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Abstract

We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d−1, of the Minkowski

sum, P1 +P2, of two d-dimensional convex polytopes P1 and P2, as a function of the number of

vertices of the polytopes.

For even dimensions d ≥ 2, the maximum values are attained when P1 and P2 are cyclic d-
polytopes with disjoint vertex sets. For odd dimensions d ≥ 3, the maximum values are attained

when P1 and P2 are ⌊d
2
⌋-neighborly d-polytopes, whose vertex sets are chosen appropriately from

two distinct d-dimensional moment-like curves.
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1 Introduction

Let P , Q be two d-dimensional polytopes, or simply d-polytopes, in the Euclidean d-dimensional
space Ed. Their Minkowski sum, P + Q, which is again a d-polytope in Ed, is defined as the set
{p+ q | p ∈ P, q ∈ Q}. Minkowski sums are fundamental structures in both Mathematics and Com-
puter Science. They appear in a variety of different subjects, including Combinatorial Geometry,
Computational Geometry, Computer Algebra, Computer-Aided Design & Solid Modeling, Motion
Planning, Assembly Planning, Robotics (see [25, 6] and the references therein), and, more recently,
Game Theory [22], Computational Biology [21] and Operations Research [27].

Despite their apparent importance, little is known about the worst-case combinatorial complex-
ity, that is the total number of faces, of Minkowski sums in dimensions four and higher. In two
dimensions, the worst-case complexity of Minkowski sums is well understood. Given two convex
polygons P and Q with n and m vertices, respectively, the maximum number of vertices and edges

∗An earlier version of this paper has appeared in [16].
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of P +Q is n+m [4]. This result can be immediately generalized (e.g., by induction) to any number
of summands. If P is convex and Q is non-convex (or vice versa), the worst-case complexity of
P + Q is Θ(nm), while if both P and Q are non-convex the complexity of their Minkowski sum
can be as high as Θ(n2m2) [4]. When P and Q are 3-polytopes (embedded in the 3-dimensional
Euclidean space), the worst-case complexity of P +Q is Θ(nm), if both P and Q are convex, and
Θ(n3m3), if both P and Q are non-convex (e.g., see [5]). For the intermediate cases, i.e., if only one
of P and Q is convex, see [24].

Given two convex d-polytopes P1 and P2 in Ed, d ≥ 2, with n1 and n2 vertices, respectively, we
can easily get a straightforward upper bound of O((n1 + n2)

⌊ d+1
2

⌋) on the complexity of P1 +P2 by
means of the following reduction: embed P1 and P2 in the hyperplanes {x1 = 0} and {x1 = 1} of
Ed+1, respectively; then the weighted Minkowski sum (1 − λ)P1 + λP2 = {(1 − λ)p1 + λp2 | p1 ∈
P1, p2 ∈ P2}, λ ∈ (0, 1), of P1 and P2 is the intersection of the convex hull, P , of P1 and P2 with the
hyperplane {x1 = λ}. The embedding and reduction described above are essentially what are known
as the Cayley embedding and Cayley trick, respectively, whereas the (d+1)-polytope P is called the
Cayley polytope of P1 and P2 [11]. From this reduction it is obvious that the worst-case complexity
of (1 − λ)P1 + λP2 is bounded from above by the complexity of the Cayley polytope, which is in

O((n1 + n2)
⌊ d+1

2
⌋). Furthermore, the complexity of the weighted Minkowski sum of P1 and P2 is

independent of λ, in the sense that for any value of λ ∈ (0, 1) the polytopes we get by intersecting
P with {x1 = λ} are combinatorially equivalent. In fact, since P1 + P2 is nothing but 1

2P1 +
1
2P2

scaled by a factor of 2, the complexity of the weighted Minkowski sum of two convex polytopes is
the same as the complexity of their unweighted Minkowski sum. The “obvious” upper bound for the
complexity of the Minkowski sum stemming from the complexity of the Cayley polytope is tight in
even dimensions. In odd dimensions, d ≥ 3, however, this upper bound may not be tight; in this

case, the worst-case complexity of P1 +P2 is in Θ(n1n
⌊ d
2
⌋

2 +n2n
⌊ d
2
⌋

1 ) (cf. [15]), which is a refinement
over of the “obvious” upper bound when n1 and n2 asymptotically differ. In terms of exact bounds
on the number of faces of the Minkowski sum of two polytopes, results are known only when the two
summands are convex. Besides the trivial bound for convex polygons (2-polytopes), mentioned in
the previous paragraph, the first result of this nature was shown by Gritzmann and Sturmfels [10]:
given r polytopes P1, P2, . . . , Pr in Ed, with a total of n non-parallel edges, the number of l-faces,
fl(P1 + P2 + · · ·+ Pr), of P1 + P2 + · · ·+ Pr is bounded from above by 2

(
n
l

)∑d−1−l
j=0

(
n−l−1

j

)
. This

bound is attained when the polytopes Pi are zonotopes, and their generating edges are in general
position.

Regarding bounds as a function of the number of vertices or facets of the summands, Fukuda
and Weibel [7] have shown that, given two 3-polytopes P1 and P2 in E3, the number of k-faces of
P1 + P2, 0 ≤ k ≤ 2, is bounded from above as follows:

f0(P1 + P2) ≤ n1n2,

f1(P1 + P2) ≤ 2n1n2 + n1 + n2 − 8,

f2(P1 + P2) ≤ n1n2 + n1 + n2 − 6,

(1)

where nj is the number of vertices of Pj , j = 1, 2. Weibel [25] has also derived similar expressions
in terms of the number of facets mj of Pj , j = 1, 2, namely:

f0(P1 + P2) ≤ 4m1m2 − 8m1 − 8m2 + 16,

f1(P1 + P2) ≤ 8m1m2 − 17m1 − 17m2 + 40,

f2(P1 + P2) ≤ 4m1m2 − 9m1 − 9m2 + 26.

All these bounds are tight. Fogel, Halperin and Weibel [5] have further generalized some of these
bounds in the case of r summands. More precisely, they have shown that given r 3-polytopes
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P1, P2, . . . , Pr in E3, where Pj has mj ≥ d + 1 facets, the number of facets of the Minkowski sum
P1 + P2 + · · ·+ Pr is bounded from above by

∑

1≤i<j≤r

(2mi − 5)(2mj − 5) +
r∑

i=1

mi +

(
r

2

)
,

and this bound is tight.
In dimensions four and higher there are no results that relate the worst-case number of k-faces

of the Minkowski sum of two or more convex polytopes with the number of facets of the summands.
There are, however, bounds on the number of k-faces of the Minkowski sum of convex polytopes, as
a function of the number of vertices of the summands. Fukuda and Weibel [7] have shown that the
number of vertices of the Minkowski sum of r d-polytopes P1, . . . , Pr, where r ≤ d− 1 and d ≥ 2, is
bounded from above by

∏r
i=1 ni, where ni is the number of vertices of Pi, and this bound is tight.

On the other hand, for r ≥ d this bound cannot be attained: Sanyal [23] has shown that for r ≥ d,

f0(P1 + · · ·+ Pr) is bounded from above by
(
1− 1

(d+1)d

)∏r
i=1 ni, which is, clearly, strictly smaller

than
∏r

i=1 ni. For higher-dimensional faces, i.e., for k ≥ 1, Fukuda and Weibel [7] have proven
what they call the trivial upper bound, namely that the number of k-faces of the Minkowski sum of
r d-polytopes is bounded as follows:

fk(P1 + P2 + · · ·+ Pr) ≤
∑

1≤si≤ni
s1+...+sr=k+r

r∏

i=1

(
ni

si

)
, 0 ≤ k ≤ d− 1, (2)

where ni is the number of vertices of Pi, and the si’s take integral values. Furthermore, it is shown
in [7] that these bounds are tight for d ≥ 4, r ≤ ⌊d2⌋, and for all k with 0 ≤ k ≤ ⌊d2⌋− r, i.e., for the
cases where both the number of summands and the dimension of the faces considered is small. The
above-mentioned ranges for the parameters d, r and k for which the trivial upper bound is tight are
not the best possible: Karavelas and Tzanaki [17] have shown that the trivial upper bound is tight
for d ≥ 3, 2 ≤ r ≤ d− 1 and for all 0 ≤ k ≤ ⌊d+r−1

2 ⌋− r, and these ranges are maximal. This result
immediately implies a tight worst-case asymptotic bound on the complexity of the Minkowski sum
of r n-vertex d-polytopes, namely, Θ(n⌊ d+r−1

2
⌋).

We end our discussion of the previous work related to this paper by some results presented in
Weibel [26]. In this paper, Weibel considers the case where the number of summands, r, is at least
as big as the dimension of the polytopes. In this setting he gives a relation between the number of
k-faces of the Minkowski sum of r polytopes, r ≥ d ≥ 2, and the number of k-faces of the Minkowski
sum of subsets of the original set of r polytopes, that are of size at most d − 1. In more detail,
if we have r d-polytopes P1, P2, . . . , Pr in Ed, where r ≥ d, that are in general position, then the
following relation holds for any k with 0 ≤ k ≤ d− 1:

fk(P1 + P2 + · · · + Pr) = α+

d−1∑

j=1

(−1)d−1−j

(
r − 1− j

d− 1− j

) ∑

S∈Cr
j

(fk(PS)− α) ≤
∑

S∈Cr
d−1

fk(PS), (3)

where Crj is the family of subsets of {1, 2, . . . , r} of cardinality j, PS is the Minkowski sum of the
polytopes in S, and, finally, α = 2 if k = 0 and d is odd, α = 0, otherwise. Weibel used this relation
to derive tight upper bounds on the number of vertices of the Minkowski sum of r d-polytopes in
Ed, when r ≥ d. In particular, the following tight upper bound holds (cf. [26, Theorem 3]):

f0(P1 + P2 + · · ·+ Pr) ≤ α+
d−1∑

j=1

(−1)d−1−j

(
r − 1− j

d− 1− j

) ∑

S∈Cr
j

(
∏

i∈S

f0(Pi)− α

)
,
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where Crj and α are defined as for relation (3).
In this paper, we extend previous results on the exact maximum number of faces of the Minkowski

sum of two convex d-polytopes.1 More precisely, we show that given two d-polytopes P1 and P2 in
Ed with n1 ≥ d + 1 and n2 ≥ d + 1 vertices, respectively, the maximum number of k-faces of the
Minkowski sum P1 + P2 is bounded from above as follows:

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))−

⌊ d+1
2

⌋∑

i=0

(
d+ 1− i

k + 1− i

)((
n1 − d− 2 + i

i

)
+

(
n2 − d− 2 + i

i

))
,

where 1 ≤ k ≤ d, and Cd(n) stands for the cyclic d-polytope with n vertices. The expressions above
are shown to be tight for any d ≥ 2 and for all 1 ≤ k ≤ d, and match with the corresponding
expressions for two and three dimensions (cf. rel. (1)), as well as the expressions in (2) for r = 2
and for all 0 ≤ k ≤ ⌊d2⌋ − 2.

To prove the upper bounds we use the Cayley embedding already described above. Given the
d-polytopes P1 and P2 in Ed, we embed P1 and P2 in the hyperplanes {x1 = 0} and {x1 = 1} of
Ed+1. We consider the Cayley polytope P = CHd+1(P1, P2) of P1 and P2, and argue that, for the
purposes of the worst-case upper bounds, it suffices to consider the case where P is simplicial, except
possibly for its two facets P1 and P2. We concentrate on the set F of faces of P that are neither
faces of P1 nor faces of P2. The reason that we focus on F is that there is a bijection between the
k-faces of F and the (k − 1)-faces of P1 + P2, 1 ≤ k ≤ d, and, thus, deriving upper bounds of the
number of (k−1)-faces of P1+P2 reduces to deriving upper bounds for the number of k-faces of F .
We then proceed in a manner analogous to that used by McMullen [20] to prove the Upper Bound
Theorem for polytopes. We consider the f -vector f(F) of F , from this we define the h-vector h(F)
of F , and continue by:

(i) deriving Dehn-Sommerville-like equations for F , expressed in terms of the elements of h(F)
and the g-vectors of the boundary complexes of P1 and P2, and,

(ii) establishing a recurrence relation for the elements of h(F).

From the latter, we inductively compute upper bounds on the elements of h(F), which we combine
with the Dehn-Sommerville-like equations for F , to get refined upper bounds for the “left-most half”
of the elements of h(F), i.e., for the values hk(F) with k > ⌊d+1

2 ⌋. We then establish our upper
bounds by computing f(F) from h(F).

To prove the tightness of our upper bounds, we distinguish between even and odd dimensions. In
even dimensions d ≥ 2, we show that the k-faces of the Minkowski sum of any two cyclic d-polytopes
with n1 and n2 vertices, respectively, whose vertex sets are distinct, attain the upper bounds we
have proved. In odd dimensions d ≥ 3, the construction that establishes the tightness of our bounds
is more intricate. We consider the (d − 1)-dimensional moment curve γ(t) = (t, t2, t3, . . . , td−1),
t > 0, and define two vertex sets V1 and V2 with n1 and n2 vertices on γ(t), respectively. For
i = 1, 2, we define Pi as the convex hull, in Ed, of the vertices in Vi. We embed P1, P2 in Ed+1

so that they lie in two affinely independent hyperplanes of Ed+1 and, then, appropriately perturb
their vertices so that they become combinatorially equivalent to d-dimensional cyclic polytopes. We
next argue that, by the way we have chosen V1 and V2, the number of k-faces of the Minkowski
sum P1 + P2 attains its maximum possible value. At a very high/qualitative level, the appropriate
choice we refer to above, amounts to choosing V1 and V2 so that the parameter values on γ(t) of
the vertices in V1 and V2, lie within two disjoint intervals of R that are sufficiently away from each
other.

1In the rest of the paper, all polytopes are considered to be convex.
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The structure of the rest of the paper is as follows. In Section 2 we formally give various
definitions, and recall a version of the Upper Bound Theorem for polytopes that will be useful later
in the paper. In Section 3 we define what we call bineighborly polytopal complexes and prove some
properties associated with them. The reason that we introduce this new notion is the fact that the
tightness of our upper bounds is shown to be equivalent to requiring that the Cayley polytope of
P1 and P2 is bineighborly. In Section 4 we prove our upper bounds on the number of faces of the
Minkowski sum of two polytopes. In Section 5 we describe our worst-case constructions and show
that these constructions attain the upper bounds proved in Section 4. We conclude the paper with
Section 6, where we summarize our results, and state open problems and directions for future work.

2 Definitions and preliminaries

A convex polytope, or simply polytope, P in Ed is the convex hull of a finite set of points V in Ed. The
minimal subset V ′ of V for which the convex hull of V ′ is P is called the vertex set of P . A polytope
P can equivalently be described as the intersection of all the closed halfspaces containing V . A face
of P is the intersection of P with a hyperplane H for which the polytope is contained in one of the
two closed halfspaces delimited by H. Such a hyperplane is called a supporting hyperplane of P.
The dimension of a face of P is the dimension of its affine hull. A k-face of P is a k-dimensional
face of P . We consider the polytope itself as a trivial d-dimensional face; all the other faces are
called proper faces. We use the term d-polytope to refer to a polytope the trivial face of which is
d-dimensional. For a d-polytope P , the 0-faces of P are its vertices, the 1-faces of P are its edges,
the (d− 2)-faces of P are called ridges, while the (d − 1)-faces are called facets. For 0 ≤ k ≤ d we
denote by fk(P ) the number of k-faces of P . Note that every k-face F of P is also a k-polytope
whose faces are all the faces of P contained in F . A k-simplex in Ed, k ≤ d, is the convex hull of
any k + 1 affinely independent points in Ed. A polytope is called simplicial if all its proper faces
are simplices. Equivalently, P is simplicial if for every vertex v of P and every face F ⊂ P , v does
not belong to the affine hull of the vertices in F \ {v}.

A polytopal complex C is a finite collection of polytopes in Ed such that (i) ∅ ∈ C, (ii) if P ∈ C
then all the faces of P are also in C and (iii) the intersection P ∩Q for two polytopes P and Q in C
is a face of both P and Q. The dimension dim(C) of C is the largest dimension of a polytope in C.
A polytopal complex is called pure if all its maximal (with respect to inclusion) faces have the same
dimension. In this case the maximal faces are called the facets of C. We use the term d-complex to
refer to a polytopal complex whose maximal faces are d-dimensional (i.e., the dimension of C is d).
A polytopal complex is called simplicial if all its faces are simplices. Finally, a polytopal complex
C′ is called a subcomplex of a polytopal complex C if all faces of C′ are also faces of C.

One important class of polytopal complexes arises from polytopes. More precisely, a d-polytope
P , together with all its faces, including the empty face, form a d-complex, denoted by C(P ). The
only maximal face of C(P ), which is clearly the only facet of C(P ), is the polytope P itself. Moreover,
all proper faces of P form a pure (d − 1)-complex, called the boundary complex C(∂P ), or simply
∂P of P . The facets of ∂P are just the facets of P, and the dimension of ∂P is clearly dim(∂P ) =
dim(P )− 1 = d− 1.

Given a d-polytope P in Ed, consider a facet F of P , and call H the supporting hyperplane of
F (with respect to P ). For an arbitrary point p in Ed, we say that p is beyond (resp., beneath) the
facet F of P , if p lies in the open halfspace of H that does not contain P (resp., contains the interior
of P ). Furthermore, we say that an arbitrary point v′ is beyond the vertex v of P if for every facet
F of P containing v, v′ is beyond F , while for every facet F of P not containing v, v′ is beneath F .
For a vertex v of P , the star of v, denoted by star(v, P ), is the polytopal complex of all faces of P
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that contain v, and their faces. The link of v, denoted by link(v, P ) or P/v, is the subcomplex of
star(v, P ) consisting of all the faces of star(v, P ) that do not contain v.

Definition 1 ([28, Remark 8.3]). Let C be a pure simplicial polytopal d-complex. A shelling S(C) of
C is a linear ordering F1, F2, . . . , Fs of the facets of C such that for all 1 < j ≤ s the intersection,

Fj ∩
(⋃j−1

i=1 Fi

)
, of the facet Fj with the previous facets is non-empty and pure (d− 1)-dimensional.

In other words, for every i < j there exists some ℓ < j such that the intersection Fi∩Fj is contained
in Fℓ ∩ Fj, and such that Fℓ ∩ Fj is a facet of Fj.

The shelling definition above is the specialization, to simplicial complexes, of the shelling defini-
tion for general polytopal complexes (cf. [28, Definition 8.1]). We refrained from stating the general
definition, as in the sequel of the paper we will only consider shellings of simplicial polytopal com-
plexes. A polytopal complex that has a shelling is called shellable, while not all polytopal complexes
are shellable. It was a major result in polytopal theory that the boundary complex of a polytope is
always shellable (cf. [2]).

Consider a pure shellable simplicial polytopal complex C and let S(C) = {F1, . . . , Fs} be a
shelling order of its facets. The restriction R(Fj) of a facet Fj is the set of all vertices v ∈ Fj such
that Fj \ {v} is contained in one of the earlier facets.2 The main observation here is that when we
construct C according to the shelling S(C), the new faces at the j-th step of the shelling are exactly
the vertex sets G with R(Fj) ⊆ G ⊆ Fj (cf. [28, Section 8.3]). Moreover, notice that R(F1) = ∅
and R(Fi) 6= R(Fj) for all i 6= j.

The f -vector f(P ) = (f−1(P ), f0(P ), . . . , fd−1(P )) of a d-polytope P (or its boundary complex
∂P ) is defined as the (d+1)-dimensional vector consisting of the numbers fk(P ) of k-faces of P , −1 ≤
k ≤ d−1, where f−1(P ) = 1 refers to the empty set. The h-vector h(P ) = (h0(P ), h1(P ), . . . , hd(P ))
of a d-polytope P (or its boundary complex ∂P ) is defined as the (d+1)-dimensional vector, where

hk(P ) :=
k∑

i=0

(−1)k−i

(
d− i

d− k

)
fi−1(P ), 0 ≤ k ≤ d. (4)

It is easy to verify from the defining equations of the hk(P )’s that the elements of f(P ) determine
the elements of h(P ) and vice versa (see also [28, Section 8.3] and below). In particular, the elements
of f(P ) can be written in terms of the elements of h(P ) as follows:

fk−1(P ) =
k∑

i=0

(
d− i

k − i

)
hi(P ), 0 ≤ k ≤ d. (5)

For simplicial polytopes, the number hk(P ) counts the number of facets of P in a shelling
of ∂P , whose restriction has size k; this number is independent of the particular shelling chosen
(cf. [28, Theorem 8.19]). Moreover, the elements of f(P ) (or, equivalently, h(P )) are not linearly
independent; they satisfy the so called Dehn-Sommerville equations, which can be written in a very
concise form as: hk(P ) = hd−k(P ), 0 ≤ k ≤ d. An important implication of the existence of the
Dehn-Sommerville equations is that if we know the face numbers fk(P ) for all 0 ≤ k ≤ ⌊d2⌋ − 1, we
can determine the remaining face numbers fk(P ) for all ⌊d2⌋ ≤ k ≤ d− 1 (cf. relations (4) and (5)).

Both the f -vector and h-vector of a simplicial d-polytope are related to the so called g-vector. For
a simplicial d-polytope P its g-vector is the (⌊d2⌋+1)-dimensional vector g(P ) = (g0(P ), g1(P ), . . . ,

g⌊ d
2
⌋(P )), where g0(P ) = 1, and gk(P ) = hk(P ) − hk−1(P ), 1 ≤ k ≤ ⌊d2⌋ (see also [28, Section

2For simplicial faces, we identify the face with its defining vertex set.
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8.6]). Using the convention that hd+1(P ) = 0, we can actually extend the definition of gk(P ) for
all 0 ≤ k ≤ d+ 1, while using the Dehn-Sommerville equations for P yields: gd+1−k(P ) = −gk(P ),
0 ≤ k ≤ d+ 1. We can then express f(P ) in terms of g(P ) as follows:

fk−1(P ) =

⌊ d
2
⌋∑

j=0

gj(P )

((
d+ 1− j

d+ 1− k

)
−

(
j

d+ 1− k

))
, 0 ≤ k ≤ d+ 1.

As a final note for this section, the Upper Bound Theorem for polytopes can be expressed in terms
of their g-vector:

Corollary 2 ([28, Corollary 8.38]). We consider simplicial d-polytopes P of fixed dimension d and
fixed number of vertices n = g1(P ) + d+ 1. f(P ) is component-wise maximal if and only if all the
components of g(P ) are maximal, with

gk(P ) =

(
g1(P ) + k − 1

k

)
=

(
n− d− 2 + k

k

)
, (6)

for 0 ≤ k ≤ ⌊d2⌋. Also, fk−1(P ) is maximal if and only if gi(P ) is maximal for all i with i ≤

min{k, ⌊d2⌋}.

The relation between the f -vector and h-vector of a polytopal complex is better manipulated us-
ing generating functions. For a pure simplicial (d−1)-complex C its f -polynomial and h-polynomial,
respectively, are defined as

f(C; t) =
d∑

i=0

fi−1t
d−i = fd + fd−1t+ · · ·+ f−1t

d, (7)

h(C; t) =
d∑

i=0

hit
d−i = hd + hd−1t+ · · ·+ h0t

d. (8)

The relation between the f -vector and h-vector (cf. relations (4) and (5)) can then be expressed as

f(C; t) = h(C; t+ 1) (9)

or equivalently, as
h(C; t) = f(C; t− 1). (10)

If P is a simplicial d-polytope, then its boundary complex ∂P is a simplicial (d − 1)-complex.
We can therefore use relations (9) and (10) to define f(∂P ; t) and h(∂P ; t). Furthermore, we may
define the g-polynomial g(∂P ; t) of P as

g(∂P ; t) :=
d∑

i=0

git
d+1−i = gdt+ gd−1t

2 + · · ·+ g0t
d+1. (11)

The relation between the g- and h-vector of ∂P can be expressed in terms of generating polynomials
as

g(∂P ; t) = (t− 1)h(∂P ; t). (12)

Furthermore, the Dehn-Sommerville equations for a simplicial d-polytope are captured in the fol-
lowing reciprocal relation

td h(∂P ; 1
t
) = h(∂P ; t). (13)

We end this section with a technical lemma. Its proof may be found in Section A of the Appendix.
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Lemma 3. For any d-polytope P

d h(∂P ; t) + (1− t) h′(∂P ; t) =
∑

v∈ vert(P )

h(∂P/v; t), (14)

where vert(P ) is the vertex set of P (or ∂P ), and h′(·; t) denotes the derivative of h(·; t) with respect
to t.

3 Bineighborly polytopal complexes

Let C be a d-complex, with vertex set V . Let {V1, V2} be a partition of V and define C1 (resp., C2)
to be the subcomplex of C consisting of all the faces of C whose vertices are vertices in V1 (resp.,
V2). We start with a useful definition:

Definition 4. Let C be a d-complex. We say that C is (k, V1)-bineighborly if we can partition the
vertex set V of C into two non-empty subsets V1 and V2 = V \ V1 such that for every ∅ ⊂ Sj ⊆ Vj,
j = 1, 2, with |S1|+ |S2| ≤ k, the union S1 ∪ S2 is the vertex set of a (|S1|+ |S2| − 1)-face of C.

We introduce the notion of bineighborly polytopal complexes because they play an important role
when considering the maximum complexity of the Minkowski sum of two d-polytopes P1 and P2.
As we will see in the upcoming section, the number of (k − 1)-faces of P1 + P2 is maximal for all
1 ≤ k ≤ l, l ≤ ⌊d−1

2 ⌋, if and only if the Cayley polytope P of P1 and P2 is (l + 1, V1)-bineighborly,
where V1 stands for the vertex set of P1. Even more interestingly, in any odd dimension d ≥ 3, the
number of k-faces of P1 + P2 is maximized for all 0 ≤ k ≤ d − 1, if and only if P is (⌊d+1

2 ⌋, V1)-
bineighborly. In the rest of this section we highlight some properties of bineighborly polytopal
complexes that will be useful in the upcoming sections.

A direct consequence of our definition is the following: suppose that C is a (l, V1)-bineighborly
polytopal complex, and let F be a k-face of C, 1 ≤ k < l, such that at least one vertex of F is in
V1 and at least one vertex of F is in V2; then F is a k-simplex. Another immediate consequence of
Definition 4 is that a k-neighborly d-complex is also (k, V ′)-bineighborly for every non-empty subset
V ′ of its vertex set:

Corollary 5. Let C be a k-neighborly d-complex, with vertex set V . Then, for every V ′, with
∅ ⊂ V ′ ⊂ V , C is (k, V ′)-bineighborly.

It is easy to see that if a d-complex C is (k, V1)-bineighborly, then it is (k− 1)-neighborly, as the
following straightforward lemma suggests.

Lemma 6. Let C be a (k, V1)-bineighborly d-complex, k ≥ 2. Then C is (k − 1)-neighborly.

Proof. Let S ⊆ V be of size k − 1. Choose v ∈ V \ S such that (S ∪ {v}) ∩ Vi 6= ∅ for i = 1, 2, and
let S′ = S ∪ {v}. Since C is (k, V1)-bineighborly, S′ is the vertex set of a (k − 1)-face of C and, as
argued above, a (k − 1)-simplex. Clearly, S is the vertex set of a (k − 2)-face of S′ and hence an
element of C.

The following lemma is in some sense the converse of Lemma 6.

Lemma 7. Let C be a (k, V1)-bineighborly d-complex and let its two subcomplexes C1 and C2 be
k-neighborly. Then C is also k-neighborly.

Proof. Let S be a non-empty subset of V of size k. Consider the following, mutually exclusive cases:

8



(i) S consists of vertices of both V1 and V2. Then, since C is (k, V1)-bineighborly, S defines a
(k − 1)-face of C.

(ii) S consists of vertices of Vj only, j = 1, 2. Since Cj is k-neighborly, S defines a (k − 1)-face of
Cj . However, Cj is a subcomplex of C, which further implies that S is also a face of C.

Hence, for every vertex subset S of V of size k, S defines a (k−1)-face of C, i.e., C is k-neighborly.

Consider again a d-complex C with vertex set V = V1 ∪ V2, where V1 ∩ V2 = ∅. Let B be the set
of faces of C that are not faces of either C1 or C2. The following lemma gives tight upper bounds for
the number of faces in B. In what follows, we denote by nj the cardinality of Vj , j = 1, 2.

Lemma 8. The number of (k − 1)-faces of B is bounded from above as follows:

fk−1(B) ≤
k−1∑

j=1

(
n1

j

)(
n2

k − j

)
=

(
n1 + n2

k

)
−

(
n1

k

)
−

(
n2

k

)
, 1 ≤ k ≤ d, (15)

where equality holds if and only if C is (k, V1)-bineighborly.

Proof. For the purposes of proving an upper bound for elements of the f -vector of B, it suffices to
consider the case where C1 and C2 are in general position with respect to each other, in which case
B is simplicial.

Under the assumption that B is simplicial, we can identify each face of B with its uniquely
defined vertex set. Consider a (k − 1)-face F of B. The face F is a (k − 1)-simplex and, seen as a
vertex set, it is neither a subset of V1 nor V2. Clearly, the number #kB of vertex sets of cardinality
k of B, which are neither subsets of V1 nor V2, is bounded by above by the number #k(V1, V2)
of k-element subsets of V not fully contained in either V1 or V2; this is precisely the right-hand
side of (15). Finally, notice that #kB is equal to #k(V1, V2) if and only if for every non-empty
subset S1 of V1 and every non-empty subset S2 of V2, where |S1|+ |S2| = k, the set S1 ∪ S2 is the
vertex set of a (k − 1)-face of C. In other words, equality in (15) can only hold if and only if C is
(k, V1)-bineighborly.

4 Upper bounds

Let P1 and P2 be two d-polytopes in Ed, with n1 and n2 vertices, respectively. Let us consider the
Cayley embedding of P1 and P2, i.e., we embed P1 (resp., P2) in the hyperplane Π1 (resp., Π2) of
Ed+1 with equation {x1 = 0} (resp., {x1 = 1}). Then the Minkowski sum P1 + P2 (scaled by a
factor of 2) is the d-polytope we get when intersecting the Cayley polytope P = CHd+1(P1, P2) of
P1 and P2 with the hyperplane Π̃ with equation {x1 = 1

2} (see Fig. 1). This immediately implies
that the k-faces of the Minkowski sum P1 + P2 correspond bijectively to the (k + 1)-faces of P not
contained in either P1 or P2.

Karavelas and Tzanaki [15, Lemma 2] have shown that the vertices of P1 and P2 can be perturbed
in such a way that:

(i) the vertices of P ′
1 and P ′

2 remain in Π1 and Π2, respectively, and both P ′
1 and P ′

2 are simplicial,

(ii) the Cayley polytope P ′ of P ′
1 and P ′

2 is also simplicial, except possibly the facets P ′
1 and P ′

2,
and

(iii) the number of vertices of P ′
1 and P ′

2 is the same as the number of vertices of P1 and P2,
respectively, whereas fk(P ) ≤ fk(P

′) for all k ≥ 1,

9



P1

P2

Π1

Π2

P̃
Π̃

F

Figure 1: The d-polytopes P1 and P2 are embedded in the hyperplanes Π1 = {x1 = 0} and
Π2 = {x1 = 1} of Ed+1. The polytope P̃ is the intersection of of the Cayley polytope of P1 and P2

with the hyperplane Π̃ = {x1 =
1
2}.

where P ′
1 and P ′

2 are the polytopes in Π1 and Π2 we get after perturbing the vertices of P1 and P2,
respectively. In view of this result, it suffices to consider the case where both P1, P2, as well as their
Cayley polytope P , are simplicial complexes, except possibly the facets P1 and P2 of P .

In the rest of this section, we consider that this is the case: P is considered simplicial, with
the possible exception of its two facets P1 and P2. Let F be the set of proper faces of P having
non-empty intersection with Π̃. Note that P̃ = P ∩ Π̃ is a d-polytope, which is, in general, non-
simplicial, and whose proper non-trivial faces are intersections of the form F ∩ Π̃ where F ∈ F . As
we have already observed above, P̃ is combinatorially equivalent to the Minkowski sum P1 + P2.
Furthermore,

fk−1(P1 + P2) = fk−1(P̃ ) = fk(F), 1 ≤ k ≤ d. (16)

The remainder of this section is devoted to deriving upper bounds for fk(F), which, by relation
(16), become upper bounds for fk−1(P1 + P2).

Let K be the polytopal complex whose faces are all the faces of F , as well as the faces of P that
are subfaces of faces in F . Clearly, the d-faces of K are exactly the d-faces of F , and thus, K is a
pure simplicial d-complex, with the d-faces of F being the facets of K. Moreover, the set of k-faces
of K is the disjoint union of the sets of k-faces of F , ∂P1 and ∂P2. This implies:

fk(K) = fk(F) + fk(∂P1) + fk(∂P2), −1 ≤ k ≤ d, (17)

where fd(∂Pj) = 0, j = 1, 2. Since K, ∂P1 and ∂P2 are complexes, we have, by definition, that
f−1(K) = f−1(∂P1) = f−1(∂P2) = 1. In order for relation (17) to be valid for k = −1, we
conventionally set f−1(F) = −1. We next express (17) in terms of generating functions:

f(K; t) =
d+1∑

i=0

fi−1(K)t
d+1−i

10



∂P1

∂P2

Π1

Π2

P̃
Π̃

F

y1

y2

a1

b1

Figure 2: The polytope Q is created by adding two vertices y1 and y2. The vertex y1 (resp., y2) is
below P1 (resp., above P2), and is visible by the vertices of P1 (resp., P2) only.

=
d+1∑

i=0

fi−1(F)t
d+1−i +

d+1∑

i=0

fi−1(∂P1)t
d+1−i +

d+1∑

i=0

fi−1(∂P2)t
d+1−i

= f(F ; t) + t
d∑

i=0

fi−1(∂P1)t
d−i + t

d∑

i=0

fi(∂P2)t
d−i

= f(F ; t) + t f(∂P1; t) + t f(∂P2; t), (18)

where we used that dim(K) = dim(F) = d, dim(∂Pi) = d− 1, and fd(∂P1) = fd(∂P2) = 0.
For i = 1, 2 let yi be a point beyond the facet Pi of P , and beneath every other facet of P (see

Fig. 2). We call Q the (d+ 1)-polytope we get by taking the stellar subdivisions of P with y1 and
y2, respectively (cf. [28, Problem 3.0]). Notice that since the facets P1 and P2 are disjoint, the order
in which we perform the stellar subdivisions does not matter. The boundary complex ∂Q is, then,
the disjoint union of the set of

(i) faces in the star S1 of y1, faces in the star S2 of y2, and

(ii) faces in F .

This implies that:

fk(∂Q) = fk(F) + fk(S1) + fk(S2), 0 ≤ k ≤ d, (19)

11



where f0(F) = 0. Since Si = star(yi, ∂Pi) we can further write

fk(Sj) = fk(∂Pj) + fk−1(∂Pj), 0 ≤ k ≤ d, i = 1, 2, (20)

where f−1(∂Pj) = 1 and fd(∂Pj) = 0. Combining relations (19) and (20), we get:

fk(∂Q) = fk(F) + fk(∂P1) + fk−1(∂P1) + fk(∂P2) + fk−1(∂P2), 0 ≤ k ≤ d. (21)

As for (17), we now express (21) in terms of generating functions (recall that dim(F) =
dim(∂Q) = d, and dim(∂Pi) = d− 1):

f(∂Q; t) = f(F ; t) + (t+ 1)f(∂P1; t) + (t+ 1)f(∂P1; t). (22)

We call Kj , j = 1, 2, the subcomplex of ∂Q consisting of faces of K or faces of Sj . Kj is a pure
simplicial d-complex the facets of which are either facets of Sj or K. Furthermore, Kj is shellable. To
see this, first notice that ∂Q is shellable (Q is a polytope). Consider a line shelling (cf. [28, Section
8.2]) F1, F2, . . . , Fs of ∂Q that shells star(y2, ∂Q) last, and let Fλ+1, Fλ+2, . . . , Fs be the facets of
∂Q that correspond to S2. Trivially, the subcomplex of ∂Q, the facets of which are F1, F2, . . . , Fλ,
is shellable; however, this subcomplex is nothing but K1. The argument for K2 is analogous.

The k-faces of Kj , j = 1, 2, are either k-faces of K or k-faces of the star Sj of yj that contain
yj . The latter faces are in one-to-one correspondence with the (k − 1)-faces of ∂Pj , i.e., we get:

fk(Kj) = fk(K) + fk−1(∂Pj). (23)

Expressing (23) in terms of generating functions we get:

f(Kj ; t) = f(K; t) + f(∂Pj ; t). (24)

Notice that Q is a simplicial (d + 1)-polytope, while K, K1 and K2 are simplicial d-complexes;
hence their h-vectors are well defined. We define the f -vector of F to be the (d+2)-vector f(F) =
(f−1(F), f0(F), . . . , fd(F)), where recall that f−1(F) = −1. From f(F) we can also define the
(d+ 2)-vector h(F) = (h0(F), h1(F), . . . , hd+1(F)), where

hk(F) =
k∑

i=0

(−1)k−i

(
d+ 1− i

d+ 1− k

)
fi−1(F), 0 ≤ k ≤ d+ 1. (25)

We naturally call this vector the h-vector of F (see also relation (4)). As for polytopal complexes
and polytopes, the f -vector of F defines the h-vector of F and vice versa (cf. (4) and (5)).

The next lemma associates the elements of h(∂Q), h(K), h(K1), h(K2), h(F), h(∂P1) and
h(∂P2) via generating functions. The last among the relations in the lemma can be thought of as
the analogue of the Dehn-Sommerville equations for F .

Lemma 9.

h(Q; t) = h(F ; t) + th(P1; t) + th(P2; t) (26)

h(K; t) = h(F ; t) + g(P1; t) + g(P2; t) (27)

h(Kj ; t) = h(K; t) + h(Pj ; t) j = 1, 2, (28)

td+1h(F ; 1
t
) = h(F ; t) + g(∂P1; t) + g(∂P2; t). (29)
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Proof. Using (22) we have:

h(∂Q; t) = f(∂Q; t− 1)

= f(F ; t− 1) + tf(∂P1; t− 1) + tf(∂P1; t− 1)

= h(F ; t) + th(∂P1; t) + th(∂P1; t).

Using (12) and (18) we arrive at the following:

h(K; t) = f(K; t− 1)

= f(F ; t− 1) + (t− 1)f(∂P1; t− 1) + (t− 1)f(∂P2; t− 1)

= h(F ; t) + (t− 1)h(∂P1; t) + (t− 1)h(∂P2; t)

= h(F ; t) + g(∂P1; t) + g(∂P2; t).

Similarly, from (24) we get:

h(Kj ; t) = f(Kj ; t− 1) = f(K; t− 1) + f(∂Pj ; t− 1) = h(K; t) + h(∂Pj ; t).

To prove (29) recall the Dehn-Sommerville equations (13) for the (d+ 1)-polytope ∂Q and the
d-polytopes ∂Pi, i = 1, 2:

td+1h(∂Q; 1
t
) = h(∂Q; t) (30)

and
tdh(∂Pi;

1
t
) = h(∂Pi; t).

Substituting 1
t

for t in (26) and multiplying both sides with td+1, we get :

td+1h(∂Q; 1
t
) = td+1h(F ; 1

t
) +

td+1

t
h(∂P1;

1
t
) +

td+1

t
h(∂P2;

1
t
)

= td+1h(F ; 1
t
) + tdh(∂P1;

1
t
) + tdh(∂P2;

1
t
)

= td+1h(F ; 1
t
) + h(∂P1; t) + h(∂P2; t). (31)

Using (26) and (30), relation (31) becomes

td+1h(F ; 1
t
) + h(∂P1; t) + h(∂P2; t) = h(F ; t) + t h(∂P1; t) + t h(∂P2; t),

or equivalently,

td+1h(F ; 1
t
) = h(F ; t) + (t− 1)h(∂P1; t) + (t− 1)h(∂P2; t)

= h(F ; t) + g(∂P1; t) + g(∂P2; t),

which completes our proof.

Definition 10. Let p(t) =
∑d

i=0 pit
i and q(t) =

∑d
i=0 qit

i be two polynomial functions of degree at
most d. We will write p(t) 4 q(t) if and only if p(t) is coefficient-wise less or equal than q(t), i.e.,
pi ≤ qi, 0 ≤ i ≤ d.

Lemma 11. For j = 1, 2 and all v ∈ Vj and we have:

t h(K/v; t)− t g(∂Pj/v; t) 4 h(K; t)− g(∂Pj ; t). (32)
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Proof. We are going to prove our claim for j = 1; the case j = 2 is entirely analogous. To prove
relation (32), we rewrite it in terms of the elements of the h- and g-vectors involved. More precisely,
it suffices to show that, for all 0 ≤ k ≤ d+ 1:

hk(K/v)− gk(∂P1/v) ≤ hk(K)− gk(∂P1). (33)

First, notice that for k = 0 the statement of lemma is trivial since K/v, ∂P1/v,K and ∂P1 are
simplicial complexes and, thus, h0(K/v) = g0(∂P1/v) = h0(K) = g0(∂P1) = 1. Thus, in what
follows we will assume that k > 0.

Fix a vertex v ∈ V1. Call X1 the set of faces of K that are not faces of ∂P1, i.e., X1 = K \ ∂P1.
It is easy to verify that X1 is also the set of faces of K1 that are not faces of S1, i.e., X1 = K1 \ S1.
Similarly, the faces in X1/v is the set of faces K/v which are not faces in ∂P1/v, or, equivalently,
the set of faces of K1/v that are not faces of S1/v, i.e., X1/v = (K1/v) \ (S1/v) (see also the left
two subfigures in Fig. 3). Hence we have:

fk(X1) = fk(K)− fk(∂P1) = fk(K1)− fk(S1), −1 ≤ k ≤ d− 1,

and
fk(X1/v) = fk(K/v)− fk(∂P1/v) = fk(K1/v)− fk(S1/v), −1 ≤ k ≤ d− 2.

Rewriting these equations in terms of generating functions we obtain:

f(X1; t) = f(K; t)− t f(∂P1; t) = f(K1; t)− f(S1; t),

and
f(X1/v; t) = f(K/v; t)− t f(∂P1/v; t) = f(K1/v; t)− f(S1/v; t).

Using (10), we further deduce that:

h(X1; t) = h(K; t)− (t− 1)h(∂P1; t) = h(K; t)− g(∂P1; t) = h(K1; t)− h(S1; t), (34)

and

h(X1/v; t) = h(K/v; t)− (t− 1)h(∂P1/v; t) = h(K/v; t)− g(∂P1/v; t) = h(K1/v; t)− h(S1/v; t).

Consider now a shelling S(∂Q) of ∂Q that shells the star of y1 first and the star of y2 last. Such
a shelling does exist since y1 and y2 are not visible from each other: yj is beyond the facet Pj of C,
j = 1, 2, while P1 and P2 are parallel to each other (the purple numbers in the top-left subfigure of
Fig. 3 indicate such a shelling). The shelling S(∂Q) gives a shelling S(K1) for K1 (we just have to
discard the facets at the end of S(∂Q) that are facets in S2), which shells the star of y1 in ∂Q first.
In turn, S(K1) induces a shelling S(K1/v) for K1/v, which shells the star of y1 in K1/v first (this
induced shelling is shown for the star of v in ∂Q in the top-right subfigure of Fig. 3).3

3For these particular shellings, hk(X1) and hk(X1/v) have a geometric interpretation: hk(X1) (resp., hk(X1/v))
counts the number of restrictions of size k of the facets of K1 (resp., K1/v) in X1 (resp., X1/v) in the shelling S(K1)
(resp., S(K1/v)) of K1 (resp., K1/v).

To see this, rewrite relation (34) in its element-wise form :

hk(K1) = hk(X1) + hk(S1),

and recall that S(K1) shells S1 first. Since the shellings of K1 and S1 coincide as long as we shell S1, we get a
contribution of one to both hk(K1) and hk(S1) for every restriction of S(K1) of size k. After the shelling S(K1) has
left S1, a restriction of size k of the shelling contributes one to hk(K1) and, thus, necessarily, to hk(X1). But these
restrictions are precisely the restrictions corresponding to the facets of X1 in the shelling S(K1). The argumentation
for hk(X1/v) is entirely similar.
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Let us now consider the dual graph G∆(∂Q) of ∂Q, oriented4 according to the shelling S(∂Q),
as well as the dual graph G∆(∂Q/v) of ∂Q/v, also oriented according to the shelling S(∂Q/v) (these
graphs are shown in red in the top two subfigures of Fig. 3). We will denote by V ∆(Y) the vertices
of G∆(∂Q) that are the duals of the facets in ∂Q that belong to Y, where Y stands for a subset of
the set of proper faces of ∂Q; for simplicity we will abbreviate V ∆(∂Q) to V ∆.

Since S(∂Q/v) is induced from S(∂Q), G∆(∂Q/v) is isomorphic to the subgraph of G∆(∂Q)
defined over V ∆(star(v, ∂Q)). Moreover, hk(∂Q) counts the number of vertices of V ∆ of in-degree
equal to k [12], while hk(S1) counts the number of vertices of V ∆(S1) of in-degree k in G∆(∂Q)
(for the particular shelling S(∂Q) of ∂Q that we have chosen). Consequently, hk(X1) counts the
number of vertices of V ∆(X1) of in-degree k in G∆(∂Q); in an analogous manner, we can conclude
that hk(X1/v) counts the number of vertices of V ∆(star(v,X1)) with in-degree k in G∆(∂Q/v)
(refer to the bottom two subfigures of Fig. 3 to verify these facts for the particular example shown
in the figure). Since, however, G∆(∂Q/v) is a subgraph of G∆(∂Q), the number of vertices of
V ∆(star(v,X1)) with in-degree k cannot exceed the number of vertices of V ∆(X1) with in-degree k.
Hence, hk(X1/v) ≤ hk(X1), which is precisely relation (33).

Using Lemma 11 we can now derive the following generating function inequality, which is essen-
tial in our upper bound proof.

Lemma 12. The following inequality holds:

t(1− t) h′(F ; t) 4 [n1 + n2 − t(d+ 1)] h(F ; t) + n1 g(∂P2; t) + n2 g(∂P1; t). (35)

Proof. Let us denote by V the vertex set of ∂Q, and by Vj the vertex set of ∂Pj , j = 1, 2.
Applying Lemma 3 to Q, P1 and P2 we get the following relations:

(d+ 1)h(∂Q; t) + (1− t)h′(∂Q; t) =
∑

v∈V

h(∂Q/v; t), (36)

d h(∂Pj ; t) + (1− t)h′(∂Pj ; t) =
∑

v∈Vj

h(∂Pj/v; t), j = 1, 2. (37)

Recall that the link of yj in ∂Q is ∂Pj , j = 1, 2, and observe that the link of v ∈ Vj in ∂Q coincides
with Kj/v. Expanding relation (36) by means of relation (26) we deduce:

(d+ 1)


h(F ; t) + t

2∑

j=1

h(∂Pj ; t)


+ (1− t)


h′(F ; t) +

2∑

j=1

[h(∂Pj ; t) + th′(∂Pj ; t)]




= (d+ 1)h(F ; t) + (1− t)h′(F ; t) + t[d h(∂P1; t) + (1− t)h′(∂P1; t)]

+ t[d h(∂P2; t) + (1− t)h′(∂P2; t)] + h(∂P1; t) + h(∂P2; t)

=
∑

v∈V

h(∂Q/v; t) = h(∂Q/y1; t) + h(∂Q/y2; t) +
∑

v∈V1∪V2

h(∂Q/v; t)

= h(∂P1; t) + h(∂P2; t) +
∑

v∈V1

h(K1/v; t) +
∑

v∈V2

h(K2/v; t).

Utilizing relations (37), the above equation is equivalent to:

(d+ 1)h(F ; t) + (1− t)h′(F ; t) =
2∑

j=1

∑

v∈Vj

[h(Kj/v; t)− t h(∂Pj/v; t)]. (38)

4Given two facets Fi and Fj in the shelling S(∂Q) (resp., S(∂Q/v)) of ∂Q (resp., ∂Q/v) that share a ridge, the
edge connecting Fi and Fj in the dual graph G∆(∂Q) (resp., G∆(∂Q/v)) is oriented from Fi to Fj if and only if i < j.
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Figure 3: Top left: the complex ∂Q from Fig. 2, cut along the edges y1a1–a1b1–b1y2 and embedded
in the plane. The colored edges are identified. The vertex v is shown in orange. The purple numbers
refer to a shelling of ∂Q that shells star(y1, ∂Q) first and star(y2, ∂Q) last. The directed graph in red
is the dual graph G∆(∂Q) of ∂Q whose edge orientations correspond to the shelling of ∂Q indicated
in the figure. Top right: the complex star(v, ∂Q). The purple numbers refer to the shelling order
of star(v, ∂Q) induced by the shelling in the figure to the left (with the numbers in parenthesis
being the order of the corresponding facets in the shelling of ∂Q). The directed graph in red is
the dual graph G∆(star(v, ∂Q)) of star(v, ∂Q) that corresponds to the shelling of star(v, ∂Q) shown
in the figure; observe that G∆(∂Q/v) is the subgraph of G∆(∂Q) corresponding to the vertices of
G∆(star(v, ∂Q)) that are duals of facets in star(v, ∂Q). Bottom left: the set of faces X1 of ∂Q,
along with the portion of G∆(∂Q) that corresponds to the vertices that are duals of facets of X1.
Bottom right: the set of faces star(v,X1) of star(v, ∂Q), along with the portion of G∆(star(v, ∂Q))
that corresponds to the vertices that are duals of facets of star(v,X1). For the particular example
shown: h(∂Q) = (1, 16, 16, 1), h(∂Q/v) = (1, 4, 1), h(X1) = (0, 8, 9, 0), and h(X1/v) = (0, 3, 1).
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Using an analogous argumentation to that used for deriving relation (24), we deduce that for any
v ∈ Vj , j = 1, 2, we have:

f(Kj/v; t) = f(K/v; t) + f(∂Pj/v; t).

Using relation (10), we readily get:

h(Kj/v; t) = h(K/v; t) + h(∂Pj/v; t).

Substituting in (38), we finally get:

(d+ 1)h(F ; t) + (1− t)h′(F ; t) =
2∑

j=1

∑

v∈Vj

[h(K/v; t) + h(∂Pj/v; t)− th(∂Pj/v; t)]

=
2∑

j=1

∑

v∈Vj

[h(K/v; t)− g(∂Pj/v; t)].

(39)

Thus, by applying Lemma 11, and using relation (28), we get for every vertex v ∈ V1:

t
∑

v∈V1

[h(K/v; t)− g(∂P1/v; t)] 4
∑

v∈V1

[h(K; t)− g(∂P1; t)] = n1 [h(F ; t) + g(∂P2; t)],

Similarly, by applying Lemma 11, and using relation (28), we get for every vertex v ∈ V2:

t
∑

v∈V2

[h(K/v; t)− g(∂P2/v; t)] 4
∑

v∈V2

[h(K; t)− g(∂P2; t)] = n2 [h(F ; t) + g(∂P1; t)].

We thus arrive at the following inequality, for 0 ≤ k ≤ d:

t(d+ 1)h(F ; t) + t(1− t)h′(F ; t) 4 (n1 + n2) h(F ; t) + n1 g(∂P2; t) + n2 g(∂P1; t), (40)

which gives the inequality in the statement of the lemma.

Corollary 13. For all 0 ≤ k ≤ d,

hk+1(F) ≤
n1 + n2 − d− 1 + k

k + 1
hk(F) +

n1

k + 1
gk(∂P2) +

n2

k + 1
gk(∂P1). (41)

Proof. Expanding the generating functions in relation (40) we have:

t
d+1∑

k=0

(d+ 1)hk(F) t
d+1−k + t(1− t)

d+1∑

k=0

(d+ 1− k)hk(F) t
d−k

4 (n1 + n2)
d+1∑

k=0

hk(F) t
d+1−k + n1

d+1∑

k=0

gk(∂P2) t
d+1−k + n2

d+1∑

k=0

gk(∂P1) t
d+1−k,

or, equivalently:

d+1∑

k=0

(d+ 1− k)hk(F) t
d+1−k +

d+1∑

k=0

khk(F) t
d+2−k

4 (n1 + n2)
d+1∑

k=0

hk(F) t
d+1−k + n1

d+1∑

k=0

gk(∂P2) t
d+1−k + n2

d+1∑

k=0

gk(∂P1) t
d+1−k.
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Setting λ = k − 1 in the second sum of the left-hand side we get:

d∑

λ=−1

(λ+ 1)hλ+1(F) t
d+1−λ

4 (n1 + n2 − d− 1 + k)
d+1∑

k=0

hk(F) t
d+1−k

+ n1

d+1∑

k=0

gk(∂P2) t
d+1−k + n2

d+1∑

k=0

gk(∂P1) t
d+1−k.

Equating terms of equal power of t, we get the following relation, for all 0 ≤ k ≤ d:

(k + 1)hk+1(F) ≤ (n1 + n2 − d− 1 + k)hk(F) + n1gk(∂P2) + n2gk(∂P1),

which gives relation (41).

Using the recurrence relation from Corollary 13 we get the following bounds on the elements of
h(F).

Lemma 14. For all 0 ≤ k ≤ d+ 1,

hk(F) ≤

(
n1 + n2 − d− 2 + k

k

)
−

(
n1 − d− 2 + k

k

)
−

(
n2 − d− 2 + k

k

)
. (42)

Equality holds for all k with 0 ≤ k ≤ l if and only if l ≤ ⌊d+1
2 ⌋ and P is (l, V1)-bineighborly.

Proof. We show the desired bound by induction on k. Clearly, the bound holds (as equality) for
k = 0, since

h0(F) = −1 = 1− 1− 1 =

(
n1 + n2 − d− 2 + 0

0

)
−

(
n1 − d− 2 + 0

0

)
−

(
n2 − d− 2 + 0

0

)
. (43)

Suppose now that the bound holds for hk(F), where k ≥ 0. Using the recurrence relation (41), in
conjunction with the upper bounds for the elements of the g-vector of a polytope from Corollary 2,
and since for k ≥ 0, n1 + n2 − d− 1 + k ≥ d+ 1 > 0, we have

hk+1(F) ≤
n1+n2−d−1+k

k+1 hk(F) +
n1
k+1 gk(∂P2) +

n2
k+1 gk(∂P1)

≤ n1+n2−d−1+k
k+1

[(
n1+n2−d−2+k

k

)
−
(
n1−d−2+k

k

)
−
(
n2−d−2+k

k

)]

+ n1
k+1

(
n2−d−2+k

k

)
+ n2

k+1

(
n1−d−2+k

k

)

= n1+n2−d−1+k
k+1

(
n1+n2−d−2+k

k

)
− n1−d−1+k

k+1

(
n1−d−2+k

k

)
− n2−d−1+k

k+1

(
n2−d−2+k

k

)

=
(
n1+n2−d−1+k

k+1

)
−
(
n1−d−1+k

k+1

)
−
(
n2−d−1+k

k+1

)
.

(44)

Let us now turn to our equality claim. The claim for l = 0 is obvious (cf. (43)), so we assume
below that l ≥ 1. Suppose first that P is (l, V1)-bineighborly. Then, we have:

fi−1(F) =

(
n1 + n2

i

)
−

(
n1

i

)
−

(
n2

i

)
, 0 ≤ i ≤ l. (45)

Substituting fi−1(F) from (45) in the defining equations (25) for h(F), we get, for all 0 ≤ k ≤ l:

hk(F) =
k∑

i=0

(−1)k−i
(
d+1−i
d+1−k

)
fi−1(F)
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=
k∑

i=0

(−1)k−i
(
d+1−i
d+1−k

) ((
n1+n2

i

)
−
(
n1

i

)
−
(
n2

i

))

=
k∑

i=0

(−1)k−i
(
d+1−i
d+1−k

)(
n1+n2

i

)
−

k∑

i=0

(−1)k−i
(
d+1−i
d+1−k

)(
n1

i

)
−

k∑

i=0

(−1)k−i
(
d+1−i
d+1−k

)(
n2

i

)

=
(
n1+n2−d−2+k

k

)
−
(
n2−d−2+k

k

)
−
(
n2−d−2+k

k

)
,

where for the last equality we used the fact that
(
d+1−i
d+1−k

)
= 0 for i > k, in conjunction with the

following combinatorial identity (cf. [9, eq. (5.25)], [28, Exercise 8.20]):

∑

0≤k≤l

(
l − k

m

)(
s

k − n

)
(−1)k = (−1)l+m

(
s−m− 1

l −m− n

)
.

In the equation above we set k ← i, l ← d + 1, m ← d + 1 − k, n ← 0, while s stands for either
n1 + n2, n1 or n2. We thus conclude that (42) holds as equality for all 0 ≤ k ≤ l.

Suppose now that inequality (42) holds as equality for all 0 ≤ k ≤ l. Solving (25) in terms of
f(F) (cf. also (5)), and substituting hi(F), 0 ≤ i ≤ l, from (42), we get:

fl−1(F) =
d+1∑

i=0

(
d+1−i
l−i

)
hi(F)

=
d+1∑

i=0

(
d+1−i
l−i

) ((
n1+n2−d−2+i

i

)
−
(
n1−d−2+i

i

)
−
(
n2−d−2+i

i

))

=
d+1∑

i=0

(
d+1−i
l−i

)(
n1+n2−d−2+i

i

)
−

d+1∑

i=0

(
d+1−i
l−i

)(
n1−d−2+i

i

)
−

d+1∑

i=0

(
d+1−i
l−i

)(
n2−d−2+i

i

)

=
d+1∑

i=0

(
d+1−i
d+1−l

)(
n1+n2−d−2+i
n1+n2−d−2

)
−

d+1∑

i=0

(
d+1−i
d+1−l

)(
n1−d−2+i
n1−d−2

)
−

d+1∑

i=0

(
d+1−i
d+1−l

)(
n2−d−2+i
n2−d−2

)
(46)

=
( (d+1)+(n1+n2−d−2)+1
(d+1−l)+(n1+n2−d−2)+1

)
−
( (d+1)+(n1−d−2)+1
(d+1−l)+(n1−d−2)+1

)
−
( (d+1)+(n2−d−2)+1
(d+1−l)+(n2−d−2)+1

)
(47)

=
(

n1+n2

n1+n2−l

)
−
(

n1

n1−l

)
−
(

n2

n2−l

)

=
(
n1+n2

l

)
−
(
n1

l

)
−
(
n2

l

)
,

where, in order to get from (46) to (47), we used the combinatorial identity (cf. [9, eq. (5.26)]):

∑

0≤k≤l

(
l − k

m

)(
q + k

n

)
=

(
l + q + 1

m+ n+ 1

)
,

with k ← i, l← d+1, m← d+1− k, q ← s− d− 2, n← s− d− 2, and s stands for either n1+n2,
n1 or n2. Hence, P is (l, V1)-bineighborly.

Using the Dehn-Sommerville-like relations (49), in conjunction with the bounds from the pre-
vious lemma, we derive alternative bounds for hk(F), which are of interest since they refine the
bounds for hk(F) from Lemma 14 for large values of k, namely for k > ⌊d+1

2 ⌋. More precisely:

Lemma 15. For all 0 ≤ k ≤ d+ 1,

hd+1−k(F) ≤

(
n1 + n2 − d− 2 + k

k

)
. (48)

Equality holds for all k with 0 ≤ k ≤ l if and only if l ≤ ⌊d2⌋ and P is l-neighborly.
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Proof. The Dehn-Sommerville-like relation (29), corresponds to the following equalities for the ele-
ments of h(F):

hd+1−k(F) = hk(F) + gk(∂P1) + gk(∂P2), 0 ≤ k ≤ d+ 1. (49)

The upper bound claim in (48) is, then, a direct consequence of relations (49), the upper bounds
from Lemma 14, and the Upper Bound Theorem for polytopes as stated in Corollary 2.

The rest of the proof deals with the equality claim. In view of the Dehn-Sommerville like
equations hd+1−k(F) = hk(F) + gk(∂P1) + gk(∂P2), the inequality (48) holds as equality for all
0 ≤ k ≤ l, where l ≤ ⌊d2⌋, if and only if the following two conditions hold:

(i) inequality (42) holds as equality for all 0 ≤ k ≤ l ≤ ⌊d2⌋,

(ii) for j = 1, 2, and all 0 ≤ k ≤ l ≤ ⌊d2⌋, we have gk(∂Pj) =
(
nj−d−2+k

k

)
.

The first condition holds true if and only if P is (l, V1)-bineighborly, while the second condition
holds true if and only if Pj , j = 1, 2, is l-neighborly. Therefore, inequality (48) holds as equality for
all 0 ≤ k ≤ l if and only if l ≤ ⌊d2⌋, P is (l, V1)-bineighborly and both P1, P2 are l-neighborly. In
view of Lemma 7, we conclude that equality in (48) holds for all 0 ≤ k ≤ l if and only if l ≤ ⌊d2⌋
and P is l-neighborly.

We are now ready to compute upper bounds for the face numbers of F . Using relation (9) , in
conjunction with the bounds on the elements of h(F) from Lemma 14 and Lemma 15, we get, for
0 ≤ k ≤ d+ 1:

fk−1(F) =

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)
hi(F) +

d+1∑

i=⌊ d+1
2

⌋+1

(
d+1−i
k−i

)
hi(F)

=

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)
hi(F) +

⌊ d
2
⌋∑

i=0

(
i

k−d−1+i

)
hd+1−i(F)

≤

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)((
n1+n2−d−2+i

i

)
−

2∑

j=1

(
nj−d−2+i

i

))
+

⌊ d
2
⌋∑

i=0

(
i

k−d−1+i

)(
n1+n2−d−2+i

i

)

=

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)(
n1+n2−d−2+i

i

)
+

⌊ d
2
⌋∑

i=0

(
i

k−d−1+i

)(
n1+n2−d−2+i

i

)
−

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

) 2∑

j=1

(
nj−d−2+i

i

)

(50)

=

d+1
2∑ ∗

i=0

((
d+1−i
k−i

)
+
(

i
k−d−1+i

)) (
n1+n2−d−2+i

i

)
−

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

) 2∑

j=1

(
nj−d−2+i

i

)
(51)

= fk−1(Cd+1(n1 + n2))−

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

) 2∑

j=1

(
nj−d−2+i

i

)
,

where Cd(n) stands for the cyclic d-polytope with n vertices,
δ
2∑ ∗

i=0

Ti denotes the sum of the elements

T0, T1, . . . , T⌊ δ
2
⌋ where the last term is halved if δ is even, while in order to get from (50) to (51)

we used an identity proved in Section B of the Appendix. The following lemma summarizes our
results.
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Lemma 16. For all 0 ≤ k ≤ d+ 1:

fk−1(F) ≤ fk−1(Cd+1(n1 + n2))−

⌊ d+1
2

⌋∑

i=0

(
d+ 1− i

k − i

)((
n1 − d− 2 + i

i

)
+

(
n2 − d− 2 + i

i

))
,

where Cd(n) stands for the cyclic d-polytope with n vertices. Furthermore:

(i) Equality holds for all 0 ≤ k ≤ l if and only if l ≤ ⌊d+1
2 ⌋ and P is (l, V1)-bineighborly.

(ii) For d ≥ 2 even, equality holds for all 0 ≤ k ≤ d+ 1 if and only if P is ⌊d2⌋-neighborly.

(iii) For d ≥ 3 odd, equality holds for all 0 ≤ k ≤ d+1 if and only if P is (⌊d+1
2 ⌋, V1)-bineighborly.

Since fk−1(P1 + P2) = fk(F) for all 1 ≤ k ≤ d, we arrive at the central theorem of this section,
stating upper bounds for the face numbers of the Minkowski sum of two d-polytopes.

Theorem 17. Let P1 and P2 be two d-polytopes in Ed, d ≥ 2, with n1 ≥ d + 1 and n2 ≥ d + 1
vertices, respectively. Let also P be the Cayley polytope of P1 and P2 in Ed+1. Then, for 1 ≤ k ≤ d,
we have:

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))−

⌊ d+1
2

⌋∑

i=0

(
d+ 1− i

k + 1− i

)((
n1 − d− 2 + i

i

)
+

(
n2 − d− 2 + i

i

))
.

Furthermore:

(i) Equality holds for all 1 ≤ k ≤ l if an only if l ≤ ⌊d−1
2 ⌋ and P is (l + 1, V1)-bineighborly.

(ii) For d ≥ 2 even, equality holds for all 1 ≤ k ≤ d if an only if P is ⌊d2⌋-neighborly.

(iii) For d ≥ 3 odd, equality holds for all 1 ≤ k ≤ d if an only if P is (⌊d+1
2 ⌋, V1)-bineighborly.

5 Tightness of the upper bounds

In the previous section we proved upper bounds on the face numbers of the Minkowski sum P1+P2

of two polytopes P1 and P2, and we provided necessary and sufficient conditions for these bounds to
hold. However, there is one remaining important question: Are these bounds tight? In this section
we give a positive answer to this question.

We recall, from the introductory section, the already known results, and discuss how they
are related to the results in this paper. It is already known (e.g., cf. [4]) that the maximum
number of vertices/edges of the Minkowski sum of two polygons (i.e., 2-polytopes) is the sum of the
vertices/edges of the summands. These match our expressions for d = 2 in Theorem 17. Fukuda
and Weibel [7] have shown tight expressions for the number of k-faces, 0 ≤ k ≤ 2, of the Minkowski
sum of two 3-polytopes P1 and P2, as a function of the number of vertices of P1 and P2. These
maximal values are given in relations (1), and match our expressions for d = 3 in Theorem 17. In
the same paper, Fukuda and Weibel have shown that given r d-polytopes P1, P2, . . . , Pr, the number
of k-faces of P1 +P2 + . . .+Pr is bounded from above as per relation (2). These bounds have been
shown to be tight for d ≥ 4, r ≤ ⌊d2⌋, and for all k with 0 ≤ k ≤ ⌊d2⌋ − r. For r = 2, the upper
bounds in (2) reduce to

fk(P1 + P2) ≤
k+1∑

j=1

(
n1

j

)(
n2

k + 2− j

)
, 0 ≤ k ≤ d− 1, (52)
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and are tight for all k, with 0 ≤ k ≤ ⌊d2⌋ − 2. According to Fukuda and Weibel [7], these upper
bounds are attained when considering two cyclic d-polytopes P1 and P2, with n1 and n2 vertices,
respectively, with disjoint vertex sets. As we show below, this construction gives, in fact, tight
bounds on the number of k-faces of the Minkowski sum for all 0 ≤ k ≤ d− 1, when the dimension
d is even.

Theorem 18. Let d ≥ 2 and d is even. Consider two cyclic d-polytopes P1 and P2 with disjoint
vertex sets on the d-dimensional moment curve, and let nj be the number of vertices of Pj, j = 1, 2.
Then, for all 1 ≤ k ≤ d:

fk−1(P1 + P2) = fk(Cd+1(n1 + n2))−

⌊ d+1
2

⌋∑

i=0

(
d+ 1− i

k + 1− i

)((
n1 − d− 2 + i

i

)
+

(
n2 − d− 2 + i

i

))
,

where Cd(n) stands for the cyclic d-polytope with n vertices.

Proof. Let V1 and V2 be two disjoint sets of points on the d-dimensional moment curve of cardinality
n1 and n2, respectively. Let P1 and P2 be the corresponding cyclic d-polytopes, and call P their
Cayley polytope in Ed+1. As in the previous section, we define F as the set of proper faces of P
whose vertex set has non-empty intersection with both V1 and V2. We then get:

f⌊ d
2
⌋−1(F) = f⌊ d

2
⌋−2(P1 + P2) =

⌊ d
2
⌋−1∑

j=1

(
n1

j

)(
n2

⌊d2⌋ − j

)
=

(
n1 + n2

⌊d2⌋

)
−

(
n1

⌊d2⌋

)
−

(
n2

⌊d2⌋

)
,

which, by Lemma 8, implies that P is (⌊d2⌋, V1)-bineighborly. Using Lemma 7, in conjunction with
the fact that both P1 and P2 are ⌊d2⌋-neighborly, we further conclude that P is ⌊d2⌋-neighborly.
Hence, by Theorem 17, our upper bounds in Theorem 17 are attained for all face numbers of
P1 + P2.

If d ≥ 5 and d is odd, however, the construction in [7] gives tight bounds for fk(P1 + P2) for all
0 ≤ k ≤ ⌊d2⌋ − 2, which according to Theorem 17 are not sufficient to establish that the bounds are
tight for the face numbers of all dimensions. To establish the tightness of the bounds in Theorem
17 for all the face numbers of all dimensions, we need to construct two d-polytopes P1 and P2, with
n1 and n2 vertices, respectively, such that

f⌊ d
2
⌋(F) = f⌊ d

2
⌋−1(P1 + P2) =

(
n1 + n2

⌊d+1
2 ⌋

)
−

(
n1

⌊d+1
2 ⌋

)
−

(
n2

⌊d+1
2 ⌋

)
,

or, equivalently, construct two d-polytopes P1 and P2, such that P is (⌊d+1
2 ⌋, V1)-bineighborly.

The rest of this section is devoted to this construction. Before getting into the technical details
we outline our approach. In what follows d ≥ 3 and d is odd. We denote by γ(t), t > 0, the
(d− 1)-dimensional moment curve, i.e., γ(t) = (t, t2, . . . , td−1), and we define two additional curves
γ1(t; ζ) and γ2(t; ζ) in Ed+1, as follows:

γ1(t; ζ) = (0, t, ζtd, t2, t3, . . . , td−1),

γ2(t; ζ) = (1, ζtd, t, t2, t3, . . . , td−1),
t > 0, ζ ≥ 0. (53)

Notice that γ1(t; ζ) and γ2(t; ζ), with ζ > 0, are d-dimensional moment-like curves,5 embedded in
the hyperplanes {x1 = 0} and {x1 = 1}, respectively. Choose n1+n2 real numbers αi, i = 1, . . . , n1,

5They are images of moment curves under invertible linear transformations.

22



and βi, i = 1, . . . , n2, such that 0 < α1 < α2 < . . . < αn1 and 0 < β1 < β2 < . . . < βn2 . Let τ be a
strictly positive parameter determined below, and let U1 and U2 be the (d − 1)-dimensional point
sets:

U1 = {γ1(α1τ),γ1(α2τ), . . . ,γ1(αn1τ)},

U2 = {γ2(β1),γ2(β2), . . . ,γ2(βn2)}.
(54)

where γj(·) is used to denote γj(·; 0), for simplicity. Notice that U1 and U2 consist of points on
the moment curve γ(t), embedded in the (d− 1)-subspaces {x1 = 0, x3 = 0} and {x1 = 1, x2 = 0}
of Ed+1, respectively. Call Qj the cyclic (d − 1)-polytope defined as the convex hull of the points
in Uj , j = 1, 2. We first show that, for sufficiently small τ , any subset U of ⌊d+1

2 ⌋ vertices of
U1 ∪ U2, such that U ∩ Uj 6= ∅, j = 1, 2, defines a ⌊d2⌋-face of Q = CHd+1({Q1, Q2}); in other
words, we show that, for sufficiently small τ , the (d+1)-polytope Q is (⌊d+1

2 ⌋, U1)-bineighborly. We
then appropriately perturb U1 and U2 (by considering a positive value for ζ) so that they become
d-dimensional. Let V1, V2 be the perturbed vertex sets, and P1, P2 be the resulting d-polytopes
(Vj is the vertex set of Pj). The final step of our construction amounts to considering the Cayley
polytope P of P1 and P2, and arguing that, if the perturbation parameter ζ is sufficiently small,
then P is (⌊d+1

2 ⌋, V1)-bineighborly. In view of Theorem 17, this establishes the tightness of our
bounds for all face numbers of P1 + P2.

We start off with a technical lemma. Its proof may be found in Section C of the Appendix.

Lemma 19. Fix two integers k, ℓ ≥ 2. Let Dk,ℓ(τ) be the (k + ℓ)× (k + ℓ) determinant:

Dk,ℓ(τ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0 0 · · · 0

x1τ x2τ · · · xkτ 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1

0 0 · · · 0 y1 y2 · · · yℓ

x21τ
2 x22τ

2 · · · x2kτ
2 y21 y22 · · · y2ℓ

x31τ
3 x32τ

3 · · · x3kτ
3 y31 y32 · · · y3ℓ

...
...

...
...

...
...

xm1 τm xm2 τm · · · xmk τm ym1 ym2 · · · ymℓ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, m = k + ℓ− 3,

where 0 < x1 < x2 < . . . < xk, 0 < y1 < y2 < . . . < yℓ, and τ > 0. Then, there exists some τ0 > 0
(that depends on the xi’s, the yi’s, k, and ℓ) such that for all τ ∈ (0, τ0), the determinant Dk,ℓ(τ)
is strictly positive.

We now formally proceed with our construction. As described above, consider the vertex sets
U1 and U2 (cf. (54)), and call Qj the cyclic (d − 1)-polytope with vertex set Uj , j = 1, 2. As
in the previous section, call Π̃ the hyperplane of Ed+1 with equation {x1 = λ}, λ ∈ (0, 1). Let
Q = CHd+1({Q1, Q2}), and let FQ be the set of proper faces of Q with non-empty intersection with
Π̃, i.e., FQ consists of all the proper faces of Q, the vertex set of which has non-empty intersection
with both U1 and U2. The following lemma establishes the first step towards our construction.

Lemma 20. There exists a sufficiently small positive value τ⋆ for τ , such that the (d+ 1)-polytope
Q is (⌊d+1

2 ⌋, U1)-bineighborly.

Proof. Let ti = αiτ , tǫi = (αi + ǫ)τ , 1 ≤ i ≤ n1, and si = βi, sǫi = βi + ǫ, 1 ≤ i ≤ n2, where ǫ > 0 is
chosen such that αi + ǫ < αi+1, for all 1 ≤ i < n1, and βi + ǫ < βi+1, for all 1 ≤ i < n2.

Choose a subset U of U1 ∪ U2 of size ⌊d+1
2 ⌋, such that U ∩ Uj 6= ∅, j = 1, 2. We denote

by µ (resp., ν) the cardinality of U ∩ U1 (resp., U ∩ U2), and, clearly, µ + ν = ⌊d+1
2 ⌋. Let
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γ1(ti1),γ1(ti2), . . . ,γ1(tiµ) be the vertices in U ∩ U1, where i1 < i2 < . . . < iµ, and analo-
gously, let γ2(sj1),γ2(sj2), . . . ,γ2(sjν ) be the vertices in U ∩ U2, where j1 < j2 < . . . < jν . Let
x = (x1, x2, . . . , xd+1) and define the (d+ 2)× (d+ 2) determinant HU (x) as follows:

HU (x) = −

∣∣∣∣
1 1 1 · · · 1 1 1 1 · · · 1 1
x γ1(ti1) γ1(t

ǫ
i1
) · · · γ1(tiµ) γ1(t

ǫ
iµ
) γ2(sj1) γ2(s

ǫ
j1
) · · · γ2(sjν ) γ2(s

ǫ
jν
)

∣∣∣∣ .

(55)
The equation HU (x) = 0 is the equation of a hyperplane in Ed+1 that passes through the points in
U .

Consider first the case u ∈ U1 \ U . Then, u = γ1(t) = (0, t, 0, t2, t3, . . . , td−1), t = ατ , for some
α 6∈ {αi1 , αi2 , . . . , αiµ}, in which case HU (u) becomes:

HU (u) = −

∣∣∣∣
1 1 1 · · · 1 1 1 1 · · · 1 1

γ1(t) γ1(ti1) γ1(t
ǫ
i1
) · · · γ1(tiµ) γ1(t

ǫ
iµ
) γ2(sj1) γ2(s

ǫ
j1
) · · · γ2(sjν ) γ2(s

ǫ
jν
)

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1 1 · · · 1 1

t ti1 tǫi1 · · · tiµ tǫiµ 0 0 · · · 0 0

0 0 0 · · · 0 0 1 1 · · · 1 1

0 0 0 · · · 0 0 sj1 sǫj1 · · · sjν sǫjν
t2 t2i1 (tǫi1)

2 · · · t2iµ (tǫiµ)
2 s2j1 (sǫj1)

2 · · · s2jν (sǫjν )
2

t3 t3i1 (tǫi1)
3 · · · t3iµ (tǫiµ)

3 s3j1 (sǫj1)
3 · · · s3jν (sǫjν )

3

...
...

...
...

...
...

...
...

...

td−1 td−1
i1

(tǫi1)
d−1 · · · td−1

iµ
(tǫiµ)

d−1 sd−1
j1

(sǫj1)
d−1 · · · sd−1

jν
(sǫjν )

d−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Observe now that we can transform HU (u) in the form of the determinant Dk,ℓ(τ) of Lemma 19,
where k = 2µ+ 1 and ℓ = 2ν, by means of the following determinant transformations:

(i) Subtract the third row of HU (u) from the first.

(ii) Shift the first column of HU (u) to the right, so that all columns of HU (u) are arranged in
increasing order according to their parameter. Clearly, this can be done with an even number
of column swaps.

The case u ∈ U2 \ U is entirely analogous.
We thus conclude that, for any specific choice of U , and for any specific point u ∈ (U1∪U2)\U ,

there exists some τ0 > 0 (cf. Lemma 19) that depends on u and U and such that for all τ ∈ (0, τ0),
HU (u) > 0. Since the number of all such choices is finite, it suffices to consider a value τ⋆ for τ
that is small enough, so that all possible determinants HU (u) are strictly positive. For this specific
choice of τ , every subset of U of U1∪U2, where |U | = ⌊d+1

2 ⌋, U ∩Uj 6= ∅, j = 1, 2, defines a ⌊d2⌋-face
of Q, which means that Q is (⌊d+1

2 ⌋, U1)-bineighborly.

We are now ready to perform the last step of our construction. In the remainder of this section
we assume that τ is equal to τ⋆, so that the polytopes Q1, Q2 constructed above, have all the
properties mentioned in the proof of Lemma 20. We consider the vertex sets U1, U2 of the polytopes
Q1, Q2, respectively, and perturb them to get the vertex sets V1 and V2. We do this by considering
vertices on the curves γ1(t; ζ) and γ2(t; ζ), with ζ > 0 instead of the curves γ1(t) and γ2(t) (cf.
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(53)). More precisely, define the sets V1 and V2 as:

V1 = {γ1(α1τ
⋆; ζ),γ1(α2τ

⋆; ζ), . . . ,γ1(αn1τ
⋆; ζ)}, and

V2 = {γ2(β1; ζ),γ2(β2; ζ), . . . ,γ2(βn2 ; ζ)},
(56)

where ζ > 0. Let Pj be the convex hull of the vertices in Vj , j = 1, 2, and notice that Pj is a ⌊d2⌋-
neighborly d-polytope. Let P be the Cayley polytope of P1 and P2, and let FP be the set of proper
faces of P , the vertex set of which has non-empty intersection with both V1 and V2. The following
lemma establishes the final step of our construction. In view of Theorem 17, it also establishes the
tightness of our bounds for all face numbers of P1 + P2.

Lemma 21. There exists a sufficiently small positive value ζ⋆ for ζ, such that the (d+ 1)-polytope
P is (⌊d+1

2 ⌋, V1)-bineighborly.

Proof. Similarly to what we have done in the proof of Lemma 20, let ti = αiτ
⋆, tǫi = (αi + ǫ)τ⋆,

1 ≤ i ≤ n1, and si = βi, sǫi = βi + ǫ, 1 ≤ i ≤ n2, where ǫ > 0 is chosen such that αi + ǫ < αi+1, for
all 1 ≤ i < n1, and βi + ǫ < βi+1, for all 1 ≤ i < n2.

Choose V a subset of V1 ∪ V2 of size ⌊d+1
2 ⌋, such that V ∩ Vj 6= ∅, j = 1, 2. Denote by µ

(resp., ν) the cardinality of V ∩ V1 (resp., V ∩ V2). Considering ζ as a small positive parameter,
let γ1(ti1 ; ζ),γ1(ti2 ; ζ), . . . ,γ1(tiµ ; ζ) be the vertices in V ∩ V1, where i1 < i2 < . . . < iµ, and
analogously, let γ2(sj1 ; ζ),γ2(sj2 ; ζ), . . . ,γ2(sjν ; ζ) be the vertices in V ∩ V2, where j1 < j2 < . . . <
jν . Let x = (x1, x2, . . . , xd+1) and define the (d+ 2)× (d+ 2) determinant FV (x; ζ) as:

FV (x; ζ) = −

∣∣∣∣
1 1 1 · · · 1 1 1 · · · 1
x γ1(ti1 ; ζ) γ1(t

ǫ
i1
; ζ) · · · γ1(t

ǫ
iµ
; ζ) γ2(sj1 ; ζ) γ2(s

ǫ
j1
; ζ) · · · γ2(s

ǫ
jν
; ζ)

∣∣∣∣ . (57)

The equation FV (x; ζ) = 0 is the equation of a hyperplane in Ed+1 that passes through the points
in V . We claim that for all vertices v ∈ (V1 ∪ V2) \ V , we have FV (v; ζ) > 0 for sufficiently small ζ.

To prove our claim, observe that

lim
ζ→0+

FV (v; ζ) = FU (u; 0) = HU (u), (58)

where u = limζ→0+ v is the projection of v ∈ Vi \V on the curve γi(t; 0), i = 1, 2, and HU (u) is the
determinant in relation (55) in the proof of Lemma 20, which is positive due to the way we have
chosen τ⋆. Clearly, FV (v; ζ) is a polynomial function in ζ. Since HU (u) > 0, relation (58) implies
that there exists some ζ0 > 0 depending on v and V , such that for all ζ ∈ (0, ζ0), FV (v; ζ) > 0.

We choose a value ζ⋆ for ζ that is small enough so that, for any V ⊆ V1 ∪ V2 with V ∩ Vj 6= ∅,
j = 1, 2, and for all v ∈ (V1 ∪ V2) \ V , the determinant FV (v; ζ

⋆) is strictly positive. Since the
number of such determinants is finite, we conclude that for ζ equal to ζ⋆, every subset V of V1∪V2,
where |V | = ⌊d+1

2 ⌋ and V ∩ Vj 6= ∅, j = 1, 2, defines a face of P ; this means that P is (⌊d+1
2 ⌋, V1)-

bineighborly.

We are now ready to state the second main theorem of this section, that concerns the tightness
of our upper bounds on the number of k-faces of the Minkowski sum of two d-polytopes for all
0 ≤ k ≤ d− 1 and for all odd dimensions d ≥ 3.

Theorem 22. Let d ≥ 3 and d is odd. There exist two ⌊d2⌋-neighborly d-polytopes P1 and P2 with
n1 and n2 vertices, respectively, such that, for all 1 ≤ k ≤ d:

fk−1(P1 + P2) = fk(Cd+1(n1 + n2))−

⌊ d+1
2

⌋∑

i=0

(
d+ 1− i

k + 1− i

)((
n1 − d− 2 + i

i

)
+

(
n2 − d− 2 + i

i

))
,

where Cd(n) stands for the cyclic d-polytope with n vertices.
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6 Summary and open problems

In this paper we have computed the maximum number of k-faces, fk(P1 + P2), 0 ≤ k ≤ d − 1, of
the Minkowski sum of two d-polytopes P1 and P2 as a function of the number of vertices n1 and
n2 of these two polytopes. In even dimensions d ≥ 2, these maximal values are attained if P1 and
P2 are cyclic d-polytopes with disjoint vertex sets. In odd dimensions d ≥ 3, the construction that
achieves the upper bounds is more intricate. Denoting by γ1(t; ζ) and γ2(t; ζ) the d-dimensional
moment-like curves (t, ζtd, t2, t3, . . . , td−1) and (ζtd, t, t2, t3, . . . , td−1), where t > 0 and ζ > 0, we
have shown that these maximum values are attained if P1 and P2 are the d-polytopes with vertex
sets V1 = {γ1(αiτ

⋆; ζ⋆) | i = 1, . . . , n1} and V2 = {γ2(βj ; ζ
⋆) | j = 1, . . . , n2}, respectively, where

0 < α1 < α2 < . . . < αn1 , 0 < β1 < β2 < . . . < βn2 , and τ⋆, ζ⋆ are appropriately chosen, sufficiently
small, positive parameters.

The obvious next step is to extend the results in this paper for the Minkowski sum of r d-
polytopes in Ed, for r ≥ 3 and d ≥ 4. The case r = 3 and d ≥ 2 has already been resolved by
the authors of this paper in collaboration with C. Konaxis [13, 14], while recently Adiprasito and
Sanyal [1] have resolved the general problem for any r, d ≥ 2, as well as for summands of different
dimensions. The Adiprasito and Sanyal approach is using tools from Combinatorial Commutative
Algebra, through a newly developed powerful theory called the relative Reisner-Stanley theory for
simplicial complexes. An alternative proof for the case r < d, that is based on geometric arguments,
has very recently been proposed by the authors of this paper in [18, 19].

A related problem is to express the number of k-faces of the Minkowski sum of r d-polytopes
in terms of the number of facets of these polytopes. Results in this direction are known for d = 2
and d = 3 only (see the introductory section and [5] for the 3-dimensional case). We would like to
derive such expressions for any d ≥ 4 and any number, r, of summands.
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A Proof of Lemma 3

Proof. McMullen [20] in his original proof of the Upper Bound Theorem for polytopes proved that
for any d-polytope P the following relation holds:

(k + 1)hk+1(∂P ) + (d− k)hk(∂P ) =
∑

v∈ vert(P )

hk(∂P/v), 0 ≤ k ≤ d− 1. (59)

Multiplying both sides of (59) by td−k−1, and summing over all 0 ≤ k ≤ d, we get:

d∑

k=0

(k + 1)hk+1(∂P )td−k−1 +
d∑

k=0

(d− k)hk(∂P )td−k−1 =
d∑

k=0

∑

v∈ vert(P )

hk(∂P/v)td−k−1. (60)

For the right-hand side of (60) we have:

d∑

k=0

∑

v∈ vert(P )

hk(∂P/v)td−k−1 =
∑

v∈ vert(P )

d∑

k=0

hk(∂P/v)td−1−k =
∑

v∈ vert(P )

h(∂P/v; t), (61)
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whereas for the left-hand side of (60) we get:

d∑

k=0

(k + 1)hk+1(∂P )td−k−1 +
d∑

k=0

(d− k)hk(∂P )td−k−1

=
d∑

k=0

khk(∂P )td−k +
d∑

k=0

(d− k)hk(∂P )td−k−1

= d
d∑

k=0

hk(∂P )td−k + (1− t)
d∑

k=0

(d− k)hk(∂P )td−k−1

= d h(∂P ; t) + (1− t) h′(∂P ; t).

(62)

Substituting in (60), from (61) and (62), we recover the relation in the statement of the lemma.

B Proof of an identity

In this section we prove the following identity, used in Section 4, to prove the upper bound for
fk−1(F) (see relations (50) and (51)).

Lemma 23. For any d ≥ 2, and any sequence of numbers αi, where 0 ≤ i ≤ ⌊d+1
2 ⌋, we have:

⌊ d+1
2

⌋∑

i=0

(
d+ 1− i

k − i

)
αi +

⌊ d
2
⌋∑

i=0

(
i

k − d− 1 + i

)
αi =

d+1
2∑ ∗

i=0

((
d+ 1− i

k − i

)
+

(
i

k − d− 1 + i

))
αi.

Proof. We start by recalling the definition of the symbol

δ
2∑ ∗

i=0

Ti. This symbol denotes the sum of

the elements T0, T1, . . . , T⌊ δ
2
⌋, where the last term is halved if δ is even. More precisely:

δ
2∑ ∗

i=0

Ti =

{
T0 + T1 + . . .+ T⌊ δ

2
⌋−1 +

1
2T⌊ δ

2
⌋ if δ is even,

T0 + T1 + . . .+ T⌊ δ
2
⌋−1 + T⌊ δ

2
⌋ if δ is odd.

Let us now first consider the case d odd. In this case d+ 1 is even, and we have:

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)
αi +

⌊ d
2
⌋∑

i=0

(
i

k−d−1+i

)
αi =

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)
αi +

⌊ d+1
2

⌋−1∑

i=0

(
i

k−d−1+i

)
αi

=

⌊ d+1
2

⌋−1∑

i=0

((
d+1−i
k−i

)
+
(

i
k−d−1+i

))
αi +

(d+1−⌊ d+1
2

⌋

k−⌊ d+1
2

⌋

)
α⌊ d+1

2
⌋

=

⌊ d+1
2

⌋−1∑

i=0

((
d+1−i
k−i

)
+
(

i
k−d−1+i

))
αi +

1
2

((d+1−⌊ d+1
2

⌋

k−⌊ d+1
2

⌋

)
+
( ⌊ d+1

2
⌋

k−d−1+⌊ d+1
2

⌋

))
α⌊ d+1

2
⌋

=

d+1
2∑ ∗

i=0

((
d+1−i
k−i

)
+
(

i
k−d−1+i

))
αi
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The case d even is even simpler to prove. In this case d+ 1 is odd, hence:

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)
αi +

⌊ d
2
⌋∑

i=0

(
i

k−d−1+i

)
αi =

⌊ d+1
2

⌋∑

i=0

(
d+1−i
k−i

)
αi +

⌊ d+1
2

⌋∑

i=0

(
i

k−d−1+i

)
αi

=

⌊ d+1
2

⌋∑

i=0

((
d+1−i
k−i

)
+
(

i
k−d−1+i

))
αi

=

d+1
2∑ ∗

i=0

((
d+1−i
k−i

)
+
(

i
k−d−1+i

))
αi

This completes the proof.

C Proof of Lemma 19

Before proceeding with the proof of Lemma 19 we need to introduce Vandermonde and general-
ized Vandermonde determinants. Given a vector of n ≥ 2 real numbers x = (x1, x2, . . . , xn), the
Vandermonde determinant VD(x) of x is the n× n determinant

VD(x) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣∣∣

=
∏

1≤i<j≤n

(xj − xi).

From the above expression, it is readily seen that if the elements of x are in strictly increasing order,
then VD(x) > 0. A generalization of the Vandermonde determinant is the generalized Vandermonde
determinant: if, in addition to x, we specify a vector of exponents µ = (µ1, µ2, . . . , µn), where we
require that 0 ≤ µ1 < µ2 < . . . < µn, we can define the generalized Vandermonde determinant
GVD(x;µ) as the n× n determinant:

GVD(x;µ) =

∣∣∣∣∣∣∣∣∣∣∣

xµ1
1 xµ1

2 · · · xµ1
n

xµ2
1 xµ2

2 · · · xµ2
n

xµ3
1 xµ3

2 · · · xµ3
n

...
...

...
xµn

1 xµn

2 · · · xµn
n

∣∣∣∣∣∣∣∣∣∣∣

.

It is a well-known fact that, if the elements of x are in strictly increasing order, then GVD(x;µ) > 0
(for example, see [8] for a proof of this fact).

To prove Lemma 19 we exploit the Cauchy-Binet formula (cf. [3]). Let M be a n × n square
matrix factorized into a product LR of an n×m and an m× n matrix L and R respectively, with
m ≥ n. If J is a subset of {1, 2, . . . ,m} of size n, we denote by L[n],J the n × n matrix whose
columns are the columns of L at indices from J and by RJ,[n] the n× n matrix whose rows are the
rows of R at indices from J. The Cauchy-Binet theorem states that

det(M) = det(LR) =
∑

J∈([m]
n )

det(L[n],J) det(RJ,[n]), (63)

where
(
[m]
n

)
denotes the set of subsets of [m] of size n.
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Proof. The determinant Dk,l(τ) is, clearly, a polynomial function of τ . To prove our lemma, it
suffices to show that the coefficient of the minimum exponent of τ in Dk,l(τ) is strictly positive.

In order to apply the Cauchy-Binet formula in our case, we factorize the matrix ∆k,l(τ), corre-
sponding to the determinant Dk,l(τ), into the product of an (m+3)×2(m+1) and a 2(m+1)×(k+l)
matrix L and R, respectively, as follows (recall that m+ 3 = k + l):

∆k,l(τ) = LR =




I2 0 0 0

0 0 I2 0

0 Im−1 0 Im−1



(

VD(τx) 0

0 VD(y)

)

=

1

2

3

4

5

6
...

m+3




1 2 3 4 · · · m+1︷ ︸︸ ︷
1 0 0 0 · · · 0

1̂ 2̂ 3̂ 4̂ · · · m̂+1︷ ︸︸ ︷
0 0 0 0 · · · 0

0 1 0 0 · · · 0 0 0 0 0 · · · 0

0 0 0 0 · · · 0 1 0 0 0 · · · 0

0 0 0 0 · · · 0 0 1 0 0 · · · 0

0 0 1 0 · · · 0 0 0 1 0 · · · 0

0 0 0 1 · · · 0 0 0 0 1 · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
0 0 0 0 · · · 1 0 0 0 0 · · · 1







1 1 · · · 1 0 0 · · · 0

x1τ x2τ · · · xkτ 0 0 · · · 0

x21τ
2 x22τ

2 · · · x2kτ
2 0 0 · · · 0

x31τ
3 x32τ

3 · · · x3kτ
3 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

xm1 τm xm2 τm · · · xmk τm 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1
0 0 · · · 0 y1 y2 · · · yℓ
0 0 · · · 0 y21 y22 · · · y2ℓ
0 0 · · · 0 y31 y32 · · · y3ℓ...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 ym1 ym2 · · · ymℓ




. (64)

The numbers over and sideways of L indicate the column and row indices, respectively, with k̂ := k+
m+1. We partition the index set J into J1∪J2 where J1 ⊆ {1, . . . ,m+1}, and J2 ⊆ {1̂, 2̂, . . . , m̂+ 1}.
Notice that a term det(L[m+3],J) det(RJ,[k+l]) in the Cauchy-Binet expansion of Dk,l(τ), vanishes in
the following two cases:

(i) i ∈ J1 and ı̂ ∈ J2 for some 3 ≤ i ≤ m + 1; in this case the i-th and ı̂-th columns of L[m+3],J

are identical, and thus det(L[m+3],J ) = 0.

(ii) |J1| 6= k or |J2| 6= l; in this case RJ,[k+l] is a block-diagonal square matrix with non-square
non-zero blocks. The determinant of such a matrix is always zero.6

Furthermore, notice that for any non-vanishing term in the Cauchy-Binet expansion of Dk,l(τ), we
have:

det(RJ,[k+l]) = GVD(τx;µ1)GVD(y;µ2), τx = (τx1, . . . , τxk), y = (y1, . . . , yl),

where µ1 (resp., µ2) is the vector consisting of the elements in {i−1 | i ∈ J1} (resp., {i−(m+1)−1 |
i ∈ J2}) ordered increasingly. The parameter τ appears only in GVD(τx;µ1) and can be factored
out (see (64)). We thus have:

det(RJ,[k+l]) = τM(J) GVD(x;µ1)GVD(y;µ2) > 0, M(J) =
∑

i∈J1

(i− 1),

since GVD(x;µ1) and GVD(y;µ2) are positive due to the way we have chosen x and y.
Among all possible index sets J = J1 ∪ J2 for which the product det(L[m+3],J) det(RJ,[k+l])

does not vanish, we have to find the index set that gives the minimum exponent for τ . Recall
that, in view of condition (ii), the size of J1 is k and the size of J2 is l. The minimum exponent
M(J) is then attained when J1 = J⋆

1 := {1, . . . , k}. In view of condition (i), we have J2 ⊆

6To see this, consider the Laplace expansion of the matrix with respect to the columns of its top-left block.
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{1̂, 2̂, . . . , m̂+ 1} \ {3̂, . . . , k̂}, which leaves no other choice but J2 = J⋆
2 := {1̂, 2̂, k̂ + 1, . . . , m̂+ 1}.

For J⋆ = J⋆
1 ∪ J⋆

2 , the matrix L[m+3],J is:

L[m+3],J⋆ =




I2 0 0 0

0 0 I2 0

0 Ik 0 0

0 0 0 Il


 .

Clearly, L[m+3],J⋆ becomes the identity matrix after 2k row swaps. Hence det(L[m+3],J⋆) = 1, which
further implies that

sign(Dk,l(τ)) = sign(RJ⋆,[k+l]) > 0.
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