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Abstract

We derive tight bounds for the maximum number of k-faces,
0 ≤ k ≤ d − 1, of the Minkowski sum, P1 ⊕ P2, of two d-
dimensional convex polytopes P1 and P2, as a function of
the number of vertices of the polytopes.

For even dimensions d ≥ 2, the maximum values are
attained when P1 and P2 are cyclic d-polytopes with disjoint
vertex sets. For odd dimensions d ≥ 3, the maximum values
are attained when P1 and P2 are ⌊ d

2
⌋-neighborly d-polytopes,

whose vertex sets are chosen appropriately from two distinct
d-dimensional moment-like curves.

1 Introduction

Given two d-dimensional polytopes, or simply d-
polytopes, P and Q, their Minkowski sum, P ⊕Q, is de-
fined as the set {p+ q | p ∈ P, q ∈ Q}. Minkowski sums
are fundamental structures in both Mathematics and
Computer Science. They appear in a variety of different
subjects, including Combinatorial Geometry, Computa-
tional Geometry, Computer Algebra, Computer-Aided
Design & Solid Modeling, Motion Planning, Assem-
bly Planning, Robotics (see [15, 4] and the references
therein), and, more recently, Game Theory [12], Com-
putational Biology [11] and Operations Research [16].

Despite their apparent importance, little is known
about the worst-case complexity of Minkowski sums
in dimensions four and higher. In two dimensions,
the worst-case complexity of Minkowski sums is well
understood. Given two convex polygons P and Q with
n and m vertices, respectively, the maximum number of
vertices and edges of P ⊕ Q is n + m [2]. This result
can be generalized to any number of summands. If P is
convex and Q is non-convex (or vice versa), the worst-
case complexity of P ⊕Q is Θ(nm), while if both P and
Q are non-convex, the complexity of their Minkowski
sum can be as high as Θ(n2m2) [2]. When P and Q
are convex 3-polytopes (embedded in the 3-dimensional
Euclidean space), the worst-case complexity of P ⊕ Q
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is Θ(nm), if both P and Q are convex, and Θ(n3m3),
if both P and Q are non-convex (e.g., see [3]). For the
intermediate cases, i.e., if only one of P and Q is convex,
see [14].

Given two convex d-polytopes P1 and P2 in E
d,

d ≥ 2, with n1 and n2 vertices, respectively, embed P1

and P2 in the hyperplanes {xd+1 = 0} and {xd+1 = 1} of
E
d+1, respectively. Then the weighted Minkowski sum

(1 − λ)P1 ⊕ λP2 = {(1 − λ)p1 + λp2 | p1 ∈ P1, p2 ∈
P2}, λ ∈ (0, 1), of P1 and P2 is the intersection of
the convex hull CHd+1({P1, P2}) with the hyperplane
{xd+1 = λ}. The embedding and reduction described
above are essentially what are known as the Cayley
embedding and Cayley trick, respectively [7]. From
this reduction we immediately get that the worst-
case complexity of (1 − λ)P1 ⊕ λP2 is bounded from
above by the complexity of CHd+1({P1, P2}), which

is O((n1 + n2)
⌊ d+1

2
⌋). Furthermore, the complexity of

(1−λ)P1 ⊕λP2 is independent of λ, which implies that
the complexity of the weighted Minkowski sum of two
convex polytopes is the same as the complexity of their
unweighted sum. Very recently (cf. [8]), the authors
of this paper have considered the problem of computing
the asymptotic worst-case complexity of the convex hull
of a fixed number r of convex d-polytopes lying on r
parallel hyperplanes of Ed+1. A direct corollary of our
results is a tight bound on the worst-case complexity
of the Minkowski sum of two convex d-polytopes for all
odd dimensions d ≥ 3. More precisely, we have shown
that for d ≥ 3 odd, the worst-case complexity of P1⊕P2

is in Θ(n1n
⌊ d

2
⌋

2 + n2n
⌊ d
2
⌋

1 ), which is a refinement of the
obvious upper bound when n1 and n2 asymptotically
differ.

In terms of exact bounds on the number of faces of
the Minkowski sum of two polytopes, results are known
only when the two summands are convex. Besides
the trivial bound for convex polygons (2-polytopes),
mentioned above, the first result of this nature was
shown by Gritzmann and Sturmfels [6]: given r poly-
topes P1, P2, . . . , Pr in E

d, with a total of n non-parallel
edges, the number of l-faces, fl(P1 ⊕ P2 ⊕ · · · ⊕ Pr),
of P1 ⊕ P2 ⊕ · · · ⊕ Pr is bounded from above by
2
(

n
l

)
∑d−1−l

j=0

(

n−l−1
j

)

. This bound is attained when the
polytopes Pi are zonotopes, and their generating edges
are in general position. Regarding bounds as a function



of the number of vertices or facets of the summands,
Fukuda and Weibel [5] have shown that, given two 3-
polytopes P1 and P2 in E

3, the number, fk(P1 ⊕P2), of
k-faces of P1⊕P2, 0 ≤ k ≤ 2, is bounded from above as
follows:

f0(P1 ⊕ P2) ≤ n1n2,

f1(P1 ⊕ P2) ≤ 2n1n2 + n1 + n2 − 8, and

f2(P1 ⊕ P2) ≤ n1n2 + n1 + n2 − 6,

where nj is the number of vertices of Pj , j = 1, 2.
Weibel [15] has also derived similar expressions in terms
of the number of facets mj of Pj , j = 1, 2, namely:

f0(P1 ⊕ P2) ≤ 4m1m2 − 8m1 − 8m2 + 16,

f1(P1 ⊕ P2) ≤ 8m1m2 − 17m1 − 17m2 + 40, and

f2(P1 ⊕ P2) ≤ 4m1m2 − 9m1 − 9m2 + 26.

All these bounds are tight. Fogel, Halperin and Weibel
[3] have extended the bound on the number of facets of
the Minkowski sum in the case of r summands. More
precisely, they have shown that given r 3-polytopes
P1, P2, . . . , Pr in E

3, where Pj has mj ≥ d+1 facets, the
number of facets of the Minkowski sum P1⊕P2⊕ · · ·⊕Pr

is bounded from above by

∑

1≤i<j≤r

(2mi − 5)(2mj − 5) +

r
∑

i=1

mi +
(

r
2

)

,

and this bound is tight.
For dimensions four and higher, the only known

results are worst-case bounds on the number of k-faces
of the Minkowski sum of convex polytopes, as a function
of the number of vertices of the summands. Fukuda and
Weibel [5] have shown that the number of vertices of
the Minkowski sum of r d-polytopes P1, . . . , Pr, where
r ≤ d−1 and d ≥ 2, is bounded from above by

∏r
i=1 ni,

where ni is the number of vertices of Pi, and this bound
is tight. On the other hand, for r ≥ d this bound
cannot be attained [13]. For higher-dimensional faces,
i.e., for k ≥ 1, Fukuda and Weibel [5] have shown that
fk(P1 ⊕ P2 ⊕ · · · ⊕ Pr) is bounded by:

∑

1≤si≤ni

s1+...+sr=k+r

r
∏

i=1

(

ni

si

)

, 0 ≤ k ≤ d− 1,

where ni is the number of vertices of Pi. These bounds
are tight for d ≥ 4, r ≤ ⌊d

2⌋, and for all k with

0 ≤ k ≤ ⌊d
2⌋ − r.

In this paper, we extend previous results on the
exact maximum number of faces of the Minkowski sum
of two convex d-polytopes1. We show that given two d-
polytopes P1 and P2 in E

d with n1 ≥ d+1 and n2 ≥ d+1

1In the sequel, all polytopes are considered to be convex.

vertices, respectively, the maximum number of k-faces
of P1 ⊕ P2 is bounded as follows:

fk−1(P 1 ⊕ P2) ≤ fk(Cd+1(n1 + n2))

−

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k+1−i

)

(

(

n1−d−2+i
i

)

+
(

n2−d−2+i
i

)

)

,

where 1 ≤ k ≤ d, and Cd(n) stands for the cyclic d-
polytope with n vertices. These expressions are shown
to be tight for any d ≥ 2 and for all 1 ≤ k ≤ d, and,
clearly, match all relevant previous bounds (cf. [2, 5]).

To prove the upper bounds we use the embedding
in one dimension higher already described above: We
consider the convex hull P = CHd+1({P1, P2}), where
P1 and P2 are embedded in {xd+1 = 0} and {xd+1 = 1},
respectively. We first argue that, for the purposes of
the worst-case upper bounds, it suffices to consider the
case where P is simplicial, except possibly for its two
facets P1 and P2. We concentrate on the set F of
faces of P that are neither faces of P1 nor faces of
P2. The reason that we focus on F is that there is a
bijection between the k-faces of F and the (k− 1)-faces
of P1⊕P2, 1 ≤ k ≤ d, and, thus, deriving upper bounds
of the number of (k − 1)-faces of P1 ⊕ P2 reduces to
deriving upper bounds for the number of k-faces of F .
We then proceed in a manner analogous to that used by
McMullen [10] to prove the Upper Bound Theorem for
polytopes. We consider the f -vector f(F) of F , from
this we define the h-vector h(F) of F , and continue by:

(i) deriving Dehn-Sommerville-like equations for F ,
expressed in terms of the elements of h(F) and the
g-vectors of the boundary complexes of P1 and P2,
and,

(ii) establishing a recurrence relation for the elements
of h(F).

From the latter, we inductively compute upper bounds
on the elements of h(F), which we combine with the
Dehn-Sommerville-like equations for F , to get refined
upper bounds for the “left-most half” of the elements of
h(F), i.e., for the values hk(F) with k > ⌊d+1

2 ⌋. We
then establish our upper bounds by computing f(F)
from h(F).

To prove the lower bounds we distinguish between
even and odd dimensions. In even dimensions d ≥ 2,
we show that the k-faces of the Minkowski sum of
any two cyclic d-polytopes with n1 and n2 vertices,
respectively, whose vertex sets are distinct, attain the
upper bounds we have proved. In odd dimensions d ≥ 3,
the construction that establishes the tightness of our
bounds is more intricate. We consider the (d − 1)-
dimensional moment curve γ(t) = (t, t2, t3, . . . , td−1),
t > 0, and define two vertex sets V1 and V2 with n1

and n2 vertices on γ(t), respectively. We then embed



V1 (resp., V2) on the hyperplane {x2 = 0} (resp.,
{x1 = 0}) of Ed and perturb the x2-coordinates (resp.,
x1-coordinates) of the vertices in V1 (resp., V2), so that
the polytope P1 (resp., P2) defined as the convex hull
of the vertices in V1 (resp., V2) is full-dimensional. We
then argue that by appropriately choosing the vertex
sets V1 and V2, the number of k-faces of the Minkowski
sum P1 ⊕ P2 attains its maximum possible value. At
a very high/qualitative level, the appropriate choice we
refer to above amounts to choosing V1 and V2 so that
the parameter values on γ(t) of the vertices in V1 and
V2, lie within two disjoint intervals of R that are far
away from each other.

The structure of the rest of the paper is as follows.
In Section 2 we formally give various definitions, and
define what we call bineighborly polytopal complexes
and discuss some properties associated with them. In
Section 3 we prove our upper bounds on the number
of faces of the Minkowski sum of two polytopes. In
Section 4 we describe our lower bound constructions
and show that these constructions attain the upper
bounds proved in Section 3. We conclude the paper
with Section 5, where we summarize our results and
state open problems and directions for future work.

2 Definitions and preliminaries

A convex polytope, or simply polytope, P in E
d is the

convex hull of a finite set of points V in E
d, called the

vertex set of P . A face of P is the intersection of P with
a hyperplane for which the polytope is contained in one
of the two closed halfspaces delimited by the hyperplane.
The dimension of a face of P is the dimension of its affine
hull. A k-face of P is a k-dimensional face of P . We
consider the polytope itself as a trivial d-dimensional
face; all the other faces are called proper faces. We use
the term d-polytope to refer to a polytope the trivial
face of which is d-dimensional. For a d-polytope P , the
0-faces of P are its vertices, while the (d − 1)-faces are
called facets. For 0 ≤ k ≤ d we denote by fk(P ) the
number of k-faces of P . Note that every k-face F of
P is also a k-polytope whose faces are all the faces of
P contained in F . A k-simplex in E

d, k ≤ d, is the
convex hull of any k + 1 affinely independent points in
E
d. A polytope is called simplicial if all its proper faces

are simplices. Equivalently, P is simplicial if for every
vertex v of P and every face F ∈ P , v does not belong
to the affine hull of the vertices in F \ {v}.

A polytopal complex C is a finite collection of
polytopes in E

d such that (i) ∅ ∈ C, (ii) if P ∈ C then
all the faces of P are also in C and (iii) the intersection
P ∩Q for two polytopes P and Q in C is a face of both
P and Q. The dimension dim(C) of C is the largest
dimension of a polytope in C. A polytopal complex is

called pure if all its maximal (with respect to inclusion)
faces have the same dimension. In this case the maximal
faces are called the facets of C. We use the term d-
complex to refer to a polytopal complex whose maximal
faces are d-dimensional (i.e., the dimension of C is d).
A polytopal complex is simplicial if all its faces are
simplices. Finally, a polytopal complex C′ is called a
subcomplex of a polytopal complex C if all faces of C′

are also faces of C. An important class of polytopal
complexes arise from polytopes. More precisely, a d-
polytope P , together with all its faces and the empty set,
form a d-complex, denoted by C(P ). The only maximal
face of C(P ), which is clearly the only facet of C(P ),
is the polytope P itself. Moreover, all proper faces of
P form a pure (d − 1)-complex, called the boundary
complex C(∂P ), or simply ∂P , of P . The facets of ∂P
are just the facets of P , and its dimension is, clearly,
dim(∂P ) = dim(P ) − 1 = d − 1. For a vertex v of P ,
the star of v, denoted by star(v, P ), is the polytopal
complex of all faces of P that contain v, and their faces.
The link of v, denoted by link(v, P ), is the subcomplex
of star(v, P ) consisting of all the faces of star(v, P ) that
do not contain v.

Definition 2.1. ([17, Remark 8.3]) Let C be a pure
simplicial polytopal d-complex. A shelling S(C) of C is
a linear ordering F1, F2, . . . , Fs of the facets of C such

that for all 1 < j ≤ s the intersection, Fj ∩
(

⋃j−1
i=1 Fi

)

,

of the facet Fj with the previous facets is non-empty and
pure (d− 1)-dimensional.
In other words, for every i < j there exists some ℓ < j
such that the intersection Fi∩Fj is contained in Fℓ∩Fj,
and such that Fℓ ∩ Fj is a facet of Fj.

Every polytopal complex that has a shelling is
called shellable. In particular, the boundary complex
of a polytope of always shellable (cf. [1]). Consider a
pure shellable simplicial d-complex C and let S(C) =
{F1, . . . , Fs} be a shelling order of its facets. The
restriction R(Fj) of a facet Fj is the set of all vertices
v ∈ Fj such that Fj\{v} is contained in one of the earlier
facets2. The main observation here is that when we
construct C according to the shelling S(C), the new faces
at the j-th step of the shelling are exactly the vertex
sets G with R(Fj) ⊆ G ⊆ Fj (cf. [17, Section 8.3]).
Moreover, notice that R(F1) = ∅ and R(Fi) 6= R(Fj)
for all i 6= j.

The f -vector f(P ) = (f−1(P ), f0(P ), . . . , fd−1(P ))
of a d-polytope P (or its boundary complex ∂P ) is
defined as the (d + 1)-dimensional vector consisting of
the number, fk(P ), of k-faces of P , −1 ≤ k ≤ d − 1,

2For simplicial faces, we identify the face with its vertex set.



where f−1(P ) = 1 refers to the empty set. The h-vector
h(P ) = (h0(P ), h1(P ), . . . , hd(P )) of a d-polytope P (or
its boundary complex ∂P ) is defined as the (d + 1)-
dimensional vector, where

(2.1) hk(P ) =
k
∑

i=0

(−1)k−i
(

d−i
d−k

)

fi−1(P ),

0 ≤ k ≤ d. It is easy to verify from equations (2.1) that
the elements of f(P ) determine the elements of h(P )
and vice versa.

For simplicial polytopes, the number hk(P ) counts
the number of facets of P in a shelling of ∂P , whose
restriction has size k; this number is independent of
the particular shelling chosen (cf. [17, Theorem 8.19]).
Moreover, the elements of f(P ) (or, equivalently, h(P ))
are not linearly independent; they satisfy the so called
Dehn-Sommerville equations, which can be written in
a very concise form as: hk(P ) = hd−k(P ), 0 ≤ k ≤
d. An important implication of the existence of the
Dehn-Sommerville equations is that if we know the face
numbers fk(P ) for all 0 ≤ k ≤ ⌊d

2⌋−1, we can determine

the remaining face numbers fk(P ) for all ⌊d
2⌋ ≤ k ≤

d − 1. Both the f -vector and h-vector of a simplicial
d-polytope are related to the so called g-vector. For
a simplicial d-polytope P its g-vector is the (⌊d

2⌋ + 1)-
dimensional vector g(P ) = (g0(P ), g1(P ), . . . , g⌊ d

2
⌋(P )),

where g0(P ) = 1, and gk(P ) = hk(P ) − hk−1(P ),
1 ≤ k ≤ ⌊d

2⌋ (see also [17, Section 8.6]). Using the
convention that hd+1(P ) = 0, we can actually extend
the definition of gk(P ) for all 0 ≤ k ≤ d + 1, while
using the Dehn-Sommerville equations for P yields:
gd+1−k(P ) = −gk(P ), 0 ≤ k ≤ d+1. The Upper Bound
Theorem for polytopes can equivalently be expressed in
terms of the g-vector:

Corollary 2.1. ([17, Corollary 8.38]) We con-
sider simplicial d-polytopes P of fixed dimension d
and fixed number of vertices n = g1(P ) + d + 1. f(P )
has its componentwise maximum if and only if all the
components of g(P ) are maximal, with

(2.2) gk(P ) =
(

g1(P )+k−1
k

)

=
(

n−d−2+k
k

)

.

Also, fk−1(P ) is maximal if an only if gi(P ) is maximal
for all i with i ≤ min{k, ⌊d

2⌋}.

2.1 Bineighborly polytopal complexes. Let C be
a d-complex, and let V be the vertex set of C. Let
{V1, V2} be a partition of V and define C1 (resp., C2) to
be the subcomplex of C containing the faces of C whose
vertices are vertices in V1 (resp., V2).

Definition 2.2. Let C be a d-complex. We say that C is
(k, V1)-bineighborly if we can partition the vertex set V
of C into two non-empty subsets V1 and V2 = V \V1 such
that for every ∅ ⊂ Sj ⊆ Vj, j = 1, 2, with |S1|+|S2| ≤ k,
the vertices of S1 ∪ S2 define a face of C (of dimension
|S1|+ |S2| − 1).

We introduce the notion of bineighborly polytopal com-
plexes because they play an important role when consid-
ering the maximum complexity of the Minkowski sum
of two d-polytopes P1 and P2. As we will see in the up-
coming section, the number of (k − 1)-faces of P1 ⊕ P2

is maximal for all 1 ≤ k ≤ l, l ≤ ⌊d−1
2 ⌋, if and only

if the convex hull P of P1 and P2, when embedded in
the hyperplanes {xd+1 = 0} and {xd+1 = 1} of Ed+1,
respectively, is (l+1, V1)-bineighborly, where V1 stands
for the vertex set of P1. Even more interestingly, in any
odd dimension d ≥ 3, the number of k-faces of P1 ⊕ P2

is maximized for all 0 ≤ k ≤ d − 1, if and only if P is
(⌊d+1

2 ⌋, V1)-bineighborly.
A direct consequence of our definition is the follow-

ing: suppose that C is a (l, V1)-bineighborly polytopal
complex, and let F be a k-face F of C, 1 ≤ k < l, such
that at least one vertex of F is in V1 and at least one
vertex of F is in V2; then F is simplicial (i.e., F is a k-
simplex). Another immediate consequence of Definition
2.2 is that a k-neighborly d-complex C is also (k, V ′)-
bineighborly for every non-empty subset V ′ of its ver-
tex set. It is also easy to see that if a d-complex C is
(k, V1)-bineighborly, k ≥ 2, then C is (k−1)-neighborly.
On the other hand, if C is (k, V1)-bineighborly, while C1
and C2 are k-neighborly, then C is also k-neighborly. Let
B be the set of faces of C that are not faces of either C1
or C2, and denote by nj the cardinality of Vj , j = 1, 2.
Then, for all 1 ≤ k ≤ d,

fk−1(B) ≤
k−1
∑

j=1

(

n1

j

)(

n2

k−j

)

=
(

n1+n2

k

)

−
(

n1

k

)

−
(

n2

k

)

,

where equality holds if and only if C is (k, V1)-
bineighborly (cf. [9]). As a final remark, notice that,
if fl−1(B) is equal to its maximal value for some l, then
fk−1(B) is equal to its maximal value for all k with
1 ≤ k ≤ l − 1.

3 Upper bounds

Let P1 and P2 be two d-polytopes in E
d, with n1 and

n2 vertices, respectively. Let us embed P1 (resp., P2) in
the hyperplane Π1 (resp., Π2) of E

d+1 with equation
{xd+1 = 0} (resp., {xd+1 = 1}), and let Π̃ be a
hyperplane in E

d+1 parallel and in-between Π1 and Π2.
(see Fig. 1). Call P the convex hull CHd+1({P1, P2}),
and let F be the set of proper faces of P having non-



P1

P2

Π1

Π2

P̃
Π̃

F

Figure 1: The d-polytopes P1 and P2 are embedded in the hyperplanes Π1 = {xd+1 = 0} and Π2 = {xd+1 = 0}
of Ed+1. The polytope P̃ is the intersection of CHd+1({P1, P2}) with the hyperplane Π̃ = {xd+1 = λ}.

empty intersection with Π̃. Note that P̃ = P ∩ Π̃ is a d-
polytope, which is, in general, non-simplicial, and whose
proper non-trivial faces are intersections of the form
F ∩Π̃ where F ∈ F . As we have already observed in the
introductory section, P̃ is combinatorially equivalent to
the Minkowski sum P1 ⊕ P2. Furthermore, fk−1(P1 ⊕
P2) = fk−1(P̃ ) = fk(F), 1 ≤ k ≤ d. The rest of this
section is devoted to deriving upper bounds for fk(F),
which also become upper bounds for fk−1(P1 ⊕ P2).

Karavelas and Tzanaki [8, Lemma 2] have shown
that the vertices of P1 and P2 can be perturbed in such
a way that:

(i) the vertices of P ′
1 and P ′

2 remain in Π1 and Π2,
respectively, and both P ′

1 and P ′
2 are simplicial;

(ii) P ′ = CHd+1({P ′
1, P

′
2}) is also simplicial, except

possibly the facets P ′
1 and P ′

2;
(iii) the number of vertices of P ′

1 and P ′
2 is the same as

the number of vertices of P1 and P2, respectively,
whereas fk(P ) ≤ fk(P

′) for all k ≥ 1,
where P ′

1 and P ′
2 are the polytopes in Π1 and Π2 we get

after perturbing the vertices of P1 and P2, respectively.
It, thus, suffices to consider the case where all three P1,
P2, and P are simplicial, except possibly the facets P1

and P2 of P .
Let K be the polytopal complex whose faces are all

the faces of F , as well as the faces of P that are subfaces
of faces in F . It is easy to see that the d-faces of K are

exactly the d-faces of F , and, thus, K is a pure simplicial
d-complex, with the d-faces of F being the facets of K.
Moreover, the set of k-faces of K is the disjoint union of
the sets of k-faces of F , ∂P1 and ∂P2. This implies, for
−1 ≤ k ≤ d:

fk(K) = fk(F) + fk(∂P1) + fk(∂P2),

where fd(∂Pj) = 0, j = 1, 2, and conventionally we set
f−1(F) = −1.

Let y1 (resp., y2) be a point below Π1 (resp., above
Π2), such that the vertices of P1 (resp., P2) are the only
vertices of P visible from y1 (resp., y2) (see Fig. 2). Let
Q be the (d+1)-polytope that is the convex hull of the
vertices of P1, P2, y1 and y2. Observe that the faces
of ∂P (and thus all faces of F), except for the facets
P1 and P2 of ∂P , are all faces of the boundary complex
∂Q. The faces of ∂Q that are not faces of F are the
faces in the star S1 of y1 (resp., the star S2 of y2), while
the boundary complex ∂P1 of P1 (resp., ∂P2 of P2) is
nothing but link(y1, ∂Q) (resp., link(y2, ∂Q)).

It is easy to realize that the set of k-faces of ∂Q is
the disjoint union of the k-faces of F , S1 and S2. This
implies that, for −1 ≤ k ≤ d:

(3.3) fk(∂Q) = fk(F) + fk(S1) + fk(S2).

The k-faces of ∂Q in Sj are either k-faces of ∂Pj or k-
faces defined by yj and a (k− 1)-face of ∂Pj . Hence, we



∂P1

∂P2

Π1

Π2

F

y1

y2

Figure 2: The polytope Q is created by adding two vertices y1 and y2. The vertex y1 (resp., y2) is below P1

(resp., above P2), and is visible by the vertices of P1 (resp., P2) only.

have, for j = 1, 2, and 0 ≤ k ≤ d:

(3.4) fk(Sj) = fk(∂Pj) + fk−1(∂Pj),

where f−1(∂Pj) = 1 and fd(∂Pj) = 0. Combining
relations (3.3) and (3.4), we get, for 0 ≤ k ≤ d:

(3.5)
fk(∂Q) = fk(F) + fk(∂P1) + fk−1(∂P1)

+ fk(∂P2) + fk−1(∂P2).

We call Kj , j = 1, 2, the subcomplex of ∂Q
consisting of either faces of K or faces of Sj . Kj is a
pure simplicial d-complex the facets of which are either
facets in the star Sj of yj or facets of K. Furthermore,
Kj is shellable. To see this first notice that ∂Q is
shellable (Q is a polytope). Consider a line shelling
F1, F2, . . . , Fs of ∂Q that shells star(y2, ∂Q) last, and let
Fλ+1, Fλ+2, . . . , Fs be the facets of ∂Q that correspond
to S2. Trivially, the subcomplex of ∂Q, the facets
of which are F1, F2, . . . , Fλ, is shellable; however, this
subcomplex is nothing but K1. The argument for K2 is
analogous.

Notice that Q is a simplicial (d+1)-polytope, while
K1 and K2 are simplicial d-complexes; hence, for 0 ≤

k ≤ d+ 1:

hk(Y) =
k
∑

i=0

(−1)k−i
(

d+1−i
d+1−k

)

fi−1(Y),

where Y stands for either ∂Q, K1 or K2. We define
the f -vector of F to be the (d + 2)-vector f(F) =
(f−1(F), f0(F), . . . , fd(F)) (recall that f−1(F) = −1);
from this we can also define the (d + 2)-vector h(F) =
(h0(F), h1(F), . . . , hd+1(F)), where

(3.6) hk(F) =
k
∑

i=0

(−1)k−i
(

d+1−i
d+1−k

)

fi−1(F),

0 ≤ k ≤ d+1. We call this vector the h-vector of F . As
for polytopal complexes and polytopes, the f -vector of
F defines the h-vector of F and vice versa. In particular,
solving the defining equations of the elements of h(F) in
terms of the elements of f(F) we get, for 0 ≤ k ≤ d+1:

(3.7) fk−1(F) =

d+1
∑

i=0

(

d+1−i
k−i

)

hi(F).



The next lemma associates the elements of h(∂Q),
h(K1), h(K2), h(F), h(∂P1) and h(∂P2). The last
relation in the lemma can be thought of as the analogue
of the Dehn-Sommerville equations for F .

Lemma 3.1. For all 0 ≤ k ≤ d + 1, and j = 1, 2, we
have:

hk(∂Q) = hk(F) + hk(∂P1) + hk(∂P2),(3.8)

hk(Kj) = hk(F) + hk(∂Pj) + gk(∂P3−j),(3.9)

hd+1−k(F) = hk(F) + gk(∂P1) + gk(∂P2).(3.10)

Proof. Let Y denote either F or a pure simplicial
subcomplex of ∂Q. We define the operator Sk(·; δ, ν)
whose action on Y is as follows:

Sk(Y; δ, ν) =
δ

∑

i=1

(−1)k−i
(

δ−i
δ−k

)

fi−ν(Y).

It is easy to verify (cf. [9]) that if Y is δ-dimensional
(this includes the case Y ≡ F), then

Sk(Y; δ, 1) = hk(Y) − (−1)k
(

δ
δ−k

)

f−1(Y),

while if Y is (δ − 1)-dimensional, then

Sk(Y; δ, 1) = hk(Y) − hk−1(Y) − (−1)k
(

δ
δ−k

)

f−1(Y),

and
Sk(Y; δ, 2) = hk−1(Y).

Applying the operator Sk(·; d + 1, 1) to ∂Q and using
relation (3.5) we get:

Sk(∂Q; d+ 1, 1) = Sk(F ; d+ 1, 1)

+ Sk(∂P1; d+ 1, 1)

+ Sk(∂P1; d+ 1, 2)

+ Sk(∂P2; d+ 1, 1)

+ Sk(∂P2; d+ 1, 2),

which, given that f−1(∂Q) = f−1(∂P1) = f−1(∂P2) = 1
and f−1(F) = −1, simplifies to relation (3.8).

Recall that the set of k-faces of K is the disjoint
union of the k-faces of F , the k-faces of ∂P1, and the
k-faces of ∂P2. Moreover, the k-faces of Kj , j = 1, 2,
are either k-faces of K or k-faces of the star Sj of yj
that contain yj. The latter faces are in one-to-one
correspondence with the (k − 1)-faces of ∂Pj , i.e., we
get, for 0 ≤ k ≤ d and j = 1, 2:

fk(Kj) = fk(K) + fk−1(∂Pj),

which finaly gives, for 0 ≤ k ≤ d and j = 1, 2:

fk(Kj) = fk(F) + fk(∂P1) + fk(∂P2) + fk−1(∂Pj).

Once again, applying the operator Sk(·; d+ 1, 1) to the
expression for fk(Kj), we get relation (3.9).

We end the proof of this lemma by considering
relations (3.10). Using (3.8), the Dehn-Sommerville
equations for ∂Q can be rewritten as

hd+1−k(F) + hd+1−k(∂P1) + hd+1−k(∂P2)

= hk(F) + hk(∂P1) + hk(∂P2).

Using the Dehn-Sommerville equations for Pj :
hd−k(∂Pj) = hk(∂Pj), 0 ≤ k ≤ d, j = 1, 2, in
the above relations, we get, for 0 ≤ k ≤ d+ 1:

hd+1−k(F) + hk−1(∂P1) + hk−1(∂P2)

= hk(F) + hk(∂P1) + hk(∂P2),

which finally give relations (3.10). 2

Recall that the main goal in this section is to derive
upper bounds for the elements of h(F). The most
critical step toward this goal is a recurrence inequality
for the elements of h(F) described in the following
lemma.

Lemma 3.2. For all 0 ≤ k ≤ d,

(3.11)
hk+1(F) ≤ n1+n2−d−1+k

k+1 hk(F)

+ n1

k+1 gk(∂P2) +
n2

k+1 gk(∂P1).

Proof. Let us denote by V the vertex set of ∂Q, and
by Vj the vertex set of ∂Pj , j = 1, 2. Let Y/v be a
shorthand for link(v,Y), where v is a vertex of Y, and
Y stands for either ∂Q, K1, K2, ∂P1 or ∂P2. Then (cf.
[10]), for 0 ≤ k ≤ d, we have:
(3.12)

(k + 1)hk+1(∂Q) + (d+ 1− k)hk(∂Q)=
∑

v∈V

hk(∂Q/v),

while, for 0 ≤ k ≤ d− 1 and j = 1, 2, we have:

(k + 1)hk+1(∂Pj) + (d− k)hk(∂Pj) =
∑

v∈Vj

hk(∂Pj/v).

(3.13)

Recall that the link of yj in ∂Q is ∂Pj , and observe that
the link of v ∈ Vj in ∂Q coincides with the link of v in
Kj . Expressing hk(∂Q) in terms of hk(F) and hk(∂Pj),
j = 1, 2, in conjuction with relations (3.12) and (3.13),
and noting that:

hk(∂Q/yj) = hk(∂Pj),

and
∑

v∈V1∪V2

hk(∂Q/v) =
∑

v∈V1

hk(K1/v) +
∑

v∈V2

hk(K2/v),



we arrive at the following equality:

(k + 1)hk+1(F) + (d+ 1− k)hk(F)

=

2
∑

j=1

∑

v∈Vj

[hk(Kj/v)− hk(∂Pj/v)].

Let us now consider a vertex v ∈ V1, and a
shelling S(∂Q) of ∂Q that shells star(v, ∂Q) first and
star(y2, ∂Q) last (such a shelling does exit since v and
y2 are not visible to each other). Notice that S(∂Q)
induces a shelling S(K1) for K1 that shells star(v,K1)
first. On the other hand, S(K1) also induces (cf. [17,
Lemma 8.7]):

(i) a shelling S(K1/v) for K1/v, and
(ii) a shelling S(∂P1) for ∂P1 that shells star(v, ∂P1)

first (recall that ∂P1 ≡ ∂Q/y1 ≡ K1/y1).
Finally, S(∂P1) induces a shelling S(∂P1/v) for ∂P1/v.
The interested reader may refer to Figs. 5–10 at the
end of this paper, where we show a shelling S(K1) of
K1 that shells star(v,K1) first, along with the induced
shellings S(K1/v) and S(∂P1). In particular, Figs. 5–
7 show the step-by-step construction of K1 from S(K1).
Fig. 8 shows the step-by-step construction of star(v,K1)
from S(K1), as well as the corresponding induced con-
struction of K1/v from the induced shelling S(K1/v).
Finally, Figs. 9 and 10 show the step-by-step construc-
tion of ∂P1 from the shelling S(∂P1) induced by S(K1),
along with the corresponding steps of the construction
of K1 from S(K1), i.e., we only depict the steps of S(K1)
that induce facets of S(∂P1).

Let F be a facet in S(K1). If F induces a facet for
S(K1/v), denote by F/v this facet of K1/v. Similarly,
if F induces a facet for S(∂P1), call F1 this facet of
∂P1. Finally, if F1 induces a facet for S(∂P1/v), let
F1/v be this facet of ∂P1/v. Let G ⊆ F , G/v ⊆ F/v,
G1 ⊆ F1 and G1/v ⊆ F1/v be the minimal new
faces associated with F , F/v, F1 and F1/v in the
corresponding shellings, let λ be the cardinality of G,
and observe that F1 = F ∩ ∂P1, F1/v = (F/v) ∩ ∂P1,
G1 = G ∩ ∂P1 and G1/v = (G/v) ∩ ∂P1. As long as
we shell star(v,K1), G induces G/v, and, in fact, the
faces G and G/v coincide (see also Fig. 8). Similarly, as
long as we shell star(v, ∂P1), G1 induces G1/v, and, in
fact, the faces G1 and G1/v coincide. Hence, as long
as we shell star(v,K1) (i.e., as long as v ∈ F ), we
have hk(K1/v) = hk(K1) and hk(∂P1/v) = hk(∂P1),
for all k ≥ 0, and, thus, hk(K1/v) − hk(∂P1/v) =
hk(K1) − hk(∂P1), for all k ≥ 0. After the shelling
S(K1) has left star(v,K1), there are no more facets
in S(K1/v) and S(∂P1/v). This implies that, after
S(K1) has left star(v,K1) (i.e., v is not a vertex of
F anymore), the values of hk(K1/v) and hk(∂P1/v)
remain unchanged for all k ≥ 0. However, the values

of hk(K1) and hk(∂P1) may increase for some k. More
precisely, if F does not induce a facet for S(∂P1), then
hλ(K1) is increased by one, hk(K1) does not change for
k 6= λ, while hk(∂P1) remains unchanged for all k ≥ 0.
Thus, hλ(K1/v)−hλ(∂P1/v) < hλ(K1)−hλ(∂P1), while
hk(K1/v)−hk(∂P1/v) ≤ hk(K1)−hk(∂P1), for all k 6= λ.
If, however, F induces F1, then the minimal new face
G1 in S(∂P1) due to F1 coincides with G (see also
Figs. 9 and 10). Therefore, in this case, both hλ(K1)
and hλ(∂P1) are increased by one, while hk(K1) and
hk(∂P1) remain unchanged for k 6= λ. Summarizing,
for all v ∈ V1, and for all 0 ≤ k ≤ d, we have:

hk(K1/v)− hk(∂P1/v) ≤ hk(K1)− hk(∂P1).

The argument for v ∈ V2 is analogous, which means
that for all v ∈ V2, and for all 0 ≤ k ≤ d:

hk(K2/v)− hk(∂P2/v) ≤ hk(K2)− hk(∂P2).

Using relations (3.9), we, thus, get for every vertex
v ∈ Vj , j = 1, 2, and for all 0 ≤ k ≤ d:

∑

v∈Vj

[hk(Kj/v)− hk(∂Pj/v)] ≤
∑

v∈Vj

[hk(Kj)− hk(∂Pj)]

= nj [hk(F) + gk(∂P3−j)].

We thus arrive at the following inequality, for 0 ≤ k ≤ d:

(k + 1)hk+1(F) + (d+ 1− k)hk(F)

≤ (n1 + n2)hk(F) + n1gk(∂P2) + n2gk(∂P1),

which gives the recurrence inequality in the statement
of the lemma. 2

Using the recurrence relation from Lemma 3.2 we
get the following bounds on the elements of h(F) (a
detailed proof of the lemma may be found in [9]):

Lemma 3.3. For all 0 ≤ k ≤ d+ 1,

hk(F) ≤
(

n1+n2−d−2+k
k

)

−
(

n1−d−2+k
k

)

−
(

n2−d−2+k
k

)

.

Equality holds for all k with 0 ≤ k ≤ l if and only if
l ≤ ⌊d+1

2 ⌋ and P is (l, V1)-bineighborly.

Sketch of proof. The upper bound holds (as equality) for
k = 0. For k ≥ 1, we use induction on k in conjunction
with the upper bounds for the elements of the g-vector
of a polytope (cf. Corollary 2.1).

Regarding the equality claim, the claim for l = 0 is
obvious. Consider now that l ≥ 1. Suppose first that P
is (l, V1)-bineighborly. Then, for all i with 0 ≤ i ≤ l we
have:

fi−1(F) =
(

n1+n2

i

)

−
(

n1

i

)

−
(

n2

i

)

.



Substituting fi−1(F) in the defining equations (3.6) for
h(F), and after some calculations, we conclude that

hk(F) =
(

n1+n2−d−2+k
k

)

−
(

n1−d−2+k
k

)

−
(

n2−d−2+k
k

)

,

for all 0 ≤ k ≤ l.
Suppose now that the inequality for hk(F) holds as

equality for all 0 ≤ k ≤ l. Substituting hi(F), 0 ≤ i ≤ l,
in (3.7), and after some calculations, we get:

fl−1(F) =
(

n1+n2

l

)

−
(

n1

l

)

−
(

n2

l

)

.

Hence, P is (l, V1)-bineighborly. 2

Using the Dehn-Sommerville-like relations (3.10),
along with the bounds from the previous lemma, we de-
rive alternative bounds for hk(F), which are of interest,
since they refine the bounds for hk(F) from Lemma 3.3
for large values of k, namely for k > ⌊d+1

2 ⌋.

Lemma 3.4. For all 0 ≤ k ≤ d+ 1,

hd+1−k(F) ≤
(

n1+n2−d−2+k
k

)

.

Equality holds for all k with 0 ≤ k ≤ l if and only if
l ≤ ⌊d

2⌋ and P is l-neighborly.

Proof. The upper bound claim is a direct consequence
of the Dehn-Sommerville-like relations (3.10) for h(F),
the upper bounds from Lemma 3.3, and the Upper
Bound Theorem for polytopes as stated in Corollary
2.1. Furthermore, the inequality in the statement of the
lemma holds as equality for all 0 ≤ k ≤ l, where l ≤ ⌊d

2⌋,
if and only if the following two conditions hold:

(i) Inequalities in Lemma 3.3 hold as equalities for all
0 ≤ k ≤ l ≤ ⌊d

2⌋.

(ii) For j = 1, 2, and for all 0 ≤ k ≤ l ≤ ⌊d
2⌋, we have

gk(∂Pj) =
(

nj−d−2+k
k

)

.
The first condition holds true if and only if P is (l, V1)-
bineighborly, while the second condition holds true if
and only if Pj , j = 1, 2, is l-neighborly, i.e., conditions
(i) and (ii) hold true if and only if P is l-neighborly. 2

We are now ready to compute upper bounds for
the face numbers of F . Writing f (F) in terms of h(F)
(cf. eq. (3.7)), in conjunction with the bounds on the
elements of h(F) from Lemmas 3.3 and 3.4, we get, for
0 ≤ k ≤ d+ 1:

fk−1(F) =

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k−i

)

hi(F) +
d+1
∑

i=⌊ d+1

2
⌋+1

(

d+1−i
k−i

)

hi(F)

=

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k−i

)

hi(F) +

⌊ d
2
⌋

∑

i=0

(

i
k−d−1+i

)

hd+1−i(F)

≤

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k−i

)(

n1+n2−d−2+i
i

)

−

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k−i

)

2
∑

j=1

(

nj−d−2+i
i

)

+

⌊ d
2
⌋

∑

i=0

(

i
k−d−1+i

)(

n1+n2−d−2+i
i

)

=

d+1

2
∑ ∗

i=0

(

(

d+1−i
k−i

)

+
(

i
k−d−1+i

)

)

(

n1+n2−d−2+i
i

)

−

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k−i

)

2
∑

j=1

(

nj−d−2+i
i

)

= fk−1(Cd+1(n1 + n2))

−

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k−i

)

2
∑

j=1

(

nj−d−2+i
i

)

,

where Cd(n) stands for the cyclic d-polytope with n

vertices, and

δ
2
∑ ∗

i=0

Ti denotes the sum of the elements

T0, T1, . . . , T⌊ δ
2
⌋ where the last term is halved if δ is

even. Since for all 1 ≤ k ≤ d, fk−1(P1 ⊕ P2) = fk(F),
we arrive at the central theorem of this paper, stating
upper bounds for the face numbers of the Minkowski
sum of two d-polytopes (the equality claims follow from
the equality claims in Lemmas 3.3 and 3.4).

Theorem 3.1. Let P1 and P2 be two d-polytopes in E
d,

d ≥ 2, with n1 ≥ d + 1 and n2 ≥ d + 1 vertices,
respectively. Let also P be the convex hull in E

d+1 of
P1 and P2 embedded in the hyperplanes {xd+1 = 0} and
{xd+1 = 1} of Ed+1, respectively. Then, for 1 ≤ k ≤ d,
we have:

fk−1(P 1 ⊕ P2) ≤ fk(Cd+1(n1 + n2))

−

⌊ d+1

2
⌋

∑

i=0

(

d+1−i
k+1−i

)

(

(

n1−d−2+i
i

)

+
(

n2−d−2+i
i

)

)

.

Furthermore:

(i) Equality holds for all 1 ≤ k ≤ l if an only if
l ≤ ⌊d−1

2 ⌋ and P is (l + 1, V1)-bineighborly.

(ii) For d ≥ 2 even, equality holds for all 1 ≤ k ≤ d if
an only if P is ⌊d

2⌋-neighborly.

(iii) For d ≥ 3 odd, equality holds for all 1 ≤ k ≤ d if
an only if P is (⌊d+1

2 ⌋, V1)-bineighborly.



4 Lower bounds

In this section we show that the upper bounds given in
Theorem 3.1 are tight.

Fukuda and Weibel [5] have proved tight bounds for
fk(P1 ⊕ P2 ⊕ . . .⊕ Pr) for d ≥ 4, r ≤ ⌊d

2⌋, and for all k

with 0 ≤ k ≤ ⌊d
2⌋−r. These upper bounds are attained,

for r = 2, when considering two cyclic d-polytopes P1

and P2, with n1 and n2 vertices, respectively, with
disjoint vertex sets. This construction gives, in fact,
tight bounds on the number of k-faces of the Minkowski
sum for all 0 ≤ k ≤ d− 1, when d is even. As in Section
3, embed P1 and P2 in the hyperplanes {xd+1 = 0} and
{xd+1 = 1} of Ed+1, let P = CHd+1({P1, P2}) and, call
F the set of proper faces of P that are neither faces of
P1 nor faces of P2. We then have

f⌊ d
2
⌋−1(F) = f⌊ d

2
⌋−2(P1 ⊕ P2)

=

⌊ d
2
⌋−1

∑

j=1

(

n1

j

)(

n2

⌊ d
2
⌋−j

)

=
(

n1+n2

⌊ d
2
⌋

)

−
(

n1

⌊ d
2
⌋

)

−
(

n2

⌊ d
2
⌋

)

,

which implies that P is (⌊d
2⌋, V1)-bineighborly. Since

P1 and P2 are ⌊d
2⌋-neighborly, we further conclude that

P is ⌊d
2⌋-neighborly, which, by Theorem 3.1, suggests

that fk(P1 ⊕ P2) is equal to its maximum value for all
0 ≤ k ≤ d− 1.

If d ≥ 5 and d is odd, however, the construction
in [5] gives tight bounds for fk(P1 ⊕ P2) for all 0 ≤
k ≤ ⌊d

2⌋ − 2, which, according to Theorem 3.1, are
not sufficient to establish that the bounds are tight
for the face numbers of all dimensions. To establish
the tightness of the bounds in Theorem 3.1 for all k,
we need to construct two d-polytopes P1 and P2, with
n1 and n2 vertices, respectively, such that f⌊ d

2
⌋(F) =

f⌊ d
2
⌋−1(P1 ⊕ P2) =

(

n1+n2

⌊ d+1

2
⌋

)

−
(

n1

⌊ d+1

2
⌋

)

−
(

n2

⌊ d+1

2
⌋

)

, i.e., we

need to construct P1 and P2 such that P is (⌊d+1
2 ⌋, V1)-

bineighborly. We start off with a technical lemma (its
proof may be found in [9]).

Lemma 4.1. Let k ≥ 2 and ℓ ≥ 2, such that k + ℓ is
odd, and let Dk,ℓ(τ) be the (k+ ℓ)× (k+ ℓ) determinant:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1 0 0 · · · 0

x1τ x2τ · · · xkτ 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1

0 0 · · · 0 y1 y2 · · · yℓ

x2
1τ

2 x2
2τ

2 · · · x2
kτ

2 y21 y22 · · · y2ℓ
x3
1τ

3 x3
2τ

3 · · · x3
kτ

3 y31 y32 · · · y3ℓ
...

...
...

...
...

...

xm
1 τm xm

2 τm · · · xm
k τm ym1 ym2 · · · ymℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where m = k + ℓ − 3, 0 < x1 < x2 < . . . < xk,
0 < y1 < y2 < . . . < yℓ, and τ > 0. Then, there
exists some τ0 > 0 such that for all τ ∈ (0, τ0), the
determinant Dk,ℓ(τ) is strictly positive.

In what follows d ≥ 3 and d is odd. We denote
by γ(t), t > 0, the (d − 1)-dimensional moment curve
γ(t) = (t, t2, . . . , td−1), and we define two additional d-
dimensional moment-like curves in E

d+1:

γ1(t; ζ) = (t, ζtd, t2, t3, . . . , td−1, 0), and

γ2(t; ζ) = (ζtd, t, t2, t3, . . . , td−1, 1),

where t > 0 and ζ ≥ 0. Choose n1 + n2 real numbers
αi, i = 1, . . . , n1, and βi, i = 1, . . . , n2, such that
0 < α1 < α2 < . . . < αn1

and 0 < β1 < β2 < . . . < βn2
.

Let τ be a strictly positive parameter determined below,
and let U1 and U2 be the (d− 1)-dimensional point sets

U1 = {γ1(α1τ), . . . ,γ1(αn1
τ)}, and

U2 = {γ2(β1), . . . ,γ2(βn2
)},

where γj(·) is used to denote γj(·; 0), for simplicity. Call
Qj the cyclic (d−1)-polytope defined as the convex hull
of the points in Uj, j = 1, 2. Let Q = CHd+1({Q1, Q2}),
and let FQ be the set of proper faces of Q that are
neither faces of Q1 nor faces of Q2. Then:

Lemma 4.2. There exists a sufficiently small positive
value τ⋆ for τ , such that the (d + 1)-polytope Q is
(⌊d+1

2 ⌋, U1)-bineighborly.

Proof. Let ti = αiτ , tǫi = (αi+ǫ)τ , 1 ≤ i ≤ n1, and si =
βi, s

ǫ
i = βi + ǫ, 1 ≤ i ≤ n2, where ǫ > 0 is chosen such

that αi+ ǫ < αi+1, for all 1 ≤ i < n1, and βi+ ǫ < βi+1,
for all 1 ≤ i < n2. Choose a subset U of U1 ∪U2 of size
⌊d+1

2 ⌋, such that U ∩ Uj 6= ∅, j = 1, 2. We denote by µ
(resp., ν) the cardinality of U ∩U1 (resp., U ∩U2), and,
clearly, µ + ν = ⌊d+1

2 ⌋. Let γ1(ti1 ),γ1(ti2 ), . . . ,γ1(tiµ)
be the vertices in U ∩ U1, where i1 < i2 < . . . < iµ,
and analogously, let γ2(sj1),γ2(sj2), . . . ,γ2(sjν ) be the
vertices in U ∩ U2, where j1 < j2 < . . . < jν . Let
x = (x1, x2, . . . , xd+1) and define the (d + 2) × (d + 2)
determinant HU (x) as shown in Fig. 3. The equation
HU (x) = 0 is the equation of a hyperplane in E

d+1 that
passes through the points in U .

Consider the case u ∈ U1 \ U . Then, u =
γ1(t) = (t, 0, t2, t3, . . . , td−1, 0), t = ατ , for some
α 6∈ {αi1 , αi2 , . . . , αiµ}. In this case, we can transform
HU (u) in the form of the determinant Dk,ℓ(τ) of Lemma
4.1, where k = 2µ+1 and ℓ = 2ν, by subtracting the last
row of HU (u) from the first, and by performing an even
number of row and column swaps. The case u ∈ U2 \U
is entirely analogous.
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Figure 3: The determinant HU (x).

FV (x; ζ) =

∣

∣

∣

∣

1 1 1 · · · 1 1 1 · · · 1
x γ1(ti1 ; ζ) γ1(t

ǫ
i1
; ζ) · · · γ1(t

ǫ
iµ
; ζ) γ2(sj1 ; ζ) γ2(s

ǫ
j1
; ζ) · · · γ2(s

ǫ
jν
; ζ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1 1 1 1 · · · 1 1

x1 ti1 tǫi1 · · · tiµ tǫiµ ζsdj1 ζ(sǫj1 )
d · · · ζsdjν ζ(sǫjν )

d

x2 ζtdi1 ζ(tǫi1 )
d · · · ζtdiµ ζ(tǫiµ )

d sj1 sǫj1 · · · sjν sǫjν
x3 t2i1 (tǫi1)

2 · · · t2iµ (tǫiµ)
2 s2j1 (sǫj1)

2 · · · s2jν (sǫjν )
2

x3 t3i1 (tǫi1)
3 · · · t3iµ (tǫiµ)

3 s3j1 (sǫj1)
3 · · · s3jν (sǫjν )

3

...
...

...
...

...
...

...
...

...

xd td−1
i1

(tǫi1)
d−1 · · · td−1

iµ
(tǫiµ)

d−1 sd−1
j1

(sǫj1)
d−1 · · · sd−1

jν
(sǫjν )

d−1

xd+1 0 0 · · · 0 0 1 1 · · · 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Figure 4: The determinant FV (x; ζ).

Since we have
(n1+n2

⌊ d+1

2
⌋

)

−
( n1

⌊ d+1

2
⌋

)

−
( n2

⌊ d+1

2
⌋

)

possible

subsets U , and for each U there are (n1 + n2 − ⌊d+1
2 ⌋)

vertices in (U1 ∪ U2) \ U choose a value τ⋆ for τ that is
small enough, so that all

(n1 + n2 − ⌊d+1
2 ⌋)

[

(n1+n2

⌊ d+1

2
⌋

)

−
( n1

⌊ d+1

2
⌋

)

−
( n2

⌊ d+1

2
⌋

)

]

possible determinants HU (u) are strictly positive. Call
U⋆
j , j = 1, 2, the vertex sets we get for τ = τ⋆, Q⋆

j the
corresponding polytopes, and Q⋆ the resulting convex
hull. Then for each U⋆ ⊆ U⋆

1 ∪U⋆
2 , where U⋆ ∩U⋆

j 6= ∅,

j = 1, 2, the equation HU⋆(x) = 0, x ∈ E
d+1, is

the equation of a supporting hyperplane for Q⋆ passing
through the vertices of U⋆ (and those only); hence, Q⋆

is (⌊d+1
2 ⌋, U⋆

1 )-bineighborly. 2

We assume we have chosen τ to be equal to τ⋆, and,
call U⋆

j , Q⋆
j , j = 1, 2, the corresponding vertex sets and

(d − 1)-polytopes. Perturb the vertex sets U⋆
1 and U⋆

2 ,
to get the vertex sets V1 and V2 by considering vertices
on the curves γ1(t; ζ) and γ2(t; ζ), with ζ > 0. More
precisely, define the sets V1 and V2 as:

V1 = {γ1(α1τ
⋆; ζ), . . . ,γ1(αn1

τ⋆; ζ)}, and

V2 = {γ2(β1; ζ), . . . γ2(βn2
; ζ)},

where ζ > 0. Let Pj be the convex hull of the vertices
in Vj , j = 1, 2, and notice that Pj is a ⌊d

2⌋-neighborly
d-polytope. Let P = CHd+1({P1, P2}), and let FP be
the set of proper faces of P that are neither faces of P1

nor faces of P2. As in the proof of Lemma 4.2, choose
V ⊆ V1 ∪ V2, such that V ∩ Vj 6= ∅, j = 1, 2, and let
U⋆ be the set of vertices in U⋆

1 ∪ U⋆
2 that correspond

to vertices in V . Let FV (x; ζ) be the determinant
shown in Fig. 4. The equation FV (x; ζ) = 0 is the
equation of a hyperplane in E

d+1 that passes through



the points in V . Since for any v ∈ (V1 ∪ V2) \ V ,
limζ→0+ FV (v; ζ) = FU⋆(u⋆; 0) = HU⋆(u⋆) > 0, where
u⋆ is the point in (U⋆

1 ∪ U⋆
2 ) \ U⋆ that corresponds

to v, we conclude that there exists a value ζ0 > 0
for ζ, such that, for all ζ ∈ (0, ζ0), the equation
FV (x; ζ) = 0 represents a supporting hyperplane for
P , that passes through the vertices of V , and those
only. By choosing ζ to be small enough, so that all

possible (n1+n2−⌊d+1
2 ⌋)

[

(n1+n2

⌊ d+1

2
⌋

)

−
( n1

⌊ d+1

2
⌋

)

−
( n2

⌊ d+1

2
⌋

)

]

determinants FV (v; ζ) are positive, the (d+1)-polytope
P becomes (⌊d+1

2 ⌋, V1)-bineighborly; by Theorem 3.1
this establishes the tightness of our bounds for all
fk(P1 ⊕ P2), 0 ≤ k ≤ d− 1.

5 Summary and open problems

In this paper we have computed the maximum number
of k-faces, fk(P1 ⊕ P2), 0 ≤ k ≤ d, of the Minkowski
sum of two d-polytopes P1 and P2 as a function of the
number of vertices of the two polytopes. Furthermore,
we have presented constructions that attain these max-
imal values. It remains an open problem to extend our
results to the Minkowski sum of r d-polytopes in E

d,
for d ≥ 4 and r ≥ 3. A related open problem is to
express the number of k-faces of the Minkowski sum of
r d-polytopes in terms of the number of facets of these
polytopes. Results in this direction are only known for
d ≤ 3. We would like to derive such expressions for
d ≥ 4.
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Figure 5: Top left: The complex K1 (from Fig. 2) with the vertex v shown in orange. Remaining subfigures
(from left to right and top to bottom): the first eight steps of the construction of K1 from a shelling
S(K1) = {F1, F2, . . . , F26} that shells star(v,K1) first. The facets in green are the facets of star(v,K1). All
other facets are shown in either blue or yellow, depending on whether we see their exterior or interior side (w.r.t.
the interior of the polytope Q). The minimal new faces at each step of the shelling are shown in red; recall that
the minimal new face corresponding to F1 is ∅. In all subfigures, the faces of star(y2, ∂Q) that do not belong to
∂Q/y2 ≡ ∂P2 are shown in gray.
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Figure 6: From left to right and top to bottom: The next twelve steps of the construction of K1 from S(K1).
Colors are as in Fig. 5.
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Figure 7: From left to right and top to bottom: The final twelve steps of the construction of K1 from S(K1).
Colors are, again, as in Fig. 5.
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Figure 8: The first six steps of S(K1) and the corresponding steps in the induced shelling S(K1/v) of K1/v (recall
that S(K1) shells star(v,K1) first). Rows 1 & 3: The steps of S(K1). Rows 2 & 4: The steps of S(K1/v). K1/v
is shown with green solid segments (the facets of K1/v, that have not been added yet, are highlighted as black
solid segments). The minimal new faces at each step of the shellings S(K1) and S(K1/v) are shown in red. As
expected, the minimal new faces, at corresponding steps, coincide.
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Figure 9: The first six steps of the construction of ∂P1 from the shelling S(∂P1) induced by S(K1), along with the
corresponding steps of the construction of K1 from S(K1). Rows 1 & 3: the steps of S(K1) that induce facets for
S(∂P1). Rows 2 & 4: The corresponding steps of S(∂P1). ∂P1 is shown with green solid/dashed segments (the
facets of ∂P1, that have not been added yet, are highlighted as black solid/dashed segments). The minimal new
faces at each step of the shellings S(K1) and S(∂P1) are shown in red. As expected, the minimal new faces, at
corresponding steps, coincide.
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Figure 10: The last three steps of the construction of ∂P1 from the shelling S(∂P1) induced by S(K1), along with
the corresponding steps of the construction of K1 from S(K1). Top row: The steps of S(K1). Bottom row: The
steps of S(K1/v). Colors are as in Fig. 9.
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