7) = ⌊ 3n

7
⌋ − 3 edge guards. Let D2 be the 2-dominating set for

T2. Clearly, v′ ∈ {v3, v4, v5}; furthermore notice that the cases v ≡ v3 and v ≡ v5 are symmetric.
We, therefore, consider only the cases v ≡ v3 and v ≡ v4. In fact, both cases can be treated jointly.
Consider the following subcases (see Fig. 21):

d08 ∈ D2. Set D = (D2 \ {d08}) ∪ {e0, e3, e5, e7}.

d08 6∈ D2. Then either v0 or v8 belongs to D2.

v0 ∈ D2. Set D = D2 ∪ {e2, e4, e7}.

v8 ∈ D2. Set D = D2 ∪ {e0, e3, e5}.

k = 9. The presence of diagonals d08, d07, d06, d19, d29 or d39 would violate the minimality of k. Let t be
the triangle supported by d in T1 and let v its vertex opposite to d. Consider the triangulation graph
T ′ = T2 ∪ {t}, and let D′ be its edge 2-dominating set. T ′ has n− 7 vertices, hence, by our induction
hypothesis, D′ consists of f(n − 7) = ⌊ 3n

7
⌋ − 3 edge guards. Clearly, v ∈ {v4, v5}. The two cases are

symmetric, so we only need to consider the case v ≡ v4. Consider the following subcases (see Fig. 22):

d04 or d49 ∈ D′. Set D = (D2 \ {d04, d49}) ∪ {e0, e3, e5, e8}.

d04, d49 6∈ D′. In this case v4 cannot belong to D′. Hence in order for t to be 2-dominated we must
have that v0, v9 ∈ D′. Hence, set D = D′ ∪ {e2, e4, e6}.

k = 10. The presence of diagonals d09, d08, d07, d06, d1,10, d2,10 d3,10 or d4,10 would violate the minimality
of k. Let t be the triangle supported by d in T1. Clearly, the vertex of t opposite to d is v5. Let t′ 6= t be
the triangle in T1 supported by d05, and let v′ be its vertex opposite to d05. Consider the triangulation
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Figure 21: Proof of Theorem 9: the case k = 8. Top row: v ≡ v3. Bottom row: v ≡ v4. Left column:
d08 ∈ D2. Middle column: d08 6∈ D2 and v0 ∈ D2. Right column: d08 6∈ D2 and v8 ∈ D2.
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Figure 22: Proof of Theorem 9: the case k = 9. Left: d04 or d49 ∈ D′. Right: d04, d49 6∈ D′.

graph T ′ = T2 ∪ {t, t′}, and let D′ be its edge 2-dominating set. T ′ has n − 7 vertices, hence, by
our induction hypothesis, D′ contains f(n − 7) = ⌊ 3n

7
⌋ − 3 edge guards. Clearly, v′ ∈ {v1, v2, v3, v4}.

Consider each of the following three cases for v′ (see Fig. 23):

v′ ≡ v1. We distinguish between the following subcases:

d15 or d5,10 ∈ D′. Set D = (D′ \ {d15, d5,10}) ∪ {e1, e4, e6, e9}.

d15, d5,10 6∈ D′. In this case v5 cannot belong to D′. Hence in order for t and t′ to be 2-
dominated we must have that v0, v1, v10 ∈ D′. Since d15 6∈ D′, we must have that e0 ∈ D′,
in order for v1 to be in D′. Hence, given that e0, v10 ∈ D′, set D = D′ ∪ {e3, e5, e7}.

v′ ∈ {v2, v3}. Let d′ be the diagonal v0v
′ and d′′ the diagonal v′v5. Notice that at least one of d′,

d′′ and d5,10 must belong to D′, since otherwise both v′ and v5 would not belong to D′ (both
their incident edges in T ′ would not belong to D′), which implies that the triangle t′ would not
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Figure 23: Proof of Theorem 9: the case k = 10. Top row (left to right): v′ ≡ v1, and d15 or d5,10 ∈ D′;
v′ ≡ v1 and d15, d5,10 6∈ D′; v′ ≡ v4. Middle row: v′ ≡ v2. Bottom row: v′ ≡ v3. Middle and bottom rows
(left to right): D′ ∩ {d′, d′′, d5,10}| ≥ 2; |D′ ∩ {d′, d′′, d5,10}| = 1 and v0 ∈ D′ \ {d′}; |D′ ∩ {d′, d′′, d5,10}| = 1
and v0 6∈ D′ \ {d′}.

be 2-dominated by D′. Given this fact, we distinguish between the following cases:

|D′ ∩ {d′, d′′, d5,10}| ≥ 2, i.e., at least two among d′, d′′ and d5,10 belong to D′. Set D =
(D′ \ {d′, d′′, d5,10}) ∪ {e0, e2, e5, e7, e9}.

|D′ ∩ {d′, d′′, d5,10}| = 1, i.e., exactly one among d′, d′′ and d5,10 belongs to D′. Consider the
two cases:

v0 ∈ D′ \ {d′}. Set D = (D′ \ {d′, d′′, d5,10}) ∪ {e2, e5, e7, e9}.

v0 6∈ D′ \ {d′}. In order for t to be 2-dominated by D′, we must have that v10 ∈ D′. Hence,
set D = (D′ \ {d′, d′′, d5,10}) ∪ {e0, e2, e5, e7}.

v′ ≡ v4. Let t′′ 6= t be the triangle in T1 supported by d5,10, and let v′′ be its vertex opposite d5,10. If
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v′′ 6≡ v6, we have a configuration that is symmetric to one of the cases v′ ≡ v1, v′ ≡ v2 or v′ ≡ v3,
treated above. Hence, we only need to consider the case v′′ ≡ v6. We distinguish between the
following cases:

d04 or d5,10 ∈ D′. Set D = (D′ \ {d04, d5,10}) ∪ {e0, e3, e6, e9}.

d04, d5,10 6∈ D′. In order for t′ to be 2-dominated by D′, either v4 or v5 has to belong to D′.
Since both d04 and d5,10 do not belong to D′, we conclude that e4 must belong to D′. Hence,
set D = (D′ \ {e4}) ∪ {e0, e3, e6, e9}.

In a manner analogous to the case of diagonal 2-dominating sets, the proof of Theorem 9 can almost
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Figure 24: The 29 possible configurations for the dual trees ∆1 for 6 ≤ k ≤ 10, shown as thick solid lines.
The diagonal d separates T1 from T2. The triangulations shown are indicative: all other triangulations yield
isomorphic trees.
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immediately be transformed into an O(n) time and space algorithm. The algorithm is, in fact, almost
identical to the algorithm presented in Section 2.1 for computing diagonal 2-dominating sets. The differences,
which by no means alter the spirit of the algorithm, are related to how the proof of Theorem 9 is incorporated.
More precisely, the values of k are 6, 7, 8, 9 and 10, instead of 4, 5 and 6, whereas the dual trees ∆ are those
in Fig. 24, instead of those in Fig. 9. Finally, the cut-off value for the recursion is 21 (instead of 13): for
n ≥ 21, the subtrees ∆′

1 corresponding to different diagonals d of TP must be edge disjoint (otherwise the
number of vertices of P would be less than 21).

The analysis of the edge 2-dominance linear time algorithm, sketched above, is entirely analogous to
the analysis of the algorithm for computing diagonal 2-dominating sets. Initialization takes linear time and
space, whereas the recursive part of the algorithm requires linear space, and its time requirements satisfy
the recursive relation

T (n) ≤

{

T (n − 5) + O(1), n ≥ 21

O(1), 3 ≤ n ≤ 20

which, clearly, yields T (n) = O(n). Hence, we arrive at the following theorem.

Theorem 10. Given the triangulation graph TP of a polygon P with n ≥ 3 vertices, we can compute an
edge 2-dominating set for TP of size at most ⌊ 3n

7
⌋ (except for n = 4, where one additional edge guard is

required) in O(n) time and space.

4. Piecewise-convex polygons

Let v1, . . . , vn, n ≥ 2, be a sequence of points and a1, . . . , an a set of curvilinear arcs, such that ai has
as endpoints the points vi and vi+1. We will assume that the arcs ai and aj , i 6= j, do not intersect, except
when j = i − 1 or j = i + 1, in which case they intersect only at the points vi and vi+1, respectively. We
define a curvilinear polygon P to be the closed region of the plane delimited by the arcs ai. The points vi

are called the vertices of P . An arc ai is a convex arc if every line on the plane intersects ai at at most two
points or along a line segment. A polygon P is called a locally convex polygon, if for every point p on the
boundary of P , with the possible exception of P ’s vertices, there exists a disk centered at p, say Dp, such
that P ∩ Dp is convex (see Fig. 25(left)). A polygon P is called a piecewise-convex polygon, if it is locally
convex, and the portion of the boundary between every two consecutive vertices is a convex arc (see Fig.
25(right)).

Figure 25: Left: A locally convex polygon. Right: A piecewise-convex polygon.
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Figure 26: Left: A piecewise-convex polygon P . Right: The triangulation graph TP of P . The boundary
edges of TP are shown as thick solid lines. The two crescents of P are shown in light gray, whereas the three
stars of P are shown in dark gray.

Let ai be an edge of a piecewise-convex polygon P with endpoints vi and vi+1. We call the convex region
ri delimited by ai and vivi+1 a room, where xy denotes the line segment from x to y. A room is called
degenerate if the arc ai is a line segment. For p, q ∈ ai, pq is called a chord of ai; the chord of ri is vivi+1.
An empty room is a non-degenerate room that does not contain any vertex of P in the interior of ri or in
the interior of vivi+1. A non-empty room is a non-degenerate room that contains at least one vertex of P

in the interior of ri or in the interior of vivi+1.
We say that a point p in the interior of a piecewise-convex polygon P is visible from a point q if pq lies

in the closure of P . We say that P is monitored by a guard set G if every point in P is visible from at
least one point belonging to some guard in G. A diagonal of a piecewise-convex polygon P is a straight-line
segment in the closure of P the endpoints of which are vertices of P . An edge (resp., mobile) guard is an
edge (resp., edge or diagonal) of P belonging to a guard set G of P . An edge (resp., mobile) guard set is a
guard set that consists of only edge (resp., mobile) guards.

Let P be a piecewise-convex polygon with n ≥ 3 vertices. Consider a convex arc ai of P , with endpoints
vi and vi+1, and let ri be the corresponding room. If ri is a non-empty room, let Xi be the set of vertices
of P that lie in the interior of vivi+1, and let Ri be the set of vertices of P in the interior of ri or in Xi. If
Ri 6= Xi, let Ci be the set of vertices in the convex hull of the vertex set (Ri \ Xi) ∪ {vi, vi+1}; if Ri = Xi,
let Ci = Xi ∪ {vi, vi+1}. Finally, let C∗

i = Ci \ {vi, vi+1}. If ri is an empty room, let Ci = {vi, vi+1} and
C∗

i = ∅.
We are now going to construct a constrained triangulation graph TP of P . The vertex set of TP is the

set of vertices of P . The edges and diagonals of TP , as well as their embedding, are defined as follows (see
also Fig. 26):

• If ai is a line segment or ri is an empty room, the edge (vi, vi+1) is an edge in TP , and is embedded
as vivi+1.

• If ri is a non-empty room, the following edges or diagonals belong to TP :

1. (vi, vi+1),

2. (ci,j , ci,j+1), for 1 ≤ j ≤ |Ci| − 1, where ci,1 ≡ vi and ci,|Ci| ≡ vi+1. The remaining ci’s are the
vertices of P in C∗

i as we encounter them when walking inside ri and on the convex hull of the
point set Ci from vi to vi+1, and

3. (vi, ci,j), for 3 ≤ j ≤ |Ci| − 1, provided that |Ci| ≥ 4. We call these diagonals weak diagonals.

The diagonals (ci,j , ci,j+1), 1 ≤ j ≤ |Ci|−1 are embedded as ci,j , ci,j+1, whereas the diagonals (vi, ci,j),
3 ≤ j ≤ |Ci| − 1, are embedded as curvilinear segments. Finally, the edges (vi, vi+1) are embedded as
curvilinear segments, namely, the arcs ai.

The edges (vi, vi+1), along with the diagonals (ci,j , ci,j+1), 1 ≤ j ≤ |Ci|−1, partition P into subpolygons
of two types: (1) subpolygons that lie entirely inside a non-empty room, called crescents, and (2) subpolygons
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delimited by edges of the polygon P , as well as diagonals of the type (ci,j , ci,j+1), called stars. In general,
a piecewise-convex polygon may only have crescents, or only stars, or both. The crescents are triangulated
by means of the diagonals (vi, ci,j), 3 ≤ j ≤ |Ci| − 1. To finish the definition of the triangulation graph TP ,
we simply need to triangulate all stars inside P . Since the delimiting edges of stars are embedded as line
segments, i.e., stars are linear polygons, any polygon triangulation algorithm may be used to triangulate
them.

In direct analogy to the types of subpolygons we can have inside P , we have two possible types of
triangles in TP : (1) triangles inside stars, called star triangles, and (2) triangles inside a crescent, called
crescent triangles. Crescent triangles have at least one edge that is a weak diagonal, except when the number
of vertices of P in the interior of the corresponding room r is exactly one, in which case none of the three
edges of the unique crescent triangle in r is a weak diagonal. A crescent triangle that has at least one weak
diagonal among its edges is called a weak triangle.

4.1. Mobile guards

Let GTP
be a diagonal 2-dominating set of TP . Based on GTP

we define a set G of edges or straight-line
diagonals of P as follows (see also Fig. 27): (1) for every edge in GTP

, add to G the corresponding convex
arc of P , (2) add to G every non-weak diagonal of GTP

, and (3) for every weak diagonal in GTP
, add to G

the edge of P delimiting the crescent that contains the weak diagonal. Clearly, |G| ≤ |GTP
|.

Figure 27: Top row: two diagonal 2-dominating sets for the triangulation graph TP of P from Fig. 26.
Bottom row: the corresponding mobile guard sets for P .

Lemma 11. Let P be a piecewise-convex polygon with n ≥ 3 vertices, TP its constrained triangulation
graph, and GTP

a diagonal 2-dominating set of TP . The set G of mobile guards, defined by mapping every
edge of GTP

to the corresponding convex arc of P , every non-weak diagonal of GTP
to itself, and every weak

diagonal d of GTP
to the convex arc of P delimiting the crescent that contains d, is a mobile guard set for

P .

Proof. Let q be a point in the interior of P . q is either inside: (1) an empty room ri of P , (2) a star triangle
ts of TP , (3) a non-weak crescent triangle tnw of TP , or (4) a weak crescent triangle tw of TP . In any of
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the four cases, q is visible from at least two vertices u1 and u2 of TP that are connected via an edge or a
diagonal in TP . In the first case, q is visible from the two endpoints vi and vi+1 of ai. In the second case,
q is visible from all three vertices of ts. The third case arises when q is inside a non-empty room rj with
|C∗

j | = 1 (tnw is the unique crescent triangle in rj), in which case q is visible from at least two of the three
vertices vj , vj+1 and cj,1. Finally, in the fourth case, q has to lie inside the crescent of a non-empty room
rj with |C∗

j | ≥ 2, and is visible from at least two consecutive vertices cj,k and cj,k+1 of Cj .
Since G is a diagonal 2-dominating set for TP , and (u1, u2) ∈ TP , at least one of u1 and u2 belongs

to GTP
. Without loss of generality, let us assume that u1 ∈ GTP

. If u1 ∈ G, q is monitored by u1. If
u1 6∈ G, u1 has to be an endpoint of a weak diagonal dw in GTP

. Let rℓ be the room, inside the crescent
of which lies dw. Since dw ∈ GTP

, we have that aℓ ∈ G. If q lies inside the closure of the crescent of the
room rℓ (this can happen in case (4) above), q is visible from aℓ, and thus monitored by aℓ. Otherwise, u1

cannot be an endpoint of aℓ (aℓ ∈ G, whereas u1 6∈ G), which implies that u1 ∈ C∗
ℓ , i.e., u1 ≡ cℓ,m, with

2 ≤ m ≤ |Cℓ| − 1. But then q lies inside the cone with apex cℓ,m, delimited by the rays cℓ,mcℓ,m−1 and
cℓ,mcℓ,m+1, and containing at least one of vℓ and vℓ+1 in its interior. Since, q is visible from the intersection
point of the line qu1 with aℓ, q is monitored by aℓ.

Our approach for computing the mobile guard set G of P consists of three major steps:

1. Construct the constrained triangulation TP of P .

2. Compute a diagonal 2-dominating set GTP
for the triangulation graph TP .

3. Map GTP
to G.

The sets C∗
i , needed in order to construct the constrained triangulation TP of P can be computed in

O(n log n) time and O(n) space (cf. [21]). Once we have the sets C∗
i , the constrained triangulation TP of P

can be constructed in linear time and space. By Theorem 4, computing GTP
takes linear time; furthermore

|GTP
| ≤ ⌊n+1

3
⌋, which implies that |G| ≤ ⌊n+1

3
⌋. Finally, the construction of G from GTP

takes O(n) time
and space: for every edge in GTP

we need to add to G the corresponding convex arc of P , while for every
diagonal d in GTP

we need to determine if it is a weak diagonal, in which case we need to add to G the edge
of P delimiting the crescent in which d lies, otherwise we simply add d to G; by appropriate bookkeeping
at the time of construction of TP these operations can take O(1) per edge or diagonal. Summarizing, by
Theorem 3, Lemma 11 and our analysis above, we arrive at the following theorem. The case n = 2 can be
trivially established.

Theorem 12. Let P be a piecewise-convex polygon with n ≥ 2 vertices. We can compute a mobile guard
set for P of size at most ⌊n+1

3
⌋ in O(n log n) time and O(n) space.

4.2. Edge guards

We start by proving that an edge 2-dominating set for TP is also an edge guard set for P (see also Fig.
28).

Lemma 13. Let P be a piecewise-convex polygon with n ≥ 3 vertices, TP its constrained triangulation
graph, and GTP

an edge 2-dominating set of TP . The set G of edge guards, defined by mapping every edge
in GTP

to the corresponding convex arc of P , is an edge guard set for P .

Proof. Let q be a point in the interior of P . Recall the four cases for q from the proof of Lemma 11. q is
either inside: (1) an empty room of P , (2) a star triangle of TP , (3) a non-weak crescent triangle of TP , or
(4) a weak crescent triangle of TP . In any of the four cases, q is visible from at least two vertices u1 and u2

of TP , such that the edge or diagonal (u1, u2) belongs to TP . Let t be a triangle supported by (u1, u2) in
TP . At least two of the vertices of t belong to GTP

, which implies that at least one of u1 and u2, belongs
to GTP

. Since the set of vertices that are endpoints of edges in GTP
is the same as the set of vertices that

are endpoints of edges in G, we conclude that q is monitored by a vertex that is an endpoint of an edge in
G.
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Figure 28: Top row: two edge 2-dominating sets for the triangulation graph TP of P from Fig. 26. Bottom
row: the corresponding edge guard sets for P .

By Theorems 7 and 10, we can either compute an edge 2-dominating set GTP
of size ⌊ 2n+1

5
⌋ in O(n2)

time and O(n) space, or an edge 2-dominating set GTP
of size ⌊ 3n

7
⌋ in linear time and space (except for

n = 4 where one additional edge is needed in both cases). As in the case of mobile guards, the constrained
triangulation graph TP of P can be computed in O(n log n) time and O(n) space. Since |G| = |GTP

|, we
arrive at the following theorem. The case n = 2 is trivial, since in this case any of the two edges of P is an
edge guard set for P .

Theorem 14. Let P be a piecewise-convex polygon with n ≥ 2 vertices. We can either: (1) compute an
edge guard set for P of size ⌊ 2n+1

5
⌋ (except for n = 4, where one additional edge guard is required) in O(n2)

time and O(n) space, or (2) compute an edge guard set for P of size ⌊ 3n
7
⌋ (except for n = 2, 4, where one

additional edge guard is required) in O(n log n) time and O(n) space.

4.3. Lower bound constructions

Consider the piecewise-convex polygon P of Fig. 29. Each spike consists of three edges, namely, two line
segments and a convex arc. In order for points in the non-empty room of the convex arc to be monitored,
either one of the three edges of the spike, or a diagonal at least one endpoint of which is an endpoint of
the convex arc, has to be in any guard set of P : the chosen edge or diagonal in a spike cannot monitor the
non-empty room inside another spike of P . Since P consists of k spikes, yielding n = 3k vertices, we need
at least k mobile guards to monitor P . We, thus, conclude that P requires at least ⌊n

3
⌋ mobile guards in

order to be monitored.

Theorem 15. There exists a family of piecewise-convex polygons with n ≥ 3 vertices any mobile guard set
of which has cardinality at least ⌊n

3
⌋.

Our lower bound for edge guards is slightly better than for mobile guards. Consider the fan-like n-vertex
piecewise-convex polygon F of Fig. 30. F is constructed from a regular n-gon by replacing each edge of
the n-gon by a highly tilted spike. The spike s, bounded by the edge es of F , can only be monitored by
the points of es, or some of the points of the two neighboring edges of es. This immediately implies that in
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Figure 29: The lower bound construction for mobile guards: the polygon shown contains n = 3k vertices,
and requires k = ⌊n

3
⌋ mobile guards in order to be monitored.

Figure 30: The lower bound construction for edge guards: the polygon shown contains n vertices, and
requires k = ⌈n

3
⌉ edge guards in order to be monitored.
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order to monitor F we need a minimum of ⌈n
3
⌉ edge guards. To see this, assume that there exists an edge

guard set G for F of size |G| < ⌈n
3
⌉. Then we would be able to find three consecutive edges e1, e2, e3 of F

that do not belong to G, which implies that the spike bounded by e2 is not monitored by G, a contradiction.

Theorem 16. There exists a family of piecewise-convex polygons with n ≥ 3 vertices any edge guard set of
which has cardinality at least ⌈n

3
⌉.

5. Monotone piecewise-convex polygons

In this section we consider the special case of monotone piecewise-convex polygons. We start by restating
the definition of monotonicity: a piecewise-convex polygon P is called monotone if there exists a line L,
such that every line L⊥ perpendicular to L intersects P at at most two points or line segments. Without
loss of generality we may assume that the line L, with respect to which P is monotone, is the x-axis. Let uj ,
1 ≤ j ≤ n, be the vertex of P with the j-th largest x-coordinate — ties are broken lexicographically (also
refer to Fig. 31). Let u0 (resp., un+1) be the point of P of minimal (resp., maximal) x-coordinate. Let ℓj ,
0 ≤ j ≤ n + 1, be the line passing through uj , perpendicular to L. The collection L = {ℓ0, ℓ1, . . . , ℓn+1} of
lines decompose the interior of P into n + 1 (possibly empty) convex regions κj , 0 ≤ j ≤ n, that are free
of vertices or edges of P . Each region κj , 0 ≤ j ≤ n, has on its boundary both uj and uj+1. Let eℓ

j (resp.,

er
j), 1 ≤ j ≤ n, be the edge of P that has uj as its right (resp., left) endpoint, i.e., eℓ

j (resp., er
j) lies to left

(resp., right) of uj. We define er
0 (resp., eℓ

n+1) to be the edge containing u0 (resp., un+1). For a vertex uj ,
1 ≤ j ≤ n, let e

opp
j be edge of P opposite to uj, i.e., the edge intersected by ℓj on the monotone chain on P

not containing uj . Finally, for each uj , 0 ≤ j ≤ n + 1, define its index σj to be equal to 0 if uj lies on both
the upper and monotone chain of P (this is the case for u0 and un+1), +1 if uj lies on the upper but not
the lower monotone chain of P , and −1 if uj lies on the lower but not the upper monotone chain of P .

We are going to compute an edge set G for P of size at most ⌈n+1
4

⌉ as will be described below. The idea
behind computing G is to split P into subpieces consisting of (at most) four convex regions κj and for each
such four-tuple of convex pieces choose an edge of P that monitors them. The procedure for computing G

is as follows. For j > n, set κj = ∅, and initialize G to be empty. Let

Ki =

4i−1
⋃

j=4i−4

κj , 1 ≤ i ≤

⌈

n + 1

4

⌉

.
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Figure 31: A monotone piecewise-convex polygon P with 9 vertices. The decomposition of P into the convex
regions κj , 0 ≤ j ≤ 9 is shown. The edges eℓ

3 and er
3 are the edges of P having u3 to their left and right,

respectively. The edge e
opp
3 is the edge of P opposite to u3 (i.e., the edge of P intersected by ℓ3 lying on

the monotone chain of P not containing u3). The indices of the vertices of P are as follows: σ0 = σ10 = 0;
σ1 = σ2 = σ3 = σ7 = σ9 = +1; σ4 = σ5 = σ6 = σ8 = −1.
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For each Ki, 1 ≤ i < ⌈n+1
4

⌉, we are going to add one edge of P to G according to the following procedure.

1. If σ4i+1 6= σ4i+2, add er
4i+1 to G.

2. Otherwise, if σ4i+2 6= σ4i+3, add eℓ
4i+3 to G.

3. Otherwise, if σ4i 6= σ4i+1, add er
4i to G.

4. Otherwise, if σ4i+3 6= σ4i+4, add eℓ
4i+4 to G.

5. Otherwise, add e
opp
4i+2 to G.

The procedure for adding an edge of P for K⌈n+1

4
⌉ is analogous or simpler, since we only need to account

for four or less consecutive convex regions.

Lemma 17. The edge set G defined via the procedure above is an edge guard set for P .

Proof. We are going to show that the set Ki, 1 ≤ i < ⌈n+1
4

⌉ is monitored by the corresponding edge added
to G. The argument for K⌈n+1

4
⌉ is analogous or simpler and is omitted.

Given a point p ∈ P , let ℓ⊥(p) be the line passing through p that is perpendicular to L.
Suppose that σ4i+1 6= σ4i+2. The edge er

4i+1 has as right endpoint a vertex uλ with λ ≥ 4i + 3. Clearly,
κ4i and κ4i+1 are monitored by u4i+1 ∈ er

4i+1. If λ = 4i + 3, then κ4i+2 and κ4i+3 are monitored by
u4i+3 ∈ er

4i+1. Otherwise, λ ≥ 4i+4, in which case for every point p ∈ κ4i+2∪κ4i+3 the line ℓ⊥(p) intersects
er
4i+1. The argument is symmetric if σ4i+1 = σ4i+2, but σ4i+2 6= σ4i+3.

Otherwise, consider the case σ4i 6= σ4i+1. The edge er
4i has a right endpoint a vertex uλ of P , with

λ ≥ 4i+3. If λ = 4i+3, both κ4i+2 and κ4i+3 are monitored by u4i+3. κ4i is monitored by u4i, whereas for
every point p ∈ κ4i+1, the line ℓ⊥(p) intersects er

4i. If λ > 4i+3, i.e., λ ≥ 4i+4, then for every point p ∈ Ki,
the line ℓ⊥(p) intersects er

4i. The argument is symmetric if σ4i = σ4i+1 = σ4i+2 = σ4i+3, but σ4i+3 6= σ4i+4.
Finally, consider the case σ4i = σ4i+1 = σ4i+2 = σ4i+3 = σ4i+4. In this case for every point p ∈ Ki, the

line ℓ⊥(p) intersects e
opp
4i+2.

Given Lemma 17 we can now state and prove the main result of this section.

Theorem 18. Given a monotone piecewise-convex polygon P with n ≥ 2, ⌈n+1
4

⌉ edge or mobile guards are
always sufficient and sometimes necessary in order to monitor P . We can compute such an edge guard set
in O(n) time and O(n) space.

Proof. Lemma 17 gives us the upper bound, since an edge guard set is also a mobile guard set. The time and
space complexities are a result of the fact that determining whether a piecewise-convex polygon is monotone
can be determined in linear time [32], and the fact that the procedure for computing an edge guard set
described above takes linear time and space.

Let us now concentrate on proving the lower bound. It suffices to present the proof for the case of
mobile guards. Our claim is trivial for n ∈ {2, 3}. Consider the monotone piecewise-convex polygons M1

(top) and M2 (bottom) of Fig. 32. M1 consists of n1 = 2m1 + 5, m1 ≥ 0, vertices, whereas M2 consists of
n2 = 2m2 + 4, m2 ≥ 0, vertices (in our example m1 = m2 = 4). The rationale behind the construction of
Mi, i = 1, 2, lies in the properties of the shaded regions sj , 0 ≤ j ≤ ni, shown in Fig. 32. Each region sj ,
1 ≤ j ≤ ni − 1, is only visible by the two vertices uj and uj+1 of Mi, some or all points on the edges er

j and

eℓ
j+1, as well as points on diagonals of Mi that have either uj or uj+1 as one of their endpoints. Finally, the

shaded region s0 (resp., sni
) is only visible by u0, all points on er

0 or the diagonals d12, d13 and d23 (resp.,
by uni

, all points on eℓ
ni+1 or the diagonals dni−2,ni

, dni−1,ni
and dni−2,ni−1).

Let Gi be the mobile guard set for Mi, i = 1, 2. Suppose that we can monitor Mi with less than ⌈n+1
4

⌉
mobile guards. This implies that the number of vertices of Mi in Gi is less than ⌈n+1

2
⌉, which further implies

that either: (1) there exist two consecutive vertices of Mi that do not belong to Gi, or: (2) u1 or uni
is not

incident to an edge or diagonal of Mi in Gi. In the former case, let uk and uk+1 be the two consecutive
vertices of Mi that are not incident to edges that belong to Gi. This implies, in particular, that neither
er

k nor eℓ
k+1, nor any diagonal of Mi incident to uk or uk+1, belongs to Gi and therefore the shaded region

sk is not monitored by the edges or diagonals in Gi, a contradiction. In the latter case, e0, d12, d13 or d23

(resp., eni
, dni−2,ni

, dni−1,ni
or dni−2,ni−1) cannot belong to Gi, which implies that s0 (resp., sni

) is not
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Figure 32: The lower bound construction for monotone piecewise-convex polygons. The polygon M1 (top)
consists of n1 = 13 vertices, whereas M2 (bottom) consists of n2 = 12 vertices. Each region sj , 1 ≤ j ≤ ni−1,
is only visible by uj , uj+1, some or all points on er

j and eℓ
j+1, or points on diagonals of Mi that have either uj

or uj+1 as one of their endpoints. The shaded region s0 (resp., sni
) is only visible by u0, all points on er

0 or
the diagonals d12, d13, d23 (resp., by uni

, all points on eℓ
ni+1 or the diagonals dni−2,ni

, dni−1,ni
, dni−2,ni−1).

monitored by any of the edges or diagonals in Gi, again a contradiction. Hence our assumption that M1 or
M2 can be monitored with less that ⌈n+1

4
⌉ edge guards is false.

Remark 1. The results presented in this section for monotone piecewise-convex polygons are also valid for

monotone locally convex polygons, i.e., curvilinear polygons that are locally convex except possibly at their

vertices. The proof technique for producing the upper bound is identical to the case of monotone piecewise-

convex polygons. Since monotone piecewise-convex polygons is a subclass of locally convex polygons, the

lower bound construction presented in Theorem 18 still applies.

6. Discussion and open problems

In this paper we have dealt with the problem of monitoring piecewise-convex polygons with edge or mobile
guards. Our proof technique first transforms the problem of monitoring the piecewise-convex polygon to the
problem of 2-dominating a constrained triangulation graph. For the problem of 2-dominance of triangulation
graphs, we have shown that ⌊n+1

3
⌋ diagonal guards are always sufficient and sometimes necessary, while such

a 2-dominating set can be computed in O(n) time and space. When edge guards are to be used in the context
of 2-dominance, ⌊ 2n+1

5
⌋ guards are always sufficient and sometimes necessary. We have not yet found a way

to compute an edge 2-dominating set of size at most ⌊ 2n+1
5

⌋ in o(n2) time, whereas we have shown that
it is possible to compute an edge 2-dominating set of size at most ⌊ 3n

7
⌋ in linear time and space. It, thus,

remains an open problem how to compute an edge 2-dominating set of size at most ⌊ 2n+1
5

⌋ in o(n2) time
and linear space.

Once a 2-dominating set D has been found for the constrained triangulation graph, we either prove that
D is also a guard set for the piecewise-convex polygon (this is the case for edge guards) or we map D to a
mobile guard set for the piecewise-convex polygon. In the case of edge guards, the piecewise-convex polygon
is actually monitored by the endpoints of the edges in the guard set. In the case of mobile guards, interior
points of edges may also be needed in order to monitor the interior of the polygon. The latter observation
should be contrasted against the corresponding results for the class of linear polygons, where, for both edge
and mobile guards, the polygon is essentially monitored by the endpoints of these guards (cf. [29]). Based on
our results on 2-dominance of triangulation graphs, we show that a mobile guard set of size at most ⌊n+1

3
⌋

can be computed in O(n log n) time and O(n) space. As far as edge guards are concerned, we can either
compute an edge guard set of size at most ⌊ 2n+1

5
⌋ in O(n2) time and O(n) space, or an edge guard set of

size at most ⌊ 3n
7
⌋ in O(n log n) time and O(n) space. Finally, we have presented families of piecewise-convex
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polygons that require a minimum of ⌊n
3
⌋ mobile or ⌈n

3
⌉ edge guards in order to be monitored. An important

remark, due to the lower bound of Theorem 8, is that the proof technique of this paper cannot possibly
yield better results for the edge guarding problem. If we are to close the gap between the upper and lower
bounds, a fundamentally different technique will have to be used.

When restricted to the subclass of monotone piecewise-convex polygons, we were able to derive better
bounds on the number of edge or mobile guards that are sufficient in order to monitor these polygons. In
particular, we can monitor monotone piecewise-convex polygons with ⌈n+1

4
⌉ edge or mobile guards, and this

bound is tight for both types of guards. The same results apply to monotone locally convex polygons.
Thus far we have limited our attention to the class of piecewise-convex polygons. It would be interesting

to attain similar results for locally concave polygons (i.e., curvilinear polygons that are locally concave
except possibly at the vertices), for piecewise-concave polygons (i.e., locally concave polygons the edges of
which are convex arcs), or for curvilinear polygons with holes.
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Appendix

A. 2-dominance with diagonal guards: alternative proof

The proof that follows is an alternative, much simpler proof for Theorem 3. Its disadvantage is that
it makes use of edge contractions (cf. Lemma 5), thus yielding an O(n2) time and O(n) space algorithm
instead of a linear time and space algorithm, like the one provided in Section 2.

Proof. By Lemma 2 the theorem holds true for 3 ≤ n ≤ 7. Let us now assume that n ≥ 8 and that the
theorem holds for all n′ such that 3 ≤ n′ < n. By means of Lemma 1 with λ = 3, there exists a diagonal
d that partitions TP into two triangulation graphs T1 and T2, where T1 contains k boundary edges of TP

with 3 ≤ k ≤ 4. Let vi, 0 ≤ i ≤ k, be the k + 1 vertices of T1, as we encounter them while traversing P

counterclockwise, and let v0vk be the common edge of T1 and T2. In what follows dij denotes the diagonal
vivj , whereas ei denotes the edge vivi+1. Consider each value of k separately (see also Fig. A.33):

k = 3. Without loss of generality let d02 be the diagonal of the quadrilateral T1. T2 contains n−2 vertices.
By Lemma 5 and our induction hypothesis, we can 2-dominate T2 with f(n − 3) diagonal guards and
v0. TP can be 2-dominated by the f(n − 3) diagonal guards of T2 plus the diagonal d02.

k = 4. In this case T2 contains n − 3 vertices. Let t be the triangle in T1 supported by d, and let v be the
third vertex of t besides v0 and v4. The presence of diagonals d03 or d14 would violate the minimality
of k, which implies that v is actually v2. By our induction hypothesis, we can 2-dominate T2 with
f(n − 3) = ⌊n+1

3
⌋ − 1 diagonal guards. Let D2 be the diagonal 2-dominating set of T2. Notice that

at least one of v0 and v4 has to be in D2. Let us assume, without loss of generality, that v0 is in D2.
Then the set D = D2 ∪ {d24} is a diagonal 2-dominating set for TP of size f(n − 3) + 1 = ⌊n+1

3
⌋.

v0v0

v1

v1

v2

v2

v3

v3 v4

t

dd

Figure A.33: Proof of Theorem 3. Left: k = 3. Right: k = 4.
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