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Abstract

We study a variant of the classical art gallery problem, where an art gallery is modeled by a polygon with
curvilinear sides. We focus on piecewise-convex and piecewise-concave polygons, which are polygons whose
sides are convex and concave arcs, respectively. It is shown that for monitoring a piecewise-convex polygon
with n ≥ 2 vertices, ⌊ 2n

3
⌋ vertex guards are always sufficient and sometimes necessary. We also present an

algorithm for computing at most ⌊ 2n
3
⌋ vertex guards in O(n log n) time and O(n) space. For the number of

point guards that can be stationed at any point in the polygon, our upper bound ⌊ 2n
3
⌋ carries over and we

prove a lower bound of ⌈n
2
⌉. For monitoring a piecewise-concave polygon with n ≥ 3 vertices, 2n − 4 point

guards are always sufficient and sometimes necessary, whereas there are piecewise-concave polygons where
some points in the interior are hidden from all vertices, hence they cannot be monitored by vertex guards.
We conclude with bounds for some special types of curvilinear polygons.
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1. Introduction

In the classical art gallery problem, an art gallery is represented by a simply connected closed polygonal
domain (for short polygon) P . The art gallery is monitored by a set of guards, each represented by a point in
P , if every point in P is visible to at least one of the guards. Two points see each other if they are visible to
each other, i.e., if the closed line segment connecting them lies in P . Victor Klee asked what is the minimum
number of guards that can monitor any polygon with n ≥ 3 vertices. Art gallery-type problems have found
applications in robotics [1, 2], motion planning [3, 4], computer vision and pattern recognition [5, 6, 7, 8],
graphics [9, 10], CAD/CAM [11, 12] and wireless networks [13]. Curvilinear objects were typically modeled
with straight-line polygonal approximations. Starting from the late 80s, some geometric algorithms were
extended to curvilinear polygons [14]. Refer to the recent book edited by Boissonnat and Teillaud [15] for
a collection of computational-geometry results for curves and surfaces. In this context this paper addresses
the classical art gallery problem for various classes of polygonal regions bounded by curvilinear edges. To
the best of our knowledge this is the first time that the art gallery problem is considered in this context.

The first results on art gallery-type problems date back to the 1970’s. Chvátal [16] proved that every
simple polygon with n vertices can be monitored by ⌊n

3
⌋ vertex guards; this bound is tight in the worst case.
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Later Fisk [17] gave an elegant algorithmic proof using a 3-coloring of a triangulation of the polygon. Fisk’s
algorithm runs in O(n) time for a triangulated polygon with n vertices, and the time complexity of the
triangulation is O(n) based on Chazelle’s algorithm [18]. Lee and Lin [19] showed that finding the minimum
number of vertex guards for a given simple polygon is NP-hard, which was extended to point guards by
Aggarwal [20]. Other types of art galleries have also been considered. Kahn, Klawe and Kleitman [21]
showed that every simple orthogonal polygon, i.e., simple polygon with axes-aligned edges, with n vertices
can be monitored by ⌊n

4
⌋ vertex guards, and this bound is best possible. Several O(n) time algorithms

have been proposed for placing the guards in this variation of the problem, notably by Sack [22] and later
by Lubiw [23]. Edelsbrunner, O’Rourke and Welzl [24] gave an O(n) time algorithm for placing ⌊n

4
⌋ point

guards that jointly monitor an orthogonal polygon with n vertices. Other types of guarding problems have
also been studied in the literature. For a detailed discussion of these variations and the corresponding results
the interested reader should refer to the book by O’Rourke [25], or the survey papers by Shermer [26] and
by Urrutia [27].

The main focus of this paper is the class of polygons that are either locally convex or locally concave
(except possibly at the vertices), the edges of which are convex arcs (defined below); we call such polygons
piecewise-convex and piecewise-concave polygons, respectively.

We show that every piecewise-convex polygon with n ≥ 2 vertices can be monitored by at most ⌊ 2n
3
⌋

vertex guards. This bound is tight: there are piecewise-convex polygons with n vertices, for every n ≥ 2,
that cannot be monitored by fewer than ⌊ 2n

3
⌋ vertex guards. Our upper bound is based on an algorithm for

placing vertex guards, which can be implemented in O(n log n) time and O(n) space. Our algorithm is a
generalization of Fisk’s algorithm [17]; in fact, when applied to a straight-line polygon with n ≥ 3 vertices,
it produces at most ⌊n

3
⌋ vertex guards. For the purposes of our complexity analysis and results, we assume,

throughout the paper, that the curvilinear edges of our polygons are arcs of algebraic curves of constant
degree. As a result, all predicates required by the algorithms described in this paper take O(1) time in
the real RAM model of computation model. The central idea for our upper bound is the approximation
of a piecewise-convex polygon by a straight-line polygon by adding Steiner vertices on the boundary of the
curvilinear polygon. The resulting polygonal approximation is a simple straight-line polygon. We compute a
guard set for the polygonal approximation by a slightly modified version of Fisk’s algorithm [17]. This guard
set monitors the original curvilinear polygon, however, vertex guards may be located at Steiner vertices.
The final step of our algorithm maps the vertex guards of the polygonal approximation to vertex guards of
the curvilinear polygon. Our upper bound of ⌊ 2n

3
⌋ also applies to point guards. However, it does not match

the best lower bound we have found. There are piecewise-convex polygons with n vertices, for every n ≥ 2,
that cannot be monitored by fewer than ⌈n

2
⌉ point guards.

Some piecewise-concave polygons have interior points hidden from all vertices (see Fig. 14(a)), and hence
they cannot be monitored by vertex guards alone. We thus turn our attention to point guards, and we show
that 2n − 4 point guards are always sufficient and sometimes necessary for monitoring a piecewise-concave
polygon with n ≥ 3 vertices. Our upper bound proof is based on Fejes Tóth’s technique for illuminating
sets of disjoint convex objects in the plane [28]. Given a piecewise-concave polygon P , we subdivide P into
crescents (bounded by a convex and a concave arc), each adjacent to an edge of P , and into convex polygonal
holes. Using Fejes Tóth’s argument, if we place guards at points incident to at least three crescents, at two
vertices of each triangular hole and all vertices at holes with 4 or more vertices, we obtain a guard set that
monitors all holes and all crescents, hence the entire piecewise-concave polygon P . Since the intersection
graph of the crescents is outerplanar, whose faces correspond to the holes, it is easy to show that the number
of point guards is at most 2n− 4.

The rest of the paper is structured as follows. In Section 2 we define curvilinear polygons, including
piecewise-convex and piecewise-concave polygons. In Section 3 we present our algorithm for computing
a vertex guard set, of size ⌊ 2n

3
⌋, for a piecewise-convex polygon with n vertices, and present families of

piecewise-convex polygons that require a minimum of ⌊ 2n
3
⌋ vertex or ⌈n

2
⌉ point guards in order to be

monitored. In Section 4 we present our results for piecewise-concave polygons, namely, that 2n − 4 point
guards are always necessary and sometimes sufficient for this class of polygons. The final section of the
paper, Section 5, discusses further results and states open problems.
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Figure 1: Different types of curvilinear polygons: (a) a straight-line polygon, (b) a piecewise-convex polygon, (c) a locally
convex polygon, (d) a piecewise-concave polygon, (e) a locally concave polygon and (f) a general polygon.

2. Definitions

Types of curvilinear polygons. Let V be a sequence of points v1, . . . , vn, n ≥ 2, and A a set of
curvilinear arcs a1, . . . , an, such that the endpoints of ai are vi and vi+1

1. We assume that the arcs ai and
aj, i 6= j, do not intersect, except when j = i− 1 or j = i+1, in which case they intersect only at the points
vi and vi+1, respectively. We define a curvilinear polygon P to be the closed region delimited by the arcs
ai. The points vi are called the vertices of P . An arc ai is a convex arc if every line on the plane intersects
ai at either at most two points or along a line segment.

A polygon P is a straight-line polygon if its edges are line segments (see Fig. 1(a)). A polygon P is
locally convex (see Fig. 1(c)), (resp., locally concave (see Fig. 1(e))), if for every point p on the boundary of
P , with the possible exception of P ’s vertices, there exists a disk centered at p, say Dp, such that P ∩Dp is
convex (resp., concave). A polygon P is piecewise-convex (see Fig. 1(b)), (resp., piecewise-concave (see Fig.
1(d))), if it is locally convex (resp., concave), and the portion of the boundary between every two consecutive
vertices is a convex arc. Finally, a polygon is said to be a general polygon if we impose no restrictions on
the type of its edges (see Fig. 1(f)). We use the term curvilinear polygon to refer to a polygon the edges of
which are either line or curve segments.
Guards and guard sets. In our setting, a guard or point guard is a point in the interior or on the
boundary of a curvilinear polygon P . A guard of P that is also a vertex of P is called a vertex guard. We
say that a curvilinear polygon P is monitored by a set G of guards if every point in P is visible from at
least one point in G, where two points p and q in P are visible from each other if the line segment pq lies
entirely in P . The set G that has this property is called a guard set for P . A guard set that consists solely
of vertices of P is called a vertex guard set.

1Indices are evaluated modulo n.
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3. Piecewise-convex polygons

In this section we present an algorithm which, given a piecewise-convex polygon P with n vertices,
computes a vertex guard set G of size ⌊ 2n

3
⌋. The basic steps of the algorithm are as follows:

1. Compute the polygonal approximation P̃ of P .

2. Compute a constrained triangulation T (P̃ ) of P̃ .

3. Compute a guard set GP̃ for P̃ , by 3-coloring the vertices of T (P̃ ).

4. Compute a guard set GP for P from the guard set GP̃ .

3.1. Polygonalization of a piecewise-convex polygon

Let ai be a convex arc with endpoints vi and vi+1. We call the convex region ri delimited by ai and the
line segment vivi+1 a room. A room is called degenerate if the arc ai is a line segment. A line segment pq,
where p, q ∈ ai is called a chord, and the region delimited by the chord pq and ai is called a sector. The
chord of a room ri is defined to be the line segment vivi+1 connecting the endpoints of the corresponding
arc ai. A degenerate sector is a sector with empty interior. We distinguish between two types of rooms (see
Fig. 2):

1. a room is empty if it is non-degenerate and does not contain any vertex of P in its interior or in the
interior of its chord.

2. a room is non-empty if it is non-degenerate and contains at least one vertex of P in its interior or in
the interior of its chord.

In order to polygonalize P we add Steiner vertices in the interior of non-linear convex arcs. More
specifically, for each empty room ri we add a vertex wi,1 (anywhere) in the interior of the arc ai (see Fig. 3).
For each non-empty room ri, let Xi be the set of vertices of P that lie in the interior of the chord vivi+1 of
ri, and Ri be the set of vertices of P that are contained in the interior of ri or belong to Xi (by assumption
Ri 6= ∅). If Ri 6= Xi, let Ci be the set of vertices on the convex hull of the vertex set (Ri \ Xi) ∪ {vi, vi+1};
if Ri = Xi, let Ci = Xi ∪ {vi, vi+1}. Finally, let C∗

i = Ci \ {vi, vi+1}. Clearly, vi and vi+1 belong to the set
Ci and, furthermore, C∗

i 6= ∅.
Let mi be the midpoint of vivi+1 and ℓ⊥i (p) the line perpendicular to vivi+1 passing through a point p.

If C∗
i 6= Xi, then, for each vk ∈ C∗

i , let wi,jk
, 1 ≤ jk ≤ |C∗

i |, be the (unique) intersection of the line mivk

with the arc ai; if C∗
i = Xi, then, for each vk ∈ C∗

i , let wi,jk
, 1 ≤ jk ≤ |C∗

i |, be the (unique) intersection of
the line ℓ⊥i (vk) with the arc ai.

Now consider the sequence Ṽ of the original vertices of P augmented by the Steiner vertices added to
empty and non-empty rooms; the order of the vertices in Ṽ is the order in which we encounter them as
we traverse the boundary of P counterclockwise. The straight-line polygon defined by the sequence Ṽ of
vertices is denoted by P̃ (see Fig. 4(a)). It is easy to show that:

r′ne

r′e

r′′ne

r′′e

Figure 2: The two types of rooms in a piecewise-convex polygon: r′e and r′′e are empty rooms, whereas r′ne and r′′ne are
non-empty rooms.
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m5

a3

a5

r3

r5

w3,1

w5,1

w5,2

Figure 3: The Steiner vertices (white points) for rooms r3 (empty) and r5 (non-empty). w3,1 is a point in the interior of a3.
m5 is the midpoint of the line segment v5v6, whereas w5,1 and w5,2 are the intersections of the lines m5v2 and m5v1 with the
arc a5, respectively. In this example R5 = {v1, v2, v7}, whereas C∗

5
= {v1, v2}.

v1
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v3
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v6
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w1,1
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w3,1

w5,1
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(a)

v1

v2

v3
v4

v5

v6

v7

w1,1

w2,1

w3,1

w5,1

w5,2

(b)

Figure 4: (a) The polygonal approximation P̃ , shown in gray, of the piecewise-convex polygon P with vertices vi, i = 1, . . . , 7.
(b) The constrained triangulation T (P̃ ) of P̃ . The dark gray triangles are the constrained triangles. The polygonal region
v5w5,1w5,2v6v1v2v5 is a crescent. The triangles w5,1v2v5 and v1w5,2v6 are boundary crescent triangles. The triangle v2w5,2v1

is an upper crescent triangle, whereas the triangle v2w5,1w5,2 is a lower crescent triangle.

Lemma 1. The straight-line polygon P̃ is a simple polygon.

Proof. It suffices show that the line segments replacing the curvilinear segments of P do not intersect other
edges of P or P̃ .

Let ri be an empty room, and let wi,1 be the point added in the interior of ai. The interior of the line
segments viwi,1 and wi,1vi+1 lie in the interior of ri. Since P is a piecewise-convex polygon, and ri is an
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empty room, no edge of P could potentially intersect viwi,1 or wi,1vi+1. Hence replacing ai by the polyline
viwi,1vi+1 gives us a new piecewise-convex polygon.

Let ri be a non-empty room. Let wi,1, . . . , wi,Ki
be the points added on ai, where Ki is the cardinality

of C∗
i . By construction, every point wi,k is visible from wi,k+1, k = 1, . . .Ki − 1, and every point wi,k is

visible from wi,k−1, k = 2, . . .Ki. Moreover, wi,1 is visible from vi and wi,Ki
is visible from vi+1. Therefore,

the interior of the segments in the polyline viwi,1 . . . wi,Ki
vi+1 lie in the interior of ri and do not intersect

any arc in P . Hence, substituting ai by the polyline viwi,1 . . . wi,Ki
vi+1 gives us a new piecewise-convex

polygon.
As a result, the straight-line polygon P̃ is a simple polygon. �

We call the straight-line polygon P̃ , defined by Ṽ , the straight-line polygonal approximation of P , or
simply the polygonal approximation of P . An obvious result for P̃ is the following:

Corollary 2. If P is a piecewise-convex polygon the polygonal approximation P̃ of P is a straight-line
polygon that is contained in P .

We end this subsection by proving a tight upper bound on the size of the polygonal approximation of
a piecewise-convex polygon. We start with an intermediate result, namely that the sets C∗

i are pairwise
disjoint.

Lemma 3. Let i, j, with 1 ≤ i < j ≤ n. Then C∗
i ∩ C∗

j = ∅.

Proof. Consider an arc ai of P , delimited by the vertices vi and vi+1 and let πi denote the shortest path
in P between them. Note that πi is a straight-line polygonal path, the internal vertices of which are the
vertices of C∗

i . Since ai is a convex arc, πi is also a convex arc. ai and πi bound a (curvilinear) polygon,
that we denote by Qi, for which πi is locally concave. That is, every point in C∗

i is a reflex vertex of Qi,
and so every point in C∗

i is a reflex (i.e., locally concave) vertex of P as well. At every vertex w ∈ C∗
i , the

bisector of the internal angle of P enters the polygon Qi and leaves Qi (and P ) at some point along ai.
Consider the bisector of the internal angle at every reflex vertex w of P . If the bisector intersects some

arc aj , then w can belong to the set C∗
j only. Since every bisector intersects at most one arc aj (we are

referring to the first intersection of the bisector while walking on it away from w), every vertex w belongs
to at most one set C∗

j . �

An immediate consequence of Lemma 3 is the following corollary that gives us a tight bound on the
number of vertices of the polygonal approximation P̃ of P .

Corollary 4. The number of vertices of the polygonal approximation P̃ of a piecewise-convex polygon P

with n vertices is at most 3n. This bound is tight (up to an additive constant).

Proof. Let ai be a convex arc of P , and let ri be the corresponding room. If ri is an empty room, then
P̃ contains one Steiner vertex due to ai. Hence P̃ contains at most n Steiner vertices attributed to empty

m1

v1 v2

v3

v4
v5v6vn−3

vn−2

vn−1

vn

Figure 5: A piecewise-convex polygon P with n vertices (solid curve), the polygonal approximation P̃ of which consists of
3n − 3 vertices (dashed polyline).
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rooms in P . If ri is a non-empty room, then P̃ contains |C∗
i | Steiner vertices due to ai. By Lemma 3 the

sets C∗
i , i = 1, . . . , n are pairwise disjoint, which implies that

∑n
i=1 |C

∗
i | ≤ |V | = n. Therefore P̃ contains

the n vertices of P , contains at most n vertices in empty rooms of P , and at most n vertices in non-empty
rooms of P . We thus conclude that the size of Ṽ is at most 3n.

The upper bound of the paragraph above is tight up to an additive constant. Consider the piecewise-
convex polygon P of Fig. 5. It consists of n − 1 empty rooms and one non-empty room r1, such that
|C∗

1 | = n − 2. It is easy to see that |Ṽ | = 3n − 3. �

3.2. Triangulating the polygonal approximation

Let P be a piecewise-convex polygon, P̃ its polygonal approximation, and SP̃ the set of Steiner vertices

in P̃ . We construct a constrained triangulation of P̃ , i.e., we triangulate P̃ , while imposing some triangles to
be part of this triangulation. More precisely, we constrain the triangles of T (P̃ ) created in the neighborhood
of the vertices in SP̃ . By constraining the triangles in these neighborhoods, we effectively triangulate parts

of P̃ . The remaining untriangulated parts of P̃ consist of one or more interior disjoint straight-line polygons,
which are then triangulated arbitrarily in linear time and space. We call the pre-specified triangles in T (P̃ )
constrained triangles. We want the triangulation T (P̃ ) to satisfy the following properties:

1. every triangle of T (P̃ ), with a vertex in SP̃ , also contains at least one vertex of P , i.e., no triangles
contain only Steiner vertices,

2. every vertex in SP̃ belongs to at least one triangle in T (P̃ ) the other two vertices of which are both
vertices of P , and

3. the triangles of T (P̃ ) that contain vertices of P̃ can be monitored by vertices of P .

These properties are exploited in Step 4 of the algorithm presented later in this subsection.
Let us proceed to define the constrained triangles in T (P̃ ). If ri is an empty room, and wi,1 is the

Steiner vertex added on ai, add the edges vivi+1, viwi,1 and wi,1vi+1, thus forming the constrained triangle
viwi,1vi+1 (see Fig. 4(b)). If ri is a non-empty room, c1, . . . , cKi

the vertices in C∗
i , Ki = |C∗

i |, and
wi,1, . . . , wi,Ki

the Steiner vertices in ai (wi,j has been added on ai due to cj), add the following edges, if
they do not already exist:

1. ck, ck+1, for k = 1, . . . , Ki − 1, and vic1, cKi
vi+1;

2. ckwi,k, for k = 1, . . . , Ki;

3. ckwi,k+1, for k = 1, . . . , Ki − 1;

4. wi,k, wi,k+1, for k = 1, . . . , Ki − 1, and viwi,1, wi,Ki
vi+1.

These edges form 2Ki constrained triangles: ckck+1wi,k+1, for k = 1, . . . , Ki − 1; ckwi,kwi,k+1, for k =
1, . . . , Ki − 1; vic1wi,1 and vi+1cKi

wi,Ki
. We call the polygonal region formed by these triangles a crescent.

The triangles vic1wi,1 and vi+1cKi
wi,Ki

are called boundary crescent triangles, the triangles ckck+1wi,k+1,
k = 1, . . . , Ki − 1, are called upper crescent triangles, whereas the triangles ckwi,kwi,k+1, k = 1, . . . , Ki − 1,
are called lower crescent triangles.

Note that the points wi,j , j < Ki (resp., wi,Ki
) are vertices of exactly one triangle (resp., exactly two

triangles) in T (P̃ ), such that the other two vertices of the triangle (resp., of each of the two triangles) belong
to P .

3.3. Computing a guard set for the original polygon

Assume that we have colored the vertices Ṽ of P̃ with three colors, so that no triangle in T (P̃ ) contains
two vertices of the same color. This can be easily done by the standard 3-coloring algorithm for straight-line
polygons presented in [29, 17]. Let red, green and blue be the three colors, and let KA, ΠA and MA be the
set of vertices of A of red, green and blue color, respectively, where A stands for either P , P̃ or SP̃ . Clearly,

all three sets KP̃ , ΠP̃ and MP̃ are guard sets for P̃ . In fact, they are also guard sets for P , as the following
lemma suggests (see also Fig. 6).

Lemma 5. Each one of the sets KP̃ , ΠP̃ and MP̃ is a guard set for P .
7
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w5,1
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Figure 6: The three guard sets for P̃ , are also guard sets for P , as Lemma 5 suggests.

x

vi

vi+1

(a)

x

y

z

(b)

x

y

z

vi+1

(c)

x

y

z

vi+1

(d)

Figure 7: The three cases in the definition of the mapping f . Case (a): x is a Steiner vertex in an empty room. Case (b): x is
an Steiner vertex in a non-empty room and is not the last Steiner vertex added on the curvilinear arc. Cases (c) and (d): x is
the last Steiner vertex added on the curvilinear arc of a non-empty room (in (c) |f(x)| = 1, whereas in (d) |f(x)| = 2).
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Proof. Let GP̃ be one of KP̃ , ΠP̃ and MP̃ . By construction, GP̃ monitors all triangles in T (P̃ ). To show
that GP̃ is a guard set for P , it suffices to show that GP̃ also monitors the non-degenerate sectors defined

by the edges of P̃ and the corresponding convex subarcs of P .
Indeed, let s be a non-degenerate sector associated with the convex arc ai, and let T ∈ T (P̃ ) be the

triangle incident to the chord of s. If ri is an empty room, each of the three vertices of T monitors ri (and
therefore also s). If ri is a non-empty room, the vertex of T that is not an endpoint of the chord of s is a
vertex in C∗

i and monitors s by construction. Clearly, one of the three vertices of T belongs to GP̃ . �

Let as now assume, without loss of generality, that |KP | ≤ |ΠP | ≤ |MP |. Define the mapping f from
KS

P̃
to the power set 2ΠP of ΠP by mapping a vertex x in KS

P̃
to all the neighboring vertices of x in T (P̃ )

that belong to ΠP (see Fig. 7 for the three possible cases for x). Notice that 1 ≤ |f(x)| ≤ 2.
Finally, define the set GP = KP ∪ f(KS

P̃
), where f(KS

P̃
) =

⋃
x∈KS

P̃

f(x). We claim that GP is a guard

set for P .

Lemma 6. The set GP = KP ∪ f(KS
P̃
) is a guard set for P .

Proof. The regions in P \ P̃ are sectors bounded by a curvilinear arc, which is a subarc of an edge of P ,
and the corresponding chord connecting the endpoints of this subarc. To show that GP is a guard set for
P , it suffices show that every triangle in T (P̃ ) and every sector in P \ P̃ is monitored by at least one vertex
in GP .

x

x

yy

z
z

z

w

s

s
s1 s2

mi
vi vi+1

ai
ai

ai

TTT
T ′

Figure 8: Proof of Lemma 6. From left to right: the case of empty rooms; the case of boundary crescent triangles; the case of
upper and lower crescent triangles.

If all three vertices of a triangle T ∈ T (P̃ ) are vertices of P , one of the vertices of T is in KP ⊆ GP . If
T is a triangle in an empty room (see Fig. 8(left)), or a boundary crescent triangle (see Fig. 8(middle)),
either the unique Steiner vertex z of T is in KS

P̃
, in which case one of the other two vertices of T belongs to

f(KS
P̃
), or z is not in KS

P̃
, in which case one of the other two vertices of T belongs to KP . Moreover, the

sector/sectors adjacent to an edge of T in ri is/are visible by both vertices of T in P and thus monitored by
one of them. Finally, upper and lower crescent triangles come in pairs. Let T be an upper crescent triangle
in a non-empty room ri (see Fig. 8(right)). Let x, y be the vertices of T in P , and let z be its vertex in SP̃ ;
it is assumed here that z is the intersection of miy with ai. Let T ′ be the lower crescent triangle adjacent
to T along the edge xz, w be the third vertex of T ′, and s be the sector in P \ P̃ adjacent to zw. Since x

and y belong to C∗
i , either x or y monitors T , T ′ and s. We end the proof by claiming that either x or y

belongs to GP : if x or y belongs to KP the claim is obvious; if neither x nor y belongs to KP , then z ∈ KS
P̃

in which case one of x and y belongs to f(KS
P̃
). �

Since f(KS
P̃
) ⊆ ΠP we get that GP ⊆ KP ∪ΠP . Since KP and ΠP are the two sets of smallest cardinality

among KP , ΠP and MP , we conclude that |GP | ≤ |KP | + |ΠP | ≤ ⌊ 2n
3
⌋, and thus arrive at the following

theorem.

Theorem 7. Let P be a piecewise-convex polygon with n ≥ 2 vertices. P can be monitored with at most
⌊ 2n

3
⌋ vertex guards.

We close this subsection by making two remarks:

9



Remark 1. When the input to our algorithm is a straight-line polygon all rooms are degenerate; con-
sequently, no Steiner vertices are created, and the guard set computed corresponds to the set of colored
vertices of smallest cardinality, hence producing a vertex guard set of size at most ⌊n

3
⌋. In that respect,

our algorithm can be viewed as a generalization of Fisk’s algorithm [17] to the class of piecewise-convex
polygons.

Remark 2. Given a straight-line polygon P with r ≥ 2 reflex vertices, we can view P as a piecewise-
convex polygon the edges of which are c convex polylines, where c ≥ r. In this context Theorem 7 can be
“translated” as follows:

If the boundary of a simple straight-line polygon P can be partitioned into c ≥ 2 convex polylines
such that P is a piecewise-convex polygon with its edges being the c convex polylines, then P

can be monitored with at most ⌊ 2c
3
⌋ vertex guards.

3.4. Time and space complexity

In this subsection we show how to compute the vertex guard set GP in O(n log n) time and O(n) space. It
is straightforward to show that Steps 2–4 of our algorithm (see beginning of Section 3) can be implemented
in linear time and space. To complete our time and space complexity analysis, we need to show how to
compute the polygonal approximation P̃ of P in O(n log n) time and linear space. In order to compute P̃ ,
it suffices to compute for each room ri the set of vertices C∗

i . If C∗
i = ∅, then ri is empty, otherwise we have

the set of vertices we wanted. From C∗
i we can compute the points wi,k and the straight-line polygon P̃ in

O(n) time and space.
The underlying idea is to split P into y-monotone piecewise-convex subpolygons. For each room ri

within each such y-monotone subpolygon we then compute the corresponding set C∗
i . This is done by first

computing a subset Si of the set Ri of the points in the room ri, such that Si ⊇ C∗
i , and then applying

an optimal time and space convex hull algorithm to the set Si ∪ {vi, vi+1} in order to compute Ci, and
subsequently from that C∗

i . In the discussion that follows, we assume that for each convex arc ai of P we
associate a set Si, which is initialized to be the empty set. The sets Si are progressively filled with vertices
of P , so that in the end they fulfill the containment property mentioned above.

Splitting P into y-monotone piecewise-convex subpolygons is done in two steps:

1. First we split each convex arc ai into y-monotone pieces. Let P ′ be the piecewise-convex polygon we
get by introducing the y-extremal points for each ai and let V ′ be the vertex set of P ′. Since each ai

can yield up to three y-monotone convex pieces, we conclude that |V ′| ≤ 3n. Obviously splitting the
convex arcs ai into y-monotone pieces takes O(n) time and space. A vertex added to split a convex
arc into y-monotone pieces are called an added extremal vertex.

2. Second, we apply to P ′ the standard algorithm for computing y-monotone subpolygons of a straight-
line polygon (cf. [30] or [31]). The algorithm in [30] (or [31]) is valid not only for line segments, but
also for piecewise-convex polygons consisting of y-monotone arcs (such as P ′). Since |V ′| ≤ 3n, we
conclude that computing the y-monotone subpolygons of P ′ takes O(n log n) time and requires O(n)
space.

Note that a non-split arc of P belongs to exactly one y-monotone subpolygon. y-monotone pieces of a split
arc of P may belong to at most three y-monotone subpolygons (see Fig. 9).

Suppose now that we have a y-monotone polygon Q. The edges of Q are either convex arcs of P , or
pieces of convex arcs of P , or line segments between mutually visible vertices of P , added in order to form
the y-monotone subpolygons of P ; we call these line segments bridges (see Fig. 9). For each non-bridge
edge ei of Q, we want to compute the set C∗

i . This is done by sweeping Q in the negative y-direction (i.e.,
by moving the sweep line from +∞ to −∞). The events of the sweep correspond to the y coordinates of the
vertices of Q, which are all known before-hand and can be put in a decreasing sorted list. There are four
different types of events:

1. the first event: corresponds to the top-most vertex of Q,

2. the last event: corresponds to the bottom-most vertex of Q,
10



Q1

Q2 Q3

Q4

Q5

Q6

Q7

Q8

Q9Q10

Figure 9: Decomposition of a piecewise-convex polygon into ten y-monotone subpolygons. The white points are added extremal
vertices that have been added in order to split non-y-monotone arcs to y-monotone pieces. The bridges are shown as dashed
segments.

3. a left event: corresponds to a vertex of the left y-monotone chain of Q, and
4. a right event: corresponds to a vertex of the right y-monotone chain of Q.

Our sweep algorithm proceeds as follows. Let ℓ be the sweep line parallel to the x-axis at some y. For each
y in between the y-maximal and y-minimal values of Q, ℓ intersects Q at two points which belong to either
a left edge el or a left vertex vl (i.e., an edge or vertex on the left y-monotone chain of Q), and either a right
edge er or a right vertex vr (i.e., a edge or vertex on the right y-monotone chain of Q). We associate the
current left edge el at position y to a point set SL and the current right edge at position y to a point set
SR. If the edge el (resp., er) is a non-bridge edge, the set SL (resp., SR) contains vertices of Q that are in
the room of the convex arc of P corresponding to el (resp., er).

When the y-maximal vertex vmax is encountered, i.e., during the first event, we initialize SL and SR to
be the empty set. When a left event is encountered due a vertex vl, let el,up be the left edge above vl and
el,down be the left edge below vl and let er be the current right edge. If el,up is an non-bridge edge, and ai

is the corresponding convex arc of P , we augment the set Si by the vertices in SL. Then, irrespectively of
whether or not el,up is a bridge edge, we re-initialize SL to be the empty set. Finally, if er is a non-bridge
edge, and ak is the corresponding convex arc in P , we check if vl is in the room rk or lies in the interior of
the chord of rk; if this is the case we add vl to SR. When a right event is encountered our sweep algorithm
behaves symmetrically. When the last event is encountered due to the y-minimal vertex vmin, let el (resp.,
er) be the left (resp., right) edge of Q above vmin. If el (resp., er) is a non-bridge edge, let ai (resp., aj)
be the corresponding convex arc in P . In this case we simply augment Si (resp., Sj) by the vertices in SL

(resp., SR).
We claim that our sweep-line algorithm computes a set Si such that Si ⊇ C∗

i . To prove this we need the
following intermediate result:

Lemma 8. Given a non-empty room ri of P , with ai the corresponding convex arc, the vertices of the set
C∗

i belong to the y-monotone subpolygons of P ′ computed via the algorithm in [30] (or [31]), which either
contain the entire arc ai or y-monotone pieces of ai.

Proof. Let u be a vertex of P in C∗
i that is not a vertex of any of the y-monotone subpolygons of P ′

(computed by the algorithm in [30] or [31]) that contain either the entire arc ai or y-monotone pieces of ai.
11
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Figure 10: Proof of Lemma 8. (a) The case u ∈ C∗

i \ {vmin, vmax}, with w− ∈ s. (b) The case u ∈ C∗

i \ {vmin, vmax}, with
w+, w− 6∈ s. (c) The case u ≡ vmax.

Let vmax (resp., vmin) be the vertex of P of maximum (resp., minimum) y-coordinate in Ci; ties are broken
lexicographically. Let ℓu be the line parallel to the x-axis passing through u. Consider the following cases:

1. u ∈ C∗
i \ {vmin, vmax}. Without loss of generality we can assume that u is a vertex in the right

y-monotone chain of Ci (see Figs. 10(a) and 10(b)). Let u′ be the intersection of ℓu with ai. Let Q

(resp., Q′) be the y-monotone subpolygon of P ′ that contains u (resp., u′); by our assumption Q 6= Q′.
Finally, let u+ (resp., u−) be the vertex of Ci above (resp., below) u in the right y-monotone chain of
Ci.
The line segment uu′ cannot intersect any edges of P , since this would contradict the fact that u ∈ C∗

i .
Similarly, uu′ cannot contain any vertices of P ′: if v is a vertex of P in the interior of uu′, u would
be in the triangle vu+u−, which contradicts the fact that u ∈ C∗

i , whereas if v is a vertex of V ′ \ V

in the interior of uu′, P would not be locally convex at v, a contradiction with the fact that P is a
piecewise-convex polygon. As a result, and since Q 6= Q′, there exists a bridge edge e intersecting
uu′. Let w+, w− be the two endpoints of e in P ′, where w+ lies above the line ℓu and w− lies below
the line ℓu. In fact neither w+ nor w− can be a vertex in V ′ \ V , since the algorithm in [30] (or [31])
connects a vertex in V ′ \ V in a room rk with either the y-maximal or the y-minimal vertex of Ck

only. Let ℓ+ (resp., ℓ−) be the line passing through the vertices u and u+ (resp., u and u−). Finally,
let s be the sector delimited by the lines ℓ+, ℓ− and ai. Now, if w+ or w− lies in s, then u is in the
triangle w+u+u− or in the triangle w−u+u−, respectively (see Fig. 10(a)). In either case we get a
contradiction with the fact that u ∈ C∗

i . If neither w+ nor w− lie in s, then both w+ and w− have to
be vertices in ri, and moreover u lies in the convex quadrilateral w+u+u−w−; again this contradicts
the fact that u ∈ C∗

i (see Fig. 10(b)).

2. u ≡ vmax. By the maximality of the y-coordinate of u in Ci, we have that the y-coordinate of u is
larger than or equal to the y-coordinates of both vi and vi+1. Therefore, the line ℓu intersects the arc
ai exactly twice, and, moreover, ai has a y-maximal vertex of V ′ \ V in its interior, which we denote
by v′max (see Fig. 10(c)). Let u′ be the intersection of ℓu with ai that lies to the right of u, and let Q

(resp., Q′) be the y-monotone subpolygon of P ′ that contains u (resp., u′). By assumption Q 6= Q′,
which implies that there exists a bridge edge e intersecting the line segment uu′. Notice, that, as in
the case u ∈ C∗

i \{vmin, vmax}, the line segment uu′ cannot intersect any edges of P , or cannot contain
any vertex v of V ′ \ V ; the former would contradict the fact that u ∈ C∗

i , whereas as the latter would
contradict the fact that P is piecewise-convex. Furthermore, uu′ cannot contain vertices of P since
this would contradict the maximality of the y-coordinate of u in Ci.
Let w+ and w− be the endpoints of e above and below ℓu, respectively. Notice that e cannot have
v′max as endpoint, since the only bridge edge that has v′max as endpoint is the bridge edge v′maxu. But
then w+ must be a vertex of P lying in ri; this contradicts the maximality of the y-coordinate of u

among the vertices in Ci.
12



3. u ≡ vmin. This case is entirely symmetric to the case u ≡ vmax. �

An immediate corollary of the above lemma is the following:

Corollary 9. For each convex arc ai of P , the set Si computed by the sweep algorithm described above is a
superset of the set C∗

i .

Let us now analyze the time and space complexity of Step 1 of the algorithm sketched at the beginning
of this subsection. Computing the polygonal approximation P̃ of P requires subdividing P into y-monotone
subpolygons. This subdivision takes O(n log n) time and O(n) space. Then we need to compute the sets Si

for each convex arc ai of P . The sets Si can be implemented as red-black trees. During the course of our
algorithm we only perform insertions on the Si’s. A vertex v of P is inserted at most deg(v) times in some
Si, where deg(v) is the degree of v in the y-monotone decomposition of P . Since the sum of the degrees of
the vertices of P in the y-monotone decomposition of P is O(n), we conclude that the total size of the Si’s
is O(n) and that we perform O(n) insertions on the Si’s. Therefore we need O(n log n) time and O(n) space
to compute the Si’s and the C∗

i ’s. The analysis above thus yields the following:

Theorem 10. Let P be a piecewise-convex polygon with n ≥ 2 vertices. We can compute a guard set for P

of size at most ⌊ 2n
3
⌋ in O(n log n) time and O(n) space.

3.5. Lower bound constructions

In this subsection we present an n-vertex piecewise-convex polygon, for every n ≥ 2, that cannot be
monitored by fewer than ⌊ 2n

3
⌋ vertex guards (resp., ⌈n

2
⌉ point guards).

It is clear that a piecewise-convex 2-gon (e.g., Fig. 11(a)) requires 1 vertex guard. Fig. 11(b) depicts a
piecewise-convex triangle that cannot be monitored by fewer than 2 vertex or point guards.

(a) (b) (c)

Figure 11: (a) a piecewise-convex 2-gon; (b) a piecewise-convex triangle that requires 2 vertex guards; (c) a piecewise-
convex pentagon that requires 3 point guards.

For every integer n ≥ 4, we give a construction based on a regular k-gon a1a2 . . . ak, where k = ⌈n
3
⌉ ≥ 2

(in particular, for k = 2, a 2-gon is a line segment a1a2). First assume that n = 3k for an integer k ≥ 2. Let
κ denote the circumscribed circle of a1a2 . . . ak. Replace each edge aiai+1, i = 1, 2, . . . , k, by a piecewise-
convex path (ai, bi, ci, ai+1) depicted in Fig. 12(b), to obtain a piecewise-convex n-gon P . The vertices bi

and ci are in the left open halfplane delimited by the directed line −−−−→aiai+1 and they are separated from the
polygon a1a2 . . . ak by the tangent of κ at ai. The patterns (ai, bi, ci, ai+1) are designed such that at each
vertex of P , the tangents of the two adjacent edges are the same, which we call the common tangent at the
vertex. The common tangent at ai is also tangent to the circle κ at ai; the common tangent at bi is parallel
to the common tangent at ai; and the common tangent at ci is perpendicular to the common tangents at ai

and bi. Let Ai and Bi denote the empty rooms bounded by aibi and bici, respectively. Let Ci denote the
13



part of the (non-empty) room bounded by ciai+1 that lies on the left side of both directed lines −−−−→aiai+1 and
−−→aici. Note that the regions Ai, Bi, and Ci are hidden from any vertex of P other than ai, bi, ci. However,
none of ai, bi, ci sees all three regions Ai, Bi, Ci entirely (in particular, ai does not see Bi entirely; bi doers
not see Ci entirely; and ci does not see Ai entirely). Hence each triple of regions {Ai, Bi, Ci} requires at
least two vertex guards at {ai, bi, ci}. This gives a lower bound of 2k = 2n

3
, if n = 3k, k ≥ 2.

Now assume that n = 3k − 2 for an integer k ≥ 2. Replace every edge aiai+1, for i = 1, 2, . . . , k − 1,
by a piecewise-convex path (ai, bi, ci, ai+1) depicted in Fig. 12(b). The previous argument shows that the
resulting piecewise-convex n-gon requires 2(k − 1) = ⌊ 2n

3
⌋ vertex guards. Finally, assume that n = 3k − 1

for k ≥ 2. Replace every edge aiai+1, for i = 1, 2, . . . , k − 1, by a piecewise-convex path (ai, bi, ci, ai+1)
depicted in Fig. 12(b); and replace edge aka1 by (ak, bk, a1) depicted in Fig. 12(c). The common tangent at
bk in Fig. 12(c) passes through side aka1. The empty room bounded by akbk is not visible from any other
vertex but ak and bk, hence there must be a guard at one of these vertices. Combined with the previous
argument, the resulting piecewise-convex n-gon requires 2(k − 1) + 1 = 2k − 1 = ⌊ 2n

3
⌋ vertex guards.

a1

bi

ci

a2

a3

a4

a5

bk

ak

(a) (b) (c)

ai+1

ai−1

a1

ak−1

Ci

Bi

Ai

ai

κ
κ

Figure 12: (a) Our lower bound construction for n = 15; (b) a pattern with 3 vertices requiring two vertex guards;
(c) a pattern with 2 vertices requiring 1 vertex guard.

Theorem 11. For every integer n ≥ 2, there is a piecewise-convex polygon with n vertices that cannot be
monitored by fewer than ⌊ 2n

3
⌋ vertex guards.

The lower bound for point guards can be established much more easily. Consider the n-vertex piecewise-
convex polygon C shown in Fig. 11(c). It can be readily seen that we need one point guard for any two
consecutive prongs of C; since C contains n prongs, a minimum of ⌈n

2
⌉ point guards are necessary for

monitoring C.

Theorem 12. For every integer n ≥ 2, there is a piecewise-convex polygon with n vertices that cannot be
monitored by fewer than ⌈n

2
⌉ point guards.

4. Piecewise-concave polygons

In this section we address the problem of finding the minimum number of guards that can jointly monitor
any piecewise-concave polygon with n ≥ 3 vertices. Monitoring a piecewise-concave polygon with vertex
guards may be impossible even for very simple configurations (see Fig. 14(a)). In particular we prove the
following:
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Theorem 13. For every integer n ≥ 3, the minimum number of point guards that can jointly monitor any
piecewise-concave polygon with n vertices is 2n − 4.

To prove the sufficiency of 2n− 4 point guards we adapt a technique due to Fejes Tóth [28] to our case.
Fejes Tóth proved that the free space around n pairwise disjoint compact convex sets can be monitored by
max(2n, 4n − 7) point guards. The edges of a piecewise-concave polygon P are the boundaries of compact
convex sets in the plane; these sets however are not necessarily disjoint. The proof in [28] is based on a
tessellation of the free space; here we compute a tessellation restricted to P .

Proof. We are given a piecewise-concave polygon P with n vertices and n concave arcs (see Fig. 13).
Successively replace each concave arc ai by another concave arc κi with the same endpoints that decreases the
polygon maximally. Formally, we construct a sequence of piecewise-concave polygons P0 = P , P1, P2, . . . , Pn.
For i = 1, 2, . . . , n, we obtain Pi from Pi−1 by replacing the concave arc ai by a concave arc κi between vi

and vi+1 such that Pi is minimal (for containment), that is, there is no piecewise-concave polygon P ′
i with

n vertices such that P ′
i ( Pi and the boundary of P ′

i differs from Pi only in the edge between vi and vi+1.
Let K = {κi : 1 ≤ i ≤ n}.

v2

v10

κ1

a1

κ2

a2

a6

a4
a3

a5
κ3

κ4

κ5

κ6

a7

κ7

a8

κ8

κ9

a9

a10

κ10

v1

v8 v7

v6

v9

v3

v4
v5

Figure 13: A piecewise-concave 10-gon, the concave arcs κi for i = 1, 2, . . . , 10, the resulting tessellation into 10
crescents and 3 convex gaps, and the locations of 11 point guards.

Let us call the region bounded by ai and κi the crescent of edge ai. Fejes Tóth proved that each arc κi

is a polygonal path, and the arcs κi partition P into n crescents (one for each edge) and convex polygons,
which he called gaps. The crescents and convex gaps are the faces of a tessellation T of P . A vertex of this
tessellation is a point incident to at least three faces. Note that every vertex of a gap is a vertex of T . Fejes
Tóth showed that we can monitor all crescents and all gaps (hence, the entire P ) if we place point guards
as follows:

• place a point guard at every vertex of T incident to at least 3 crescents;

• place two guards at two arbitrary vertices of every triangular gap;
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(a)

l1 l2

l3

(b)

Figure 14: (a) A piecewise-concave polygon P that cannot be monitored solely by vertex guards. Two consecutive edges of
P have a common tangent at the common vertex and as a result the three vertices of P see only the points along the dashed
segments. (b) A piecewise-concave polygon P that requires 2n − 4 point guards in order to be monitored.

• place a guard at each vertex of every gap with 4 or more vertices.

Construct, now, a planar graph Γ with vertex set K. Two vertices κi and κj of Γ are connected via an
edge if κi and κj are adjacent. The graph Γ is a planar graph combinatorially equivalent to an outerplanar
graph R with n vertices. The edges of Γ connecting consecutive arcs κi, κi+1, 1 ≤ i ≤ n, correspond to
the boundary edges of R, whereas all other edges of Γ correspond to diagonals in R. Every gap of the
tessellation incident to k crescents corresponds to bounded k-gon face of R. Every ordinary vertex of the
tessellation which is incident to k crescents but no gap corresponds to a bounded k-gon face of R.

Denote by dk the number of k-gon faces of R. Every triangular face of R corresponds to at most 2 point
guards, and every k-gon face, k ≥ 4 corresponds to at most k point guards. The total number of point
guards is 2d3 +

∑n

k=4 kdk. This quantity does not decrease if we subdivide a bounded face with k ≥ 4
vertices into k − 2 triangles. In the worst case, all faces are triangles. An outerplanar graph with n vertices
has at most n − 2 triangular faces, hence the number of point guards is bounded by 2(n − 2).

To prove the necessity, refer to the piecewise-concave polygon P in Fig. 14(b). Each one of the pseudo-
triangular regions in the interior of P requires exactly two point guards in order to be monitored. Consider
for example the pseudo-triangle τ shown in gray in Fig. 14(b). We need one point along each one of the
lines l1, l2 and l3 in order to monitor the regions near the corners of τ , which implies that we need at least
two points in order to monitor τ (two out of the three points of intersection of the lines l1, l2 and l3). The
number of such pseudo-triangular regions is exactly n − 2, thus we need a total of 2n − 4 point guards to
monitor P . �

5. Discussion and open problems

Every piecewise-convex polygon with n ≥ 3 vertices can be monitored by ⌊ 2n
3
⌋ vertex guards, which

is best possible. Furthermore, we presented an O(n log n) time and O(n) space algorithm for computing a
vertex guard set of size at most ⌊ 2n

3
⌋. Every piecewise-concave polygons with n ≥ 3 vertices can be monitored

by 2n − 4 point guards, which is also best possible. We have not found a piecewise-convex polygon that
requires more than ⌈n

2
⌉ point guards. Closing the gap between the upper and lower bounds, for the case of

point guards, remains an open problem.
Beyond the two classes of polygons considered in this paper, it is straightforward to prove the following

results (the details are available in a preliminary version of this paper [32]):

1. Given a monotone piecewise-convex polygon P with n vertices (i.e., a piecewise-convex polygon P for
which there exists a line L such that any line L⊥ perpendicular to L intersects the boundary of P at
most twice), ⌊n

2
⌋+1 vertex (resp., ⌊n

2
⌋ point) guards are always sufficient and sometimes necessary in

order to monitor P .

2. Given a locally convex polygon P with n vertices, n point guards are always sufficient and sometimes
necessary in order to monitor P . In particular, the n vertices of P are a guard set for P .
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3. Given a monotone locally convex polygon (defined in direct analogy to monotone piecewise-convex
polygons), ⌊n

2
⌋ + 1 vertex or point guards are always sufficient and sometimes necessary.

4. Finally, there exist general polygons that cannot be monitored with a finite number of point guards.

Karavelas [33, 34] has recently shown that every piecewise-convex polygon with n vertices can be moni-
tored by ⌊ 2n+1

5
⌋ edge guards or by ⌊n+1

3
⌋ guards each of which is either an edge or a straight-line diagonal of

the polygon; whereas ⌊n
3
⌋ edges or straight-line diagonals are sometimes necessary. Other types of guarding

problems have been studied in the literature, which either differ on the type of guards, the topology of the
polygons considered (e.g., polygons with holes) or the guarding model; see the book by O’Rourke [25], the
surveys by Shermer [26] and by Urrutia [27] for an extensive list of the variations of the art gallery problem
with respect to the types of guards or the guarding model. It would be interesting to extend these results
to the families of curvilinear polygons presented in this paper.
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