
Delaunay Tessellations and Voronoi Diagrams
in Cgal

Pierre Alliez1, Christophe Delage1, Menelaos I. Karavelas2,3, Sylvain Pion1,
Monique Teillaud1, and Mariette Yvinec1

1 INRIA Sophia Antipolis - Méditerranée, FirstName.LastName@sophia.inria.fr
2 University of Crete, mkaravel@tem.uoc.gr
3 Foundation for Research and Technology - Hellas

1 Introduction

Cgal is a C++ software library of computational geometry algorithms and
data structures [CGAa]. Created in 1995, and mostly supported by European
research projects, the Cgal library has become a mature Open Source project
with approximately half a million lines of code, 10,000 downloads per year,
and its availability through the two major Linux distributions Fedora and
Debian.

The goal of the Cgal library is to provide easy access to efficient and
reliable geometric algorithms to users in industry and academia. The initial
motivation for setting up the Cgal library has its roots in the following as-
sessment: While getting a first implementation of a geometric algorithm is
a relatively easy task, obtaining a robust implementation is tremendously
harder. The main reason is inherent to the dual nature of geometric objects,
which combine combinatorial data structures and numerical data. Geomet-
ric algorithms have to maintain the consistency between combinatorial and
numerical components. This is all the more difficult when geometric primi-
tives are in the neighborhood of a degenerate configuration. Indeed a slight

2 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

perturbation in numerical data may then yield a drastic change in the com-
binatorial data structure. Therefore geometric algorithms are highly sensitive
to numerical rounding errors and naive implementations, using for instance
built-in floating point arithmetic, are bound to fail sooner or later. Robustness
is the major concern underlying the development of the Cgal library from
the beginning.

More than 50 developers have contributed to Cgal since its creation. The
project is managed by an international editorial board whose charge is to
review all submitted packages, identify potential contributors, schedule the
new releases and ensure the global consistency of the library. In addition to
the open source distribution, Cgal is commercialized by the startup company
GeometryFactory since 2003. This dual distribution is made available by the
Open Source licenses QPL and LGPL, which allow free use of Cgal in Open
Source software, in addition to commercial licenses.

The Cgal library provides a rich variety of Voronoi diagrams and Delau-
nay triangulations. This variety covers several aspects: generators, dimensions
and metrics, which we describe in Section 2. One aim of this paper is to present
the main paradigms used in Cgal: Generic programming, separation between
predicates/constructions and combinatorics, and exact geometric computa-
tion (not to be confused with exact arithmetic!). The first two paradigms
translate into software design choices, described in Section 4, while the last
covers both robustness and efficiency issues, respectively described in Sec-
tion 6 and 7. Other important aspects of the Cgal library are the interface
issues, be they for traversing a tessellation, or for interoperability with other
libraries or languages, see Section 5. We present in Section 8 some tessella-
tions at work in the context of surface reconstruction and mesh generation.
Section 9 is devoted to some on-going and future work on periodic triangula-
tions (triangulations in periodic spaces), and on high-quality mesh generation
with optimized tessellations. Section 10 provides typical numbers in terms of
efficiency and scalability for constructing tessellations, and lists the remaining
weaknesses. We conclude by listing some of our directions for the future.

2 Voronoi diagrams

2.1 Affine diagrams

A Voronoi diagram is defined by a set of sites and a distance function. The set
of sites is a set S = {s1, s2, . . . , sn} of objects in a space Σ, and the distance
function δ(x, si) measures the distance from a point x of Σ to a site si. The
Voronoi cell V (T) of a subset T ⊂ S, is the set of points in Σ which are at
equal distance to the sites of T and closer to any site of T than to any site in
S \ T . The Voronoi diagram Vor(S, δ), simply noted Vor(S) when there is no
ambiguity on the distance function, is the partition of the space Σ formed by
the non-empty Voronoi cells.

Delaunay Tessellations and Voronoi Diagrams in Cgal 3

Standard Voronoi diagrams are obtained in Rd when the sites are points
and the distance function is the Euclidean distance function, see Figure 1.

Power diagrams (also called Laguerre diagrams) are obtained when the
sites are weighted points in Rd × R, i.e., si = (pi, wi) with pi ∈ Rd and
wi ∈ R, and the distance function δ(x, si) from a point x to the site si, is the
power of x with respect to the sphere with center pi and square radius wi:

δ(x, si) = (x− pi)2 − wi.

Note that the definition of power diagrams accepts negative square radii as
well.

The locus of points in space Σ that are equidistant to two sites si and sj
is called hereafter a bisector. Standard Voronoi diagrams and power diagrams
are also called affine diagrams (see, e.g., [BWY06]) because their bisectors are
affine subspaces of Rd.

Fig. 1. 2D Euclidean Voronoi diagram (left) and its dual Delaunay triangulation
(right).

The nerve of a Voronoi diagram is the set of subsets T ⊂ S with a non-
empty Voronoi cell. A degenerate configuration for a Voronoi diagram in Rd
happens when there are points in space Rd equidistant to more than d+1 sites.
In the absence of degenerate situations, each subset T in the nerve of Vor(S)
has cardinality at most d + 1 and can be naturally embedded as a simplex
that is the convex hull conv(T) of T . Affine diagrams share the property that,
under the non-degeneracy assumption, the natural embedding of their nerve
is a triangulation. Such a dual triangulation is called a Delaunay triangulation
in the case of a standard Voronoi diagram and a regular triangulation in the
case of a power diagram.

In the Cgal library, Voronoi diagrams and power diagrams are represented
through their dual triangulations. The library provides a rich set of functional-
ities for Delaunay and regular triangulations in R2 and R3. The triangulations
are incrementally computed and can be dynamically maintained through in-
sertion and deletion of sites. They offer localization and nearest site queries,

4 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

where a localization query looks for the simplex of the triangulation including
a given point and a nearest site queries seeks the site closest to a given point.
A whole set of functionalities is also available to navigate through the trian-
gulation or to explore a subset like the star or the link of a given vertex. Dual
functions provide access to the features of the dual Voronoi or power diagram.

Using the standard lifting map,

(pi, wi) ∈ Rd × R −→ (pi, p
2
i − wi) ∈ Rd+1,

Delaunay and regular triangulations in Rd can be computed as the projection
of the lower part of a convex hull in Rd+1. The Cgal library offers convex
hull computations in any dimension and a reduced interface to Delaunay tri-
angulations and Voronoi diagrams in Rd, including site insertion, localization
and nearest site query.

2.2 Quadratic diagrams

Möbius diagrams, introduced by Boissonnat and Karavelas [BK03], generalize
power diagrams and should appear soon in Cgal, at least in their planar ver-
sion. Möbius diagrams are defined by sites which are doubly weighted points
si = (pi, λi, µi) ∈ Rd × R × R and the distance function δ(x, si) from point
x ∈ Rd to the site si is:

δ(x, si) = λi(x− pi)2 − µi.

The bisectors of Möbius diagrams are hyperspheres (see Figure 2) and in fact
the class of Möbius diagrams coincides exactly with the class of diagrams
whose bisectors are hyperspheres [BWY06].

In a Möbius diagram, the cells do not have to be connected and the dual of
a Möbius diagram is not a triangulation of the set of sites. Even more general
diagrams, whose bisectors are general conics, may be obtained when each site
si is equipped with a positive definite symmetric tensor Mi such that the
distance δ(x, si) is

δ(x, si) =
√

(x− si)tMi(x− si).

These diagrams are called anisotropic Voronoi diagrams [LS03].

2.3 Planar Euclidean diagrams

In the plane, Cgal also provides Euclidean Voronoi diagrams for extended,
i.e., non-punctual, sites, namely segment Voronoi diagrams and Apollonius
diagrams. In segment Voronoi diagrams, the sites are straight line segments
in R2 and the distance function δ(x, si) from point x to segment si is just the
Euclidean distance function:

Delaunay Tessellations and Voronoi Diagrams in Cgal 5

Fig. 2. A Möbius diagram.

δ(x, si) = min
y∈si
||x− y||.

The Cgal package for segment Voronoi diagrams accepts as input inter-
secting segments without restriction, meaning that input segments are allowed
to intersect properly, overlap or share some endpoint, see Figure 3. However,
to avoid dealing with two-dimensional bisectors and disconnected Voronoi cells
the package does not consider the input segments as the sites of the diagram.
Instead, the sites of the diagram are related to the subsegments defined by
the arrangement of the input segments. Furthermore, the two endpoints and
the relative interior of each subsegment are considered as three distinct sites.
In such a setting, a segment Voronoi diagram is an instance of an abstract
Voronoi diagram as described by Klein [Kle89] and can be computed via a ran-
domized incremental algorithm [KMM93]. The Cgal implementation, fully
described in [Kar04], supports on-line insertions and nearest site queries. As
an easy alternative to segment Voronoi diagrams, in the case where input seg-
ments form the boundary of a polygonal region, Cgal also provides a package
to compute the straight skeleton of a polygonal region. This straight skeleton
subdivides the polygonal region into subregions which can be described as the
intersections of the polygonal region with the Voronoi cells of the Euclidean
diagram obtained when using the supporting lines of the input segments as
sites.

Apollonius diagrams, also called additively weighted Voronoi diagrams, are
closely related to the Euclidean Voronoi diagrams of spheres and have obvious

6 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 3. Segment Voronoi diagrams. Left: input segments are sharing endpoints.
Right: input segments are intersecting (intersection points are shown in green).

applications in structural biology. Those diagrams have been studied e.g by
Kim et al. [KCK05a, KCK+05b, CKK05] and Boissonnat et al. [BD05, BK03].
The sites of Apollonius diagrams are weighted points si = (pi, wi) in Rd × R
and the function measuring the distance from point x ∈ Rd to si is

δ(x, si) = ||x− si|| − wi.

Because the diagram is invariant under a uniform translation of the weights of
all sites, it may be assumed that all sites have non-negative weights. In that
case, the weighted point (pi, wi) may be interpreted as a sphere with center
pi and radius wi and the Apollonius distance is just the signed Euclidean
distance from a point x to the sphere (pi, wi), where the signed Euclidean
distance from a point x to a sphere (pi, wi) is the Euclidean distance affected
with a negative sign when the point x lies within the ball bounded by the
sphere (pi, wi) and with a positive sign otherwise. As any other type of Voronoi
diagrams, Apollonius diagrams can also be described as the projection of the
lower envelope of the set of functions δi(x) = δ(x, si). In the case of Apollonius
diagrams, the graph of the functions δi(x) are cones with apexes at the points
(pi, wi) of Rd+1 and aperture angle 45◦. In R2, Apollonius diagrams have
hyperbolic bisectors and they belong to the class of abstract Voronoi diagrams
(see Figure 4(right)). Therefore, they can be efficiently constructed using an
incremental algorithm [KY03]. The Cgal package implements the algorithm
described in [KY03]. It supports on-line insertions and deletions, as well as
nearest-site queries.

3 Constrained triangulations and Voronoi diagrams

The Cgal library also offers constrained triangulations and constrained De-
launay triangulations. Constrained triangulations are tessellations in which

Delaunay Tessellations and Voronoi Diagrams in Cgal 7

Fig. 4. Power diagram (left) and Apollonius diagram (right) for sites corresponding
to the same set of circles.

segments of a given set are prescribed to appear as edges. Constrained De-
launay triangulations are constrained triangulations that have the constrained
empty circle property, a relaxed version of the empty circle property of Delau-
nay triangulations. The constrained empty circle property considers the set of
constraint segments as obstacles to the visibility and requires that any sim-
plex in the triangulation has a circumsphere enclosing no vertex visible from
some point in the interior of the simplex. The Cgal packages for constrained
triangulation and constrained Delaunay triangulation may handle intersect-
ing, overlapping and partially overlapping input segments without restriction.
When constrained segments intersect, the subsegments resulting from the ar-
rangement of input segments are considered as the prescribed edges of the
triangulation.

In some applications, it is also required that Voronoi regions do not cross
some input constraint segments. Constrained Voronoi diagrams, also called
bounded Voronoi diagrams (BVD) [Sei98a] or Voronoi diagrams with barri-
ers [Lin89], have been defined for this purpose. A bounded Voronoi diagram
is defined for a set of point sites and a set of constrained segments considered
as obstacle to the visibility. The distance δ(x, si) between a point x of R2 and
a site si is:

δ(x, si) =

{
||x− si|| if x is visible from si

+∞ otherwise
.

Figure 5 illustrates a constrained Delaunay triangulation and its bounded
Voronoi diagram.

The notion of face blindness is pivotal for constructing the bounded
Voronoi diagram. A triangle 4 is said to be blind if the triangle and its cir-
cumcenter c lie on the two different sides of a constrained edge E. Formally,
4 is blind if and only if there exists a constrained edge E such that one can
find a point p in 4 (not an endpoint of E), such that the intersection pc ∩E

8 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 5. Constrained Delaunay triangulation (left) and its bounded Voronoi diagram
(right).

is non-empty. The BVD construction algorithm initially tags all faces of the
triangulation as being blind or not blind. It then constructs each cell of the
BVD using these tags.

4 Software design

4.1 Geometric traits and triangulation data structure

One of the most important paradigms used in Cgal to resolve robustness
issues arising in geometric code, without dropping computational efficiency, is
to establish and maintain a clear-cut separation between the combinatorial as-
pects of data structures/algorithms, and the numerical computations involved
in these algorithms. This distinction shows up in the template parameters of
Cgal classes: Triangulation classes have two template parameters called re-
spectively the triangulation traits and the triangulation data structure.

All numerical issues are encapsulated in the triangulation traits. A model
of triangulation traits provides both the geometric primitives, i.e., points,
segments, triangles, tetrahedra, etc., handled by the triangulation classes
and the operators required on those primitives. In the case of triangula-
tions, the required operators are only predicates testing the sign of poly-
nomial expressions of input points coordinates. Typically, the predicates re-
quired to build a Delaunay triangulation in R3 are the orientation predicate
which, given four points p0, p1, p2, p3 in R3, computes the sign of the determi-
nant orient(p0, p1, p2, p3), and the in sphere predicate which given five points
p0, p1, p2, p3, p4 tests if p4 is enclosed or not by the sphere circumscribed to
p0, p1, p2, p3 (see Section 6.1).

The triangulation data structure parameter provides the data structure
to store the triangulation. In the default implementation provided by Cgal

Delaunay Tessellations and Voronoi Diagrams in Cgal 9

for this parameter, the representation of triangulations is mainly based on
the vertices and on the full dimensional simplicial cells, i.e., triangles in 2D
and tetrahedra in 3D. The triangulation data structure is therefore mainly
a container of cells and vertices. The connectivity of the triangulation is en-
coded in cells and vertices as follows: each cell has a pointer to each of its
vertices, and a pointer to each of the adjacent cells; each vertex has a single
pointer to one of its incident cells. The faces with intermediate dimensions
(i.e. edges in 2D, edges and facets in 3D) are only implicitly encoded through
the adjacency relation between cells. Such a representation has the advantage
of being compact and to generalize in arbitrary dimension.

Cgal triangulations always encode a triangulation that fills up the whole
convex hull of its vertices. Furthermore, they have a fictitious vertex called
the infinite vertex. The join of the infinite vertex with any facet of the convex
hull is considered as a cell of the triangulation. With this convention, the set
of faces encoded in a triangulation is a topological sphere and special cases
for boundary facets are avoided.

Any Voronoi diagram in the plane with simply connected cells, as it is
the case for abstract Voronoi diagrams and in particular for segment Voronoi
diagrams and Apollonius diagrams, admit a dual planar graph called the De-
launay graph, the nodes of which are in bijection with the Voronoi sites. When
there are no degenerate configurations, the Delaunay graph consists of trian-
gular elementary cycles. In the presence of degenerate configurations the De-
launay graph may have more complex faces. Handling the degenerate cases via
a perturbation scheme yields a triangulated version of the Delaunay graph by
adding a few edges. The Cgal concept for two-dimensional triangulation data
structure is able to handle triangulated Delaunay graphs although these pla-
nar graphs are not triangulations. There are two aspects in which triangulated
Delaunay graphs may differ from a standard triangulation. First, Delaunay
graphs may have multiple edges joining the same pair of sites, as well as pairs
of adjacent triangles sharing two edges. Secondly, Delaunay graphs may not
be embeddable on the plane via straight-line segments. See Figure 6.

4.2 The flexibility of Cgal triangulations

As any Cgal data structure, the Cgal triangulations gain their flexibility
from their template parameters. Each parameter is associated to a concept,
describing the set of types and functions expected from any model of this
concept. The concepts are documented.

The geometric traits parameters provide the possibility to run Cgal algo-
rithms or to build Cgal data structures, not only on the geometric primitives
offered by the Cgal kernels, but also on user-defined geometric primitives pro-
vided that those primitives are included in a model, the so-called traits class.
For instance, users from GIS may use the flexibility provided by triangulation
traits to handle triangulated models of terrains. GIS applications often derive
their models of terrains from the Delaunay triangulation of the projections

10 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 6. An Apollonius diagram (left) and its triangulated Delaunay graph shown in
green (right).

of the terrain vertices on the xy-plane. In such a case, the terrain can be
represented as a two-dimensional Delaunay triangulation with a triangulation
traits providing three-dimensional points and predicates involving only the x
and y coordinates of these points.

A great deal of flexibility also arises from the triangulation data struc-
ture parameter. In particular the concept for the triangulation data struc-
ture includes subconcepts for the models representing the cells and vertices.
Therefore the user can easily change or customize the cells and vertices of the
triangulation, for instance by adding to these elements colors or any other
attributes needed for his/her applications.

5 Interfaces

5.1 Voronoi interface

The Cgal packages related to 2D Voronoi diagrams actually compute and
store the dual Delaunay graph or more precisely its triangulated version. Al-
though a Voronoi diagram and its dual are mathematically equivalent geo-
metric objects, it is typical in applications to prefer one view over the other.
To carry the point further, when computing the triangulated version of the
Delaunay graph, we loose the degenerate-configuration information existent
in the input. From the user’s perspective, it might be easier to think of and
treat the Voronoi diagram directly rather than through its dual representa-
tion. To address these issues we provide in Cgal an adaptor that adapts the
2D Delaunay graphs computed by the various Cgal packages to the corre-
sponding 2D Voronoi diagrams seen as two-dimensional arrangements. The
objective is to provide a Voronoi diagram interface that has the look and feel
of a planar subdivision represented, e.g., via a Double-Connected Edge List

Delaunay Tessellations and Voronoi Diagrams in Cgal 11

(DCEL) data structure, although the internal representation is a triangulation
data structure storing the triangulated Delaunay graph.

The adaptation is straightforward under the non-degeneracy assumption.
When degeneracies are present in the input, the triangulated Delaunay graph
has artifacts that might be undesirable in the Voronoi diagram view of the
computed geometric structure. Suppose for example that we have a set of sites
that contains subsets in degenerate position. The dual of the computed trian-
gulated Delaunay graph is a Voronoi diagram in which all vertices have degree
3, and for that purpose we are going to call it a degree-3 Voronoi diagram,
in order to distinguish it from the true Voronoi diagram of the input sites.
A degree-3 Voronoi diagram can have degenerate features, namely Voronoi
edges of zero length and/or Voronoi faces of zero area, that do not correspond
to the true geometry of the Voronoi diagram.

The way that we treat such issues is by defining an adaptation policy. The
adaptation policy is responsible for determining which features in the degree-3
Voronoi diagram are to be rejected and which are not. The policy to be used
can vary depending on the application or the intended usage of the resulting
Voronoi diagram. What we care about is that, firstly, the policy itself is con-
sistent and, secondly, that the adaptation is also done in a consistent manner.
The latter is the responsibility of the adaptor we provide, whereas the former
is the responsibility of the implementer of a policy. We currently provide two
types of adaptation policies, namely the identity policy and the degeneracy
removal policy. The former adapts the triangulated Delaunay graph as is; the
resulting Voronoi diagram is in fact a degree-3 Voronoi diagram, which natu-
rally inherits the artifacts present in the triangulated version of the Voronoi
diagram. This is the simplest possible adaptation policy and is the most effi-
cient one given the triangulated Delaunay graph: the layer that the adaptor
puts on top of the triangulated Delaunay graph is simply a syntactic one, since
no geometric computations are performed in addition to those performed by
the underlying Delaunay graph. The second type of policy is targeted towards
providing to the user a view of the Voronoi diagram that corresponds to the
true geometric object. This policy removes the artifacts introduced by either
the additional edges introduced in order for the Delaunay graph to consist
uniformly of triangles, or the splitting of the input sites into subsites (this is
the case for the segment Voronoi diagram, where we split an input segment
to three distinct sites, namely its two endpoints and its relative interior).

When the degeneracy removal policy is chosen, we need, within the scope
of the adaptor, to identify Voronoi edges of zero length and Voronoi faces
of zero area. Depending on whether we want the Voronoi diagram view to
be mutable (e.g., allow on-line insertions) or non-mutable (e.g., the input
is known beforehand), these tests can be quite expensive when applied to
degenerate configurations, which are exactly the ones we want to eliminate.
For this purpose we have two possible adaptation traits, one that caches the
results of the edge/face length/area tests and one that does not. The latter
policy is the preferred one under the off-line scenario, whereas the former one

12 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

performs better in the on-line scenario. The drawback of the former adaptation
policy is that the Delaunay graph adapted needs to support a few additional
operations which may not be present.

Currently, in Cgal, we provide adaptation traits and adaptation policies
for the 2D Euclidean Voronoi diagram of points, the 2D Apollonius diagram,
the 2D Euclidean segment Voronoi diagram and the 2D power diagram.

5.2 BGL interface

The Boost Graph Library (BGL) provides a generic open interface for access-
ing a graph’s structure, while hiding the implementation details [BGL]. This
interface is interoperable with many graph algorithms, such that breadth-first
search, depth-first search, Kruskal’s and Prim’s minimum spanning tree al-
gorithms or Dijkstra’s shortest paths algorithm. Although the BGL provides
some general purpose graph classes conforming to the interface, they are not
meant to be exhaustive or exclusive.

In that spirit, and in order to take advantage of the graph algorithms pro-
vided along with the BGL, BGL interfaces have been implemented for Cgal’s
triangulations, polyhedra and arrangements. For Delaunay triangulations in
particular, Cgal provides an interface for the Delaunay triangulation that
makes it an instance of a BGL undirected graph. The infinite edges of the
Delaunay triangulation are by default present, but the user can use Boost’s
filtered graph or BGL’s property maps in order to make them invisible.
Cgal’s manual page devoted to BGL provides various examples on how the
users can combine the BGL interfaces provided by Cgal with functionality
in the BGL.

5.3 Interfaces in other languages

Cgal is written in C++. However, to serve communities which may be used
to other languages, most of Cgal packages have been interfaced with other
languages.

For example, an interface in Python has been realized for many classes in
Cgal: 2D and 3D Triangulations and Alpha Shapes, 2D Meshing, Polyhedron,
2D convex hulls, various geometric optimization algorithms, and a large part
of Cgal’s geometry kernel. It is named cgal-python [CGAb]. Python is a
modern interpreted language which binds easily to C++ code.

Another example is an interface with Scilab [SCI], which is a numerical
platform similar to Matlab. The interface is named CG-LAB, and is more
targeting the engineers’ community [CGL]. It provides interfaces to Delaunay
triangulations in 2D, 3D and dD space; convex hulls in 2D and 3D; Delaunay
mesh generator in 2D space; and many others.

Cgal’s 2D and 3D Delaunay triangulations have been integrated in Mat-
lab 2009a.

Finally, interfaces in Java based on JNI (Java Native Interface) are also
under development.

Delaunay Tessellations and Voronoi Diagrams in Cgal 13

5.4 Graphical interfaces

Although not the heart of the library, Cgal is also interfaced to some visual-
ization tools, in order to be able to interact easily with geometric data. The
main toolkit used in Cgal is Qt [QT]. However, some parts of Cgal also
use other toolkits for visualization. A notable one is the Ipe drawing editor
[IPE], toward which many plug-ins interfacing Cgal algorithms have been
implemented.

6 Robustness issues

The major issue with providing industrial-strength implementations of geo-
metric algorithms is their robustness. There are two main sources of typical
non-robustness issues that arise. The first is due to the approximate compu-
tations of geometric predicates and constructions using floating-point arith-
metic. The second is the proper handling of all particular cases, called degener-
ate cases, for which we give an illustration below using symbolic perturbations.

We subdivide geometric primitives used by the higher level algorithms, in
two categories: the first category is the geometric predicates, which are func-
tions taking some geometric entities as arguments (e.g., points) and returning
a result akin to a Boolean or enumerated value. The second category is the
geometric constructions, which construct new geometric objects. An example
of the former is the classical orientation test for three points in the plane,
while an example of the latter is the construction of the circumcenter of three
non-collinear points in the plane.

Robustness issues arise when, for example, the approximate computations
inside predicates make them return a wrong sign, which later can draw the
algorithm to an inconsistent unexpected state. Some examples of failures due
to numerical inaccuracies are described in [KMP+04], showing for example
cases where the algorithm can loop in localizing a point in a 3D Delaunay
triangulation. One general solution which is used throughout Cgal is to rely
on the Exact Geometric Computation paradigm (EGC), formulated by Yap
and Dubé in [YD94], which states that robustness of the algorithm is ensured
if and only if the predicates are evaluated exactly, since the branches in the
algorithms are based on the results of predicates.

From the implementation point of view, the exactness of predicates can
be achieved using exact multiple precision integer, rational and floating-
point numbers. Some wide-spread libraries, like GMP, MPFR and LEDA
[GMP, MPF, LED], provide this functionality. Cgal also provides such func-
tionality with its MP Float and Quotient classes. In turn, Cgal’s predicates
and constructions are parameterized by the so-called number type that they
use. This way it is possible to instantiate the formulas using double, MP Float,
GMP’s mpq class, or other number types that are models of appropriate con-
cepts.

14 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

An important aspect here is the study of the algebraic degree of the predi-
cates, the goal being to minimize it, a task that is not at all easy to accomplish.
There is, of course, a trade-off to be optimized here, between the number of
operations required to compute a predicate and the operations accepted (e.g.,
usage of square roots can decrease the number of operations required to com-
pute a predicates, but this, on the other hand, necessitates more complicated
exact number types). The EGC paradigm, along with arithmetic and geomet-
ric filtering techniques (see Section 7), provides a framework for easy develop-
ment of geometric software (i.e., development without the need for arithmetic
considerations), and at the same time provides robustness through exactness,
at a moderate additional cost (see Section 7.1). In the rest of this section we
describe briefly how two predicates are computed for two of the Voronoi dia-
grams provided in Cgal. Our presentation is targeted toward illustrating the
variety of the techniques implemented, rather than providing an exhaustive
presentation.

6.1 Degenerate cases: symbolic perturbations

Computing the 3D Delaunay triangulation of a set of n points involves
the computation of two major predicates: the orientation predicate and the
in sphere predicate.

Let pi, pj , pk, p` be four non-coplanar points in R3. Point pν has coordi-
nates (xν , yν , zν) for each ν. The orientation predicate for these four points
determines whether the fourth point p` lies on the positive or negative half-
space (or on the plane) with respect to the oriented plane defined by the
first three points pi, pj and pk. The orientation predicate is equivalent to
determining the sign of the determinant

orient(pi, pj , pk, p`) =

∣∣∣∣∣∣∣∣
1 1 1 1
xi xj xk x`
yi yj yk y`
zi zj zk z`

∣∣∣∣∣∣∣∣ .
The in sphere predicate involves five points pi, pj , pk, p` and pm, and

returns a positive, negative or zero value if pm lies outside, inside or on the
boundary of the ball circumscribing pi, pj , pk and p`. It is well known that
the in sphere test can be computed in the following way:

in sphere(pi, pj , pk, p`, pm) =
sign(Det(pi, pj , pk, p`, pm))

sign(orient(pi, pj , pk, p`))
,

where

Det(pi, pj , pk, p`, pm) =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
xi xj xk x` xm
yi yj yk y` ym
zi zj zk z` zm
ti tj tk t` tm

∣∣∣∣∣∣∣∣∣∣
,

Delaunay Tessellations and Voronoi Diagrams in Cgal 15

and tν = x2ν + y2ν + z2ν for ν = i, j, k, `,m.
The sign(Det(pi, pj , pk, p`, pm)) predicate in R3 can be seen as an orienta-

tion predicate in R4, if each point p = (x, y, z) of R3 is projected onto a point
π(p) = (x, y, z, t) on the unit paraboloid Π of R4 with equation t = x2+y2+z2

[ES86, DMT92].
While exact predicates allow to detect degenerate configurations, the al-

gorithms must solve special cases explicitly. For Delaunay triangulations, in
2D the situation is degenerate as soon as at least four points are cocircular.
In 3D, it is degenerate as soon five points are cospherical. In the sequel, we
will use the term cospherical for these two cases.

In fact, in degenerate cases, the Delaunay triangulation is not uniquely
defined: any triangulation of the set of cospherical points is a Delaunay tri-
angulation. The computed triangulation must be defined in a non-ambiguous
way, to avoid inconsistencies when alternating insertions of points and vertex
removals.

This is performed in the Cgal package by the use of a symbolic per-
turbation, that allows to decide, for each case of cospherical points, which
triangulation is chosen [DT03].

The general idea of a symbolic perturbation [EM90, Sei98b] is to replace
the original problem by a different one depending on a parameter ε and such
that:

• there exists ε0 > 0 such that the parameterized problem is in general
position for ε ∈ (0, ε0]

• the solution of the parametrized problem has a limit when ε goes to zero
with positive values.

• if the original problem is in general position, the solution of the parame-
terized problem tends to the solution of the original problem when ε goes
to zero.

The symbolic perturbation method then considers the limit solution of the
parametrized problem as the perturbed solution of the original problem.

More precisely, let’s assume we are facing the in sphere test of five co-
spherical points {pi, pj , pk, p`, pm}. Our perturbation scheme needs to rank
somehow the five input points. Then, assuming point pi has rank ni, the
perturbation scheme adds εni to the fourth coordinate of the projected point
π(pi) of R4. Then, the orient test is not perturbed and the outcome of the
in sphere test depends on the sign of the perturbed determinant

Detε(pi, pj , pk, p`, pm) =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
xi xj xk x` xm
yi yj yk y` ym
zi zj zk z` zm

ti+ε
ni tj+εnj tk+εnk t`+εn` tm+εnm

∣∣∣∣∣∣∣∣∣∣
.

Developing with respect to the last row yields a polynomial in ε:

16 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Detε(pi, pj , pk, p`,pm) = Det(pi, pj , pk, p`, pm)

+ orient(pi, pj , pk, p`)ε
nm − orient(pi, pj , pk, pm)εn`

+ orient(pi, pj , p`, pm)εnk − orient(pi, pk, p`, pm)εnj

+ orient(pj , pk, p`, pm)εni .

It can be shown that the polynomial Detε can never be identically zero.
Its sign is the sign of the first non-null coefficient, and depending on this sign,
the in sphere predicate will tell whether the point pm must be considered as
being inside or outside the tetrahedron formed by pi, pj , pk, p`.

As mentioned above, the perturbation depends only on the way we rank
the points. Any ordering of the points is potentially possible. In recent Cgal
releases, the lexicographical ordering of the points has been implemented.
This ordering has the advantage of being intrinsic to the set of points. It
is not invariant under some transformations of the set of points, like e.g.,
rotations.

The same perturbation scheme can also be used for the case of regular
triangulations [DT06] and has been implemented in Cgal.

6.2 Predicates of the Apollonius diagram: Algebraic tools to the
aid of geometric computations

The predicates involved in the computation of the 2D Apollonius diagram in
Cgal are substantially more complicated than the ones for the 2D Voronoi

bi

bj

Bi

Bj

Bk

Bℓ

cijk

ciℓj

Cijk

Ciℓj

wijk

wiℓj

Lij

πij

Fig. 7. The Radii Difference primitive: if cijk and ci`j lie on the same side of Lij ,
comparing their order on the oriented bisector πij reduces to comparing the radii
wijk and wi`j .

Delaunay Tessellations and Voronoi Diagrams in Cgal 17

diagram. It is straightforward to compute the 2D Voronoi diagram using ori-
entation and incircle tests (much like the 3D case in Section 6.1) which are
predicates of algebraic degree 3 and 4 respectively, with respect to the input
coordinates. In the Apollonius diagram case six predicates are needed, which
can be further decomposed to smaller primitives. In the rest of this subsec-
tion we briefly describe how one of these primitives is evaluated, namely the
Radii Difference primitive (for a detailed description see [KE03] or [EK06]).
In particular, we show how, using algebraic tools, we can get a lower algebraic
degree for the quantities the sign of which is to be evaluated, as compared to
the obvious solution.

The most complicated predicate when computing the Apollonius diagram,
is the Edge Conflict Type predicate: given an edge αµνij of the Apollonius dia-
gram, defined by four disks Bi, Bj , Bµ and Bν , and a fifth disk Bλ, we want
to determine if Bλ is in conflict with one of the disks centered on αµνij (i.e.,
intersects it) and tangent to both Bi and Bj . The Edge Conflict Type predi-
cate can be resolved easily if we know how to order two points p and q lying
on the oriented bisector πij of Bi and Bj . πij is either a line (if the radii of
Bi and Bj are equal) or a branch of a hyperbola (if the radii of Bi and Bj
differ). In the Apollonius diagram context, p and q are defined via two other
disks Bk and B`, k 6= `, (Bk and B` can be any of Bµ, Bν and Bλ), see Figure
7. In particular, p is the center cijk of the ccw-oriented circle Cijk tritangent
to Bi, Bj and Bk (touching them in that order) and q is the center ci`j of the
ccw-oriented circle Ci`j tritangent to Bi, B` and Bj (again, touching them in
that order).

Let Lij be the line passing through the centers of Bi and Bj ; if πij is
a hyperbolic branch, then Lij is its line of symmetry. If cijk and ci`j lie on
different sides of Lij , we can determine their order on πij by means of the
orientation tests orient(bi, bj , cijk) and orient(bi, bj , ci`j), where bi and bj are
the centers of Bi and Bj , respectively. This orientation test is of algebraic
degree 14 [EK06]. If cijk and ci`j lie on the same side of Lij , determining
their order on πij is equivalent to asking for the sign of the difference wijk −
wi`j , where wijk and wi`j are the radii of the Voronoi circles Cijk and Ci`j
respectively, hence the name for the Radii Difference primitive. The radii wijk
and wi`k can be written as:

wijk = ρ1 − ri, wi`j = ρ2 − ri,

where ri is the radius of Bi and, for τ = 1, 2, ρτ > 0, is a real root of an
equation of the form

fτ (x) := ατx
2
τ − 2βτxτ + γτ = 0.

Clearly, it suffices to compute the sign of the difference t := ρ1 − ρ2.
The algebraic degrees of ατ , βτ and γτ are 4, 5 and 6, respectively. We

assume for now that α1α2 > 0; the case α1α2 = 0 is discussed towards the
end of this subsection. Let ∆τ = β2

τ−ατγτ , be the discriminant of the equation

18 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

fτ (x) = 0, and let J = α1β2 − α2β1. Then

t =
β1 +

√
∆1

α1
− β2 +

√
∆2

α2
=
−J + α2

√
∆1 − α1

√
∆2

α1α2
.

Since α1α2 > 0, in order to determine the sign of t, it suffices to determine
the sign of the numerator of t. The numerator of t is a quantity of the form
Q1 := X0 +X1

√
Y1 +X2

√
Y2, where, in general, Y1 6= Y2 and Y1, Y2 > 0. The

algebraic degrees of X0, X1, X2, Y1 and Y2 are 11, 8, 8, 6 and 6, respectively.
In order to determine the sign of Q1, we need to determine, in the worst case,
the sign of the quantity (X2

0 +X2
1Y1 −X2

2Y2)2 − 4X2
0X

2
1Y2, which is a degree

36 quantity in the input.
Let us know consider a slightly different approach. Substitute the value of

ρ1 in terms of t and ρ2 in f1(x) = 0. We thus get:

α1(t+ ρ2)2 − 2β1(t+ ρ2) + γ1 = 0,

which can be rewritten as a quadratic polynomial in terms of t:

f̄1(t) := ᾱ1t
2 + β̄1t+ γ̄1 = 0,

where ᾱ1 = α1, β̄1 = f ′1(ρ2) and γ̄1 = f1(ρ2). Determining the sign of t reduces
to determining the sign of the appropriate root of f̄1(t). This can be done by
applying Descartes’ rule of signs to f̄1(t), which calls for computing the signs
of β̄1 and γ̄1. Both β̄1 and γ̄1 are expressions of the form (X0 + X1

√
Y)/Z,

where Z > 0, and their signs can be evaluated using the following relation:

sign(X0 +X1

√
Y) = sign(sign(X0)X2

0 + sign(X1)X2
1Y).

The degrees of X0, X1 and Y are 9, 6 and 6 for β̄1, and 14, 11 and 6 for γ̄1,
respectively. Hence, the highest algebraic degree involved in the evaluation of
the signs of the roots of f̄1(t) is 28, already an improvement over the algebraic
expression of degree 36 we found above.

We can further decrease the maximum algebraic degree of the expressions
to be evaluated by employing Sturm sequences. Let (Pi(x))0≤i≤M , be the
Sturm sequence of f1(x) and f ′1(x)f2(x). In the absence of (algebraic) degen-
eracies M = 4, i.e., the Sturm sequence consists of five polynomials. In this
case we can then determine the sign of t by means of the signs of the quanti-
ties J , P3(∞) (this is P3(x)/x2 evaluated at +∞) and P4 (P4(x) is a constant
polynomial), where

P3(∞) = −(α1K + 2α2∆1), P4 = (P3(∞))2(4JJ ′ −G2),

and

J ′ = β1γ2 − β2γ1, G = α1γ2 − α2γ1, K = α1γ2 + α2γ1 − 2β1β2.

The algebraic degrees of J and P3(∞) are 9 and 14, respectively. The algebraic
degree of the second factor of P4 is 20. The expression 4JJ ′ − G2 can be

Delaunay Tessellations and Voronoi Diagrams in Cgal 19

further factorized to two factors, one of degree 8 and one of degree 12, the
latter being a polynomial of 305 monomials: the computation of these factors
is very expensive.

It is plausible, however, that the Sturm sequence of f1(x) and f ′1(x)f2(x)
contains less than five terms. In fact the only possibility is that (Pi(x))0≤i≤M
contains four instead of five terms, i.e., M = 3, and this happens if P3(∞) =
−(α1K+2α2∆1) = 0. In this case P3(x) is the last term of the Sturm sequence,
and is a constant polynomial equal to P3 = P3(x) = 2α1∆1J

′. Hence the
maximum algebraic degree of the quantities encountered in this case is 11.

In our discussion above it is assumed that α1α2 > 0. If α1 = α2 = 0,
we only need to test the sign of the quantity J ′ which is of degree 11. If
α1 = 0 < α2 (the case α2 = 0 < α1 is symmetric), the Sturm sequence
of f1(x) and f ′1(x)f2(x) ends with P3 = P3(x) = 4β2

1α2f2(γ1/(2β1)). The
quantity 4β2

1f2(γ1/(2β1)) is of degree 16. It is interesting to note that this
quantity arises in a geometrically degenerate configuration: it corresponds to
three disks having a common tangent line, or equivalently to three disks the
Apollonius circle of which has infinite radius.

The degree 16 we just mentioned is the maximum algebraic degree encoun-
tered in the evaluation of the predicates of the Apollonius diagram using the
Sturm sequence methodology. Recall that the degree 12 factor of the quantity
4JJ ′ − G2 consists of 305 monomials in the input quantities. As a result its
computation involves a dramatically larger number of operations, as compared
to computing the quantity 4JJ ′ − G2 directly. For efficiency reasons, in the
current Cgal implementation we do not make use of this factorization, that
is we evaluate quantities of degree up to 20.

7 Efficiency issues

In this section we detail several key aspects which need to be considered to
obtain truly efficient implementations of the algorithms.

7.1 Arithmetic filtering

As previously mentioned, a critical part of the robustness of the implemen-
tation is achieved thanks to the exactness of the geometric predicates and
constructions. We are now focusing on the details of their efficient implemen-
tation.

Exact predicates can be easily implemented using exact multiple precision
integer, rational and floating-point numbers. The main issue with multiple pre-
cision number types is their efficiency. Indeed, compared to hardware assisted
floating-point types, like double, for which arithmetic operations basically
take a few cycles, multiple precision numbers require a memory storage which
grows with the accumulation of computations (which can be exponential with
rational numbers), and the cost of each operation is at least linear in the size

20 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

of the operands. In practice, it is reported, e.g., in [DP03], that the impact
of naively using these multiple precision number types, while it solves all nu-
merical robustness issues, incurs a penalty of 2 orders of magnitude in terms
of efficiency, compared to using doubles.

People then observed that, in the case of predicates, only the sign of an
expression is returned. This means that only the exact sign is required to
be computed, not the full bit-wise representation of an expression. Remarks
have been made that, given that most of the time floating-point arithmetic
returns the correct sign, it should be enough to be able to detect when such
floating-point computations have a chance to lead to an incorrect sign. Then,
only in these cases, rely on the exact multiple precision costly number types.
This scheme is known as arithmetic filtering, since it quickly filters out the
easy cases using arithmetic tools, and has been developed in a number of
ways [FV96, She97, BFS01, DP03, BBP01]. Some of these are implemented
in Cgal, such as dynamic filters based on interval arithmetic.

Interval arithmetic is used in Cgal as a mean to bound an exact value
inside an interval whose bounds are doubles. This standard tool is relatively
fast to compute with, and it is used inside Cgal’s Filtered predicate class
which allows to easily create filtered predicates following the scheme: first, we
evaluate the predicate using interval arithmetic; then, if the sign cannot be
concluded because 0 lies in the resulting interval, we recompute the predicate
using an exact number type [BBP01]. Cgal does this using template param-
eterization, and instantiating successively with different number types. This
ensures optimal efficiency and ease of use. This method of filtering is quite gen-
eral, since all arithmetic operations are possible with intervals. The resulting
code is typically 3 to 10 times slower than using uncertified doubles, depend-
ing on the algorithm (the share of combinatorial operations versus numerical
operations can vary) and the data sets (more degeneracies means slower).

Besides this generic method based on intervals, some critical predicates
such as those used in 2D and 3D Delaunay triangulations, benefit from addi-
tional layers of filtering, named static and semi-static filtering. The idea is to
study the sequence of arithmetic operations used in a predicate, and to derive
an error bound on the resulting expression we need the sign of, from bounds on
the input arguments. Such a method can be much faster than interval arith-
metic, since, basically, the difference between this and pure floating-point is
that some bounds are computed at the beginning, which can be somehow
cached, and the comparison with zero is replaced with a comparison with an
error bound. In practice, this allows to reach close to optimal efficiency, as the
slowdown compared to uncertified doubles tends to be about 25% [DP03].
These methods are however heavier to set up and error prone, which leads to
formal proving of some of the methods implemented in Cgal [MP05].

Delaunay Tessellations and Voronoi Diagrams in Cgal 21

p1 p2

p3

q1

q2
q3

s1

s2

Fig. 8. Segment site representation. The point s1 is represented by the four points
p1, q1, p2 and q2. The subsegment p1s1 is represented by the points p1, q1, p2, q2
and a Boolean which is set to true to indicate that the first endpoint in not an
intersection point. The subsegment s1s2 is represented by the six points: p1, q1, p2,
q2, p3 and q3. The remaining (non-input) points and subsegments in the figure are
represented similarly.

7.2 Geometric filtering

The segment Voronoi diagram computation poses additional difficulties when
we allow the input segments to intersect arbitrarily [Kar04]. If we represent
the subsegments via the Cartesian coordinates of their endpoints, we may
end up with an exponential blow up on the bit complexity of the Cartesian
coordinates of intersection points. Because of this blow up we are unable to
bound the algebraic degree of the predicates evaluated during execution of the
algorithm, which essentially invalidates any attempt for arithmetic filtering
(the arithmetic filters will almost always fail due to the high bit complexity
of the geometric objects involved in the predicate evaluation).

To overcome this blow up in the Cgal package for computing the segment
Voronoi diagram, we take special care on how segments are represented. More
precisely, intersection points are represented by four points, namely the end-
points of the two input segments that define them, whereas segments that have
intersection points as endpoints are represented either by four points and a
Boolean or by six points, depending on whether only one or both endpoints of
the segment are intersection points (see Figure 8). This representation allows
us:

1. to have a closed-form representation of the sites defining the Voronoi di-
agram, thus avoiding cascading,

2. to avoid an exponential blow up on the bit complexity of the coordinates
of the intersection points,

3. to use geometric filtering, discussed below.

22 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Geometric filtering amounts to performing simple geometric tests exploit-
ing the representation and construction history of the geometric data, as well
as the geometric structure inherent in the problem, in order to evaluate pred-
icates in seemingly degenerate configurations. Geometric filtering can be seen
as a preprocessing step before performing arithmetic filtering. It can help by
eliminating situations in which the arithmetic filter will fail, thus decreasing
the number of times we need to evaluate a predicate using exact arithmetic.

Let us consider a simple, yet very illustrative, example of geometric filter-
ing. Suppose we want to determine if two intersection points in the segment
Voronoi diagram are identical. We assume here that the input points are
represented by doubles via their Cartesian coordinates. Input segments are
represented by their two endpoints, whereas intersection points and the sub-
segments are represented as described above. In order to determine if the two
non-input points are identical we need to compute their Cartesian coordinates
and compare them. If the two points are geometrically identical, the answer
to our question using double arithmetic may be uncertain (due to numerical
errors), in which case we will have to reside to the more expensive exact com-
putation. Instead, before testing the coordinates for equality, we can use the
representation of the points to potentially answer the question. More specifi-
cally, and this is the geometric filtering part of the computation, we can first
test if the defining segments of the two points are the same. If they are not,
then we proceed to comparing their coordinates as usual. Testing the defining
segments for equality does not involve any arithmetic operations on the input,
but rather only comparisons on doubles.

Geometric filtering techniques, such as the one presented in the paragraph
above, is used in all predicate evaluations in the Cgal segment Voronoi dia-
gram package.

7.3 Point location

Point location is crucial for the efficiency of the package. It is an important
functionality in its own for the user, but it is also a major ingredient of the in-
cremental construction of the triangulation. The Cgal 2D and 3D Delaunay
triangulation packages offer two main strategies: a walk though the triangu-
lation, and the use of a hierarchical structure.

Visibility walk.

This simple strategy is in fact quite popular for Delaunay triangulations. Let’s
explain it in 2D. Assume we want to locate the point p. We start the walk
at an arbitrary triangle. Then, at each step, we move from a triangle t not
containing p, to a neighbor of t sharing with t an edge e such that the line
supporting e separates t from p. If there are two such edges, then we move to
any of these two neighbors. This generalizes to higher dimensions, replacing
the edges by facets.

Delaunay Tessellations and Voronoi Diagrams in Cgal 23

In the case of the Delaunay triangulation, this walk has been proved to be
acyclic and to reach the correct triangle [Ede90, DFNP91]. In the case of an
arbitrary triangulation, the walk may loop. A variant, however, the stochastic
walk, has been proved to terminate [DPT02]. This variant consists in choosing
at random the neighboring triangle of t to proceed to, whenever there are more
than one edge of t whose supporting line separates t from p.

Delaunay hierarchy.

Even if the walk obtains good running times, a more sophisticated strategy is
proposed for large data sets. The point location uses an additional hierarchical
data structure [Dev02]: the last level of the structure is the Delaunay trian-
gulation DT(S), and each level i contains the Delaunay triangulation DTi of
a subset of sites Si ⊂ S.

The subsets of sites Si form a decreasing sequence of random subsets of
S. The number k of levels is not fixed; for each point, random trials decide its
level, and the point with the highest level determines k.

A point p ∈ S such that p ∈ Si ⊆ . . . ⊆ S0 = S and p 6∈ Si+1 has a link to
a Delaunay triangle of DTj incident to p for all j between 0 and i.

To locate a query point q, we start at a known vertex vk+1 of the highest
level k. Using the basic location strategy in DTk we search for vk, the vertex of
DTk nearest to q. Since vk is also a vertex of DTk−1, we then start from vk to
search for vk−1, the nearest neighbor of q in DTk−1. The search is continued
descending the different levels. At each level i, the nearest vertex vi of q in
DTi is determined.

It has been shown that the construction of the Delaunay hierarchy of a
set of n points can be done in expected time O(n log n) in 2D and O(n2) in
3D. The space is linear in the size of the triangulation, with a constant factor
very close to 1. The walk at each level performs a constant expected number
of steps and the expected query time is O(log n). The expectation is on the
randomized sampling and the order of insertion, with no assumption on the
point distribution.

In practice, instead of looking for the true nearest vertex vi of q in DTi,
the point q is located in DTi using the basic location strategy, and the vertex
of the triangle containing q that is closest to q is used in place of vi. This
approximation invalidates the theoretical complexity analysis, but performs
very well in practice.

Voronoi hierarchy.

A variant of the Delaunay hierarchy is the Voronoi hierarchy [KY03]. Concep-
tually, instead of thinking of the hierarchy as consisting of a series of Delaunay
triangulations, we understand the hierarchy as a series of Voronoi diagrams.
The Voronoi hierarchy is a more convenient hierarchical data structure when
we want to compute the Voronoi diagram for non-point objects. In fact, it is
applicable to quite a few types of abstract Voronoi diagrams, thus making it

24 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

more general than the Delaunay hierarchy at a moderate additional cost in
query time.

In the Delaunay hierarchy the location of the nearest neighbor vi of the
query point q at level i is done by walking from vi+1 (the nearest neighbor of
q at level i+ 1) along the line connecting vi+1 and q. In the Voronoi hierarchy
we move from vi+1 to vi as follows. Let Vj be the cell of the Voronoi diagram
currently visited at level i (initially, Vj is the cell Vi+1 of vi+1). We look at the
neighbors of vj : if there exists a neighbor vm such that δ(q, vm) < δ(q, vj), we
visit Vm and continue as before; otherwise, the distance from q to all neighbors
of vj is larger than the distance δ(q, vj), i.e., vj is the nearest neighbor vi of
q at level i.

Moving from a cell Vj to a cell Vm takes linear time in the size of the
cell. Finding the next cell to go to can be sped up by using balanced binary
trees attached to the Voronoi cells: using these balanced binary trees we can
find the next cell to go to in time O(log n). By means of these trees the
nearest-neighbor location query can be performed in O(log2 n) expected time,
where n is the number of sites already inserted in the Voronoi diagram. In
fact, we can compute the two-dimensional Euclidean Voronoi diagram for a
set of n (possibly intersecting) disks, disjoint line segments or disjoint convex
objects, in O(n log2 n) expected time and O(n) expected space [KY03]. For
a set of n possibly intersecting line segments, their Voronoi diagram can be
computed in O((m + n) log n) expected time and O(m + n) expected space,
where m = O(n2) is the complexity of the arrangement of the n line segments
[Kar04]. As in the case of the Delaunay hierarchy, the expectation is on the
randomized sampling for determining the maximum level of the hierarchy in
which a site is inserted, and the order of insertion.

In reality, maintaining a balanced binary tree per cell, in a incremental or
dynamic setting can be quite complicated. The current Cgal implementation
of the segment Voronoi diagram and the Apollonius diagram does not maintain
these trees. Although the theoretical results are no longer valid, the Voronoi
hierarchy works very well in practice.

7.4 Spatial sorting

Sometimes, knowledge about a triangulation is not needed before all input
points (or a large set of points) have been inserted to the triangulation. In
this case, a clever ordering of the points may improve efficiency in building
the triangulation. If the points are sorted along a space-filling curve, a sim-
plex containing the previously inserted point will be a very good start for the
visibility walk to locate the new point. Furthermore, part of the data struc-
ture that will be accessed during each insertion is likely to have been recently
accessed. In practice, ordering points along a space-filling curve prior to in-
sertion induces constant time visibility walk for the location of almost all new
sites and, much fewer cache misses.

Delaunay Tessellations and Voronoi Diagrams in Cgal 25

Cgal implements an even more subtle ordering. A set of n points is ran-
domly subdivided in Θ(log n) rounds, where the ith round contains Θ(αi)
points, α being a constant. This subdivision is done in such a way that the
probability of a point participating in round i is proportional to size of this
round. Each round is then sorted along a Hilbert curve, using a quicksort-like
algorithm. This random subdivision in rounds does not change the expected
time complexity for Delaunay triangulations, while giving very good results
in practice. See [ACR03] for a comprehensive analysis. We have observed im-
provements of up to a factor of 2 in 3D (4 in 2D) over a random insertion
order.

Spatial sorting can also be seen as a first step toward supporting better
streaming representations of very large triangulations as in [ILSS06].

7.5 Further scalability of Cgal algorithms

Besides all these improvements which are applicable to most Cgal algorithms,
it is also possible to introduce some parallelization in the algorithms. This
aspect is more and more important today, as even all last generation laptop
computers are provided with multi-core processors, and the trend in future
hardware is strongly following this direction. Following the practical work
described in [BBK06], we aim at having good support for parallelization in
the key Cgal algorithms for triangulations and meshing. Without going into
a lot of details, this is performed by carefully splitting the work among all
available processors, and managing proper locking of the data structures.

There are other techniques which are important to allow the handling of
huge data sets. One such technique is the compact representation of the trian-
gulation in memory. Cgal already provides a relatively good trade-off in this
direction thanks to its Compact container class, a generic STL-like container
offering the flexibility of a std::list (constant time insertions and deletions),
together with a memory overhead almost as low as that of an array. More can
be done in terms of compact representation and local compression [CDM06],
most probably by offering the user a way to reach the best balance between
raw speed and memory usage for his/her application.

8 Tessellations at work

8.1 Alpha-shapes

Assuming a set of points S in Rd and a real parameter α, the alpha-complex
AC(S, α) is a subcomplex of the Delaunay triangulation DT(S) whose def-
inition is based on the radii of empty circumspheres. A circumsphere of a
simplex in DT(S) is a sphere passing through the vertices of this simplex. A
circumsphere is said to be empty if it encloses no vertex of the triangulation
DT(S). The characteristic property of Delaunay simplexes is to have empty

26 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

circumspheres. The alpha-complex AC(S, α) includes all Delaunay simplexes
which have an empty circumsphere with square radius not bigger than α. The
alpha-shape is just the domain covered by simplexes of the alpha-complex.
Weighted alpha-complexes and weighted alpha-shapes are defined similarly
on top of regular triangulations. Recall that the sites associated to the ver-
tices of a regular triangulation are weighted points which can be considered
as spheres as well. The power product of two spheres σ1 and σ2 with centers
c1 and c2 and radii r1 and r2 is defined as:

π(σ1, σ2) = ||c1c2||2 − r21 − r22.

Two spheres are said to be orthogonal when their power product is zero. In-
stead of considering the circumspheres of simplexes, the definition of weighted
alpha-shapes consider the spheres orthogonal to the sites associated with the
simplex vertices. Such an orthogonal sphere is said to be empty when it has
a positive power product with any site in the triangulation. The weighted
alpha-complex WAC(S, α) is the subcomplex of the regular triangulation of
RT(S) including all the simplexes that have an empty orthogonal sphere with
square radius not bigger than α.

Alpha-shapes and weighted alpha-shapes have been introduced by Edels-
brunner and Mücke [EM94]. Alpha-shapes have also been generalized by Kim
et al. [KSK+06] into beta-shapes. Beta-shapes are similar to weighted alpha-
shapes, but based on the Apollonius diagram of weighted points instead of
their power diagram. These notions are widely used in the context of shape
reconstruction from point clouds and find natural applications in computa-
tional biology and molecular modeling. In the Cgal library, alpha-shapes are
implemented as a data structure attached to the Delaunay or regular trian-
gulations. This data structure allows, for any value of the parameter α, (1) to
classify any face as included or not in the alpha-complex or (2) to retrieve the
whole alpha-complex. It also provides a filtration of the triangulation, where
faces are output according to the order they are included in the alpha-complex,
as the parameter α is grown from −∞ to +∞.

8.2 Meshing and reconstruction

As they encode distance relationships, Voronoi diagrams, Delaunay and reg-
ular triangulations are basic tools in the field of meshing and reconstruction.
The current tools offered in Cgal for mesh generation are all based upon
the Delaunay refinement paradigm pioneered by Chew [Che89] and Rup-
pert [Rup95].

Cgal currently offers a triangle mesh generator for two-dimensional do-
mains with constraints defined as a planar straight-line graph (PSLG), see
Figure 9. Cgal also offers a module to generate surface triangle meshes and a
three-dimensional mesh generator able to handle domains bounded by smooth
curved surfaces or piecewise smooth curved surfaces. To approximate curved

Delaunay Tessellations and Voronoi Diagrams in Cgal 27

Fig. 9. Triangle mesh generation by Delaunay refinement. Left: Map of Estonia
provided as input PSLG (7K segments). Right: Mesh generated by adding 7.5K
Steiner points (no sizing constraints were provided as input).

Fig. 10. Delaunay triangulation restricted to the input domain boundary (blue solid
edges shown on the left) or the input domain (gray triangles shown on the right).

surfaces, the meshing tool uses the notion of restricted Delaunay triangula-
tions. Given a set S of points and a domain Ω, the Delaunay triangulation
of S restricted to Ω, DTΩ(S), is the subcomplex of DT(S) formed by the
Delaunay faces whose dual Voronoi faces intersect Ω, see Figure 10.

Recent results on the theory of surface sampling [AB99, ACDL00, CDRR04,
BO05] have shown that a smooth surface Σ is well approximated by the re-
stricted Delaunay triangulation DTΣ(S) of a dense enough sampling S on
Σ. In particular, the restricted Delaunay triangulation is a two-dimensional
manifold mesh, homeomorphic and even ambient isotopic to the surface. The
Hausdorff distance between the surface Σ and the restricted Delaunay trian-
gulation DTΣ(S) goes to zero with increasing density. The restricted Delaunay

28 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 11. Surface meshing for surface reconstruction from point clouds. Left: Input
point set. Middle and Right: Implicit functions derived from the point set, and sur-
face triangle meshes generated by Delaunay refinement and filtering for two different
mesh sizing parameters.

triangulation of a dense sample also yields a good approximation for normals,
area, curvature and other differential properties. The required density of the
sampling is relative to the so-called local feature size lfs(x), defined for each
point x of the surface Σ as the distance from x to the medial axis of R3 \Σ.
The medial axis of R3 \ Σ is the locus of centers of balls included in R3 \ Σ
that are maximal with respect to inclusion.

The surface meshing tool of Cgal uses the notion of restricted Delau-
nay triangulation both to extract the approximating surface mesh from the
Delaunay triangulation of the current sampling and to guide the refinement
process, yielding a dense enough sampling.

A noticeable feature of this surface and volume mesh generator is that
it only requires to know the surface through a geometric oracle which: (1)
tells on which side of the surface lies a query point, (2) detects if a query line
segment intersects the surface or not, and (3) computes the intersection points
if any. Such an oracle is given to the mesh generator as a template parameter.
This mechanism provides a mesh generator flexible enough to be applied in a
wide variety of situations, ranging from domains defined by implicit surfaces
to domains defined by level-sets in 3D gray-scaled images through point-set
surfaces. Figure 11 illustrates the output of the surface mesh generator in
a surface reconstruction application. An implicit function approximating the
distance to the surface is first derived from the input point cloud, and the zero
level set of this function is then tessellated. In Figure 12 the output of the
Cgal surface mesh generator is compared with the output of the marching
cubes algorithm applied to an octree.

Delaunay Tessellations and Voronoi Diagrams in Cgal 29

Fig. 12. Delaunay-based surface meshing vs. marching cubes in an octree. All trian-
gles of the mesh shown on the left are better shaped compared to the triangles of the
mesh to the right, and the mesh contains fewer triangles for the same approximation
accuracy.

9 On-going and future work

9.1 Periodic triangulations and meshes

The scope of computational geometry research has been mostly limited to ma-
nipulation of geometric elements in the Euclidean space Rd. Other geometric
spaces have hardly, if at all, been considered in the computational geometry
literature so far. However, they are relevant to needs in applied domains. In
particular, periodic spaces such as the torus and the cylinder in 2D or 3D are
the natural spaces in a variety of situations, especially for simulations requir-
ing periodic boundary conditions as it is often the case in fluid dynamics or
astronomy.

The standard workaround consists in triangulating an elementary domain,
and duplicating some fraction of the points outside that domain to simulate
periodicity. This is at the same time inelegant and inefficient: it increases the
size of the input set of points to be triangulated, which results in a significant
overhead both in time and memory.

Some work was performed to solve theoretical problems to adapt the
algorithms initially designed for R3 to the case of the flat torus R3/Z3

[CT08, CT09]. The package recently released in Cgal allows users to tri-
angulate directly the points in the periodic space and avoid any duplication
whenever possible. See Figures 13 and 14 for illustrations.

More work is in progress to compute meshes of periodic surfaces.

30 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 13. Periodic triangulation in R2.

Fig. 14. Periodic triangulation in R3.

9.2 Optimized meshing

When high quality meshes are sought after, one approach is to resort to an
optimization procedure. Two questions now arise: Which criterion should we
optimize? Which degrees of freedom should we use? As the degrees of freedom
are both continuous and discrete (vertex positions and mesh connectivity),
there is a need for narrowing the space of possible triangulations.

A class of mesh optimization techniques rely on the observation that evenly
distributed points in 2D lead to well-shaped triangles [Epp01]. Isotropic 2D
meshing can therefore be casted into the problem of isotropic point sampling,
which amounts to distributing a set of points on the input domain in as even
a manner as possible. One approach to evenly distribute a set of points in
2D is to construct a centroidal Voronoi tessellation [DFG99]. Given a density
function defined over a bounded domain Ω, a centroidal Voronoi tessellation
(denoted CVT) of Ω is a class of Voronoi tessellations, where each site happens
to coincide with the centroid (i.e., center of mass) of its Voronoi region. The

Delaunay Tessellations and Voronoi Diagrams in Cgal 31

centroid ci of a Voronoi region Vi is calculated as:

ci =

∫
Vi

x · ρ(x) dx∫
Vi
ρ(x) dx

, (1)

where ρ(x) is the density function defined over Vi. This structure turns out to
have a surprisingly broad range of applications for numerical analysis, location
optimization, optimal repartition of resources, cell growth, vector quantiza-
tion, etc. This follows from the mathematical importance of its relationship
with the energy function

E(Z,V) =

n∑
i=1

∫
Vi

ρ(x)||x− zi||2 dx , (2)

where V = {Vi} is a partition of Ω and Z = {zi}. It has been shown [DFG99]
that (i) for a given partition V, the energy E(Z,V) is minimized when zi is the
mass centroid of Vi, and (ii) for a given set of centers Z, the energy function
E(Z,V) is minimized when V is the Voronoi tessellation of the centers.

One way to build a centroidal Voronoi tessellation is to use Lloyd’s
relaxation method. Lloyd’s algorithm is a deterministic, fixed point itera-
tion [Llo82]. Given a density function and an initial set of n sites, Lloyd’s
algorithm repeats the following two steps until satisfactory convergence has
been achieved (see Figure 15):

1. Construct the Voronoi tessellation corresponding to the n sites.
2. Compute the centroids of the n Voronoi regions with respect to the density

function, and move the n sites to their respective centroids.

Fig. 15. Left: ordinary Voronoi tessellation. Middle left: Voronoi tessellation after
one Lloyd iteration. Middle right: Voronoi tessellation after three Lloyd iterations.
Right: Centroidal Voronoi tessellation obtained after convergence of the Lloyd iter-
ation. Each generator coincides with the center of mass of its Voronoi cell.

The Lloyd iteration can be applied to the problem of 2D quality mesh gen-
eration. Figure 16 illustrates the Lloyd iteration applied to an initial Voronoi
diagram, with a variable density map derived from the local feature size of
the domain boundary.

32 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 16. Optimized meshing. Left: Initial Voronoi diagram of a set of points uni-
formly sampled over the domain. Middle: Voronoi diagram after convergence of the
Lloyd iteration, using a variable density function derived from the shape of the do-
main boundary. The distribution of dual triangle angles is shown. Right: Optimized
triangle mesh.

The Lloyd iteration can furthermore be applied to isotropic surface remesh-
ing. One approach is to use a global conformal planar parameterization of the
input surface triangle mesh and to apply Lloyd relaxation in the parameter
space using a density function designed to compensate for the area distortion
due to flattening (see Figure 17).

To alleviate the numerical issues for high isoperimetric distortion, as well
as the artificial cuts required for closed or models with non-trivial topology,
another approach is to apply the Lloyd relaxation procedure over a set of local
overlapping parameterizations [SAG03], see Figure 18.

It has been shown that the energy minimized by the Lloyd iteration corre-
sponds to the volume between a paraboloid and an underlaid piecewise linear
approximant, which is formed by planar patches tangent to the paraboloid
(the lifted Voronoi diagram) [Che05]. In other words, isotropic point sam-
pling can be casted as a function approximation problem in a higher dimen-
sion. In 2D, this approach leads to isotropically sampled meshes since it has
been shown [She02] that any Lp optimal approximation of a smooth func-
tion asymptotically tends to align and shape its elements according to the
eigenvectors and eigenvalues of its Hessian: since the Hessian of the isotropic
paraboloid function is isotropic, the resulting meshes must have nearly hexag-
onal Voronoi cells, i.e., nearly equilateral triangles in the dual Delaunay mesh.
Unfortunately, such a property does not hold in 3D due to the presence of
slivers. We can attribute the slivers to the fact that the energy tends to op-
timize the compactness of the dual Voronoi cells, but not the compactness of
simplexes in the primal Delaunay triangulation: therefore, the presence of a
sliver is not penalized by this energy. In other words, minimizing this energy
ensures that the vertices in the domain are well-spaced (i.e., isotropic point

Delaunay Tessellations and Voronoi Diagrams in Cgal 33

Fig. 17. Isotropic remeshing of the Michelangelo David head using global planar
conformal parameterization (top). An initial set of generators is randomly generated
in parameter space with a variable density so as to compensate for area distortion due
to the parameterization (bottom right). The Lloyd iteration is applied in parameter
space (bottom middle). The output optimized mesh is uniform once lifted back in
3D (bottom left).

sampling), but having well-spaced vertices guarantees nothing in terms of the
quality of the 3D mesh [Epp01].

Chen [Che04] proposed an approach dual to the above in the context of
mesh optimization. The main idea is to minimize a dual energy, the volume
between a paraboloid and an overlaid piecewise linear approximant formed
by a linear interpolation of points on the paraboloid, see Figure 19.

Casting the meshing problem as a function approximation problem in a
higher dimension, we derive from this approach a variational tetrahedral mesh-
ing algorithm [ACSYD05], which alternates between updates of connectivity
and vertex positions (see Figures 20 and 21). Connectivity optimization is eas-
ily achieved: for a given set of vertex positions, its Delaunay triangulation has
the optimal connectivity which minimizes the dual energy. Vertex relocations
are computed so as to satisfy a necessary condition for the local optimal L1

approximation of the paraboloid.

34 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

Fig. 18. Isotropic remeshing of the Michelangelo David using overlapping param-
eterizations. Left: Initial triangle surface mesh (350K vertices). Right: Optimized
surface mesh (250K vertices).

Fig. 19. Piecewise linear approximations: The paraboloid can be approximated by
an underlaid piecewise linear function (left), or by an overlaid one (right).

10 Conclusion

We have presented the current offerings of the Cgal library in terms of
Voronoi diagrams and Delaunay tessellations, as well as the main paradigms
used, and the design choices made to obtain a unique combination of gener-
icity, robustness and efficiency. In the long run, the exact geometric compu-
tation paradigm along with symbolic perturbations for handling degeneracies
turns out to be a valid choice for constructing ever complex tessellations. Al-
though the loss of performance is small when parameterizing the algorithms
with exact predicates, more work remains to be done in order to elaborate

Delaunay Tessellations and Voronoi Diagrams in Cgal 35

Fig. 20. Tetrahedral mesh optimization. The initial mesh is obtained by uniformly
sampling the interior of the torus. The mesh and distribution of radius ratios are
shown at iterations 1, 2 and 50.

Fig. 21. Optimized tetrahedral meshing. Left: Variable sizing function defined inside
the domain. The element size is specified in accordance with the local feature size
of the domain boundary, and increases with the distance to the boundary. Middle:
Cut view of the optimized tetrahedral mesh (80K vertices). All vertices are shown
to highlight the increased density near the ear where the local feature size is small.
Right: Another cut view of the optimized mesh.

upon efficient cascaded constructions for complex, scaffolded geometric data
structures.

The current 3D Delaunay triangulation from Cgal inserts 80K points per
second on a Intel Xeon 2.33GHz, when spatial sorting is activated. It con-
sumes 300 MBytes per million points, which limits us to 10M points on a

36 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

32-bit computer with 3 GBytes of memory. The maximum number of points
increases “only” to 30M points on a 64-bit computer with 16 GBytes, as
all pointers used in the data structure consumes twice as much memory (64
vs. 32 bits). We plan to improve both scalability using size-adapted pointers
and compact data structures, and efficiency by elaborating upon parallel im-
plementations specialized to modern computer architectures with multi-core
CPUs. Furthermore, our preliminary work on spatial sorting can be seen as a
first step toward out-of-core implementation.

Although the variety of possible tessellations and Voronoi diagrams is huge,
some are particularly relevant for applications. After variations in generators,
dimension, metric and space, it is planned to generate ever nicer tessellations
using variational techniques aimed at optimizing not only the connectivity
and vertex locations as already presented here, but also the metric or even
the generators.

Acknowledgments

This work has been partially supported by the IST Programme of the EU
(FET Open) Project under Contract No IST-006413 (ACS - Algorithms for
Complex Shapes with Certified Numerics and Topology).

References

[AB99] Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi
filtering. Discrete Comput. Geom., 22(4):481–504, 1999.

[ACDL00] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for
homeomorphic surface reconstruction. International Journal of Compu-
tational Geometry and Applications, 12(1):125–141, 2000.

[ACR03] N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO.
In Proc. ACM Symposium on Computational Geometry, pages 211–219,
June 2003.

[ACSYD05] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational
tetrahedral meshing. ACM Transactions on Graphics, 24(3):617–625,
July 2005.

[BBK06] Daniel K. Blandford, Guy E. Blelloch, and Clemens Kadow. Engineering
a compact parallel Delaunay algorithm in 3D. In Proceedings of ACM
Symposium on Computational Geometry (SoCG), June 2006.

[BBP01] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields
efficient dynamic filters for computational geometry. Discrete Applied
Mathematics, 109:25–47, 2001.

[BD05] Jean-Daniel Boissonnat and Christophe Delage. Convex hulls and
Voronoi diagrams of additively weighted points. In Proc. 13th Euro-
pean Symposium on Algorithms, volume 3669 of Lecture Notes Comput.
Sci., pages 367–378. Springer-Verlag, 2005.

Delaunay Tessellations and Voronoi Diagrams in Cgal 37

[BFS01] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using
cascading. Internat. J. Comput. Geom. Appl., 11:245–266, 2001.

[BGL] The Boost Graph Library.
http://www.boost.org/libs/graph/.

[BK03] Jean-Daniel Boissonnat and Menelaos I. Karavelas. On the combi-
natorial complexity of Euclidean Voronoi cells and convex hulls of d-
dimensional spheres. In Proc. 14th ACM-SIAM Sympos. Discrete Algo-
rithms (SODA), pages 305–312, 2003.

[BO05] J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing
of surfaces. Graphical Models, 67(5):405–451, 2005.

[BWY06] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec.
Curved Voronoi diagrams. In Jean-Daniel Boissonnat and Monique Teil-
laud, editors, Effective Computational Geometry for Curves and Sur-
faces, pages 67–116. Springer-Verlag, Mathematics and Visualization,
2006.

[CDM06] Luca Castelli Aleardi, Olivier Devillers, and Abdelkrim Mebarki. 2D
triangulation representation using stable catalogs. In Proc. 18th Canad.
Conf. Comput. Geom., pages 71–74, 2006.

[CDRR04] S.W. Cheng, T.K. Dey, E.A. Ramos, and T. Ray. Sampling and meshing
a surface with guaranteed topology and geometry. Proceedings of the
twentieth annual symposium on Computational geometry, pages 280–
289, 2004.

[CGAa] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[CGAb] Cgal Python Bindings.
http://cgal-python.gforge.inria.fr/.

[CGL] cglab Toolbox.
http://cglab.gforge.inria.fr/.

[Che89] P. Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–
108, 1989.

[Che04] Long Chen. Mesh smoothing schemes based on optimal Delaunay tri-
angulations. In Proceedings of 13th International Meshing Roundtable,
pages 109–120, 2004.

[Che05] Long Chen. Robust and accurate algorithms for solving anisotropic sin-
gularities. PhD thesis, The Pennsylvania State University, The Gradu-
ate school., dec. 2005.

[CKK05] Y. Cho, D. Kim, and D.S. Kim. Topology representation for the Voronoi
diagram of 3D spheres. International Journal of CAD/CAM, 5(1):59–
68, 2005.

[CT08] Manuel Caroli and Monique Teillaud. Video: On the computation of
3D periodic triangulations. In Proc. 24th Annual ACM Symposium on
Computational Geometry (SoCG), pages 222–223, 2008. http://www.

computational-geometry.org/.
[CT09] Manuel Caroli and Monique Teillaud. Computing 3D periodic triangula-

tions. In Proceedings 17th European Symposium on Algorithms, volume
5757 of Lecture Notes in Computer Science, pages 37–48, 2009.

[Dev02] Olivier Devillers. The Delaunay hierarchy. Internat. J. Found. Comput.
Sci., 13:163–180, 2002.

[DFG99] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tesselations:
Applications and algorithms. SIAM Review, 41(4):637–676, 1999.

38 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

[DFNP91] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting
triangles in a Delaunay tessellation. Algorithmica, 6:522–532, 1991.

[DMT92] Olivier Devillers, Stefan Meiser, and Monique Teillaud. The space of
spheres, a geometric tool to unify duality results on Voronoi diagrams.
In Proc. 4th Canad. Conf. Comput. Geom., pages 263–268, 1992.

[DP03] Olivier Devillers and Sylvain Pion. Efficient exact geometric predicates
for Delaunay triangulations. In Proc. 5th Workshop Algorithm Eng.
Exper., pages 37–44, 2003.

[DPT02] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a
triangulation. Internat. J. Found. Comput. Sci., 13:181–199, 2002.

[DT03] Olivier Devillers and Monique Teillaud. Perturbations and vertex re-
moval in a 3D Delaunay triangulation. In Proc. 14th ACM-SIAM Sym-
pos. Discrete Algorithms (SODA), pages 313–319, 2003.

[DT06] Olivier Devillers and Monique Teillaud. Perturbations and vertex re-
moval in Delaunay and regular 3D triangulations. Research Report
5968, INRIA, 2006.

[Ede90] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimen-
sions. Combinatorica, 10(3):251–260, 1990.

[EK06] I. Z. Emiris and M. I. Karavelas. The predicates of the Apollonius
diagram: algorithmic analysis and implementation. Computational Ge-
ometry: Theory and Applications, Special Issue on Robust Geometric
Algorithms and their Implementations, 33(1–2):18–57, January 2006.

[EM90] H. Edelsbrunner and E.P. Mücke. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Transac-
tions on Graphics (TOG), 9(1):66–104, 1990.

[EM94] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes.
ACM Trans. Graph., 13(1):43–72, January 1994.

[Epp01] D. Eppstein. Global optimization of mesh quality. Tutorial at the 10th
International Meshing Roundtable, 10, 2001.

[ES86] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements.
Discrete Comput. Geom., 1:25–44, 1986.

[FV96] S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact
integer arithmetic for computational geometry. ACM Trans. Graph.,
15(3):223–248, July 1996.

[GMP] GMP, GNU Multiple Precision Arithmetic Library.
http://www.swox.com/gmp.

[ILSS06] Martin Isenburg, Yuanxin Liu, Jonathan Shewchuk, and Jack Snoeyink.
Streaming computation of Delaunay triangulations. In Proceedings of
SIGGRAPH’06, pages 1049–1056, July 2006.

[IPE] The Ipe extensible drawing editor.
http://tclab.kaist.ac.kr/ipe/.

[Kar04] M. I. Karavelas. A robust and efficient implementation for the segment
Voronoi diagram. International Symposium on Voronoi Diagrams in
Science and Engineering (VD2004), pages 51–62, 2004.

[KCK05a] D.S. Kim, Y. Cho, and D. Kim. Euclidean Voronoi diagram of 3D
balls and its computation via tracing edges. Computer-Aided Design,
37(13):1412–1424, 2005.

[KCK+05b] D.S. Kim, Y. Cho, D. Kim, S. Kim, J. Bhak, and S.H. Lee. Eu-
clidean Voronoi diagrams of 3D spheres and applications to protein

Delaunay Tessellations and Voronoi Diagrams in Cgal 39

structure analysis. Japan Journal of Industrial and Applied Mathemat-
ics, 22(2):251–265, 2005.

[KE03] Menelaos I. Karavelas and Ioannis Z. Emiris. Root comparison tech-
niques applied to computing the additively weighted Voronoi diagram.
In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
320–329, 2003.

[Kle89] R. Klein. Concrete and Abstract Voronoi Diagrams. Springer, 1989.
[KMM93] R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental con-

struction of abstract Voronoi diagrams. Computational Geometry: The-
ory and Applications, 3(3):157–184, 1993.

[KMP+04] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee
Yap. Classroom examples of robustness problems in geometric compu-
tations. In Proc. 12th European Symposium on Algorithms, volume 3221
of Lecture Notes Comput. Sci., pages 702–713. Springer-Verlag, 2004.

[KSK+06] D.S. Kim, J. Seo, D. Kim, J. Ryu, and C.H. Cho. Three-dimensional
beta shapes. Computer-Aided Design, 38(11):1179–1191, 2006.

[KY03] Menelaos I. Karavelas and Mariette Yvinec. The Voronoi diagram of
planar convex objects. In Proc. 11th European Symposium on Algo-
rithms, volume 2832 of Lecture Notes in Computer Science, pages 337–
348. Springer-Verlag, 2003.

[LED] Leda, Library for Efficient Data Types and Algorithms.
http://www.algorithmic-solutions.com/enleda.htm.

[Lin89] A. Lingas. Voronoi diagrams with barriers and their applications. In-
form. Process. Lett., 32:191–198, 1989.

[Llo82] S. Lloyd. Least square quantization in PCM. IEEE Trans. Inform.
Theory, 28:129–137, 1982.

[LS03] François Labelle and Jonathan Richard Shewchuk. Anisotropic Voronoi
diagrams and guaranteed-quality anisotropic mesh generation. In SCG
’03: Proceedings of the nineteenth annual symposium on Computational
geometry, pages 191–200, New York, NY, USA, 2003. ACM Press.

[MP05] Guillaume Melquiond and Sylvain Pion. Formal certification of arith-
metic filters for geometric predicates. In Proc. 17th IMACS World
Congress on Scientific Computation, Applied Mathematics and Simu-
lation, 2005.

[MPF] MPFR, Multiple-Precision Floating-Point Computations.
http://www.mpfr.org.

[QT] Qt, Cross-Platform Rich Client Development Framework.
http://www.trolltech.com/products/qt.

[Rup95] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional
mesh generation. Journal of Algorithms, 18(3):548–585, 1995.

[SAG03] Vitaly Surazhsky, Pierre Alliez, and Craig Gotsman. Isotropic Remesh-
ing of Surfaces: a Local Parameterization Approach. In Proceedings of
12th International Meshing Roundtable, pages 215–224, 2003.

[SCI] Scilab, the open source platform for numerical computation.
http://www.scilab.org/.

[Sei98a] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams
with obstacles. In H. S. Poingratz and W. Schinnerl, editors, 1978–1988
Ten Years IIG, pages 178–191. IIG-TU Graz, Austria, Report 260, 1998.

[Sei98b] R. Seidel. The nature and meaning of perturbations in geometric com-
puting. Discrete Comput. Geom., 19:1–17, 1998.

40 P. Alliez, C. Delage, M. I. Karavelas, S. Pion, M. Teillaud, M. Yvinec

[She97] Jonathan Richard Shewchuk. Adaptive precision floating-point arith-
metic and fast robust geometric predicates. Discrete Comput. Geom.,
18(3):305–363, 1997.

[She02] J. R. Shewchuk. What is a good linear element? interpolation, condi-
tioning, and quality measure. In Proc. of 11th Int. Meshing Roundtable,
pages 115–126, 2002.

[YD94] C. Yap and T. Dubé. The exact computation paradigm. Computing in
Euclidean Geometry, 1994.

