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Solving problems with CGAL:
an example using the 2D Apollonius package
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1 Introduction

The CGAL project [3] is an open source project that aims at providing “easy access to efficient and reliable
geometric algorithms in the form of a C++ library”, as it is stated on the project’s web site. The development
of the library started in 1995 and was initially funded by two ESPRIT LTR European projects. As of November
2003 it has been an open source project, while as of its latest public release 4.0, CGAL is distributed under the
LGPL/GPL v3+ licenses. CGAL currently consists of more that 500K lines of C++ code, and supports several
development platforms.

One of the major goals of CGAL is to provide robust construction of geometric entities, while at the same
time strive for efficiency and genericity. These goals have influenced the library’s design since the beginning of
its existence. Genericity has been achieved by employing generic programming techniques and by following the
concept/model development paradigm. Algorithms in CGAL depend on concepts, and at least one model per
concept is provided by the library. Components are interchangeable as long as they satisfy the proper concept
requirements, a feature that makes CGAL a sound basis for experimentation, as well as for the development of
prototype or mature codes for academic and industrial uses.

The development of CGAL is characterized by the clear separation between algorithms and data structures
(i.e., the combinatorial parts of a geometric algorithm) and the geometric predicates and constructions (this is
the numerical part of the geometric algorithms). Predicates and constructions are encapsulated in kernels or
traits classes, and they guarantee robustness by means of the Exact Geometric Computation (EGC) paradigm
[10] that the library follows. Efficiency on the other hand is achieved by employing filtering techniques (for
example, cf. [2]), either at the arithmetic or the geometric level.

The library is divided in four major parts: the arithmetic and algebra layer, the geometry kernels, the various
packages and the support library. The arithmetic and algebra layer offers the framework for utilizing different
number types, for providing polynomials, and, in more general terms, for supporting the various kernels and
packages that apply to (non-)linear geometric objects. There are currently three distinct linear kernel concepts
in CcAL, and at least one model for each such concept: the 2D kernel, 3D kernel and the dD kernel'. The
support library offers, among others, STL extensions of the library, interfaces between CGAL and BGL [1]
and geometric objects’ generators. The bulk of the library lies, however, in its packages: there are packages for
computing: arrangements, convex hulls, triangulations, Voronoi diagrams, and meshes, for performing: geometric
optimization, geometry processing, and spatial searching, as well as support for: kinetic data structures and
operations on cell complexes and polyhedra. The interested reader or prospective user of CGAL may consult the
User and Reference Manual of the library [9].

2 2D Triangulations and Apollonius graphs in CGAL

In this abstract we focus on 2D triangulations and 2D Delaunay graphs in CGAL, and, in particular, 2D Apollonius
graphs. Voronoi diagrams in CGAL are computed implicitly via their dual compactified Delaunay graphs; there
is support for point and segment Euclidean Voronoi diagrams [11, 5], power diagrams [11], as well as Apollonius
diagrams (a.k.a., additively-weighted Voronoi diagrams) [6]. Their dual graphs are represented via the 2D
Triangulation Data Structure (TDS) [8], which can actually handle any orientable triangulated surface without
boundary. The data structure has containers for triangular faces and vertices, while edges are represented
implicitly. Each face has pointers to its three neighbors and vertices, and each vertex points to one of its incident
faces. The user has the ability to plug-in his/her own custom vertex and face class, which are then recovered by
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Hn fact, the models of the 2D kernel are so far also models for the 3D kernel, so at the model level, the 2D and 3D kernels are
indistinguishable.

This is an abstract related to a tutorial or demo given at GTS 2012. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: (a) Schematic of the design of 2D Triangulations in CGAL. (b) An instance of the 2D Apollonius
diagram.

the TDS via a rebind mechanism. The TDS is of purely combinatorial nature; geometry is added at a higher
level, where also the traits classes computing the various types of Delaunay graphs are introduced; see also
Fig. 1(a) for a schematic of the design of the CGAL 2D Triangulation package. From the user’s perspective,
vertices and faces are seen abstractly as handles. The user has the ability to traverse the triangulation in many
different ways via iterators and circulators: there are iterators for iterating over the vertices, edges or faces of the
triangulation, and circulators for going around the vertices, edges and faces incident to a specific vertex. Last,
but not least, point location in the Voronoi diagram, or equivalently nearest neighbor queries, is offered by all
Delaunay graph classes in CGAL, while all algorithms offer incremental construction of the Delaunay graph, and,
in most cases, allow for dynamic site deletion.

In the Apollonius diagram the distance of a point p from a weighted point (or site) S = (¢, w) is defined as
d(p,S) = |lp — ¢|l2 — w. A site can be interpreted geometrically as a disk centered at ¢ with radius w. The
Apollonius diagram has several major differences with respect to its point counterpart: sites may have empty
Voronoi cells, the 1-skeleton may be disconnected (although its compactified version is connected via the site
at infinity), two sites may be connected by more than one Delaunay edge, and two faces (i.e., combinatorial
triangles in the Delaunay graph) may have up to two edges in common. All these characteristics are apparent
in the Apollonius diagram in Fig. 1(b). The 2D Apollonius graphs in CGAL follow the same design as 2D
triangulations. The user can plug-in his/her own vertex and face, has access to vertices, edges and faces via
circulators and iterators, can ask for the number of the connected components of the 1-skeleton of the Apollonius
diagram, and can perform nearest neighbor location queries.

3 An example application

Suppose we are given a set D of n disks Dy, Da, ..., D, on the plane, and we want to build a data structure that
supports the following type of queries:

Given two disks D; and Dj in D, do they belong to the same connected component of the union Up_, Dy, ?

Another way to pose the same problem is the following: Let Zp be the intersection graph of D. Given two disks
in D, do they belong to the same connected component of Zp? For simplicity, we will assume below that there is
no disk in D that is contained fully inside another one: the general scenario where we allow disks to be contained
in other disks can also be handled, in a slightly more complicated way.

Our practical solution to this problem will be to use the 2D Apollonius graph package of CGAL [6]. Under
the assumption mentioned above that there is no disk in D that is contained inside another disk, the disks in D
correspond to vertices of the 2D Apollonius graph AG(D) of D, and, more importantly, there exists a subgraph
G of AG(D) having the same connected components as the intersection graph of D (in fact, we will compute G
to be a spanning forest of Zp). We will exploit this fact, and show how to build a mini-application on top of
the 2D Apollonius graph, that also supports same-connected-component queries in O(1) time. Our solution is
static, in the sense that it assumes that all disks in D are known in advance.
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The idea is to build a spanning forest Fp of Zp on top of AG(D). We will do so as follows:

1. We will modify the Apollonius graph vertex base class by adding fields for supporting a tree-like structure.
This will give us an in-place implementation of the spanning forest Fp of Zp.

2. We will create a new traits class that enriches the 2D Apollonius graph traits class with the additional
predicates that are required for the computation of Fp.

3. We will implement the high-level class, called Disk_intersection_subgraph_2, that:

e will be responsible for computing Fp,
e will provide access to the connected components of Fp via iterators,
e will support the same-connected-component queries.

3.1 The vertex class

In the new vertex base class for the Apollonius graph, we are going to add three new fields: two that will be
used for representing the in-place forest, understood a collection of rooted trees, and one for storing a vertex of
Fp that will be unique for each tree in Fp, and thus will act a representative for each tree in Fp (in fact this
representative node will be the root of each tree in Fp). The first two fields will be: (1) a vertex to the parent
node in the tree of Fp that our vertex belongs to, and (2) the set of children of the current vertex in the tree it
belongs to. The set of children will be implemented as a std: :set, so as to be able to efficiently determine if a
vertex is a child of another vertex in some rooted tree of Fp. The representative vertex, which will be the third
added field, will eventually be used for answering the same-connected-component query of two vertices in Fp,
by simply comparing their representative vertices.

For implementing the vertex class of the Disk_intersection_subgraph_2class, named Disk_intersection_-
subgraph_vertex_base_2, we will derive from the Apollonius_graph_vertex_base_2 class. Since the Disk_-
intersection_subgraph_2 requires as traits class a superset of the traits class for computing the 2D Apollonius
graph, we will pass this superset traits class as a template parameter. Last, but not least, due to the circular
dependency between vertices and faces of the triangulation data structure, will also need to implement the rebind
mechanism in order for the triangulation data structure to know the correct type of the vertex base class used.

In the code fragment below we see most of the implementation of the Disk_intersection_subgraph_vertex_-
base_2 class. The implementation of some member methods is obvious and is omitted.

template<class Gt, bool StoreHidden = false,
class Vb = Apollonius_graph_vertex_base_2<Gt,StoreHidden> >
class Disk_intersection_subgraph_vertex_base_2 : public Vb {
private:
typedef Vb Base;

public:
// public types (required by the ApolloniusGraphVertexBase_2 concept)
typedef typename Base::Geom_traits Geom_traits;
typedef typename Base::Site_2 Site_2;
typedef typename Base::Apollonius_graph_data_structure_2 Apollonius_graph_data_structure_2;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Vertex_handle Vertex_handle;

static const bool Store_hidden = StoreHidden;

// the rebind mechanism

template < typename AGDS2 >

struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<AGDS2>::0ther Vb2;

typedef Disk_intersection_subgraph_vertex_base_2<Gt,Store_hidden,Vb2> Other;
};

private:
// the comparator functor that will be used in the std::set; it uses the Compare_site_2 predicate
// which is a new predicate (it is not provided by the model of the ApolloniusGraphTraits_2 concept)
struct Vertex_less { ... };

// type for the set of children nodes
typedef std::set<Vertex_handle,Vertex_less> Children_set;
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// the representative vertex, the parent vertex and the set of children
Vertex_handle rep_vertex, v_parent;
Children_set <children;
public:
// type for the iterator on the childred
typedef typename Children_set::const_iterator Children_iterator;

// constructors
Disk_intersection_subgraph_vertex_base_2() : Base(), rep_vertex(), v_parent() {}
Disk_intersection_subgraph_vertex_base_2(const Site_2& p) : Base(p), rep_vertex(), v_parent() {3}
Disk_intersection_subgraph_vertex_base_2(const Site_2& p, Face_handle f)

: Base(p, f), rep_vertex(), v_parent() {}

// set/get the representative vertex
inline void representative(Vertex_handle rep) { rep_vertex = rep; }
inline Vertex_handle representative() const { return rep_vertex; }

// set/get the parent vertex
inline void parent (Vertex_handle vp) { v_parent = vp; }
inline Vertex_handle parent() const { return v_parent; }

// add a new child
inline void add_child(Vertex_handle n) { children.insert(n); }

// test if v is a child of *this vertex
inline bool has_child(Vertex_handle v) const { return children.find(v) != children.end(); }

// iterators for children
inline Children_iterator children_begin() const { return children.begin(); }
inline Children_iterator children_end() const { return children.end(); }

// the number of children
inline typename Children_set::size_type number_of_children() const { return children.size(); }

// clear the container of the child nodes
inline void clear_children_container() { children.clear(); }

}s

3.2 Augmenting the 2D Apollonius graph traits

For computing the forest Fp we need two new predicates:

1. A functor that compares two disks and returns a Comparison_result. This comparison functor must
produce a total ordering of the sites in D. It is needed for constructing the set of children in each vertex of
the forest (see previous subsection).

2. A functor that takes two disks and returns true if the two disks intersect and false otherwise.

One way to produce a total ordering for the disks is to first compare their centers lexicographically, and in
case of equality, their radii; we are going to call the corresponding functor Compare_site_2 (the code for this
predicate is omitted). To implement the disk intersection predicate, we simply notice that, if D; = (¢, 1),
¢i = (zi,y;), i = 1,2 are the two input disks of the predicate, they intersect if and only if the sign of the quality
(r1 — 22)% + (y1 — y2)? — (r1 — r2)? is not positive. We are going to call this predicate Do_intersect_2, and
its implementation may be found below. The template parameter Gt here stands for the Disk_intersection_-
subgraph_traits_2 class (defined below).

template<class Gt>

class Do_intersect_2 {

protected:
typedef Gt Geom_traits;
typedef typename Geom_traits::Site_2 Site_2;

// functor, taken from the CGAL kernel, that computes the squared distance of two 2D points
typedef typename Geom_traits::Kernel::Compute_squared_distance_2 D2;
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public:
// returns true if the (closures of the) disks s and t have non-empty intersection, false otherwise
inline bool operator() (const Site_2& s, const Site_2& t) const {
return CGAL::compare( CGAL::square(s.weight O+t.weight()), D2() (s.point(), t.point()) ) != SMALLER;
X
I

Implementing the Disk_intersection_subgraph_traits_2 class is now straightforward. We simply need to
derive from the Apollonius_graph_traits_2<K> class, where K is a model of the CGAL 2D kernel, and add the
two additional predicates.

template<class K>
class Disk_intersection_subgraph_traits_2 : public Apollonius_graph_traits_2<K> {
typedef Disk_intersection_subgraph_traits_2<K> Self;

// some lines of code omitted...

public:
// typedef for the template parameter that must be a model of the 2D CGAL kernel
typedef K Kernel;

// types for the two new predicates

typedef CGAL::Do_intersect_2<Self> Do_intersect_2;

typedef CGAL::Compare_site_2<Self> Compare_site_2;
};

Implementing a traits class that supports arithmetic filtering is straightforward. However, this is a purely
technical issue, that goes slightly beyond the scope of this abstract.

3.3 Implementing the high-level class

Having described how to modify the vertex base class, and how to augment the Apollonius_graph_traits_2,
so as to provide the additional predicates needed for the computation of the disk intersection subgraph, we
can now implement our high-level class that is responsible for the (static) computation of the disk intersection
subgraph. At this point there are quite a few design choices that may be adopted. In the code extract below,
we have chosen to derive, in a protected manner, from the Apollonius_graph_2 class, instantiated with: (i)
the Triangulation_data_structure_2 class using our own vertex base, and (ii) our augmented traits class.
We also show below the constructors provided for the Disk_intersection_subgraph_2, as well as the trivially
implemented query for determining whether two disks belong to the same connected component of the union of
the set of disks passed via the iterator range in the corresponding constructor.

The bulk of the work, however, is performed in the two compute_intersection_subgraph methods (cf. code
extract below), which implement a DFS-like search on the computed Apollonius graph (the implementation is
not shown here). In the first such method, we iterate over all vertices of the Apollonius graph; for each vertex
v whose representative site has not been initialized, we initialize it (by setting its representative vertex to be
the vertex itself), we insert it in an empty queue @, and we start the DFS-like search by calling the second
compute_intersection_subgraph method using as arguments the queue @) and the vertex v. In the second
method, and while the queue is not empty, we pop the first element from the queue, say v, and look at its
neighbors in the Apollonius graph. If a neighbor u of v has not been initialized and the disks corresponding to u
and v intersect, we add u as a child of v in the same tree that v belongs to and we set the representative vertex
of u to be the same as that of v. Finally, we push u at the end of the queue. Clearly, nothing has to be done if
either u has already been assigned to a tree, or if u and v do not intersect.

template<class Gt>
class Disk_intersection_subgraph_2 : protected Apollonius_graph_2<Gt, Triangulation_data_structure_2<
Disk_intersection_subgraph_vertex_base_2<Gt,false>,
Triangulation_face_base_2<Gt> > >
{
typedef Apollonius_graph_2<Gt, Triangulation_data_structure_2<
Disk_intersection_subgraph_vertex_base_2<Gt,false>,
Triangulation_face_base_2<Gt> > > Base;
public:
// type definitions omitted ...
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typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Geom_traits Geom_traits;
protected:

typedef std::queue<Vertex_handle> Queue;

void compute_intersection_subgraph() ;
void compute_intersection_subgraph(Queue& q, Vertex_handle v_rep);

public:
// comnstructors
Disk_intersection_subgraph_2(const Geom_traits& gt = Geom_traits()) : Base(gt) {}

template<class Input_iterator>
Disk_intersection_subgraph_2(Input_iterator first, Input_iterator beyond,
const Geom_traits& gt = Geom_traits()) : Base(first, beyond, gt)
{ compute_intersection_subgraph(); }

inline bool in_same_connected_component(Vertex_handle v1l, Vertex_handle v2) const
{ return vi->representative() == v2->representative(); }

// code omitted ...
};

3.4 Going one step further

In our model implementation, we also provide methods for the number of connected components, as well as for
the number of disks in each connected component. We have also implemented two types of iterators: one for
iterating over the connected components of the intersection subgraph, and one for iterating over the vertices
per connected components. In both cases we have used the Filter_iterator class provided in CcaL’s STL
extensions [4]. It should not be too complicated to adapt our approach above to a purely incremental one. Instead
of building the spanning forest on top of the Apollonius graph, we should use the Union-Find data structure to
incrementally compute the spanning subgraph. An implementation of Union-Find is already available within the
Support Library of CGAL [7].
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