
A Kinetic Data Structures Framework for CGAL

Leonidas J. Guibas∗ Menelaos I. Karavelas† Daniel Russel‡

1 Introduction

We have developed a CGAL-based framework for imple-
menting kinetic data structure based algorithms along with
a package for performing exact operations on the roots of
polynomials. A discussion of the kinetic data structures
framework was presented at ALENEX 2004 [5]. The kinetic
data structures framework provides

• A kinetic kernel which provides moving primitives and
predicates acting on them

• A static kernel which allows existing CGAL-based algo-
rithms to be used on snapshots of kinetic data structures

• Support for run time notification of motion changes
• Helper classes to eliminate most broiler-plate code
• Support for exact processing of kinetic data structures
• Implementations of Delaunay and regular triangulations

in 2 and 3 dimensions
• GUIs for visualizing and manipulating kinetic data struc-

tures

The support for exact kinetic data structures is provided
by our polynomial package. This package provides

• Fast comparison of roots of polynomials
• Transparent filtered operations
• Support for many common operations on polynomials
• Support for non-square-free polynomials

Together these packages extend CGAL to provide support
for geometric data structures built on top of moving primi-
tives, specifically, data structures which fit in the kinetic data
structures paradigm. Kinetic data structures were introduce
by Basch et. al. in ’97 [1, 4]. They exploit the combinatorial
nature of most geometric data structures—the combinatorial
structure remains invariant under some motions of the un-
derlying geometric primitives and, when the structure does
need to change, it does so at discrete times and in a limited
manner.

In the framework, primitives move along smooth trajec-
tories (we provide support for motion along polynomial
parametric curves, although other motions can be added if
needed). The combinatorial validity of a structure is proved
by some set of predicates having the correct values. These
predicates are called certificates. For many predicates of in-
terest, such as orientation tests, the value of the predicate is

∗Stanford University, guibas@graphics.stanford.edu
†University of Notre Dame, mkaravel@cse.nd.edu
‡Stanford University, drussel@graphics.stanford.edu

a polynomial in the trajectories of the primitives, so it is a
polynomial itself, called the certificate polynomial. The cer-
tificate changes value at the roots of its polynomial, at which
point the combinatorial structure must be updated. This is
called an event. The polynomial package provides support
for the necessary operations on polynomials and their roots.

2 The framework design

The framework is divided into five main concepts as shown
in Figure 1. They are:

• K INETICKERNEL: a class which defines kinetic geometric
primitives and predicates acting on them. This kernel is
analogous to the CGAL kernel and will not be discussed.

• MOVINGOBJECTTABLE: a container which stores kinetic
geometric primitives and provides notifications when
their trajectories change. In the kinetic data structures
paradigm each primitive must move along a piecewise al-
gebraic curve, each algebraic piece of which is known as
a trajectory. A primitive’s trajectory can change at any
time as long as the motion isC0 continuous. When a tra-
jectory changes, the time of any event whose certificate
involves the primitive must be updated, since the certifi-
cate polynomial will have changed.

• INSTANTANEOUSKERNEL: a model of the CGAL kernel
concept which allows static algorithms to act on a snap-
shot of the kinetic data structure. This means that any
existing CGAL data structure can be used without modifi-
cations to initialize or verify a corresponding kinetic data
structure. We further discuss theINSTANTANEOUSKERNEL

in Section 3.
• SIMULATOR : a class that ensures that events get handled

at the correct times. It also helps audit kinetic data struc-
tures to make sure that they are valid.

• POLYNOMIAL KERNEL: a computational kernel for repre-
senting and manipulating polynomials and their roots.
This kernel will be discussed in more detail in Section 4.

In addition we provide numerous helper classes and
graphical user interfaces to aid in development and debug-
ging.

In a typical scenario using the framework, aSIMULATOR

andMOVINGOBJECTTABLE are created and a number of geo-
metric primitives (e.g. points) are added to theMOVINGOB-
JECTTABLE. Then a kinetic data structure, for example a
two dimensional kinetic Delaunay triangulation, is initial-

1



ized and passed pointers to theSIMULATOR andMOVINGOB-
JECTTABLE. The kinetic Delaunay triangulation extracts the
trajectories of the points from theMOVINGOBJECTTABLE and
the current time from theSIMULATOR . It then uses an in-
stance of anINSTANTANEOUSKERNEL and CGAL’s Delau-
nay triangulation 2 component to initialize the kinetic data
structure with the Delaunay triangulation of the points at
the current time. An instance of aK INETICKERNEL is used
to compute thein circle certificate function for each edge of
the initial Delaunay triangulation. The kinetic data structure
requests that theSIMULATOR solve each certificate function
and schedule an appropriate event. TheSIMULATOR uses the
POLYNOMIAL KERNEL to compute and compare the roots of
the certificate functions.

Initialization is now complete and the kinetic data struc-
ture can be run. Running consists of theSIMULATOR repeat-
edly finding the next event and processing it. Here, process-
ing an event involves flipping an edge of the Delaunay tri-
angulation and computing five new event times. The pro-
cessing occurs via a callback from an object representing the
event to the kinetic Delaunay data structure.

If the trajectory of a moving point changes, for example
it bounces off a wall, then theMOVINGOBJECTTABLE notifies
the kinetic Delaunay data structure. The kinetic Delaunay
data structure then updates all the certificates of edges adja-
cent to faces containing the updated point and reschedules
those events with theSIMULATOR .

3 Use of the CGAL kernel

CGAL’s kernel and traits based design to allows us to apply
existing implementations of static data structures and algo-
rithms to snapshots of kinetic data. To do this, we provide an
model of the CGAL kernel, called theINSTANTANEOUSKER-
NEL in which the primitives (points, spheres, etc.) are re-
placed by kinetic primitives. This kernel stores the time of
the snapshot it is acting on. When a predicate functor is eval-
uated, it requests that the kernel compute the static represen-
tation of the arguments as they would appear at the time of
the snapshot and then evaluates the appropriate static predi-
cate. This architecture allows all the CGAL predicates, and
thus all CGAL algorithms, to be used without changes.

Although the CGALFILTERED KERNEL can be used, fil-
tering support is currently not optimal as an exact represen-
tation of the static snapshot of the kinetic primitive will be
computed and then passed to the filtered predicate. We can
remove this overhead by handling the filtering ourselves, i.e.
use our own implementation ofFILTERED PREDICATE which
first creates the snapshot using an interval number type and
only creates the exact snapshot when needed.

The SIMULATOR can ask the kinetic data structure to au-
dit itself when there is a gap between events, greatly eas-
ing debugging of kinetic data structures. For example the

2-dimensional kinetic Delaunay triangulation can do this by
using the CGALDelaunay triangulation 2 class data struc-
ture to compute the current Delaunay triangulation (using
the INSTANTANEOUSKERNEL, and then compare the resulting
triangulation to the current kinetic triangulation.

4 Polynomial Kernel

A key operation is exact kinetic data structures is compari-
son of two roots of polynomials to determine which occurs
first. This cannot be done directly using existing exact com-
putation techniques, although the CORE [7] library has re-
cently added the necessary support. Our polynomial kernels
provide this functionality. The package is structured around
several main concepts. They are

• FUNCTION: a univariate polynomial
• ROOTENUMERATOR: an object which can enumerate the

roots of a polynomial between lower and upper bounds
(possibly both infinite). We provide a number of mod-
els based on Descartes’ rule of sign, Bézier curves and
Sturm sequences, all of which support exact operations.
In addition we provide a couple of numeric models and a
wrapper for the COREEXPR type.

• POLYNOMIAL KERNEL: a kernel which ties together the
ROOTENUMERATOR and useful predicates acting on poly-
nomials and their roots. We provide filtered and unfiltered
models.

Our basic representation of roots of polynomials for ex-
act computation is a polynomial coupled with a an interval
which isolates a unique root of the polynomial. This allows
for fast comparisons since

• most comparisons simply require comparing the isolating
intervals

• when difficult comparisons are performed (nearby roots),
the size of the isolating intervals are reduced, making fu-
ture comparisons easier

• root isolation is dealt with in a lazy manner. The focus
is on roots nearer to the current time. Roots far ahead in
the future are not isolated, which could save computation
time if the corresponding events are not within our simu-
lation time window or if the events get descheduled by the
simulator before they reach the head of the event queue.

In addition to the above, we have implemented a technique
based on Sturm sequences which allows us to test two iso-
lated roots for equality.

We are currently extending our root representation to sup-
port field operations on algebraic numbers. Our technique
uses resultants to generate a new polynomial having as a root
the outcome of the field operation on the original algebraic
numbers. To complete our representation, we also generate
an appropriate isolating interval for this root. Finally, we
plan to incorporate existing specialized techniques for han-

2



KDS 0

Event

SIMULATOR

Time

Solver

MOVINGOBJECTTABLE

Object

KINETICKERNEL

Motion_function

Point_3

INSTANTANEOUSKERNEL

Point_3

Orientation_3

Orientation_3

static_object
set_time
...

CGAL Kernel

Point_3

Orientation_3

...

Key

Static_orientation_3

Point_2

KDS n

Event0 Event1...

Uses
Provides model of

Notifies

FRAMEWORKTYPE

USERTYPE

FUNCTIONKERNEL

Root_enumerator

Root

Function

NT

current_time
current_time_nt
new_event
delete_event
...

CGALTYPE

object
...

method

Certificate_function

Constructed_function

Less_x_3

...

Event_key

...

...

Figure 1: Framework architecture:Each large white box represents a main concept, the sub boxes their contained concepts, and regular
text their methods. A “Uses” arrow means that a model of concept will generally use methods from (and therefore should take as a
template parameter) the target of the arrow. A “Provides model of” arrow means that the source model provides an implementation of
the destination concept through atypedef. Finally, a “Notifies” arrow means that the class notifies the other class of events using a
standardized notification interface.

dling low degree polynomials [2, 3, 6].

References

[1] J. Basch, L. Guibas, and J. Hershberger. Data structures
for mobile data. InProc. 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 747–756, 1997.

[2] I.Z. Emiris and E.P. Tsigaridas. Comparison of fourth-
degree algebraic numbers and applications to geometric
predicates. Technical Report ECG-TR-302206-03, IN-
RIA Sophia-Antipolis, 2003.

[3] I.Z. Emiris and E.P. Tsigaridas. Methods to compare real
roots of polynomials of small degree. Technical Report
ECG-TR-242200-01, INRIA Sophia-Antipolis, 2003.

[4] L. Guibas. Kinetic data structures: A state of the art re-
port. InProc. 3rd Workshop on Algorithmic Foundations
of Robotics, 1998.

[5] L. Guibas, M. Karaveles, and D. Russel. A compu-
tational framework for handling motion. InALENEX,
2004.

[6] M.I. Karavelas and I.Z. Emiris. Root comparison tech-
niques applied to the planar additively weighted Voronoi
diagram. InProc. 14th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 320–329, January 2003.

[7] C. Yap. A new number core for robust numerical and
geometric libraries. InProc. 3rd CGC Workshop on Ge-
ometric Computing, 1998. URLhttp://www.cs.
nyu.edu/exact/core/ .

3

http://www.cs.nyu.edu/exact/core/
http://www.cs.nyu.edu/exact/core/

	Introduction
	The framework design
	Use of the CGAL kernel
	Polynomial Kernel

