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Abstract

We present a framework for implementing geometric algo-

rithms involving motion. It is written in C++ and mod-

eled after and makes extensive use of CGAL (Computational

Geometry Algorithms Library) [4]. The framework allows

easy implementation of kinetic data structure style geomet-

ric algorithms—ones in which the combinatorial structure

changes only at discrete times corresponding to roots of func-

tions of the motions of the primitives. This paper discusses

the architecture of the framework and how to use it. We also

briefly present a polynomial package we wrote, that supports

exact and filtered comparisons of real roots of polynomials

and is extensively used in the framework. We plan to include

our framework in the next release of CGAL.

1 Introduction

Motion is ubiquitous in the world around us and is a
feature of many problems of interest to computational
geometers. While projects such as CGAL [15] have pro-
vided an excellent software foundation for implement-
ing static geometric algorithms (where nothing moves),
there is no similar foundation for algorithms involving
motion. In this paper we present such a framework for
algorithms that fit the constraints of kinetic data struc-
tures. Kinetic data structures were introduced by Basch
et. al. in ’97 [1, 12]. They exploit the combinatorial
nature of most geometric data structures—the combina-
torial structure remains invariant under some motions
of the underlying geometric primitives and, when the
structure does need to change, it does so at discrete
times and in a limited manner. Algorithms that fit
within the kinetic data structures framework have been
found for a number of geometric constructs of interest,
including Delaunay and regular triangulations in two
and three dimensions and various types of clustering.

Computational geometry is built on the idea of
predicates—functions of the description of geometric
primitives which return a discrete set of values. Many of
the predicates reduce to determining the sign of an alge-
braic expression of the representation (i.e. coordinates
of points) of the geometric primitives. For example, to
test whether a point lies above or below a plane, we
compute the dot product of the point with the normal
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of the plane and subtract the plane’s offset along the
normal. If the result is positive, the point is above the
plane, zero on the plane, negative below.

The validity of many combinatorial structures built
on top of geometric primitives can be proved by checking
a finite number of predicates of the primitives. These
predicates are called certificates. For example, a three-
dimensional convex hull is proved to be correct by
checking, for each face, that all points are below the
outward facing plane supporting it.

The kinetic data structures framework is built on
top of this view of computational geometry. Let the
geometric primitives move by replacing each of their
coordinates with a function of time. As time advances,
the primitives now trace paths in space called trajec-
tories. The values of the certificates which proved the
correctness of the static structure now become functions
of time, called the certificate functions. As long as these
functions have the correct value, the original structure is
still correct. However, if one of the certificate functions
changes value, the original structure must be updated
and some new set of certificate functions computed. We
call such occurrences events.

Maintaining a kinetic data structure is then a
matter of determining which certificate function changes
value next (typically this amounts to determining which
certificate function has the first root after the current
time) and then updating the structure and certificate
functions.

The CGAL project [9, 4] provides a solid basis for
performing exact and efficient geometric computations
as well as a large library of algorithms and data struc-
tures. A key idea they use is that of a computational
kernel, an object which defines primitives, methods to
create instances of primitives, and functors1 which act
on the primitives. CGAL defines a geometric kernel [15],
which provides constant complexity geometric objects
and predicates and constructions acting on them. The
algorithms use methods provided by the kernel to ac-
cess and modify the geometric primitives, so the actual
representation need never be revealed. As a result, the
implementation of the kernel primitives and predicates
can be replaced, allowing different types of computation
(such as fixed precision or exact) and different types of
primitive representation (such as Cartesian or homoge-

1Functors are C++ classes that provide one or more operator()
methods.



neous coordinates) to be used. The library uses C++
templates to implement the generic algorithms which
results in little or no run time inefficiency.

CGAL provides support for exact computation (as
opposed to fixed precision computation with double-type
numbers which can result in numerical errors), as do
some other libraries, such as CORE [24] and LEDA [3].
Exact computation can greatly simplify algorithms as
they no longer need to worry about numerical errors
and can properly handle degeneracy. However, it can be
painfully slow at run time. Floating point filters [10, 21]
were developed to address this slowness when comput-
ing predicates. The key observation is that fixed pre-
cision computation often produces the correct answer.
For example, in our point-plane orientation test from
above, if the dot product of the point coordinates and
the plane normal is very much larger than the plane
offset, then the point is above the plane, even if the
exact value of the dot product is in some doubt. Float-
ing point filters formalize this observation by computing
some additive upper bound on the error. Then, if the
magnitude of value computed for the predicate is larger
than that upper bound, the sign of the computed value
is guaranteed to be correct, and the predicate value is
known. However, if the computed value is not large
enough, the calculation must be repeated using an ex-
act number type. A variety of techniques have been
developed to compute the error bounds. One of the
easiest to use and tightest general purpose techniques is
interval arithmetic [18, 2].

In this paper we present a framework for imple-
menting kinetic data structures. We also provide a
standalone library for manipulating and comparing real
roots of polynomials using fixed precision and exact
arithmetic and which can use floating point filters to ac-
celerate the computations. We have used the framework
for investigating kinetic data structure based techniques
for updating Delaunay triangulations [14].

The framework depends on CGAL for a small num-
ber of low level classes and functions, mostly concern-
ing evaluating and manipulating number types and per-
forming filtered computations. In addition, it provides
models of the CGAL geometric kernel to enable usage
of static geometric data structures and algorithms on
moving primitives.

Note on terminology: We adopt the terminology
used by the C++ Standard Template Library and talk
about concepts and models. A concept is a set of
functionalities that any class which conforms to that
concept is expected to implement. A class is a model of
a concept if it implements that functionality. Concepts
will be denoted using ThisStyle.

2 Design Considerations

There were a number of important considerations which
guided our design. They are

• Runtime efficiency: There should be little or no
penalty for using our framework compared to im-
plementing your own more specialized and tightly
integrated components. We use templates to make
our code generic and modular. This allows most
of the cost of the flexibility of the framework to
be handled at compile time by the compiler rather
than at runtime, and allows components to be eas-
ily replaced if further optimization is needed.

• Support for multiple kinetic data structures: Mul-
tiple kinetic data structures operating on the same
set of geometric primitives must be supported. Un-
like their static counterparts, the description of the
trajectory of a kinetic primitive can change at any
time, for example when a collision occurs. While
such trajectory changes can not change the current
state of a kinetic data structure since the trajecto-
ries are required to be C0-continuous, they do affect
the time when certificates fail. As a result there
must be a central repository for the kinetic prim-
itives which provides signals to the kinetic data
structures when trajectories change. This reposi-
tory, which is discussed in Section 3.6 can be easily
omitted if there is no need for its extra functional-
ity. A less obvious issue raised by having multiple
kinetic data structures is that events from different
kinetic data structures must be able to be stored
together and have their times compared. The rami-
fications of this concern are discussed in Section 3.5.

• Support for existing static data structures: We
provide functionality to aid in the use of existing
static data structures, especially ones implemented
using CGAL, by allowing static algorithms to act
on snapshots of the running kinetic data structure.
Our method of supporting this is discussed in
Section 3.4.

• Support exact and filtered computation: Our poly-
nomial solvers support exact root comparison and
other operations necessary for exact kinetic data
structures. In addition we support filtered com-
putation throughout the framework. The effects
of these requirements are discussed in Sections 3.2
and 3.3.

• Thoroughness: The common functionality shared
by different kinetic data structures should as much
as possible be handled by the framework. Different
kinetic data structures we have implemented using
the framework only share around 10 lines of code.
An example of such a kinetic data structure is
included in the appendix in Figure 2.



• Extensibility and modularity: The framework
should be made of many lightweight components
which the user can easily replace or extend. All
components are tied together using templates so
replacing any one model with another model of the
same concept will not require any changes to the
framework.

• Ease of optimization: We explicitly supported
many common optimizations. The easy extensi-
bility of the framework makes it easy to modify
components if the existing structure is not flexible
enough.

• Ease of debugging of kinetic data structures: We
provide hooks to aid checking the validity of ki-
netic data structures as well as checking that the
framework is used properly. These checks are dis-
cussed in Section 3.5. We also provide a graphical
user interface which allows the user to step through
the events being processed and to reverse time and
to look at the history.

3 Architecture

3.1 Overview The framework is divided in to five
main concepts as shown in Figure 1. They are:

• FunctionKernel: a computational kernel for rep-
resenting and manipulating functions and their
roots.

• KineticKernel: a class which defines kinetic geo-
metric primitives and predicates acting on them.

• MovingObjectTable: a container which stores ki-
netic geometric primitives and provides notifica-
tions when their trajectories change.

• InstantaneousKernel: a model of the CGAL
kernel concept which allows static algorithms to act
on a snapshot of the kinetic data structure.

• Simulator: a class that maintains the concept of
time and a priority queue of the events.

In a typical scenario using the framework, a Simula-

tor and MovingObjectTable are created and a number
of geometric primitives (e.g. points) are added to the
MovingObjectTable. Then a kinetic data structure,
for example a two dimensional kinetic Delaunay trian-
gulation, is initialized and passed pointers to the Sim-

ulator and MovingObjectTable. The kinetic Delau-
nay triangulation extracts the trajectories of the points
from the MovingObjectTable and the current time
from the Simulator. It then uses an instance of an
InstantaneousKernel to enable a static algorithm to
compute the Delaunay triangulation of the points at the
current time. An instance of a KineticKernel is used
to compute the in circle certificate function for each edge
of the initial Delaunay triangulation. The kinetic data

structure requests that the Simulator solve each certifi-
cate function and schedule an appropriate event. The
Simulator uses the FunctionKernel to compute and
compare the roots of the certificate functions.

Initialization is now complete and the kinetic data
structure can be run. Running consists of the Simula-

tor finding the next event and processing it until there
are no more events. Here, processing an event involves
flipping an edge of the Delaunay triangulation and com-
puting five new event times. The processing occurs via
a callback from an object representing an event to the
kinetic Delaunay data structure.

If the trajectory of a moving point changes, for
example it bounces off a wall, then the MovingObject-

Table notifies the kinetic Delaunay data structure. The
kinetic Delaunay data structure then updates all the
certificates of edges adjacent to faces containing the
updated point and reschedules those events with the
Simulator.

A more detailed example will be discussed in Sec-
tion 4. We will next discuss the principle concepts.

3.2 The polynomial package: The Function-

Kernel, solvers and roots. The FunctionKernel is
a computational kernel for manipulating and solving
univariate equations. The polynomial package provides
several models of the FunctionKernel all of which
act on polynomials. The FunctionKernel defines
three primitives: the Function, the Solver and the
ConstructedFunction. The two nested primitives
shown in Figure 1 are NT the number type used for
storage and Root the representation type for roots.
The kernel defines a number of operations acting on the
primitives such as translating zero, counting the number
of roots in an interval, evaluating the sign of a function
at a root of another, finding a rational number between
two roots, and enumerating the roots of a function in an
interval. Our models additionally provide a number of
polynomial specific operations such as computing Sturm
sequences and Bézier representations of polynomials.

The Function concept (a polynomial in our models)
supports all the expected ring operations, i.e., Func-

tions can be added, subtracted and multiplied. The
ConstructedFunction wraps the information neces-
sary to construct a polynomial from other polynomials.
The distinction between Functions and Constructed-

Functions is necessary in order to support filtering, dis-
cussed below. If no filtering is used, a Constructed-

Function is an opaque wrapper around a Function.
The Root type supports comparisons with other

Roots and with constants and a few other basic opera-
tions such as generation of an isolating interval for the
root, negation, and computation of its multiplicity. We
plan to extend the Root to support full field operations,
but have not done so yet.
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Figure 1: Framework architecture: Each large white box represents a main concept, the sub boxes their contained
concepts, and regular text their methods. A “Uses” arrow means that a model of concept will generally use methods from
(and therefore should take as a template parameter) the target of the arrow. A “Provides model of” arrow means that the
source model provides an implementation of the destination concept through a typedef. Finally, a “Notifies” arrow means
that the class notifies the other class of events using a standardized notification interface. See Section 3 for a description
of each of the main concepts.

The most important attributes differentiating our
various models of the FunctionKernel are the type
of solver used and the how the resulting root is repre-
sented. We currently provide five different solver types

• Eigenvalue: a solver which computes roots using
fixed precision computation of the eigenvalues of a
matrix.

• Descartes: a set of solvers which use Descartes
rule [20] of signs to isolate roots in intervals.

• Sturm: a set of solvers which use Sturm se-
quences [25] to isolate roots. An earlier use of
Sturm sequences in the context of kinetic data
structures was published in [13].

• Bézier : a solver which used a Bézier curve based
representation of the polynomial to perform root
isolation [17].

• CORE : a solver which wraps the CORE Expr

type [24].

We also provide a FunctionKernel specialized to han-
dle linear functions, which can avoid much of the over-
head associated with manipulating polynomials. We
also plan to provide specialized function kernels for
small degree polynomials using the techniques presented
in [7, 8, 16]. All of the solvers except for the Eigenvalue
solver can perform exact computations when using an
exact number type and produce roots which support
exact operations.



The simplest way to try to represent a root of a
polynomial is explicitly, using some provided number
type. This is used by numerical solvers (such as the
our Eigenvalue solver), which represent roots using a
double, and the CORE-based solver which represents the
root using CORE’s Expr type. However, since roots are
not always rational numbers, this technique is limited
to either approximating the root (the former case) or
depending on an expensive real number type (the latter
case).

An alternative is to represent roots using an iso-
lating interval along with the polynomial being solved.
Such intervals can be computed using Sturm sequences,
Descartes rule of signs or the theory of Bézier curves.
When two isolating intervals are compared, we subdi-
vide the intervals if they overlap in order to attempt to
separate the two roots. This subdivision can be per-
formed (for simple polynomials) by checking the sign of
the original polynomial at the midpoint of the interval.
However, subdivision will continue infinitely if two equal
roots are compared. To avoid an infinite loop, when the
intervals get too small, we fall back on a Sturm sequence
based technique, which allows us to exactly compute the
sign of one polynomial at the root of another. This al-
lows us to handle all root comparisons exactly.

We have variants of the Sturm sequence based
solver and the Descartes rule of sign based solver, that
perform filtered computations. Unfortunately, in a ki-
netic data structure, the functions being solved are cer-
tificate functions which are generated from the coordi-
nate functions of the geometric primitives. If the coor-
dinate functions are stored using a fixed precision type,
then computing the certificate function naively will re-
sult in the solver being passed an inexact function, end-
ing all hopes of exact comparisons. Alternatively, the
certificate function generation could be done using an
exact type, but this technique would be excessively ex-
pensive as fixed precision calculations are often suffi-
cient. This means that in the kinetic data structures
setting, the filtered root computation must have access
to a way of generating the certificate function.

To solve this problem we introduce the concept of
a FunctionGenerator. This is a functor which takes
a desired number type as a parameter and generates
a function. The computations necessary to generate
the function are performed using the number type
passed. The FunctionGenerator gets wrapped by a
ConstructedFunction and passed to the solver. The
filtered solvers can first request that the certificate
function generation be performed using an interval
arithmetic type, so the error bounds are computed for
each coefficient of the certificate polynomial. The solver
then attempts to isolate a root. In general, the root
isolation computation involves determining the signs
of modified versions of the generated polynomial. If

some of the sign values cannot be determined (because
the resulting interval includes zero), the solver requests
generation of the certificate polynomial using an exact
number type and repeats the calculations using the
exact representation.

In a kinetic data structures situation, we are only
interested in roots which occur after the last event
processed. In addition, there is often an end time
beyond which the trajectories are known not to be valid,
or of no interest for the simulation. These two times
define an interval containing all the roots of interest.
The Bézier, Descartes and Sturm based solvers all act on
intervals and so can capitalize on this extra information.
The Simulator, described in Section 3.5, keeps track of
these two time bounds and makes sure the correct values
are passed to all instances of the solvers.

All of the solvers except for the CORE-based solver
correctly handle non-square free polynomials. All exact
solvers handle roots which are arbitrarily close together
and roots which are too large to be represented by
doubles, although the presence of any of these issues
slows down computations, since filtering is no longer
effective and we have to resort to exact computation. A
qualitative comparison of the performance of our solvers
can be found in Table 1. We plan to describe the
polynomial package in more detail in a later paper.

3.3 Kinetic primitives and predicates: the
KineticKernel. The KineticKernel is the kinetic ana-
log of the CGAL Kernel. It defines constant complex-
ity kinetic geometric primitives, kinetic predicates act-
ing on them and constructions from them. The short
example in Section 3.1 uses the KineticKernel to com-
pute the in circle certificate functions. We currently pro-
vide two models which define two and three dimensional
moving weighted and unweighted points and the pred-
icates necessary for Delaunay triangulations and regu-
lar triangulations. The Function concept discussed in
Section 3.2 takes the place of the ring concept of the
CGAL Kernel and is the storage type for coordinates
of kinetic primitives. As in CGAL, algorithms request
predicate functors from the kernel and then apply these
functors to kinetic primitives. There is no imperative
programming interface provided at the moment.

In principle, kinetic predicates return univariate
functions, so they should return a Function. However,
as was discussed in Section 3.2, in order to support
floating point filters, the input to a solver is a model of
ConstructedFunction. As a result, when a predicate
functor is applied no predicate calculations are done.
Instead, a model of FunctionGenerator is created that
stores the arguments of the predicate and can perform
the necessary predicate calculations when requested.
We provide helper classes to aid users in adding their
own predicates to a KineticKernel.



Solver: Low degree Wilkinson Mignotte Small Intervals Non-simple
Eigenvalue 0.5 12 400 15 8

Filtered Descartes 18 230 9k 30 160
Descartes (double) 5 90 – 7 44

Descartes 32 2k 240k 150 750
Sturm 81 2.5k 12k 2.9k 780

Filtered Sturm 28 99 9k 55 130
CORE 291 126k 114k 2.5k –
Bézier 143 19k 2M 29 180

Table 1: The time taken to isolate a root of various classes of polynomials is shown for each of the solvers. “Low degree”
are several degree six or lower polynomials with various bounding intervals and numbers of roots. “Wilkinson” is a degree
15 Wilkinson polynomial which has 15 evenly spaced roots. “Mignotte” is a polynomial of degree 50 with two roots that
are very close together. “Small Intervals” is a degree nine polynomial solved over several comparatively small parts of the
real number line. “Non-simple” are non-square free polynomials. All of the solvers except the Eigenvalue and the Descartes
(double) produce exact results. When roots are only needed from a small fraction of the real line, (the “High degree”
test case), interval-based solvers are actually quite competitive with the numeric solvers, although the comparison of the
resulting roots will be more expensive. Note the large running time on the Mignotte polynomials since the solvers have to
fall back on a slower computation technique to separate the close roots. We believe the comparatively large running times
of the Bézier based solver reflect the relative immaturity of our implementation, rather than a fundamental slowness of the
method. The Eigenvalue solver is based on the GNU Scientific Library [11] and the ATLAS linear algebra package [23].
Times are in µs in a Pentium 4 running at 2.8GHz. “k” stands for thousands and “M” for millions of µs.

It is important to note that the KineticKernel does
not have any notion of finding roots of polynomials, of
performing operations at the roots of polynomials, or
of static geometric concepts. The first and second are
restricted to the FunctionKernel (Section 3.2) and the
Simulator (Section 3.5). The third is handled by the
InstantaneousKernel which is discussed in the next
section.

3.4 Connecting the kinetic and the static
worlds: the InstantaneousKernel. There are many
well implemented static geometric algorithms and pred-
icates in CGAL. These can be used to initialize, test
and modify kinetic data structures by acting on “snap-
shots” of the changing data structure. A model of the
InstantaneousKernel concept is a model of the CGAL
Kernel which allows existing CGAL algorithms to be
used on such snapshots. For example, as mentioned in
Section 3.1, with the InstantaneousKernel we can use
the CGAL Delaunay triangulation package to initialize
a kinetic Delaunay data structure. We can also use the
InstantaneousKernel and static Delaunay triangula-
tion data structure to manage insertion of new points
into and deletion of points from a kinetic Delaunay
triangulation. The InstantaneousKernel model rede-
fines the geometric primitives expected by the CGAL
algorithm to be their kinetic counterparts (or, in prac-
tice, handles to them). When the algorithm wants to
compute a predicate on some geometric primitives, the
InstantaneousKernel first computes the static repre-
sentation of the kinetic primitives, and then uses these
to compute the static predicate.

We are able to use this technique due to a couple
of important features of the CGAL architecture. First
of all, the kernel is stored as an object in CGAL data
structures, so it can have state (for the Instantaneous-

Kernel the important state is the current time). Sec-
ondly, predicates are not global functions, instead they
are functors that the algorithm requests from the ker-
nel. This means that they too, can have internal state,
namely a pointer to the InstantaneousKernel and this
state can be set correctly when they are created. Then,
when an algorithm tries to compute a predicate, the
predicate functor asks the InstantaneousKernel to
convert its input (handles to kinetic geometric primi-
tives) into static primitives and can then use a pred-
icate from a static CGAL kernel to properly compute
the predicate value.

The pointer from the InstantaneousKernel predi-
cate to the InstantaneousKernel object is unfortunate,
but necessary. Some CGAL algorithms request all the
predicate functors they need from the kernel at initial-
ization and store those functors internally. Since a given
CGAL object (i.e. a Delaunay triangulation) must be
able to be used at several snapshots of time, there must
be a way to easily update time for all the predicates,
necessitating shared data. Fortunately, predicates are
not copied around too much, so reference counting the
shared data is not expensive.

Note that the time value used by our
InstantaneousKernel model must be represented
by a number type, meaning that it cannot currently
be a model of Root. This somewhat limits the use
of the InstantaneousKernel. We use it primarily for



initialization and verification, neither of which need
to occur at roots of functions. Some techniques for
addressing verification will be discussed in the next
section.

Let us conclude the discussion of the
InstantaneousKernel concept by noting that we
do not require that models of the static kernels used
by the InstantaneousKernel be CGAL Kernels, but
rather that they conform with the CGAL Kernel

concept. The user has the ability to provide his/her
own kernel models and may or may not use CGAL.

3.5 Tracking time: the Simulator. Running a
kinetic data structure consists of repeatedly figuring out
when the next event occurs and processing it. This
is the job of the Simulator. It handles all event
scheduling, descheduling and processing and provides
objects which can be used to determine when certificate
functions become invalid. Since events occur at the
roots of certificate functions, the Root type defined
by a FunctionKernel is used to represent time by the
Simulator. In the example in Section 3.1 the kinetic
Delaunay data structure requests that the Simulator

determine when in circle certificate functions become
invalid and schedules events with the Simulator. The
Simulator also makes sure the appropriate callbacks
to the kinetic Delaunay data structure are made when
certificates become invalid.

Our model of the Simulator is parameterized by
a FunctionKernel and a priority queue. The former
allows the solver and root type to be changed, so
numeric, exact or filtered exact computation models can
be used. The priority queue is by default a queue which
uses an interface with virtual functions to access the
events, allowing different kinetic data structures to use
a single queue. It can be replaced by a queue specialized
for a particular kinetic data structure if desired.

The Root concept is quite limited in which opera-
tions it supports—it effectively only supports compar-
isons. Roots cannot be used in computations or as the
time value in an InstantaneousKernel. As a result, we
take a somewhat more topological view of time.

Two times, t0 and t1, are considered topologically
equivalent if no roots occur in the interval [t0, t1]. The
lack of separating roots means that the function has the
same sign over the interval. This idea can be extended
to a set of kinetic data structures. When a simulation
is running, if the time of the last event which occurred,
tlast, and the time of the next event, tnext, are not equal,
then the current combinatorial structures of all of the
kinetic data structures are valid over the entire interval
(tlast, tnext). In addition there is a rational value of
time, tr, which is topologically equivalent to all times
in the interval. Computations can be performed at tr
since it can be easily represented. This flexibility is used

extensively in the Simulator.
When such a tr exists, the kinetic data structures

are all guaranteed to be valid and non-degenerate and
so can be easily verified. The Simulator can notify
the kinetic data structures when this occurs and they
can then use an InstantaneousKernel to perform self-
verification.

We can also use this idea to check the correctness
of individual certificates upon construction. We define
a certificate to be invalid when the certificate function
is negative. As a result it is an error, and a common
sign of a bug in a kinetic data structure, to construct a
certificate function whose value is negative at the time
of construction. Unfortunately, the time of construction
is generally a root and this check cannot be performed
easily. However, we can find a time topologically
equivalent to the current time for that function (or
discover if no such time exists) and evaluate the function
at that time. This is still a very expensive operation,
but faster than the alternative of using a real number
type.

In addition, in order to properly handle two events
occurring simultaneously, the Simulator must check
if the certificate function being solved is zero at the
current time. If it is zero, and negative immediately
afterwords, then the certificate fails immediately. This
can be checked in a similar manner.

Even roots of polynomials (where the polynomial
touches zero but does not become negative) can gen-
erally be discarded without any work being done since
they represent a momentary degeneracy. However, at
an even root, the kinetic data structure is degenerate,
and as a result is not easily verifiable. Since, kinetic
data structures are generally written only to handle odd
roots, when verification is being performed as above,
each even root must be divided into two odd roots be-
fore being returned. These cases are handled properly
by our Simulator and solvers.

3.6 Coordinating many kinetic data structures:
the MovingObjectTable. A framework for kinetic
data structures needs to have support for easily updat-
ing the trajectories of kinetic primitives, such as when
a collision occurs. This requirement is in contrast to
static geometric data structures where the geometric
primitives never change and their representations are
often stored internally to the data structure.

In the simple example presented in Section 3.1,
the kinetic Delaunay triangulation queries the Moving-

ObjectTable for all the moving points on initialization.
Later, when the simulation is running, the Moving-

ObjectTable notifies the kinetic Delaunay data struc-
ture whenever a point’s trajectory changes.

The MovingObjectTable allows multiple kinetic
data structures to access a set of kinetic geometric prim-



itives of a particular type and alerts the kinetic data
structures when a new primitive is added, one is re-
moved, or a primitive’s trajectory changes. Our model
of the MovingObjectTable is actually a generic con-
tainer that provides notification when an editing ses-
sion ends (for efficiency, changes are batched together).
There is no internal functionality specific to kinetic data
structures or to a particular type of primitive. The user
must specify what type of kinetic primitive a particular
instance of the MovingObjectTable model will contain
through a template argument (in the architecture dia-
gram Figure 1, a three dimensional moving point is used
as an example). This type is exposed as the Object type
shown in the figure. To access an object, a Key which
uniquely identifies the object within this container and
which has a type specific to this container type is used.

The MovingObjectTable uses a notification sys-
tem which will be briefly explained in Section 3.7 to
notify interested kinetic data structures when a set of
changes to the primitives is completed. The kinetic
data structures must then request the keys of the new,
changed and deleted objects from the MovingObject-

Table and handle them accordingly. We provide helper
classes to handle a number of common scenarios such
as a kinetic data structure which is incremental and
can handle the changes of a single object at a time (as
is done in the example, Figure 2 in the appendix), or a
kinetic data structure which will rebuild all certificates
any time any objects are changed (which can be more
efficient when many objects change at once). The user
can easily add other policies as needed.

The MovingObjectTable model provided will not
meet the needs of all users as there are many more
specialized scenarios where a more optimized handling
of updates will be needed. The general structure of the
MovingObjectTable model can be extended to handle
many such cases. For example, if moving polygons are
used, then some kinetic data structures will want to
access each polygon as an object, where as others will
only need to access the individual points. This extra
capability can be added without forcing any changes to
existing (point based) kinetic data structures by adding
methods to return modified polygons in addition to
those which return changed points.

When trajectory changes happen at rational time
values, the MovingObjectTable can check that the tra-
jectories are C0-continuous. Unfortunately, the situa-
tion is much more complicated for changes which oc-
cur at roots. Such trajectories cannot be exactly repre-
sented in our framework at this time.

The MovingObjectTable only knows about one
type of kinetic primitive and has no concept of time,
other kinetic primitives or predicates. When a kinetic
data structure handles an insertion, for example, it must
query the Simulator for an appropriate time value and

generate primitives using the KineticKernel. A more
detailed discussion of how to use the MovingObject-

Table appears in Section 4.

3.7 Miscellaneous: graphical display, notifica-
tion and reference management. We provide a
number of different classes to facilitate graphical dis-
play and manipulation of kinetic data structures. There
are two and three dimensional user interfaces based on
the Qt [19] and Coin [6] libraries, respectively. We pro-
vide support for displaying two and three dimensional
weighted and unweighted point sets and two and three
dimensional CGAL triangulations. Other types can be
easily added.

A number of objects need to maintain pointers to
other independent objects. For example, each kinetic
data structure must have access to the Simulator so
that it can schedule and deschedule events. These
pointers are all reference counted in order to guarantee
that they are always valid. We provide a standard
reference counting pointer and object base to facilitate
this [5].

Runtime events must be passed from the Moving-

ObjectTable and the Simulator to the kinetic data
structures. These are passed using a simple, stan-
dardized notification interface. To use notifications,
an object registers a proxy object with the Moving-

ObjectTable or Simulator. This proxy has a method
new notification which is called when some state of the
notifying object changes and is passed a label corre-
sponding to the state that changed. For convenience
in implementing simple kinetic data structures, we pro-
vide glue code which converts these notifications into
function calls—i.e., the glue code converts the Moving-

ObjectTable notification that a new object has been
added, into the function call new object on the kinetic
data structure. The glue code is used in the example
in Figure 2. The base class for the notification objects
manages the registration and unregistration to guard
against invalid pointers and circular dependencies. This
notification model is described in [5].

4 Implementing a kinetic data structure

4.1 Sort kds overview. Figure 2, located in the ap-
pendix, depicts a complete kinetic data structure,
Sort kds, implemented using our framework. The data
structure being maintained is very simple: a list of the
geometric objects in the simulation sorted by their x
coordinate. However, it touches upon the most impor-
tant parts of the framework. For a simple kinetic data
structure like this, much of the code is shared with other
kinetic data structures. We provide a base class that im-
plements much of this shared functionality. However,
we do not use it here in order to better illustrate the
various parts of our framework.



Like most kinetic data structures the maintained
data has two parts (in this case stored separately)

• the combinatorial structure being maintained, in
this case in the list objects declared at the end of
the class.

• the mapping between connections in the combina-
torial structure and pending events. In this case
the connections are pairs of adjacent objects in the
sorted list. The mapping is stored in the map cer-

tificates using the key of the first point in the pair.
When a pair is destroyed (because the objects are
no longer adjacent), the event key stored in the
mapping is used to deschedule the corresponding
event.

As is characteristic of many kinetic data structures,
Sort kds defines a class Event, which stores the informa-
tion for a single event, and has six main methods. The
methods are:

• new object: a point has been added to the simula-
tion and must be added to the data structure.

• change object: an point has changed its trajectory
and the two certificates involving it must be up-
dated

• delete object: an point has been removed from the
simulation. It must be removed from the data
structure, the events involving it descheduled and
a new event created.

• swap: an event has occurred and two objects are
about to become out of order in the list and so
must be exchanged.

• rebuild certificate: for some reason, a predicate cor-
responding to a particular piece of the combinato-
rial structure is no longer valid or the action that
was going to be taken in response to its failure is
no longer correct. Update the predicate appropri-
ately. This method is only called from within the
kinetic data structure.

• validate at: check that the combinatorial structure
is valid at the given time.

The first three methods are called in response to
notifications from the MovingObjectTable. The fourth
method is called by Event objects. The last method is
called in response to a notification from the Simulator.

4.2 Sort kds in detail. On initialization the Sort kds

registers for notifications with a MovingObjectTable

and a Simulator. It receives notifications through two
proxy objects, mot listener and sim listener , which imple-
ment the notification interface and call functions on the
kinetic data structure when appropriate. We provide
standard proxy objects, Moving object table listener helper

and Simulator kds listener , which are used, but imple-
menters of kinetic data structures are free to implement
their own versions of these simple classes. The Moving-

ObjectTable proxy calls the new object, delete object and
change object methods of the kinetic data structure when
appropriate. The Simulator proxy calls the validate at

method when there is a rational time value at which
verification can be performed. See Section 3.5 for an
explanation of when this occurs.

The proxy objects store the (reference counted)
pointers to the MovingObjectTable and Simulator ob-
jects for later use. The Simulator pointer is used by the
kinetic data structure to request the current time and
schedule and deschedule events. The MovingObject-

Table pointer is used to access the actual coordinates
of the kinetic objects. Once initialization is completed,
the behavior of the kinetic data structure is entirely
event driven.

The first thing that will occur is the addition
of a point to the MovingObjectTable which results
in the new object method being called. This method
is passed a Key which uniquely identifies a point in
the MovingObjectTable. The Sort kds makes use
of the InstantaneousKernel to properly handle the
insertion by using a InstantaneousKernel-provided
functor which compares the x coordinates of two objects
at the current instant of time. This functor is then
passed to the STL [22] library function upper bound

which returns the location in the sorted list of the
point before which the new point should be inserted to
maintain a sorted order. The point is inserted and the
new pairs created (the new point and the objects before
and after it) must have certificates created for them and
events scheduled. The rebuild certificate function is called
to handle updating the certificates. The rebuild certificate

function will also deschedule any previous certificates
when necessary.

Note that this implementation assumes that
new object is only called at instants when there is a ra-
tional time topologically equivalent to the current root.
The current time nt call made to the Simulator will fail
otherwise–i.e. when two events occur simultaneously, a
degeneracy. The easiest way to handle this is to post-
pone insertion until a non-degenerate rational time ex-
ists or to only insert objects at rational times. We ignore
that issue in the example since handling it is somewhat
situation dependent.

The rebuild certificate function updates the certificate
associated with a passed pair to make sure it is correct.
It first checks if there is a previous event corresponding
to the pair which needs to be descheduled, and if
so requests that the Simulator deschedule it. Then
a Solver is requested from the Simulator, passing
in the ConstructedFunction created by the Kinetic-

Kernel’s Less x 2 predicate applied to the pair of objects



in question. Then an Event is created to exchange the
two objects and scheduled in the Simulator at for that
time. Note that the certificate function may not have
any roots after the current time. In that case, the solver
will return Root::infinity (this is a special value of the
Root type representing +∞). The Simulator detects
this and will not schedule the associated event, but will
instead return a placeholder Event key.

The Event is in charge of alerting the Sort kds that
it needs to be updated when a particular certificate
failure occurs. Typically event classes are very simple,
effectively just storing a pointer to the kinetic data
structure and an identifier for the combinatorial piece
which needs to be updated in addition to the time when
the update must occur. This certificate also stores a
copy of the Solver for reasons which will be discussed
in the next paragraph. In order to be handled by
the Simulator, the Event class must have the following
methods

• time() which returns the time at which the event
occurs and

• set processed(bool) which is called with the value
true when the event occurs.

In addition, in order to ease debugging, it must be able
to be output to an std::ostream.

The swap method is the update method in the
Sort kds. When a pair of objects is swapped, three old
pairs of points are destroyed and replaced by three new
pairs. Calls to rebuild certificate handle the updating
of the certificates between a point of the swapped
pair and its outside neighbors in the list. The pair
that has just been exchanged should be dealt with
differently for optimal efficiency. The predicate function
corresponding to the new ordering of the swapped pair is
the negation of that for the old ordering (i.e. xk(t)−xj(t)
as opposed to xj(t)−xk(t)), and so has the same roots.
As a result, the old Solver can be used to find the
next root, saving a great deal of time. In addition, the
event which is currently being processed does not need
to be descheduled as it is deleted by the Simulator.
Notice that the update method does not make any
reference to time. This is necessary to properly support
degeneracies, since few or no exact calculations can be
made without a topologically equivalent rational time,
which might not exist. The new object method is mostly
used for initialization and so can be assumed to occur
at a non-degenerate time, the same assumption is less
easily made about an event.

As described in Section 3.5, the Simulator can pe-
riodically send out notifications that there is a rational
time at which all the kinetic data structures are non-
degenerate and can be easily verified. The validate at

method is called in response to such a notification. Val-
idation consists of using the InstantaneousKernel to

check that each pair in the list is ordered correctly.
The remaining two methods, change object and

delete object are only necessary if the the kinetic data
structure wishes to support dynamic trajectory changes
and removals. These methods are called by the
mot listener helper when appropriate.

That is all it takes to implement a kinetic data
structure which is exact, supports dynamic insertions
and deletions of objects, allows points to change motions
on the fly, and allows a variety of solvers and motion
types to be used without modifications.

5 Conclusions and future work

Our framework does not provide a mechanism for
exactly updating the motions of objects at event times,
for example bouncing a ball when it collides with a
wall. Providing this functionality efficiently is non-
trivial since, in general, the time of an event, te, is a
Root which is not a rational number. The trajectory
after the bounce is a polynomial in t− te and hence will
not have rational coefficients. One approach would be
to represent the polynomial coefficients using a number
type that represents real algebraic numbers (such as
CORE Expr or an extended version of our Root type)
and write solvers that handle this. While our solvers
currently support this functionality (except for the
CORE based one), it is extremely slow and the bit
complexity of the coefficients will rapidly increase with
the number of trajectory modifications.

In many circumstances it is not necessary to know
the new trajectory exactly, as long as the approxima-
tions preserve the continuity of the trajectory and do
not violate any predicates. An alternative approach is
then to find a polynomial with rational coefficients of
some bounded bit complexity which is close to the ex-
act new trajectory. Ensuring that the new trajectory
does not violate any predicates can be slightly tricky,
as can ensuring continuity. We have not worked out all
the ramifications of this approach and whether it can
be made fully general.

A third alternative would be to allow fuzzy
motions—motions represented by polynomials whose
coefficients are refinable intervals, for example, whose
accuracy will depend on how accurately we need to
know the motion. A root of such a polynomial can-
not be known exactly and indeed may not exist at all,
complicating matters. How to consistently process such
events to give a generally meaningful and approximately
correct simulation needs to be explored.

We are investigating extending filtering into more
areas of the framework. For example, currently, the
InstantaneousKernel must compute the static coordi-
nates of the objects requested using an exact number
type and then pass this exact representation to a static
predicate. If the static predicate uses filtering, it will



then convert the exact representation into an interval
representation, and attempt to perform the predicate
computation. In many cases this will be enough and the
exact representation will never need to be used as is. A
better alternative would be to initially generate an inter-
val representation of the static objects and attempt the
interval based predicate calculation. Only when that
fails, compute the exact representation. CGAL provides
support for all the necessary operations.
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template <class Time, class Sort, class Id, class Solver> 
class Swap_event;

// The template arguments are the KineticKernel, the Simulator
// and the MovingObjectTable.
template <class KK, class Sim, class MOT> class Sort_kds:
   // for ref counted pointers
  public CGAL::Ref_counted_base<Sort_kds< KK, Sim, MOT> >  {
  typedef Sort_kds<KK, Sim, MOT> This;
  // The way the Simulator represents time.
  typedef typename Sim::Time Time;
  // A label for a moving primitive in the MovingObjectTable
  typedef typename MOT::Key Object_key;
  // A label for a certificate so it can be descheduled.
  typedef typename Sim::Event_key Event_key;
  // To shorten the names. Use the default choice for the static kernel.
  typedef typename CGAL::KDS::
  Cartesian_instantaneous_kernel<MOT> Instantaneous_kernel;
  // this is used to identify pairs of objects in the list
  typedef typename std::list<Object_key>::iterator iterator;
  typedef Swap_event<Time,This,iterator,typename Sim::Solver> Event;
  // Redirects the Simulator notifications to function calls
  typedef typename CGAL::KDS::
  Simulator_kds_listener<typename Sim::Listener, 

This> Sim_listener;
  // Redirects the MovingObjectTable notifications to function calls
  typedef typename CGAL::KDS::
  Moving_object_table_listener_helper<typename MOT::Listener,

      This> MOT_listener;
public:
  typedef CGAL::Ref_counted_pointer<This> Pointer;

  // Register this KDS with the MovingObjectTable and the Simulator
  Sort_kds(typename Sim::Pointer sim, typename MOT::Pointer mot,

   const KK &kk=KK()): sim_listener_(sim, this),
       mot_listener_(mot, this),
       kernel_(kk), kernel_i_(mot) {}

  /* Insert k and update the affected certificates. std::upper_bound
     returns the first place where an item can be inserted in a sorted
     list. Called by the MOT_listener.*/
  void new_object(Object_key k) {
    kernel_i_.set_time(simulator()->current_time_nt());
    iterator it = std::upper_bound(sorted_.begin(), sorted_.end(),

   k,kernel_i_.less_x_2_object());
    sorted_.insert(it, k);
    rebuild_certificate(--it); rebuild_certificate(--it);
  }

  /* Rebuild the certificate for the pair of points *it and *(++it).
     If there is a previous certificate there, deschedule it.*/
  void rebuild_certificate(const iterator it) {
    if (it == sorted_.end()) return;
    if (events_.find(*it) != events_.end()) {
      simulator()->delete_event(events_[*it]); events_.erase(*it);
    }
    if (next(it)== sorted_.end()) return;     
    typename KK::Less_x_2 less=kernel_.less_x_2_object();
    typename Sim::Solver s 
      = simulator()->solver_object(less(object(*(it)), 

object(*next(it))));
    Time ft= s.next_time_negative();
    // the Simulator will detect if the failure time is at infinity
    events_[*it]= simulator()->new_event(Event(ft, it, Pointer(this),s));
  }

  /* Swap the pair of objects with *it as the first element.  The old
     solver is used to compute the next root between the two points
     being swapped. This method is called by an Event object.*/
  void swap(iterator it, typename Sim::Solver &s) {
    events_.erase(*it);

    simulator()->delete_event(events_[*next(it)]);
    events_.erase(*next(it));
    std::swap(*it, *next(it));
    rebuild_certificate(next(it));
    Time ft= s.next_time_negative();
    events_[*it]= simulator()->new_event(Event(ft, it, this,s));
    rebuild_certificate(--it);
  }

  /* Verify the structure by checking that the current coordinates are
     properly sorted for time t. This function is called by the Sim_listener.*
  void validate_at(typename Sim::NT t) const {
    kernel_i_.set_time(t);
    typename Instantaneous_kernel::Less_x_2 less= kernel_i_.less_x_2_o
    for (typename std::list<Object_key>::const_iterator it

   = sorted_.begin(); *it != sorted_.back(); ++it){
      assert(!less(*it,*next(it)));
    }
  }

  /* Update the certificates adjacent to object k. This method is called by
     the MOT_listener. std::equal_range finds all items equal 
     to a key in a sorted list (there can only be one).*/
  void change_object(Object_key k) {
    iterator it =  std::equal_range(sorted_.begin(), sorted_.end(),k).first;
    rebuild_certificate(it); rebuild_certificate(--it);
  }

  /* Remove object k and destroy 2 certificates and create one new one.
     This function is called by the MOT_listener.*/
  void delete_object(Object_key k) {
    iterator it =  std::equal_range(sorted_.begin(), sorted_.end(),k).first;
    sorted_.erase(it--);
    rebuild_certificate(it);
    simulator()->delete_event(events_[*it]);
    events_.erase(*it);
  }
  template <class It> static It next(It it){ return ++it;}
  typename MOT::Object object(Object_key k) const { 
    return mot_listener_.notifier()->object(k);
  }
  Sim* simulator() {return sim_listener_.notifier();}

  Sim_listener sim_listener_; 
  MOT_listener mot_listener_; 
  // The points in sorted order
  std::list<Object_key> sorted_;
  // events_[k] is the certificates between k and the object after it
  std::map<Object_key, Event_key > events_;
  KK kernel_; 
  Instantaneous_kernel kernel_i_;
};

/* It needs to implement the time() and process() functions and 
   operator<< */
template <class Time, class Sort, class Id, class Solver> 
class Swap_event {
public:
  Swap_event(const Time &t, Id o, typename Sort::Pointer sorter, 

     const Solver &s): left_object_(o), sorter_(sorter), s_(s), t_(t){}
  void set_processed(bool tf){
    if (tf==true) sorter_->swap(left_object_, s_);
  }
  const Time &time() const {return t_;}
  Id left_object_; typename Sort::Pointer sorter_; Solver s_; Time t_;
};
template <class T, class S, class I, class SS>
std::ostream &operator<<(std::ostream &out,

 const Swap_event<T,S,I,SS> &ev){
  return out << "swap " << *ev.left_object_ << " at " << ev.t_;
}

Figure 2: A simple kinetic data structure: it maintains a list of points sorted by their x coordinate. The code is complete
and works as printed. Insertions and deletions are in linear time due to the lack of an exposed binary tree class in STL or
CGAL. Support for graphical display is skipped due to lack of space.
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