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THE MAXIMUM NUMBER OF FACES OF THE MINKOWSKI SUM OF
THREE CONVEX POLYTOPES∗

Menelaos I. Karavelas,†Christos Konaxis,‡Eleni Tzanaki§

Abstract. We derive tight expressions for the maximum number of k-faces, 0 ≤ k ≤ d−1,
of the Minkowski sum, P1 +P2 +P3, of three d-dimensional convex polytopes P1, P2 and P3

in Rd, as a function of the number of vertices of the polytopes, for any d ≥ 2. Expressing the
Minkowski sum as a section of the Cayley polytope C of its summands, counting the k-faces
of P1 + P2 + P3 reduces to counting the (k + 2)-faces of C that contain vertices from each
of the three polytopes. In two dimensions our expressions reduce to known results, while in
three dimensions, the tightness of our bounds follows by exploiting known tight bounds for
the number of faces of r d-polytopes in Rd, where r ≥ d. For d ≥ 4, the maximum values are
attained when P1, P2 and P3 are d-polytopes, whose vertex sets are chosen appropriately
from three distinct d-dimensional moment-like curves.

1 Introduction

We study the Minkowski sum of three d-dimensional convex polytopes, or simply d-poly-
topes, in Rd, and derive tight upper bounds for the number of its k-faces, for 0 ≤ k ≤ d−1,
with respect to the number of vertices of the summands. Given two convex polytopes P1

and P2, their Minkowski sum P1 +P2 is the set {p1 + p2 | p1 ∈ P1, p2 ∈ P2}. This definition
extends to any number of (not necessarily convex) sets of points. The Minkowski sum of
convex polytopes is the convex hull of the Minkowski sum of the vertices of its summands;
naturally, it is convex.

Minkowski sums are widespread operations in Computational Geometry and find
applications in a wide range of areas such as robot motion planning [21], pattern recognition
[28], collision detection [22], Computer-Aided Design, and, very recently, Game Theory [25].
They reflect geometrically some algebraic operations, and capture important properties
of algebraic objects, such as polynomial systems. This makes them especially useful in
Computational Algebra, see e.g., [14, 27, 4].

The geometry of the Minkowski sum can be derived from that of its summands:
its normal fan is the common refinement of the normal fans of the summands (see [31]
for definitions and details). However, its combinatorial structure is not fully understood,
partially due to the fact that most algorithms for computing Minkowski sums have focused
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on low dimensions (see, e.g., [8] for algorithms in three dimensions). The recent development
of algorithms that target high dimensions [9], has led to a more extensive study of their
properties (see, e.g., [29]).

A natural and fundamental question regarding the combinatorial properties of Min-
kowski sums concerns their complexity measured as a function of the vertices or the facets
of the summands. A complete answer, in terms of the number of vertices of the summands
did not exist until very recently [2] (see also Section 7 were we discuss this recent result
in more detail). Deriving tight upper bounds with respect to the number of facets of
the summands seems harder; results are known only for certain classes of polytopes (see
paragraph on previous work below). Knowing the maximum complexity of Minkowski sums
allows quantifying the efficiency of algorithms that compute Minkowski sums.

Preliminaries. Let P be a d-polytope; its dimension is the dimension of its affine span.
The faces of P are ∅, P , and the intersections of P with its supporting hyperplanes. The ∅
and P faces are called improper, while the remaining faces are called proper. Each face of
P is itself a polytope, and a face of dimension k is called a k-face. Faces of P of dimension
0, 1, d− 2 and d− 1 are called vertices, edges, ridges, and facets, respectively.

A d-dimensional polytopal complex, or simply d-complex, C is a finite collection of
polytopes in Rd such that (i) ∅ ∈ C, (ii) if P ∈ C then all the faces of P are also in C and
(iii) the intersection P ∩Q for two polytopes P and Q in C is a face of both. The dimension
dim(C) of C is the largest dimension of a polytope in C. A polytopal complex is called pure
if all its maximal (with respect to inclusion) faces have the same dimension. In this case
the maximal faces are called the facets of C. A polytopal complex is simplicial if all its
faces are simplices. Finally, a polytopal complex C′ is called a subcomplex of a polytopal
complex C if all faces of C′ are also faces of C. For a polytopal complex C, the star of v
in C, denoted star(v,C), is the subcomplex of C consisting of all faces that contain v, and
their faces. The link of v, denoted by C/v, is the subcomplex of star(v,C) consisting of all
the faces of star(v,C) that do not contain v.

One important class of polytopal complexes arises from polytopes. A d-polytope P ,
together with all its faces, form a d-complex, denoted by C(P ). The polytope P itself is the
only maximal face of C(P ), i.e., the only facet of C(P ), and is called the trivial face of C(P ).
Moreover, all proper faces of P form a pure (d − 1)-complex, called the boundary complex
C(∂P ), or simply ∂P , of P . The facets of ∂P are just the facets of P .

For a d-polytope P , or its boundary complex ∂P , we can define its f -vector as
f(P ) = (f−1, f0, f1, . . . , fd−1), where fk = fk(P ) denotes the number of k-faces of P and
f−1(P ) := 1 corresponds to the empty face of P . From the f -vector of P we define its
h-vector as the vector h(P ) = (h0, h1, . . . , hd), where

hk = hk(P ) =

k∑

i=0

(−1)k−i
(
d− i
d− k

)
fi−1(P ), 0 ≤ k ≤ d.

Let C be a pure simplicial d-complex. A shelling S(C) of C is a linear ordering

F1, F2, . . . , Fs of the facets of C such that for all 1 < j ≤ s the intersection, Fj ∩
(⋃j−1

i=1 Fi

)
,
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of the facet Fj with the previous facets is non-empty and pure (d− 1)-dimensional.

Every pure polytopal complex that has a shelling is called shellable. In particular,
the boundary complex of a polytope is always shellable (cf. [3]). Consider a pure shellable
simplicial polytopal complex C and let S(C) = {F1, . . . , Fs} be a shelling order of its facets.
The restriction R(Fj) of a facet Fj is the set of all vertices v ∈ Fj such that Fj \ {v} is
contained in one of the earlier facets.1 The main observation here is that when we construct
C according to the shelling S(C), the new faces at the jth step of the shelling are exactly
the vertex sets G with R(Fj) ⊆ G ⊆ Fj (cf. [31, Section 8.3]). Moreover, notice that
R(F1) = ∅ and R(Fi) 6= R(Fj) for all i 6= j. Using the notion of restrictions we can describe
the h-vector of a shellable simplicial polytopal complex in geometric terms: hk(C) counts
the number of restrictions of size k in a shelling of C, and this number is independent of
the particular shelling chosen (cf. [31, Theorem 8.19]).

Previous work. The complexity of Minkowski sums depends on the geometry of their
summands. Worst-case tight upper bounds offer the best possible alternative when the geo-
metric characteristics of a specific instance of the problem are not accounted for. Gritzman
and Sturmfels [14] were the first to derive tight upper bounds for the number of k-faces of
P1 + · · ·+ Pr, for all 0 ≤ k ≤ d− 1, and d, r ≥ 2, namely:

fk(P1 + · · ·+ Pr) ≤ 2

(
m

k

) d−k−1∑

j=0

(
m− k − 1

j

)
,

where m denotes the number of non-parallel edges of P1, . . . , Pr. Equality occurs when Pi
are generic zonotopes, i.e., when each Pi is a Minkowski sum of edges, and the generating
edges of all polytopes are in general position.

Given two polygons P1 and P2 in two dimensions with n1 and n2 vertices (or edges),
respectively, their Minkowski sum can have at most n1 + n2 vertices; clearly, this bound
holds also for the number of edges of P1 + P2, and generalizes in the obvious way for any
number of summands (cf. [5]).

In three or more dimensions, Fukuda and Weibel [10] have shown what they call
the trivial upper bound : any k-face F of the Minkowski sum

∑r
i=1 Pi is a Minkowski sum

F =
∑r

i=1 Fi of ki-faces Fi of Pi such that k =
∑r

i=1 ki. Since Pi has at most
(
ni
ki+1

)
ki-faces,

where ni is the number of vertices of Pi, 1 ≤ i ≤ r, the sum

Φk+r(n1, n2, . . . , nr) =
∑

06ki6d
k1+···+kr=k

r∏

i=1

(
ni

ki + 1

)
=

∑

16si6ni
s1+...+sr=k+r

r∏

i=1

(
ni
si

)

bounds the number of k-faces of P1 + · · ·+ Pr. Hence given r d-polytopes P1, P2, . . . , Pr in
Rd, where d ≥ 3 and r ≥ 2, we have, for all k ≥ 0:

fk(P1 + P2 + · · ·+ Pr) ≤ Φk+r(n1, n2, . . . , nr). (1)

1For simplicial faces, we identify the face with its defining vertex set.
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In the same paper, Fukuda and Weibel have shown that the trivial upper bound is tight
for: (i) d ≥ 4, 2 ≤ r ≤ bd2c and for all 0 ≤ k ≤ bd2c − r, and (ii) for the number of vertices,
f0(P1 + P2 + · · · + Pr), of P1 + P2 + · · · + Pr, when d ≥ 3 and 2 ≤ r ≤ d − 1. For r ≥ d,
Sanyal [26] has shown that the trivial upper bound for f0(P1 + P2 + · · · + Pr) cannot be
attained, since in this case:

f0(P1 + P2 + · · ·+ Pr) ≤
(

1− 1

(d+ 1)d

) r∏

i=1

ni <

r∏

i=1

ni.

Karavelas and Tzanaki [18] recently extended the range of of d, r and k for which the trivial
upper bound (1) is attained. More precisely, they showed that for any d ≥ 3, 2 ≤ r ≤ d− 1
and for all 0 ≤ k ≤ bd+r−1

2 c − r, there exist r neighborly d-polytopes P1, P2, . . . , Pr in Rd,
for which the number of k-faces of their Minkowski sum attains the trivial upper bound.
Recall that a d-polytope P is neighborly if any subset of bd2c or less vertices is the vertex
set of a face of P . Tight bounds for f0(P1 +P2 + · · ·+Pr), where r ≥ d, have very recently
been shown by Weibel [30], namely:

f0(P1 + P2 + · · ·+ Pr) ≤ α+
d−1∑

j=1

(−1)d−1−j
(
r − 1− j
d− 1− j

) ∑

S∈Xrj

(∏

i∈S
f0(Pi)− α

)
,

where Xrj is the family of subsets of {1, 2, . . . , r} of cardinality j, and α = 2(d− 2bd2c).
Tight bounds for all face numbers, i.e., for all 0 ≤ k ≤ d−1, expressed as a function

of the number of vertices or facets of the summands, were, until very recently, only known
for two d-polytopes when d ≥ 3. Fukuda and Weibel [10] have shown that, given two 3-
polytopes P1 and P2 in R3, the number of k-faces of P1 + P2, 0 ≤ k ≤ 2, is bounded from
above as follows:

f0(P1 + P2) ≤ n1n2,

f1(P1 + P2) ≤ 2n1n2 + n1 + n2 − 8,

f2(P1 + P2) ≤ n1n2 + n1 + n2 − 6,

(2)

where ni is the number of vertices of Pi, i = 1, 2. These bounds are tight. Weibel [29] has
derived analogous tight expressions in terms of the number of facets mi of Pi, i = 1, 2:

f0(P1 + P2) ≤ 4m1m2 − 8m1 − 8m2 + 16,

f1(P1 + P2) ≤ 8m1m2 − 17m1 − 17m2 + 40,

f2(P1 + P2) ≤ 4m1m2 − 9m1 − 9m2 + 26.

(3)

Weibel’s bound for f2(P1 +P2) (cf. rel. (3)) has been generalized to the number of facets of
the Minkowski sum of any number of 3-polytopes by Fogel, Halperin and Weibel [7]; they
have shown that, for r ≥ 2, the following tight bound holds:

f2(P1 + P2 + · · ·+ Pr) ≤
∑

1≤i<j≤r
(2mi − 5)(2mj − 5) +

r∑

i=1

mi +

(
r

2

)
,
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where mi = f2(Pi), 1 ≤ i ≤ r. Finally, Karavelas and Tzanaki [19] have shown that for any
two d-polytopes P1 and P2 in Rd, where d ≥ 4, and for all 1 ≤ k ≤ d, we have:

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))−
b d+1

2
c∑

i=0

(
d+1−i
k+1−i

) ((
n1−d−2+i

i

)
+
(
n2−d−2+i

i

))
, (4)

where ni = f0(Pi), i = 1, 2, and Cd(n) stands for the cyclic d-polytope with n vertices.
The bounds in (4) have been shown to be tight, and match the corresponding, previously
known, bounds for 2- and 3-polytopes (cf. rel. (2)).

Overview. In this work we continue the line of research in [19], extending the methods to
deal with the case of three d-polytopes in Rd. Allowing just one more summand significantly
increases the problem’s intricacy. In particular, deriving Lemmas 6, 7 and 11, which are
essential in proving our upper bounds, requires techniques much more involved than those
used in the case of two polytopes. This is also the case when establishing the tightness
of the upper bounds in Section 6: in our constructions an additional difficulty had to
be overcome, since we require that not only the face numbers of the sum of the three
polytopes are maximal, but also those of the three pairwise sums of the three polytopes.
Even more importantly, the case of three d-polytopes provides a valuable insight towards
our ultimate goal, the general case of r d-polytopes in Rd, for any d, r ≥ 2. Using the tools
and methodology applied in this paper, some of the results obtained here can be generalized
to the case d, r ≥ 2 (see Section 7), while others still remain elusive.

We state our main result:

Theorem 1. Let P1, P2 and P3 be three d-polytopes in Rd, d ≥ 2, with ni ≥ d+ 1 vertices,
1 ≤ i ≤ 3. Then, for all 1 ≤ k ≤ d, we have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+ 2− i
k + 2− i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS − d− 3 + i

i

)

− δ
(bd2c+ 1

k − bd2c

) 3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
,

where [3] = {1, 2, 3}, δ = d − 2bd2c, nS =
∑

i∈S ni, and Cd+2(n[3]) is the cyclic (d + 2)-

polytope with n[3] vertices. Moreover, for any d ≥ 2, there exist three d-polytopes in Rd for
which the bounds above are attained for all 1 ≤ k ≤ d.

To establish the upper bounds (cf. Section 5) we first lift the three d-polytopes in
Rd+2 using an affine basis of R2, and form the convex hull C of the embedded polytopes
in Rd+2. The polytope C is known as the Cayley polytope of the Pi’s. We consider the set
F[3], consisting of the k-faces of C, 2 ≤ k ≤ d + 1, that contain at least one vertex from
each Pi. We then exploit the bijection between the k-faces of F[3] and the (k − 2)-faces of
P1 +P2 +P3 (cf. Section 2) to reduce the derivation of upper bounds for fk−2(P1 +P2 +P3)
and derive upper bounds for fk(F[3]), 2 ≤ k ≤ d+ 1.
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The rest of our upper bound proof follows the main steps of McMullen’s proof of
the Upper bound Theorem for polytopes [24]. In Section 3 we add auxiliary vertices to
appropriate faces of the Cayley polytope C, resulting in a simplicial polytope Q whose
face set contains F[3]. We then consider the f -vector f(∂Q) and the h-vector h(∂Q) of
∂Q and derive expressions for their entries via the corresponding vectors for F[3]. Using
these expressions, we continue by deriving Dehn-Sommerville-like equations for F[3]. As
an intermediate step we define the subcomplex K[3] of C, as the closure under subface
inclusion, of F[3], and derive expressions for its f - and h-vectors (cf. relations (5) and (13)
with R = [3]). This allows us to write the Dehn-Sommerville-like equations for F[3] in the
very concise form:

hd+2−k(F[3]) = hk(K[3]), 0 ≤ k ≤ d+ 2.

In Section 4, using a well known relation by McMullen (cf. rel. (18)), along with
the expressions that relate the h-vector of ∂Q with those of F[3] and K[3], we establish a
recurrence relation for the elements of h(F[3]) (see Lemma 8). This recurrence relation for
the elements of h(F[3]) is then used in Section 5 to prove upper bounds on the elements
of h(F[3]) and h(K[3]). These upper bounds combined with the Dehn-Sommerville-like

equations for F[3], yield refined upper bounds for the values hk(F[3]) when k > bd+2
2 c. We

end by establishing our upper bounds on the number of k-faces, 0 ≤ k ≤ d−1, of P1+P2+P3

by computing f(F[3]) from h(F[3]). At the same time we establish conditions on a subset of
the elements of the vectors f(FR), ∅ ⊂ R ⊆ [3],2 that are sufficient and necessary in order
for the upper bounds in the number of k-faces of P1 + P2 + P3 to be tight for all k (FR
stands for the set of faces of C that have at least one vertex from each Pi for all i ∈ R, but
no vertex from any Pj with j 6∈ R).

In Section 6 we describe the constructions that establish the tightness of our upper
bounds. For d = 2 and d = 3 we rely on previous results. For d ≥ 4 we define three convex
d-polytopes, whose vertices lie on three distinct moment-like d-curves, and show that the
sets FR, ∅ ⊂ R ⊆ [3], associated with them satisfy the sufficient and necessary conditions
mentioned above. We conclude with Section 7, where we discuss the case of four or more
summands and directions for future work.

2 The Cayley trick

Recall that [3] stands for the set {1, 2, 3}, and denote by Xj := {R ⊆ [3] | |R| = j}, the
set of all subsets of [3] of cardinality j, for 1 ≤ j ≤ 3. Consider three d-polytopes P1,
P2 and P3 in Rd, and choose the basis e2,1 = (0, 0), e2,2 = (1, 0), e2,3 = (0, 1), as the
preferred affine basis of R2. The Cayley embedding of the Pi’s is defined via the maps
µi(x) = (e2,i,x), and we denote by C the (d+ 2)-polytope we get by taking the convex hull
of the sets Vi = {µi(v) | v ∈ Vi}, where Vi is the vertex set of Pi. This is known as the
Cayley polytope of the Pi’s (see Fig. 1(a)). Similarly, by taking appropriate affine bases, we
define the Cayley polytope CR of all polytopes Pi, i ∈ R, where R ∈ Xj , j = 1, 2. These are
the Cayley polytopes of all pairs of Pi’s (see Fig. 1(b)) and, trivially, the Pi’s themselves.
Clearly, CR ≡ PR, for R ∈ X1, and C ≡ C[3].

2The symbol “⊂” refers to the proper subset relationship, also denoted as “(” in the literature.
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For any ∅ ⊂ R ⊆ [3], let VR denote the union of the sets Vi, i ∈ R. Below we identify
CR ⊂ Rd+|R|−1, for all R ∈ Xj , j = 1, 2, with the affinely isomorphic and combinatorially
equivalent polytope conv(VR) ⊂ C ⊂ Rd+2. This allows us to study properties of these
subsets of C by examining the corresponding Cayley polytopes that lie in lower dimensional
spaces.

We denote by FR, ∅ ⊂ R ⊆ [3], the set of proper faces of CR, with the property that
F ∈ FR if F ∩ Vi 6= ∅, for all i ∈ R. In other words, FR consists of all the proper faces of
CR that have at least one vertex from each Vi, for all i ∈ R, (see also Figs. 1(c) and 1(d)).
Clearly, if |R| ≥ 2, then f0(FR) = 0. Moreover, if R ∈ X1 then FR ≡ ∂PR. The dimension
of FR is the maximum dimension of the faces in FR, i.e., dim(FR) = maxF∈FR dim(F ) =
d+ |R| − 2.

Let W be the d-flat of Rd+2:

W = {1
3e2,1 + 1

3e2,2 + 1
3e2,3} × Rd,

and consider the weighted Minkowski sum 1
3P1 + 1

3P2 + 1
3P3. Note that this is nothing more

than P1 +P2 +P3, scaled down by 1
3 , hence these two sums are combinatorially equivalent.

The Cayley trick [16] says that the intersection of W with C is combinatorially equivalent
(isomorphic) to the weighted Minkowski sum 1

3P1+ 1
3P2+ 1

3P3, hence, also to the unweighted
Minkowski sum P1 +P2 +P3 (refer to Fig. 1(a) again). Moreover, every face of P1 +P2 +P3

is the intersection of a face of F[3] with W . This implies that:

fk−1(P1 + P2 + P3) = fk+1(F[3]), 1 ≤ k ≤ d.

In the rest of the paper we assume that C is “as simplicial as possible”, i.e., all faces
of C are simplicial except for the trivial faces of CR, for all ∅ ⊂ R ⊆ [3]. Otherwise, we can
employ the so called bottom-vertex triangulation [23, Section 6.5, pp. 160–161], where we
triangulate every face of C except the trivial faces of CR (i.e., CR themselves and not their
proper faces) for all ∅ ⊂ R ⊆ [3]. The resulting complex is polytopal (cf. [6]) and all of
its faces are simplicial, except for the seven trivial faces above. Moreover, it has the same
number of vertices as C, while the number of its k-faces is never less than the number of
k-faces of C.

Under the “as simplicial as possible” assumption above, the faces in FR, ∅ ⊂ R ⊆ [3],
are simplicial. We denote byKR the closure, under subface inclusion, of FR, i.e., KR contains
all the faces in FR and all the faces that are subfaces of faces in FR. It is easy to see that
KR does not contain any of the trivial faces of CS , S ⊆ R, and, thus, KR is a pure simplicial
(d + |R| − 2)-complex, whose facets are precisely the facets in FR. It is also clear that
FR ≡ KR ≡ ∂PR, for R ∈ X1. Moreover, K[3] is the boundary complex ∂C of the Cayley
polytope C, except for its three facets (i.e., (d + 1)-faces) CR, R ∈ X2, and its three ridges
(i.e., d-faces) Pi, 1 ≤ i ≤ 3.

Consider a k-face F of KR, ∅ ⊂ R ⊆ [3]. By the definition of KR, F is either a k-face
of FR, or a k-face of FS for some nonempty subset S of R. Hence:

fk(KR) =
∑

∅⊂S⊆R
fk(FS), −1 ≤ k ≤ d+ |R| − 2, (5)
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Figure 1: (a) Schematic of the Cayley trick for three polytopes. The three polytopes P1,
P2 and P3 are shown in red, green and blue, respectively. The polytope 1

3P1 + 1
3P2 + 1

3P3

is shown in black; (b) The Cayley polytopes CR, R ∈ X2 as subsets of C: C{1,2} (light
blue), C{1,3} (gray), C{2,3} (green); (c) The Cayley polytope C{2,3} (green) and the set F{2,3}
(orange); (d) The set of faces F[3] (orange) of the Cayley polytope C.

where, in order for the above equation to hold for k = −1, we set f−1(FR) = (−1)|R|−1. By
inclusion-exclusion, we can easily see that

fk(FR) =
∑

∅⊂S⊆R
(−1)|R|−|S|fk(KS), −1 ≤ k ≤ d+ |R| − 2. (6)

In what follows we use the convention that fk(FR) = 0, for any k < −1 or k >
d+ |R| − 2.
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Figure 2: The (d+ 2)-polytope Q.

3 f-vectors, h-vectors and Dehn-Sommerville-like equations

The Cayley polytope C need not be simplicial. In order to construct a simplicial poly-
tope Q from C, we define auxiliary vertices in Rd+2 not contained in Vi, i = 1, 2, 3. The
Dehn-Sommerville equations of Q will be used, later on in this section, to derive Dehn-
Sommerville-like equations for F[3] and K[3].

For every ∅ ⊂ R ⊂ [3] we add a vertex yR in the relative interior of CR and,
following [6], we consider the complex arising by taking successive stellar subdivisions of ∂C
as follows:

(i) we form the complex arising from ∂C by taking the stellar subdivisions st(y{i}, C{i})
for all 1 ≤ i ≤ 3, then

(ii) we form the complex arising from the one constructed in the previous step by taking
the stellar subdivisions st(yR, C′R) for every R ∈ X2. C′R is the complex obtained by
taking, for every S ⊂ R, the stellar subdivision of yS over the boundary complex of
CS .

This complex is polytopal and isomorphic to the boundary complex of a (d+ 2)-polytope,
which we denote as Q (see also Fig. 2). The boundary complex ∂Q is a simplicial (d+ 1)-
sphere. The simpliciality of ∂Q allows us to utilize its Denh-Sommerville equations in order
to prove Dehn-Sommerville-like equations for F[3] in the upcoming Lemma 4. We denote
by V := V1 ∪ V2 ∪ V3 ∪ {yR | ∅ ⊂ R ⊂ [3]} the vertex set of Q.

Let us count the k-faces of ∂Q. Suppose that F is a k-face of ∂Q. We distinguish
between the following cases depending on the number of auxiliary vertices, yR, that F
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contains:

(i) F does not contain any additional auxiliary vertices. Then, it can be a k-face of any
FR, R ∈ X1, or it can be a k-face of any of the FR, R ∈ X2, or it can be a k-face of
F[3]. This gives a total of fk(F[3]) +

∑
R∈X2

fk(FR) +
∑

R∈X1
fk(FR) k-faces of ∂Q.

(ii) F contains one auxiliary vertex. Then, it can consist of:

(a) a (k−1)-face of FR, R ∈ X1 and vertex yR, (e.g., a (k−1)-face of ∂P1 and vertex
y{1}), or

(b) a (k − 1)-face of FR, R ∈ X2 and vertex yR, (e.g., a (k − 1)-face of F{1,2} and
vertex y{1,2}), or

(c) a (k−1)-face of FS , S ∈ X1 and vertex yR, where S ⊂ R ∈ X2, (e.g., a (k−1)-face
of ∂P1 and vertex y{1,2} or vertex y{1,3}),

for a total of faces equal to:

case (a)︷ ︸︸ ︷∑

R∈X1

fk−1(FR) +

case (b)︷ ︸︸ ︷∑

R∈X2

fk−1(FR) +

case (c)︷ ︸︸ ︷∑

R∈X2

∑

∅⊂S⊂R
fk−1(FS)

=
∑

R∈X2

fk−1(FR) + 3
∑

R∈X1

fk−1(FR).

(iii) F contains two auxiliary vertices. Then, it is necessarily a (k− 2)-face of FR, R ∈ X1

and vertices yR and yS , where S ∈ X2 such that R ⊂ S, (e.g., a (k − 2)-face of ∂P1

and vertices y{1} and either y{1,2} or y{1,3}), for a total of 2
∑

R∈X1
fk−2(FR) faces.

Summing over all previous cases we obtain the following relation, for all 0 ≤ k ≤ d+1:

fk(∂Q) = fk(F[3])+
∑

R∈X2

[fk(FR)+fk−1(FR)]+
∑

R∈X1

[fk(FR)+3fk−1(FR)+2fk−2(FR)]. (7)

Relation (7) also holds for k ∈ {−1, 0}, since, by convention, we have set fl(FS) = 0 for all
l < −1 and ∅ ⊂ S ⊆ [3].

Denote by Y a generic subset of faces of C. Y will either be a subcomplex of the
boundary complex ∂C of C, or one of the FR’s. Let δ be the dimension of Y. Then we can
define the h-vector of Y as

hk(Y) =
δ+1∑

i=0

(−1)k−i
(
δ + 1− i
δ + 1− k

)
fi−1(Y). (8)

Another quantity that will be heavily used in the rest of the paper is that we call the
m-order g-vector of Y, the kth element of which is given by the following recursive formula:

g
(m)
k (Y) =

{
hk(Y), m = 0,

g
(m−1)
k (Y)− g(m−1)

k−1 (Y), m > 0.
(9)
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Observe that for m = 0 we get the h-vector of Y, for m = 1 we get the g-vector of Y.
In general, g(m)(Y) is the m-order backward finite difference of h(Y), which suggests the
following lemma (see Section A.1 of Appendix A for the proof):

Lemma 2. For any k,m ≥ 0, we have:

g
(m)
k (Y) =

m∑

i=0

(−1)i
(
m

i

)
hk−i(Y). (10)

We next define the summation operator Sk(·;D, ν) whose action on Y is as follows:

Sk(Y;D, ν) =
D+1∑

i=0

(−1)k−i
(
D + 1− i
D + 1− k

)
fi−1−ν(Y). (11)

Regarding the action of Sk(·;D, ν) on Y, it is easy to verify the following (see Section A.1
of Appendix A for the proof):

Lemma 3. Let δ be the dimension of Y, ν ≥ 0, δ ≤ D, and D − δ − ν ≥ 0. Then for any
k ≥ 0 we have:

Sk(Y;D, ν) = g
(D−δ−ν)
k−ν (Y). (12)

In the following lemma we relate the h-vectors of FR and KR with each other, and
with the h-vector of ∂Q. The last among the relations proved in the following lemma can
be thought of as the analogue of the Dehn-Sommerville equations for F[3] and K[3]. These
Dehn-Sommerville-like equations are used in Section 5 to obtain refined upper bounds for
the values of hk(F[3]) when k > bd+2

2 c from upper bounds on hk(K[3]) when k < bd+2
2 c.

Lemma 4. The following relations hold:

hk(KR) =
∑

∅⊂S⊆R
g

(|R|−|S|)
k (FS), 0 ≤ k ≤ d+ |R| − 1, ∅ ⊂ R ⊆ [3]. (13)

hk(∂Q) = hk(F[3]) +
∑

R∈X2

hk(FR) +
∑

R∈X1

[hk(FR) + hk−1(FR)], 0 ≤ k ≤ d+ 2. (14)

hd+2−k(F[3]) = hk(K[3]), 0 ≤ k ≤ d+ 2. (15)

Proof. Relation (13) follows directly from the application of the summation operator Sk(·;
d+ |R| − 2, 0) to relation (5). More precisely, from (5) we get, for all 0 ≤ k ≤ d+ |R| − 1,

Sk(KR; d+ |R| − 2, 0) =
∑

∅⊂S⊆R
Sk(FS ; d+ |R| − 2, 0). (16)

Relation (13) now immediately follows by noticing that:
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• By applying Lemma 3 on the left-hand-side of (16), with δ ← d+|R|−2, D ← d+|R|−2
and ν ← 0, we get

Sk(KR; d+ |R| − 2, 0) = g
((d+|R|−2)−(d+|R|−2)−0)
k−0 (KR) = hk(KR).

• Similarly, by applying Lemma 3 on the right-hand-side of (16), with δ ← d+ |S| − 2,
D ← d+ |R| − 2, ν ← 0, we get:

Sk(FS ; d+ |R| − 2, 0) = g
((d+|R|−2)−(d+|S|−2)−0)
k−0 (FS) = g

(|R|−|S|)
k (FS).

To prove (14), we apply the summation operator Sk(·; d+1; 0) to the (d+1)-complex
∂Q. Using relation (7), we get, for all 0 ≤ k ≤ d+ 2:

Sk(∂Q; d+ 1; 0) = Sk(F[3]; d+ 1; 0) +
∑

R∈X2

[Sk(FR; d+ 1; 0) + Sk(FR; d+ 1; 1)]

+
∑

R∈X1

[Sk(FR; d+ 1; 0) + 3Sk(FR; d+ 1; 1) + 2Sk(FR; d+ 1; 2)],

which, using Lemma 3, gives, for all 0 ≤ k ≤ d+ 2:

g
(0)
k (∂Q) = g

(0)
k (F[3])+

∑

R∈X2

[g
(1)
k (FR)+g

(0)
k−1(FR)]+

∑

R∈X1

[g
(2)
k (FR)+3g

(1)
k−1(FR)+2g

(0)
k−2(FR)].

Relation (14) follows by expanding g(m)(·), 1 ≤ m ≤ 2, according to Lemma 2, and gathering
common terms.

To prove what we named the Dehn-Sommerville-like equations for F[3] (cf. (15)), we
replace k by d+ 2− k in (14), to get, for all 0 ≤ k ≤ d+ 2:

hd+2−k(∂Q) = hd+2−k(F[3]) +
∑

R∈X2

hd+2−k(FR) +
∑

R∈X1

[hd+2−k(FR) + hd+1−k(FR)]. (17)

Using the above relation, in conjunction with (14), the Dehn-Sommerville equations for ∂Q
become:

hd+2−k(F[3]) +
∑

R∈X2

hd+2−k(FR) +
∑

R∈X1

[hd+2−k(FR) + hd+1−k(FR)]

= hk(F[3]) +
∑

R∈X2

hk(FR) +
∑

R∈X1

[hk(FR) + hk−1(FR)].

Using the Dehn-Sommerville equations for FR, R ∈ X1, as well as the Dehn-Sommerville-like
equations for FR, R ∈ X2 (cf. [19, rel. (3.10)]), we get:

hd+2−k(F[3]) +
∑

R∈X2

[hk−1(FR) +
∑

∅⊂S⊂R
gk−1(FS)] +

∑

R∈X1

[hk−2(FR) + hk−1(FR)]

= hk(F[3]) +
∑

R∈X2

hk(FR) +
∑

R∈X1

[hk(FR) + hk−1(FR)].
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Finally, solving in terms of hd+2−k(F[3]), we arrive at the following:

hd+2−k(F[3]) = hk(F[3]) +
∑

R∈X2

hk(FR) +
∑

R∈X1

[hk(FR) + hk−1(FR)]

−
∑

R∈X2

[hk−1(FR) +
∑

∅⊂S⊂R
gk−1(FS)]−

∑

R∈X1

[hk−2(FR) + hk−1(FR)]

= hk(F[3]) +
∑

R∈X2

hk(FR) +
∑

R∈X1

[hk(FR) + hk−1(FR)]

−
∑

R∈X2

hk−1(FR)− 2
∑

R∈X1

gk−1(FR)−
∑

R∈X1

[hk−2(FR) + hk−1(FR)]

= hk(F[3]) +
∑

R∈X2

[hk(FR)− hk−1(FR)]

+
∑

R∈X1

[hk(FR) + hk−1(FR)− 2gk−1(FR)− hk−2(FR)− hk−1(FR)]

= hk(F[3]) +
∑

R∈X2

gk(FR) +
∑

R∈X1

[hk(FR)− 2hk−1(FR) + hk−2(FR)]

= hk(F[3]) +
∑

R∈X2

gk(FR) +
∑

R∈X1

g
(2)
k (FR)

= hk(K[3]),

where for the last equality we used relation (13) for R ≡ [3].

4 Recurrence relation for h(F[3])

Recall that we denote by V the vertex set of ∂Q and by Vi the (Cayley embedding of the)
vertex set of ∂Pi, 1 ≤ i ≤ 3. Recall also that for a vertex v of Y, Y/v denotes the link of v
in Y. McMullen [24] showed that for any d-dimensional polytope P the following relation
holds:

(k + 1)hk+1(∂P ) + (d− k)hk(∂P ) =
∑

v∈vert(∂P )

hk(∂P/v), 0 ≤ k ≤ d− 1. (18)

Applying relation (18) to the (d + 2)-dimensional polytope Q, we have, for all 0 ≤
k ≤ d+ 1:

(k+1)hk+1(∂Q)+(d+2−k)hk(∂Q) =
∑

v∈V
hk(∂Q/v) =

∑

v∈V[3]

hk(∂Q/v)+
∑

∅⊂R⊂[3]

hk(∂Q/yR),

(19)
where we used the fact that V is the disjoint union of the vertex sets V[3] = V1 ∪ V2 ∪ V3

and {yR | ∅ ⊂ R ⊂ [3]}. The following lemma offers convenient expressions for the elements
in the sums of the right-hand side of (19) in terms of the h-vectors of the FR’s and KR’s.
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Lemma 5. The h-vectors of the complexes ∂Q/v, v ∈ Vi, i = 1, 2, 3, ∂Q/yR, R ∈ X1, and
∂Q/yR, R ∈ X2 are given by the following relations:

hk(∂Q/v) = hk(K[3]/v) +
∑

{i}⊆R⊂[3]

hk−1(KR/v) + hk−2(K{i}/v), v ∈ Vi, i ∈ [3], (20)

hk(∂Q/yR) = hk(FR) + hk−1(FR), R ∈ X1, (21)

hk(∂Q/yR) =
∑

∅⊂S⊆R
hk(FS), R ∈ X2. (22)

Proof. We start by proving relation (20). Without loss of generality we assume that v ∈ V1;
the cases v ∈ V2 and v ∈ V3 are entirely analogous.

Let F be a k-face of ∂Q/v. We have the following cases depending on the number
of additional points yR, ∅ ⊂ R ⊂ [3], that F contains:

(i) F does not contain any additional points. Then, it is a k-face of K[3]/v.

(ii) F contains one additional point. Then, it can consist of:

(a) a (k − 1)-face of K{1}/v(≡ ∂P1/v) and point y{1}, or

(b) a (k − 1)-face of K{1,2}/v, and point y{1,2}, or

(c) a (k − 1)-face of K{1,3}/v, and point y{1,3}.

(iii) F contains two additional points. Then, it can consist of a (k− 2)-face of K{1}/v and
points y{1} and y{1,2}, or points y{1} and y{1,3}.

Summing over all previous cases we obtain the following relation:

fk(∂Q/v) =

case (i)︷ ︸︸ ︷
fk(K[3]/v) +

case (ii)︷ ︸︸ ︷∑

{1}⊆R⊂[3]

fk−1(KR/v) +

case (iii)︷ ︸︸ ︷
2fk−2(K{1}/v), v ∈ V1. (23)

We apply the summation operator Sk(·; d, 0) to the d-complex ∂Q/v and obtain:

g
(0)
k (∂Q/v) = g

(0)
k (K[3]/v) +

∑

{1}⊆R⊂[3]

g
(2−|R|)
k−1 (KR/v) + 2g

(0)
k−2(K{1}/v),

which finally gives, for any v ∈ V1:

hk(∂Q/v) = hk(K[3]/v) +

(
gk−1(K{1}/v) +

∑

{1}⊂R⊂[3]

hk−1(KR/v)

)
+ 2hk−2(K{1}/v)

= hk(K[3]/v) + hk−1(K{1}/v)− hk−2(K{1}/v)

+
∑

{1}⊂R⊂[3]

hk−1(KR/v) + 2hk−2(K{1}/v)
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= hk(K[3]/v) +
∑

{1}⊆R⊂[3]

hk−1(KR/v) + hk−2(K{1}/v).

To prove (21) consider a k-face of ∂Q/yR, R ∈ X1. Such a face is either a k-face of
FR, or consists of a (k− 1)-face of FR and point yS for any S ∈ X2 such that S ⊃ R. Note
that there are exactly two such points yS . Hence:

fk(∂Q/yR) = fk(FR) + 2fk−1(FR), R ∈ X1. (24)

Applying the summation operator Sk(·; d, 0) to the simplicial d-complex ∂Q/yR, R ∈ X1,
and using relation (24) and Lemma 3, we get, for any R ∈ X1:

hk(∂Q/yR) = g
(0)
k (∂Q/yR) = Sk(∂Q/yR; d, 0)

= Sk(FR; d, 0) + 2Sk(FR; d, 1) = g
(1)
k (FR) + 2g

(0)
k−1(FR)

= hk(FR)− hk−1(FR) + 2hk−1(FR) = hk(FR) + hk−1(FR).

To prove (22) consider a k-face of ∂Q/yR, R ∈ X2. This is either a k-face of FS , for
any ∅ ⊂ S ⊆ R, or consists of a (k − 1)-face of FS and point yS for any ∅ ⊂ S ⊂ R. Hence,
for any R ∈ X2, we have:

fk(∂Q/yR) =
∑

∅⊂S⊆R
fk(FS)+

∑

∅⊂S⊂R
fk−1(FS) = fk(FR)+

∑

∅⊂S⊂R
[fk(FS)+fk−1(FS)]. (25)

Applying the summation operator Sk(·; d, 0) to the d-dimensional complex ∂Q/yR, R ∈ X2,
and using relation (25), along with Lemma 3, we get, for any R ∈ X2:

hk(∂Q/yR) = Sk(∂Q/yR; d, 0) = Sk(FR; d, 0) +
∑

∅⊂S⊂R
[Sk(FS ; d, 0) + Sk(FS ; d, 1)]

= g
(0)
k (FR) +

∑

∅⊂S⊂R
[g

(1)
k (FS) + g

(0)
k−1(FS)]

= hk(FR) +
∑

∅⊂S⊂R
hk(FS)

=
∑

∅⊂S⊆R
hk(FS).

The following two lemmas are essential in the proof of the upcoming recurrence
relation in Lemma 8.

Lemma 6. The following relation holds, for all 0 ≤ k ≤ d+ 1:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) =
∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR/v). (26)

Sketch of proof. The complete proof may be found in Section A.2 of Appendix A. Our
starting point is relation (19). We first substitute hk(∂Q) and hk+1(∂Q) on the left-hand
side of (19) with their relevant expressions from (14). We then group the terms so that we
get a sum of:
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(i) the left-hand side of (26),

(ii) (k + 1)hk+1(FR) + (d+ 1− k)hk(FR), R ∈ X2

(iii) (k + 1)hk+1(FR) + (d− k)hk(FR) and khk(FR) + (d− k − 1)hk−1(FR) with R ∈ X1

(iv) additional terms.

As will be described below, the intuition behind this grouping is to substitute the terms in

(ii) and (iii) by sums involving quantities of the form g
(m)
k (KS/v). These quantities will be

grouped with the terms obtained from a similar expansion of the term hk(∂Q/v) appearing
in the right-hand side of (19), yielding the right-hand side of (26).

In the proof of [19, Lemma 3.2], the sum in item (ii) above is shown to be equal3 to

∑

i∈R

∑

v∈Vi
[hk(KR/v)− gk(K{i}/v)].

For (iii) we use (18) combined with the fact that for any R ∈ X1, FR ≡ ∂PR. On the right-
hand side of (19) we substitute hk(∂Q/v) and hk(∂Q/yR) using the relations in Lemma 5.
Finally, we equate our expansions of the left- and right-hand side of (19) and notice that the
terms in (iv) and the expressions for hk(∂Q/yR) cancel-out. Recalling that gk = hk − hk−1

and g
(2)
k = hk − 2hk−1 + hk−2, we appropriately regroup the remaining terms to obtain the

desired expression.

The last intermediate step that we need in order to derive the recurrence relation
for the elements of h(F[3]) is to bound the right-hand side of (26) by an expression that
does not involve the links KR/v. This is the subject of the following lemma.

Lemma 7. The following relation holds, for all 0 ≤ k ≤ d+ 1:

∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR/v) ≤

∑

∅⊂R⊆[3]

(−1)3−|R| nR g
(3−|R|)
k (KR). (27)

Proof. Let us first observe that, by rearranging terms, we can rewrite relation (27) as follows:

3∑

i=1

∑

v∈Vi

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR/v) ≤

3∑

i=1

∑

v∈Vi

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR). (28)

Clearly, to show that relation (28) holds, it suffices to prove that:

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR/v) ≤

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR), v ∈ Vi, i ∈ [3].

(29)
In the rest of the proof we shall prove relation (29) for i = 1 and for any v ∈ V1. The cases
i = 2 and i = 3 are entirely similar.

3The expression in [19] is written differently; it is equivalent, however, to the expression stated here.
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Fix a vertex v ∈ V1. Let ∂Q′ be the polytopal (d + 1)-complex that we get by
removing from ∂Q the faces that are incident to y{2,3} (see Fig. 3(left)). It is straightforward
to see that: (1) the stars of v in Q and ∂Q′ coincide (the faces incident to y{2,3} contain
vertices from V{2,3}∪{y{2}, y{3}} only), and (2) ∂Q′ is shellable. To verify the latter consider
a shelling S(∂Q) of ∂Q that shells the star of y{2,3} in ∂Q last; the shelling order that we
get by removing from S(∂Q) the facets that are incident to y{2,3} is clearly a shelling order
for ∂Q′. Let SR, R ∈ {{1, 2}, {1, 3}}, be the star of yR in ∂Q′ (which actually coincides
with the star of yR in ∂Q). Let X denote the set of faces of ∂Q′ that are either faces in
S{1,2} or faces in S{1,3}, and let G denote the set of faces of ∂Q′ that are either faces in F[3]

or faces in F{2,3}. Notice that the sets X and G form a disjoint union of the faces in ∂Q′,
which implies that:

fk(∂Q′) = fk(X ) + fk(G), −1 ≤ k ≤ d+ 1. (30)

Notice that X is a (d + 1)-complex, whereas G is a set of faces with maximal dimension
d+ 1. By applying the summation operator Sk(·; d+ 1, 0) to (30), we immediately get the
corresponding h-vector relation:

hk(∂Q′) = hk(X ) + hk(G), 0 ≤ k ≤ d+ 2. (31)

We claim that there exists a specific shelling S(∂Q′) of ∂Q′, which is actually an
initial segment of a shelling of ∂Q that shells the star of y{2,3} last, with the property that
the corresponding shelling order has the facets in X before the facets in G. We postpone
the proof of this claim, and assume for now that the claim holds true.

The same argumentation can be applied to the links of vertices v ∈ V1: ∂Q′/v can
be seen as the disjoint union of the sets X/v and G/v, while the particular shelling S(∂Q′)

y{1}

y{1,2}

y{1,3}

x2

x1

(0, 1)

(1, 0)(0, 0)

P1

P2

P3

y{3}

y{2}

∂Q′

y{1}

x2

x1

(0, 1)

(1, 0)(0, 0)

P1

P2

P3

y{3}

y{2}

Z ′

Figure 3: Left: the (d+ 1)-complex ∂Q′ that we get from ∂Q be removing all faces incident
to y{2,3}. Right: the (d+ 1)-complex Z ′ that we get from the Cayley polytope C[3] of P1, P2

and P3, after we: (i) have performed stellar subdivisions using the vertices y{1}, y{2} and
y{3} (which yields the (d+ 1)-polytope Z), and (ii) have removed the facet Q{2,3} from Z.
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of ∂Q′ that shells X first, induces a particular shelling S(∂Q′/v) for ∂Q′/v that shells the
facets of ∂Q′/v in X/v first. From these observations we immediately arrive at the following
h-vector relation for ∂Q′/v, X/v and G/v:

hk(∂Q′/v) = hk(X/v) + hk(G/v), 0 ≤ k ≤ d+ 1. (32)

Let us now consider the dual graph G∆(∂Q) of ∂Q, oriented according to the shelling
S(∂Q), as well as the dual graph G∆(∂Q/v) of ∂Q/v, also oriented according to the shelling
S(∂Q/v). We will denote by V∆(Y) the subset of vertices of G∆(∂Q) that are the duals of
the facets in ∂Q that belong to Y, where Y stands for a subset of the set of faces of ∂Q.

Since S(∂Q/v) is induced from S(∂Q), G∆(∂Q/v) is isomorphic to the subgraph of
G∆(∂Q) defined over V∆(star(v, ∂Q)). Moreover, hk(∂Q) counts the number of vertices
of V∆(∂Q) with in-degree equal to k, while hk(G) counts the number of vertices of V∆(G)
of in-degree k in G∆(∂Q), because the shelling we have chosen shells first all facets of X
before shelling the remaining facets of ∂Q′. Consequently, hk(G) counts the number of
vertices of V∆(G) of in-degree k in G∆(∂Q); in an analogous manner, we can conclude that
hk(G/v) counts the number of vertices of V∆(star(v,G)) with in-degree k in G∆(∂Q/v).
Since, however, G∆(∂Q/v) is the subgraph of G∆(∂Q) that corresponds to the face v∆

of G∆(∂Q), the number of vertices of V∆(star(v,G)) with in-degree k cannot exceed the
number of vertices of V∆(G) with in-degree k. Hence,

hk(G/v) ≤ hk(G), 0 ≤ k ≤ d+ 2. (33)

On the other hand, recall that G is the disjoint union of F[3] and F{2,3}. Using
expressions (6), in conjunction with the fact that FS ≡ KS for S ∈ X1, we have, for all
−1 ≤ k ≤ d+ 1:

fk(G) = fk(F[3]) + fk(F{2,3})
=

∑

∅⊂R⊆[3]

(−1)3−|R|fk(KR) +
∑

∅⊂R⊆{2,3}
(−1)2−|R|fk(KR)

=
∑

∅⊂R⊆[3]

(−1)3−|R|fk(KR)−
∑

∅⊂R⊆{2,3}
(−1)3−|R|fk(KR)

=
∑

{1}⊆R⊆[3]

(−1)3−|R|fk(KR). (34)

By a similar argument, we can arrive at the following expression for fk(G/v):

fk(G/v) =
∑

{1}⊆R⊆[3]

(−1)3−|R| fk(KR/v), −1 ≤ k ≤ d. (35)

By applying the summation operators Sk(·; d+1, 0) and Sk(·; d, 0) to relations (34) and (35),
respectively, we get the corresponding h-vector relations:

hk(G) =
∑

{1}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR), 0 ≤ k ≤ d+ 2,

hk(G/v) =
∑

{1}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR/v), 0 ≤ k ≤ d+ 1.

(36)

http://jocg.org/


Journal of Computational Geometry jocg.org

Relation (29) (for i = 1) follows by substituting the expressions for hk(G) and hk(G/v) from
(36) in (33).

To finish our proof, it remains to establish our claim that there exists a specific
shelling S(∂Q′) of ∂Q′ with the property that the facets of X appear in the shelling before
the facets of G. Let us start with some definitions: we denote by Z the (d+ 1)-complex we
get by performing the stellar subdivisions on C[3] using the vertices yR, R ∈ X1 (see also
Fig. 3(right)), and by QR, R ∈ X2 the (d + 1)-complex that we get by performing stellar
subdivisions on the non-simplicial proper faces of CR, namely the faces CS , ∅ ⊂ S ⊂ R.
Notice that QR, R ∈ X2, is nothing but a facet of Z, while ∂QR is actually the link of yR
in ∂Q. In fact, we can separate the facets of Z in two categories; they are either (1) facets
of the form QR, R ∈ X2, which are non-simplicial, or (2) facets in G (or F[3]), which are
simplicial. Moreover, notice that star(yR,Z), R ∈ X1, consists of the faces belonging to the
two facets QS , R ⊂ S ⊂ [3] of Z. Since stellar subdivisions produce polytopal complexes
[6], Z is polytopal and, thus, shellable. In fact, there exists a particular (line) shelling S(Z)
of Z in which the facets of star(y{1},Z) appear first, while Q{2,3} is the last facet in S(Z).
More precisely, for this particular shelling of Z, the two facets Q{1,2} and Q{1,3} appear
first, followed by the facets in G, which, in turn, are followed by the facet Q{2,3}.

Let us call Z ′ the (d+ 1)-complex we get by removing Q{2,3} from Z. The complex
Z ′ is shellable (it follows from the fact that S(Z) has Q{2,3} as its last facet), while the
particular line shelling S(Z) of Z described above, yields a shelling S(Z ′) for Z ′ in which the
facets Q{1,2} and Q{1,3} appear first, followed by the facets in G. Notice that if we perform
stellar subdivisions on the two non-simplicial facets Q{1,2} and Q{1,3} of Z ′ (using the
vertices y{1,2} and y{1,3}), we arrive at the simplicial (d+ 1)-complex ∂Q′ described earlier.
Furthermore, from the particular shelling S(Z ′) of Z ′ described above, we obtain the sought-
for shelling for ∂Q′ that shells X first and G last. To see this, notice that given any shelling
order for ∂Pi, i = 1, 2, 3, we may construct a shelling for QR, R ∈ {{1, 2}, {1, 3}}, that:
(1) shells st(y{1},QR) first, (2) shells st(yR\{1},QR) last, and (3) the shelling order of the
facets in both stars is the order implied by the shellings of the boundary complexes ∂P1 and
∂PR\{1}. This implies that if we choose shelling orders for ∂Q{1,2} and ∂Q{1,3} that respect
a common shelling order for ∂P1, we can replace the facets Q{1,2} and Q{1,3} in S(Z ′) by the
facets in star(y{1,2}, ∂Q′) and star(y{1,3}, ∂Q′), respectively, (the shelling orders of ∂Q{1,2}
and ∂Q{1,3} are “inherited” in the shelling orders for star(y{1,2}, ∂Q′) and star(y{1,3}, ∂Q′))
and arrive at a shelling order for ∂Q′ with the desired property.

Using inequality (27) in Lemma 7, we arrive at the following recurrence relation
for the elements of h(F[3]); its proof may be found in Section A.2 in Appendix A. The
recurrence relation in the following lemma is used in Lemma 10 (see upcoming section) to
get an upper bound on hk(F[3]) for all 0 ≤ k ≤ d+ 2.

Lemma 8. For all 0 ≤ k ≤ d+ 1, we have:

hk+1(F[3]) ≤
n[3] − d− 2 + k

k + 1
hk(F[3]) +

3∑

i=1

ni
k + 1

gk(F[3]\{i}). (37)

Sketch of proof. Using Lemma 7, we can bound the left hand side of relation (26) by the
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right hand side of relation (27), which involves g-vectors, of various orders, of the complexes
KR, where ∅ ⊂ R ⊆ [3]. These can be substituted by their equal values from relation (13)
with R = [3] and for all R ∈ X2. This gives an inequality involving h-vectors and g-vectors
of F[3] and FR, R ∈ X2, which simplifies to relation (37).

5 Upper bounds

In this section we establish upper bounds for the number of (k+2)-faces of F[3], 0 ≤ k ≤ d−1,
which immediately yield upper bounds for the number of k-faces of P1 + P2 + P3. Our
starting point is the recurrence relation (37). Using this recurrence relation, along with the
corresponding relation for h(FR), R ∈ X2 (cf. [19, Lemma 3.2]), we can derive the upper
bounds for h(F[3]) and h(K[3]) stated in the following lemmas, as well as necessary and
sufficient conditions for these bounds to be tight. These conditions will be exploited in
Section 6 in order to prove the tightness of our upper bounds.

The general idea and techniques we use in the proofs of this section are parallel to
those used in [19, Section 3] for the Minkowski sum of two polytopes. In particular, we
utilize the recurrence relation for the h-vector of FR, R ∈ X2, from [19, Lemma 3.2]:

hk+1(FR) ≤ nR−d−1+k
k+1 hk(FR) +

∑

∅⊂S⊂R

nR\S
k+1 gk(FS),

as well as the upper bound for the h-vector of FR, R ∈ X2, obtained from the above
recurrence relation (cf. [19, Lemma 3.3]):

hk(FR) ≤
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k

k

)
.

Furthermore, we apply the well-known upper bounds for the h- and g-vector of polytopes
(cf. [31, Lemma 8.26 and Corollary 8.38]):

hk(F{i}) = hk(∂Pi) ≤
(
ni−d−1+k

k

)
, 0 ≤ k ≤ d,

and
gk(F{i}) = gk(∂Pi) ≤

(
ni−d−2+k

k

)
, 0 ≤ k ≤ d+ 1.

We first prove a lemma that establishes bounds for the g-vector of FR, R ∈ X2.

Lemma 9. Let R be a subset of [3] of cardinality 2. Then, for all 0 ≤ k ≤ d+ 2, we have:

gk(FR) ≤
∑

∅⊂S⊆R
(−1)|S|

(
nS − d− 3 + k

k

)
. (38)

Equality holds for some k, where 0 ≤ k ≤ bd+1
2 c, if and only if

fl−1(FR) =
∑

∅⊂S⊆R
(−1)|S|

(
nS
l

)
,

for all 0 ≤ l ≤ k.

http://jocg.org/


Journal of Computational Geometry jocg.org

Proof. The bound clearly holds, as equality, for k = 0. Indeed, for k = 0, and recalling our
convention f0(FR) = (−1)|R|−1, we have:

h0(FR) =

(d−|R|−2)+1∑

i=0

(−1)0−i
(

(d− |R| − 2) + 1− i
(d− |R| − 2) + 1− 0

)
fi−1(FR) = f−1(FR) = (−1)|R|−1.

Hence,

g0(FR) = h0(FR)− h−1(FR) = (−1)|R|−1 − 0 = −1 =
∑

i∈R
(−1) + 1

=
∑

i∈R
(−1)|{i}|

(
ni−d−3+0

0

)
+ (−1)|R|

(
nR−d−3+0

0

)
=

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+0

0

)
.

For k ≥ 1, from [19, Lemma 3.2] we have:

hk(FR) ≤ nR−d−2+k
k hk−1(FR) +

∑

∅⊂S⊂R

nR\S
k gk−1(FS). (39)

Subtracting hk−1(FR) from both sides of (39) we get:

gk(FR) ≤ nR−d−2
k hk−1(FR) +

∑

∅⊂S⊂R

nR\S
k gk−1(FS). (40)

Using now the upper bounds for hk−1(FR), gk−1(FS), ∅ ⊂ S ⊂ R, and noting that nR −
d− 2 ≥ 2(d+ 1)− d− 2 = d > 0, we deduce, for any k ≥ 1:

gk(FR) ≤ nR−d−2
k

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k−1

)
+

∑

∅⊂S⊂R

nR\S
k

(
nS−d−3+k

k−1

)

= nR−d−2
k

(
nR−d−3+k

k−1

)
−

∑

∅⊂S⊂R

nR−d−2
k

(
nS−d−3+k

k−1

)
+

∑

∅⊂S⊂R

nR\S
k

(
nS−d−3+k

k−1

)

= nR−d−2+k
k

(
nR−d−3+k

k−1

)
−
(
nR−d−3+k

k−1

)
−

∑

∅⊂S⊂R

nR−d−2−nR\S
k

(
nS−d−3+k

k−1

)

=
(
nR−d−2+k

k

)
−
(
nR−d−3+k

k−1

)
−

∑

∅⊂S⊂R

nS−d−2
k

(
nS−d−3+k

k−1

)

=
(
nR−d−3+k

k

)
−

∑

∅⊂S⊂R

[
nS−d−2+k

k

(
nS−d−3+k

k−1

)
−
(
nS−d−3+k

k−1

)]

=
(
nR−d−3+k

k

)
−

∑

∅⊂S⊂R

[(
nS−d−2+k

k

)
−
(
nS−d−3+k

k−1

)]

=
(
nR−d−3+k

k

)
−

∑

∅⊂S⊂R

(
nS−d−3+k

k

)

=
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k

)
.

We focus now on the equality claim. Suppose first that

fl−1(FR) =
∑

∅⊂S⊆R
(−1)|S|

(
nS
l

)
,
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for all 0 ≤ l ≤ k. Then, by [19, Lemma 3.3], hλ(FR) =
∑
∅⊂S⊆R(−1)|S|

(
nS−d−2+λ

λ

)
, for

λ = k − 1, k, which gives:

gk(FR) = hk(FR)− hk−1(FR) =
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k

k

)
−

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k−1

k−1

)

=
∑

∅⊂S⊆R
(−1)|S|

[(
nS−d−2+k

k

)
−
(
nS−d−2+k−1

k−1

)]
=

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k

)
.

Suppose now that gk(FR) =
∑
∅⊂S⊆R(−1)|S|

(
nS−d−3+k

k

)
. By relation (40), we con-

clude that hk−1(FR) must be equal to its upper bound (cf. [19, Lemma 3.3]), since, oth-
erwise, gk(FR) would not be maximal, which contradicts our assumption on the value of
gk(FR). This gives:

hk(FR) = gk(FR) + hk−1(FR) =
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k

)
+

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k−1

k−1

)

=
∑

∅⊂S⊆R
(−1)|S|

[(
nS−d−2+k−1

k

)
+
(
nS−d−2+k−1

k−1

)]
=

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k

k

)
.

Now the fact that hk(FR) is maximal, implies that hl(FR) must be equal to its maximal
value for all 0 ≤ l < k. To see this, suppose that hl(FR) is not maximal for some l,
with 0 ≤ l < k, and among all such l choose the largest one. Then, Lemmas 3.2 and 3.3
in [19] imply that hl+1(FR) cannot be maximal, which contradicts the maximality of l.
Summarizing, we deduce that if gk(FR) is equal to its upper bound in (38), so is hl(FR) for
all 0 ≤ l ≤ k. By Lemma 3.3 in [19], this implies that fl−1(FR) =

∑
∅⊂S⊆R(−1)|S|

(
nS
l

)
, for

all 0 ≤ l ≤ k.

Lemma 10. For all 0 ≤ k ≤ d+ 2, we have:

hk(F[3]) ≤
∑

∅⊂S⊆[3]

(−1)3−|S|
(
nS − d− 3 + k

k

)
, nS =

∑

i∈S
ni. (41)

Equality holds for some 0 ≤ k ≤ bd+2
2 c, if and only if fl−1(F[3]) =

∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
,

for all 0 ≤ l ≤ k.

Proof. We are going to prove relation (41) by induction on k. The result clearly holds for
k = 0, since

h0(F[3]) = 1 = 1− 3 + 3 =
(n[3]−d−3

0

)
−

3∑

i=1

(n[3]\{i}−d−3
0

)
+

3∑

i=1

(
ni−d−3

0

)
.

Suppose the bound holds for some k ≥ 0. We will show that it holds for k+1. Using
relation (37), Lemma 9, and the fact that, for any k ≥ 0, n[3]−d−2+k ≥ 3(d+1)−d−2 =
2d+ 1 > 0, we have:

hk+1(F[3]) ≤
n[3]−d−2+k

k+1 hk(F[3]) +

3∑

i=1

ni
k+1gk(F[3]\{i})
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≤ n[3]−d−2+k

k+1

∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
+

3∑

i=1

ni
k+1

∑

∅⊂S⊆[3]\{i}
(−1)|S|

(
nS−d−3+k

k

)

=
n[3]−d−2+k

k+1

(n[3]−d−3+k

k

)
−

3∑

i=1

n[3]−d−2+k

k+1

(n[3]\{i}−d−3+k

k

)

+

3∑

i=1

n[3]−d−2+k

k+1

(
ni−d−3+k

k

)
+

3∑

i=1

ni
k+1

(n[3]\{i}−d−3+k

k

)

−
3∑

i=1

ni
k+1

∑

j∈[3]\{i}

(nj−d−3+k
k

)

=
(n[3]−d−2+k

k+1

)
−

3∑

i=1

n[3]−d−2+k−ni
k+1

(n[3]\{i}−d−3+k

k

)

+
3∑

i=1

n[3]−d−2+k−n[3]\{i}
k+1

(
ni−d−3+k

k

)

=
(n[3]−d−2+k

k+1

)
−

3∑

i=1

n[3]\{i}−d−2+k

k+1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

ni−d−2+k
k+1

(
ni−d−3+k

k

)

=
(n[3]−d−2+k

k+1

)
−

3∑

i=1

(n[3]\{i}−d−2+k

k+1

)
+

3∑

i=1

(
ni−d−2+k

k+1

)

=
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−2+k
k+1

)
,

where we used the fact that:

3∑

i=1

n[3]\{i}
k+1

(
ni−d−3+k

k

)
=

3∑

i=1


 ∑

j∈[3]\{i}

nj
k+1


(ni−d−3+k

k

)
=

3∑

i=1

∑

j∈[3]\{i}

nj
k+1

(
ni−d−3+k

k

)

=

3∑

i=1

∑

j∈[3]\{i}

ni
k+1

(nj−d−3+k
k

)
=

3∑

i=1

ni
k+1

∑

j∈[3]\{i}

(nj−d−3+k
k

)
.

The rest of the proof is concerned with the equality claim. Assume first that
fl−1(F[3]) =

∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ k. Then we have:

hk(F[3]) =
d+2∑

i=0

(−1)k−i
(
d+2−i
d+2−k

)
fi−1(F[3]) = (−1)k

d+2∑

i=0

(−1)i
(
d+2−i
d+2−k

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS
i

)

= (−1)k
∑

∅⊂S⊆[3]

(−1)3−|S|
d+2∑

i=0

(−1)i
(
d+2−i
d+2−k

)(
nS
i

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
.

In the above relation we used the combinatorial identity (cf. [13, eq. (5.25)]):

∑

0≤k≤l

(
l − k
m

)(
s

k − n

)
(−1)k = (−1)l+m

(
s−m− 1

l −m− n

)
,
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where k ← i, l← d+ 2, m← d+ 2− k, n← 0, and s← nS .

Suppose now that hk(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS−d−3+k

k

)
. Since relation (37)

holds for all k ≥ 0, we conclude that hl(F[3]) must be equal to its upper bound in (41), for
all 0 ≤ l < k. To see this suppose that (41) is not tight for some l, with 0 ≤ l < k, and
among all such l choose the largest one. Then, relation (37) implies that hl+1(F[3]) cannot
be equal to its upper bound from (41), which contradicts the maximality of l. Hence, if
hk(F[3]) is equal to its upper bound in (41), so is hl(F[3]) for all 0 ≤ l < k, which gives, for
all l with 0 ≤ l ≤ k:

fl−1(F[3]) =

d+2∑

i=0

(
d+2−i
l−i

)
hi(F[3]) =

d+2∑

i=0

(
d+2−i
l−i

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)

=
∑

∅⊂S⊆[3]

(−1)3−|S|
d+2∑

i=0

(
d+2−i
l−i

)(
nS−d−3+i

i

)

=
∑

∅⊂S⊆[3]

(−1)3−|S|
d+2∑

i=0

(
d+2−i
d+2−l

)(
nS−d−3+i
nS−d−3

)
(42)

=
∑

∅⊂S⊆[3]

(−1)3−|S|( nS
nS−l

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|(nS
l

)
, (43)

where, in order to get from (42) to (43), we used the combinatorial identity (cf. [13,
eq. (5.26)]):

∑

0≤k≤l

(
l − k
m

)(
q + k

n

)
=

(
l + q + 1

m+ n+ 1

)
,

with k ← i, l← d+ 2, m← d+ 2− l, q ← nS − d− 3, and n← nS − d− 3.

We are now going to bound the elements of the h-vector of K[3]. These bounds are
used below, in combination with the Dehn-Sommerville-like equations (15) in Lemma 4, to
obtain refined upper bounds for the values of hk(F[3]) when k > bd+2

2 c. More precisely:

Lemma 11. For all 0 ≤ k ≤ d+ 2, we have:

hk(K[3]) ≤
(
n[3] − d− 3 + k

k

)
. (44)

Furthermore, for d ≥ 3 and d odd, we have:

hb d
2
c+1(K[3]) ≤

(
n[3] − bd2c − 3

bd2c+ 1

)
−

3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
. (45)

Equality holds for some k, where 0 ≤ k ≤ bd+1
2 c, if and only if, for all ∅ ⊂ R ⊆ [3],

fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤ min{k, bd+|R|−1

2 c}.
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Sketch of proof. The complete proof can be found in Section A.3 of Appendix A. To prove
the upper bound for hk(K[3]), we distinguish between two cases: (1) the case k = 0, where
the result follows by a straightforward calculation from relation (13) with R = [3], and (2)
the case k ≥ 1, where again we use (13) with R = [3] and substitute gk(FR) by its upper
bound from relation (40) in Lemma 9. We, thus, obtain a bound for hk(K[3]) expressed
in terms of hk(F[3]), hk−1(FR), R ∈ X2, and gλ(∂Pi), λ = k, k − 1. Combining the upper
bounds from Lemma 10, Lemma 3.3 in [19], along with the upper bounds for the g-vector of
a d-polytope (cf. [31, Corollary 8.38]), respectively, gives the upper bound in the statement
of the lemma.

For the equality claim we assume that hk(K[3]) attains its maximal value. Then, the
expression bounding hk(K[3]) used above, in conjunction with Lemmas 8, 9, 10, and [19,
Lemma 3.3], yields the equality conditions in the statement of the lemma. In the opposite
direction, we assume that these conditions hold and, using Lemma 10 and [19, Lemma 3.3],
we show that the quantities in the right hand side of relation (13) with R = [3], attain their
maximal values. The conclusion then follows from an easy calculation.

Utilizing the bounds from Lemmas 10 and 11, along with the Dehn-Sommerville-like
equations (15), we arrive at the following theorem concerning upper bounds on the number
of k-faces of the Minkowski sum of three convex d-polytopes in Rd, as well as sufficient and
necessary conditions for these bounds to be attained for all values of k.

Theorem 12. Let P1, P2 and P3 be three d-polytopes in Rd, d ≥ 2, with ni ≥ d+1 vertices,
1 ≤ i ≤ 3. Then, for all 1 ≤ k ≤ d, we have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+ 2− i
k + 2− i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS − d− 3 + i

i

)

− δ
(bd2c+ 1

k − bd2c

) 3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
, (46)

where δ = d− 2bd2c, and nS =
∑

i∈S ni. Equality holds for all 1 ≤ k ≤ d, if and only if

fl−1(FR) =
∑

∅⊂S⊆R
(−1)|R|−|S|

(
nS
l

)
, 0 ≤ l ≤ bd+|R|−1

2 c, ∅ ⊂ R ⊆ [3]. (47)

Proof. If suffices to establish upper bounds for fk(F[3]) for all 0 ≤ k ≤ d+1. Indeed, writing
the f -vector of F[3] in terms of its h-vector, and using relation (15), along with Lemmas 10
and 11 we get:

fk−1(F[3]) =
d+2∑

i=0

(
d+2−i
k−i

)
hi(F[3]) =

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) +

d+2∑

i=b d+2
2
c+1

(
d+2−i
k−i

)
hi(F[3])

=

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) +

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hd+2−j(F[3])
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=

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) +

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hj(K[3]). (48)

From Lemma 10 we have:

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) ≤

b d+2
2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)
,

whereas from Lemma 11 we get

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hj(K[3]) ≤

b d+1
2
c∑

i=0

(
j

k−d−2+j

)(n[3]−d−3+j
j

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)
,

where δ = d− 2bd2c. Hence:

fk−1(F[3]) ≤
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)
+

b d+1
2
c∑

j=0

(
j

k−d−2+j

)(n[3]−d−3+j
j

)

− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)

=

b d+2
2
c∑

i=0

(
d+2−i
k−i

)(n[3]−d−3+i
i

)
+

b d+1
2
c∑

i=0

(
i

k−d−2+i

)(n[3]−d−3+i
i

)

−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)

=

d+2
2∑ ∗

i=0

(
(
d+2−i
k−i

)
+
(

i
k−d−2+i

)
)
(n[3]−d−3+i

i

)

−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)

= fk−1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)

− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)
,

where:
m
2∑ ∗

i=0

Ti =

bm
2
c−1∑

i=0

Ti + 1
2

(
1 +m− 2bm2 c

)
Tbm

2
c.
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Our upper bounds follow from the fact that fk−1(P1 + P2 + P3) = fk+1(F[3]), 1 ≤ k ≤ d.

In what follows we concentrate on the necessary and sufficient conditions for the
upper bounds in (46) to hold as equalities. From the derivation of the upper bounds above
(see also relation (48)), it is clear that the bounds are tight if and only if:

(i) hk(F[3]) is maximal, for all 0 ≤ k ≤ bd+2
2 c, and

(ii) hk(K[3]) is maximal, for all 0 ≤ k ≤ bd+1
2 c.

According to Lemma 10 and Lemma 11, these conditions are, respectively, equivalent to
requiring that:

(a) fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ bd+2

2 c, and

(b) fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤ min{bd+1

2 c, b
d+|R|−1

2 c}, and for
all ∅ ⊂ R ⊆ [3].

For R ≡ [3], condition (a) implies condition (b), while for R ⊂ [3], min{bd+1
2 c, b

d+|R|−1
2 c} =

bd+|R|−1
2 c. We, therefore, conclude that the bounds in (46) are attained if and only if,

conditions (47) hold true for all 0 ≤ k ≤ bd−|R|+1
2 c and for all ∅ ⊂ R ⊆ [3].

6 Tightness of upper bounds

In this section we show that the bounds in Theorem 12 are tight. We distinguish between
the cases d = 2, d = 3 and d ≥ 4. For d = 2, it is easy to verify that for k = 1, 2, the
right-hand side of inequality (46) evaluates to n1 + n2 + n3, which is known to be tight.

6.1 Three dimensions

For d = 3, the upper bounds in Theorem 12 are as follows:

f0(P1 + P2 + P3) ≤ n1n2 + n2n3 + n1n3 − n1 − n2 − n3 + 2,

f1(P1 + P2 + P3) ≤ 2n1n2 + 2n2n3 + 2n1n3 − n1 − n2 − n3 − 6,

f2(P1 + P2 + P3) ≤ n1n2 + n2n3 + n1n3 − 6.

(49)

In order to prove that these bounds are tight, we exploit two results: one by Fukuda and
Weibel [10] and one by Weibel [30]. Weibel [30] has shown that the number of k-faces of the
Minkowski sum of r d-polytopes P1, . . . , Pr in Rd, where r ≥ d, is related to the number of
k-faces of the Minkowski sum of subsets of these polytopes of size at most d− 1 as follows:

fk(P1 + P2 + · · ·+ Pr)− α =

d−1∑

j=1

(−1)d−1−j
(
r − 1− j
d− 1− j

) ∑

S∈Xrj

(fk(PS)− α), (50)
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where Xrj is the family of subsets of [r] of size j, PS is the Minkowski sum of the polytopes
in S, and α = 2 if k = 0 and d is odd, and α = 0 otherwise. For d = r = 3, equation (50)
simplifies to:

fk(P1 + P2 + P3) = α+
2∑

j=1

(−1)2−j(2−j
2−j
) ∑

S∈X3
j

(fk(PS)− α)

= α−
3∑

i=1

(fk(Pi)− α) +

3∑

i=1

(fk(P[3]\{i})− α)

= α−
3∑

i=1

fk(Pi) + 3α+

3∑

i=1

fk(P[3]\{i})− 3α

= α+
∑

1≤i<j≤3

fk(Pi + Pj)−
3∑

i=1

fk(Pi).

(51)

Besides relation (50), Weibel [30] also presented a construction of r simplicial d-
polytopes, such that any subset S of these polytopes of size at most d−1 has the maximum
possible number of vertices, namely, f0(PS) =

∏
i∈S ni. Specializing this construction in

our case, i.e., for r = d = 3, we deduce that it is possible to construct three simplicial
3-polytopes P1, P2, P3 in R3, such that f0(Pi) = ni, 1 ≤ i ≤ 3, and f0(Pi + Pj) = ninj ,
1 ≤ i < j ≤ 3. Substituting in (51) for k = 0, we get:

f0(P1 + P2 + P3) = 2 +
∑

1≤i<j≤3

ninj −
3∑

i=1

ni = n1n2 + n2n3 + n1n3 − n1 − n2 − n3 + 2,

i.e., the upper bound in (49) is tight for k = 0.4 Since all Pi’s are simplicial, we have

f1(Pi) = 3ni − 6, f2(Pi) = 2ni − 4, 1 ≤ i ≤ 3. (52)

On the other hand, since f0(Pi + Pj) is maximal, for all 1 ≤ i < j ≤ 3, we get, by [10,
Corollary 4], that fk(Pi +Pj) is also maximal for k = 1, 2, and for all 1 ≤ i < j ≤ 3. Hence:

f1(Pi + Pj) = 2ninj + ni + nj − 8, f2(Pi + Pj) = ninj + ni + nj − 6. (53)

Substituting from (52) and (53) in (51), and recalling that α = 0 for k > 0, we get:

f1(P1 + P2 + P3) =
∑

1≤i<j≤3

(2ninj + ni + nj − 8)−
3∑

i=1

(3ni − 6)

= [2(n1n2 + n2n3 + n1n3) + 2(n1 + n2 + n3)− 24]

− [3(n1 + n2 + n3)− 18]

= 2n1n2 + 2n2n3 + 2n1n3 − n1 − n2 − n3 − 6,

4This is essentially the result of Theorem 3 in [30] for d = r = 3; however, we recapitulate this result in
order to show that Weibel’s construction yields tights bounds for k = 1, 2 also.
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and

f2(P1 + P2 + P3) =
∑

1≤i<j≤3

(ninj + ni + nj − 6)−
3∑

i=1

(2ni − 4)

= [n1n2 + n2n3 + n1n3 + 2(n1 + n2 + n3)− 18]− [2(n1 + n2 + n3)− 12]

= n1n2 + n2n3 + n1n3 − 6,

i.e., the upper bounds in (49) are tight for k = 1, 2.

6.2 Four or more dimensions

We now focus on the case d ≥ 4. We shall construct three d-polytopes P1, P2 and P3 in Rd,
such that they satisfy the conditions in relation (47). Consequently, as Theorem 12 asserts,
these polytopes attain the upper bounds in (46).

Consider the following d-dimensional moment-like curves in Rd:

γ1(t) = (t, ζt2, ζt3, t4, t5, . . . , td),

γ2(t) = (ζt, t2, ζt3, t4, t5, . . . , td),

γ3(t) = (ζt, ζt2, t3, t4, t5, . . . , td),

where t > 0, and ζ ≥ 0. Let e1,1 = (0), e1,2 = (1) be the standard affine basis of R and
recall that e2,1 = (0, 0), e2,2 = (1, 0), e2,3 = (0, 1) is the standard affine basis of R2. We
shall define three neighborly polytopes as the convex hulls of points, chosen appropriately
on each of these d-curves. We then proceed to show that FR, R ∈ X2, and F[3], have the

following property: every set of k = bd+1
2 c vertices from FR, or k ≤ bd+2

2 c vertices from F[3],
defines a (k− 1)-face of FR or F[3], respectively. This property readily yields the necessary
and sufficient conditions establishing the tightness of the upper bounds (cf. rel. (47)).

Let xi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ 3, be n[3] positive real numbers, such that xi,j < xi,j+1,
1 ≤ j ≤ ni − 1, and let τ be a positive real parameter. Let xεi,j = xi,j + ε, ti,j = xi,jτ

νi ,
tεi,j = xεi,jτ

νi , where 1 ≤ j ≤ ni, 1 ≤ i ≤ 3, ε > 0, and νi = 3 − i, 1 ≤ i ≤ 3. The value of
ε is chosen such that xεi,j < xi,j+1, for all 1 ≤ j < ni, and for all 1 ≤ i ≤ 3. Finally, we set

ζ = τM , where M ≥ d(d+ 1). We are going to define three vertex sets Vi as follows:

Vi = {γi(ti,1),γi(ti,2), . . .γi(ti,ni)} 1 ≤ i ≤ 3. (54)

Call Pi the d-polytope we get as the convex hull of the vertices in Vi, and let Vi be the image
of Vi via the Cayley embedding. As in Section 2, call C the Cayley polytope of the Pi’s in
Rd+2, and FR, ∅ ⊂ R ⊆ [3], the set of faces of C with at least one vertex from each Vi,
i ∈ R, and no vertex from any Vj , j 6∈ R. Note that, by construction, Pi is a bd2c-neighborly
polytope in Rd with ni vertices, which immediately implies that conditions (47) hold for
R ∈ X1 and for all 0 ≤ l ≤ bd2c. Hence, it suffices to show that:

fl−1(FR) =
∑

∅⊂S⊆R
(−1)|R|−|S|

(
nS
l

)
, 0 ≤ l ≤ bd+|R|−1

2 c, 2 ≤ |R| ≤ 3, (55)
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which we will succeed by choosing a sufficiently small value for τ .

To prove that the constructed polytopes have the desired properties (see Lemmas 13
and 14, bellow), we adopt the key idea used in the proofs of [31, Theorem 0.7 & Corollary
0.8] on basic properties of cyclic d-polytopes, and adapt this idea to our setting, where we
view the faces of the Minkowski sum of the polytopes Pi, i ∈ R, via the face set FR of their
Cayley polytope, where 2 ≤ |R| ≤ 3.

We start off with subsets R of size two. To show that fk−1(FR) is according to
relation (55), recall (cf. Section 2) that the polytope C contains the Cayley polytope CR of
the polytopes in R as a facet. Thus, in order to prove relation (55) for FR, we may consider
CR and FR independently of C, i.e., we can disassociate the polytopes Pi, i ∈ R, from the
Cayley polytope C. In other words, we think of the polytopes Pi, i ∈ R, as d-polytopes in
Rd, while their Cayley polytope CR is seen as a (d + 1)-polytope in Rd+1. We exploit this
observation in order to prove the following lemma.

Lemma 13. There exists a sufficiently small positive value τ̂R for τ such that, for all
τ ∈ (0, τ̂R),

fk−1(FR) =
∑

∅⊂S⊆R
(−1)2−|S|(nS

k

)
, 2 ≤ k ≤ bd+1

2 c, R ∈ X2.

Proof. Without loss of generality let R = {1, 3}. The rest of the cases are analogous. The
condition in the statement of the lemma is equivalent to the requirement that C{1,3} is

a (V1, bd+1
2 c)-bineighborly polytope (see [19] for definitions and details), which in turn is

equivalent to the requirement that

fb d+1
2
c−1(F{1,3}) =

∑

∅⊂S⊆{1,3}
(−1)2−|S|( nS

b d+1
2
c
)
. (56)

We shall prove that condition (56) holds true for the Cayley polytope C{1,3} of the
polytopes P1, P3, and for sufficiently small values of τ , as described in the statement of the
lemma.

Define δ := d+1−2bd+1
2 c. Let X be a positive real number such that X > xε3,n3

, and

let5 T = Xτν3 . Choose a set U of km 6= 0 vertices γm(tm,jm,1),γm(tm,jm,2), . . . ,γm(tm,jm,km )

from the set Vm, such that jm,1 < jm,2 < . . . < jm,km , for m ∈ {1, 3}, and k1 + k3 = bd+1
2 c.

Let U = {βm(tm,jm,1),βm(tm,jm,2), . . . ,βm(tm,jm,km ) | m ∈ {1, 3}}, be the Cayley embed-

ding of U in Rd+1 (using the affine basis e1,1, e1,3). For a vector x = (x1, x2, . . . , xd+1) ∈
Rd+1, we define the (d+ 2)× (d+ 2) determinant HU(x) as follows:

5Although we have set ν3 = 0, we keep ν3 as is in the proof, so as to make more profound the analogy of
the proof presented here for R = {1, 3} with the cases R = {1, 2} and R = {2, 3}.
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(−1)6

∣∣∣∣∣
1 1 1 · · · 1 1 1 1 · · · 1 1 1

x β1(t1,j1,1) β1(t
ǫ
1,j1,1) · · · β1(t1,j1,k1 ) β1(t

ǫ
1,j1,k1

) β3(t3,j3,1) β3(t
ǫ
3,j3,1) · · · β3(t3,j3,k3 ) β3(t

ǫ
3,j3,k3

) β3(δT )

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1 1 · · · 1 1 1

x1 0 0 · · · 0 0 1 1 · · · 1 1 1

x2 t1,j1,1 tǫ1,j1,1 · · · t1,j1,k1 tǫ1,j1,k1
τM t3,j3,1 τM tǫ3,j3,1 · · · τM t3,j3,k3 τM tǫ3,j3,k3

τMδT

x3 τM (t1,j1,1)
2 τM(tǫ1,j1,1)

2 · · · τM(t1,j1,k1 )
2 τM(tǫ1,j1,k1

)2 τM (t3,j3,1)
2 τM(tǫ3,j3,1)

2 · · · τM (t3,j3,k3 )
2 τM(tǫ3,j3,k3

)2 τM(δT )2

x4 τM (t1,j1,1)
3 τM(tǫ1,j1,1)

3 · · · τM(t1,j1,k1 )
3 τM(tǫ1,j1,k1

)3 (t3,j3,1)
3 (tǫ3,j3,1)

3 · · · (t3,j3,k3 )
3 (tǫ3,j3,k3

)3 (δT )3

x5 (t1,j1,1)
4 (tǫ1,j1,1)

4 · · · (t1,j1,k1 )
4 (tǫ1,j1,k1

)4 (t3,j3,1)
4 (tǫ3,j3,1)

4 · · · (t3,j3,k3 )
4 (tǫ3,j3,k3

)4 (δT )4

...
...

...
...

...
...

...
...

...
...

...
...

xd+1 (t1,j1,1)
d (tǫ1,j1,1)

d · · · (t1,j1,k1 )
d (tǫ1,j1,k1

)d (t3,j3,1)
d (tǫ3,j3,1)

d · · · (t3,j3,k3 )
d (tǫ3,j3,k3

)d (δT )d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Notice that for d odd the last column
(

1
β3(δT )

)
of HU(x) does not exist. The equation

HU(x) = 0 is the equation of a hyperplane in Rd+1 that passes through the points in
U. We are going to show that, for any choice of U, and for all vertices v in V{1,3} \ U,
V{1,3} = V1 ∪ V3, we have HU(v) > 0 for sufficiently small values of τ .

Suppose we have some vertex v ∈ V{1,3} \ U. Then, v = βs(ts,λ), ts,λ = xs,λτ
νs ,

where 1 ≤ λ ≤ ns, s is either 1 or 3, and λ /∈ {js,1, js,2, . . . , js,ks}. We perform the
following determinant transformations on HU(v): initially we subtract its second row from
its first, and then we shift its first column to the right via an even number of column
swaps. More precisely, we need to shift the first column of HU(v) to the right so that the
values ts,λ, ts,js,1 , t

ε
s,js,1

, ts,js,2 , t
ε
s,js,2

, . . . , ts,js,ks , t
ε
s,js,ks

appear consecutively in the columns

of HU(v) and in increasing order. To do that we always need an even number of column
swaps, due to the way we have chosen ε.

Consider the case where s = 1 and suppose that all necessary operations on HU(v)
have been performed. Then HU(v) is in the form of the determinant Dn,m(τ ; I, J,µ) of
Lemma 16 (multiplied by τM ), with n← 2k1 +1, m← 2k3, l← d+2, µ← (0, 0, 1, 2, . . . , d),
α ← ν1, β ← ν3, I ← 3, and J ← 5. Note that the requirement for M in Lemma 16 is
satisfied by our choice of M . According to Lemma 16 (see Section B of the Appendix),
HU(v) has the following asymptotic expansion in terms of τ :

HU(v) = τM (Cτ ξ + Θ(τ ξ+1)), ξ = ν1(−2 +

2k1+3∑

i=4

(i− 2)) + ν3(3 +

d+2∑

i=2k1+4

(i− 2)), (57)

where C is a positive constant independent of τ . The asymptotic expansion in (57) implies
that there exists a positive value τ̂v,U for τ such that for all τ ∈ (0, τ̂v,U), HU(v) > 0. The
case s = 3 is completely analogous.

Since the number of the subsets U is finite, while for each such subset U we need to
consider a finite number of vertices in V{1,3} \U, it suffices to consider a positive value τ̂{1,3}
for τ that is small enough, so that all possible determinants HU(v) are strictly positive for
any τ ∈ (0, τ̂{1,3}). For τ ∈ (0, τ̂{1,3}), our analysis above immediately implies that for each

set U the equation HU(x) = 0, x ∈ Rd+1, is the equation of a supporting hyperplane of
CR passing through the vertices of U, and those only. In other words, every set U, where
|U| = bd+1

2 c, |U ∩ V1| = k1 6= 0, and |U ∩ V3| = k3 6= 0, defines a (bd+1
2 c − 1)-face of CR.

Taking into account that the number of such subsets U is
∑b d+1

2
c−1

i=1

(
n1

i

)( n3

b d+1
2
c−i
)
, we deduce
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that

fb d+1
2
c−1(F{1,3}) =

b d+1
2
c−1∑

i=1

(
n1

i

)( n3

b d+1
2
c−i
)

=
(n1+n3

b d+1
2
c
)
−
( n1

b d+1
2
c
)
−
( n3

b d+1
2
c
)

=
∑

∅⊂S⊆{1,3}
(−1)2−|S|( nS

b d+1
2
c
)
.

Hence, condition (56) is satisfied for all τ ∈ (0, τ̂{1,3}).

We now consider the case R = [3]. In this case we can show that:

Lemma 14. There exists a sufficiently small positive value τ̂[3] for τ such that, for all
τ ∈ (0, τ̂[3]),

fk−1(F[3]) =
∑

∅⊂S⊆[3]

(−1)3−|S|(nS
k

)
, 3 ≤ k ≤ bd+2

2 c, (58)

Proof. Define δ := d+2−2k and let T be a positive real number such that T > tε3,n3
(= xε3,n3

).
Choose a set U of ki 6= 0 vertices from Vi, 1 ≤ i ≤ 3, such that k1 + k2 + k3 = k, and
denote by U the Cayley embedding of U in Rd+2 (using the affine basis e2,i, 1 ≤ i ≤ 3). Let
γi(ti,ji,1),γ(ti,ji,2),. . ., γi(ti,ji,ki ), be the vertices in U , and βi(ti,ji,1),βi(ti,ji,2), . . . ,βi(ti,ji,ki ),
be their corresponding vertices in U, where ji,1 < ji,2 < . . . < ji,ki for all 1 ≤ i ≤ 3. Let
x = (x1, x2, . . . , xd+2) and define the (d+ 3)× (d+ 3) determinant HU(x) as follows:

−
∣∣∣∣
1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1

x β1(t1,j1,1) · · · β1(t
ǫ
1,j1,k1

) β2(t2,j2,1) · · · β2(t
ǫ
j2,k2

) β3(t
ǫ
3,j3,1

) · · · β3(t
ǫ
3,j3,k3

) β3(T ) · · · β3(δT )

∣∣∣∣ =

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1

x1 0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0

x2 0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1

x3 t1,j1,1 · · · tǫ1,j1,k1
τM t2,j2,1 · · · τM tǫ2,j2,k2

τM t3,j3,1 · · · τM tǫ3,j3,k3
τMT · · · τMδT

x4 τM (t1,j1,1)
2 · · · τM (tǫ1,j1,k1

)2 (t2,j2,1)
2 · · · (tǫ2,j2,k2

)2 τM (t3,j3,1)
2 · · · τM (tǫ3,j3,k3

)2 τMT 2 · · · τM (δT )2

x5 τM (t1,j1,1)
3 · · · τM (tǫ1,j1,k1

)3 τM (t2,j2,1)
3 · · · τM (tǫ2,j2,k2

)3 (t3,j3,1)
3 · · · (tǫ3,j3,k3

)3 T 3 · · · (δT )3

x6 (t1,j1,1)
4 · · · (tǫ1,j1,k1

)4 (t2,j2,1)
4 · · · (tǫ2,j2,k2

)4 (t3,j3,1)
4 · · · (tǫ3,j3,k3

)4 T 4 · · · (δT )4

...
...

...
...

...
...

...
...

...
...

...
...

...

xd+2 (t1,j1,1)
d · · · (tǫ1,j1,k1

)d (t2,j2,1)
d · · · (tǫ2,j2,k2

)d (t3,j3,1)
d · · · (tǫ3,j3,k3

)d T d · · · (δT )d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We can alternatively describe HU(x) as follows:

(i) The first column of HU(x) is
(

1
x

)
.

(ii) For i ranging from 1 to 3, and for λ ranging from 1 to ki, the next ki pairs of columns
of HU(x) are

(
1

βi(ti,ji,λ )

)
and

(
1

βi(t
ε
i,ji,λ

)

)
.

(iii) For λ ranging from 1 to δ, the last δ columns of HU(x) are
(

1
β3(λT )

)
. Notice that if

k = bd+2
2 c and d is even, this category of columns of HU(x) does not exist.
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The equation HU(x) = 0 is the equation of a hyperplane in Rd+2 that passes through
the points in U. Recall that V[3] = V1 ∪V2 ∪V3. We are going to show that, for any choice
of U, and for all vertices v in V[3] \ U, we have HU(v) > 0 for sufficiently small τ .

Suppose we have some vertex v ∈ V[3] \ U. Then, v = βs(ts,λ), ts,λ = xs,λτ
νs , for

some 1 ≤ λ ≤ ns and 1 ≤ s ≤ 3, such that λ /∈ {js,1, js,2, . . . , js,ks}. Then we can transform
HU(v) in the form of the determinant En,m,k(τ ;µ) of Lemma 17, by subtracting the second
and third row of HU(v) from its first row and shifting the first column of HU(v) to the right
via an even number of column swaps. More precisely, we need to shift the first column of
HU(v) to the right so that the values ts,λ, ts,js,1 , t

ε
s,js,1

, ts,js,2 , t
ε
s,js,2

, . . . , ts,js,ks , t
ε
s,js,ks

, appear

consecutively in the columns of HU(v) and in increasing order. To do that we always need
an even number of column swaps, due to the way we have chosen ε.

Now, suppose that v ∈ V1. Then HU(v) is in the form of the determinant En,m,k(τ ;µ)
of Lemma 17, where n ← 2k1 + 1, m ← 2k2, k ← 2k3 + δ, l ← d + 3, and µ ←
(0, 0, 0, 1, 2, . . . , d). Obviously, M ≥ 2|µ| = d(d + 1). Applying now Lemma 17, we de-
duce that HU(v) can be written as:

HU(v) = C ′τ ξ + Θ(τ ξ+1), ξ = 4 + 2

2k1+5∑

i=7

(i− 3) +

2k1+2k2+3∑

i=2k1+6

(i− 3),

where C ′ is a positive constant independent of τ . The asymptotic estimate above implies
that HU(v) > 0, for sufficiently small τ .

The remaining cases, i.e., the cases v ∈ V2 and v ∈ V3, are completely analogous
and we omit them. We thus conclude that, for any specific choice of U , and for any specific
vertex v ∈ V[3] \U, there exists some τv,U > 0 (cf. Lemma 17 in Section B of the Appendix)
that depends on v and U, such that for all τ ∈ (0, τv,U) we have HU(v) > 0. For each k
with 3 ≤ k ≤ bd+2

2 c, the number of the sets U of size k containing at least one vertex from
each Vi, 1 ≤ i ≤ 3, is

(
n1+n2+n3

k

)
−
(
n1+n2

k

)
−
(
n1+n3

k

)
−
(
n2+n3

k

)
+
(
n1

k

)
+
(
n2

k

)
+
(
n3

k

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|(nS
k

)
.

For each such subset U we need to consider the (n1 + n2 + n3 − k) vertices in V[3] \ U,
therefore it suffices to consider a positive value τ̂[3] for τ that is small enough, so that all

b d+1
2
c∑

k=3

(n1 + n2 + n3 − k)
∑

∅⊂S⊆[3]

(−1)3−|S|(nS
k

)
,

possible determinants HU(v) are strictly positive. For τ ← τ̂[3], our analysis above imme-

diately implies that for each set U the equation HU(x) = 0, x ∈ Rd+2, is the equation of
a supporting hyperplane for C passing through the vertices of U, and those only. In other
words, every set U, of k vertices, for 3 ≤ k ≤ bd+2

2 c, with at least one vertex from each Vi,
1 ≤ i ≤ 3, defines a (k − 1)-face of C, which means that

fk−1(F[3]) =
∑

∅⊂S⊆R
(−1)3−|S|(nS

k

)
, for all 3 ≤ k ≤ bd+2

2 c.
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Relation (55) now immediately follows from Lemmas 13 and 14. First choose a value
τ? for τ , smaller that τ̂R, for all 2 ≤ |R| ≤ 3. Then for this value of τ , the results of both
Lemma 13 and Lemma 14 hold true. Moreover, since P1, P2 and P3 are bd2c-neighborly for

any τ > 0, and since f−1(FR) = (−1)|R|−1, for all ∅ ⊂ R ⊆ [3], while fk−1(FR) = 0, for all
1 ≤ k ≤ |R|, we conclude that, for τ ≡ τ?, relations (55) hold.

Based on the analysis above, as well as the analysis in Section 6.1, we conclude that
the upper bounds stated in Theorem 12 are actually tight for any d ≥ 2. This establishes
Theorem 1, stated in the introductory section of the paper.

7 Conclusion

In this paper we have computed the maximum number of k-faces, fk(P1 +P2 +P3), 0 ≤ k ≤
d− 1, of the Minkowski sum of three d-polytopes P1, P2 and P3 in Rd as a function of the
number of their vertices n1, n2 and n3. When d = 2 our expressions reduce to known tight
bounds, while for d = 3 we show the tightness of our upper bounds by exploiting results
from [10] and [30]. In four or more dimensions we present a novel construction that achieves
the upper bounds: we consider the d-dimensional moment-like curves:

γ1(t) = (t, ζt2, ζt3, t4, . . . , td),

γ2(t) = (ζt, t2, ζt3, t4, . . . , td),

γ3(t) = (ζt, ζt2, t3, t4, . . . , td),

and we show that our maximal values are attained when Pi is the d-polytope with vertex
set

Vi = {γi(xi,1τ?),γi(xi,2τ?), . . . ,γi(xi,niτ?)}, i = 1, 2, 3,

with 0 < xi,1 < xi,2 < · · · < xi,ni and ζ = (τ?)M . The parameter value τ? is a sufficiently
small positive number, while M is chosen sufficiently large.

Our ultimate goal has been to extend our technique for the Minkowski sum of r d-
polytopes in Rd, for r ≥ 4 and d ≥ 3. Towards this direction, we can extend our methodology
and tools so as to prove relations for r polytopes that generalize certain relations that hold
true for two or three polytopes. For example, relation (13) in Lemma 4 generalizes to:

hk(KR) =
∑

∅⊂S⊆R
g

(|R|−|S|)
k (FS), 0 ≤ k ≤ d+ |R| − 1, ∅ ⊂ R ⊆ [r],

where [r] = {1, 2, . . . , r}. The Dehn-Sommerville-like equations in the same lemma (cf. rel.
(15)) generalize to:

hd+|R|−1−k(FR) = hk(KR), 0 ≤ k ≤ d+ |R| − 1, ∅ ⊂ R ⊆ [r], (59)

where FR and KR are defined as in Section 2. Notice that, since for r = 1 we have
F[1] ≡ K[1] ≡ ∂P1, the equations in (59) reduce to the well-known Dehn-Sommerville
equations for a simplicial d-polytope. We can also obtain a generalization of relation (14).
Let QR be the simplicial (d+ |R| − 1)-sphere we get by performing stellar subdivisions on
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the non-simplicial faces of the Cayley polytope of the polytopes in R, ∅ ⊂ R ⊆ [r]. For
all 0 ≤ k ≤ d + |R| − 1, we can obtain the following two expressions relating the h-vector
elements of ∂QR with those of FS and KS , ∅ ⊂ S ⊆ R:

hk(∂QR) = hk(FR) +
∑

∅⊂S⊂R

|R|−|S|−1∑

i=0

E|R|−|S|,i hk−i(FS),

hk(∂QR) = hk(KR) +
∑

∅⊂S⊂R

|R|−|S|−1∑

i=0

E|R|−|S|,i hk−1−i(KS),

where Em,k, m ≥ k + 1 > 0, are the Eulerian numbers [13, 1]:

Em,k =
k∑

i=0

(−1)i
(
m+ 1

i

)
(k + 1− i)m, m ≥ k + 1 > 0.

A recurrence relation similar to (37) in Lemma 8 may also be obtained. More precisely, the
following recurrence relation holds for all 0 ≤ k ≤ d+ |R| − 2, where ∅ ⊂ R ⊆ [r]:

hk+1(FR) ≤ nR − d− |R|+ 1 + k

k + 1
hk(FR) +

|R|∑

i=1

ni
k + 1

gk(FR\{i}), nR =
∑

i∈R
ni. (60)

Using this recurrence relation we can inductively obtain the following upper bounds for the
elements of h(FR), ∅ ⊂ R ⊆ [r]:

hk(FR) ≤
∑

∅⊂S⊆R
(−1)|R|−|S|

(
nS − d− |R|+ k

k

)
, 0 ≤ k ≤ d+ |R| − 1.

These bounds can be shown to be tight for all k with 0 ≤ k ≤ bd+|R|−1
2 c. Obtaining tight

upper bounds for h(KR), when |R| ≥ 4 turns out to be a bit more involved.

The bounds presented in this paper refer to polytopes of the same dimension. We
would like to derive refined bounds in the special case of simple polytopes of the same
dimension. Finally, a similar problem is to express the number of k-faces of the Minkowski
sum of r d-polytopes in terms of the number of facets of these polytopes. Results in this
direction are known for d = 2 and d = 3 only. We would like to derive such expressions for
any d ≥ 4 and any number, r, of summands.

Current state of the art. In a recent arXiv report [2], Adiprasito and Sanyal have followed
the high-level proof logic presented in this paper (as well as in [19], as it is the same logic)
to completely resolve what should now be called the Upper Bound Theorem for Minkowski
sums. They have proven upper bounds, in terms of the number of vertices of the polytopes,
for any number of summands, of the same or different dimensions. Unlike our approach
which is entirely geometric, they have used tools from Combinatorial Commutative Algebra
to prove relations (59) and (60). This is achieved via a new theory they have developed,
called the relative Stanley-Reisner theory for simplicial complexes. Their theory has been
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applied to KR and FR, called, in their terminology, the Cayley and relative Cayley com-
plexes, respectively. Tight upper bounds for h(KR), when |R| ≥ 4, have been obtained
through clever algebraic manipulation of the h-vector of KR. One interesting point to make
is that the general upper bounds are explicit, but not in closed form: for |R| ≥ 4 the upper
bounds for h(FR) and h(KR) are expressed through functions that are recursive in |R|.

In another very recent arXiv report [20], Karavelas and Tzanaki generalize the
geometric approach presented in this paper for three summands to the case of r summands,
when 1 < r < d.
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[23] Jǐŕı Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics.
Springer-Verlag New York, Inc., New York, 2002.

[24] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika,
17:179–184, 1970.
http://dx.doi.org/10.1112/S0025579300002850.

[25] J. Rosenmüller. Game Theory: Stochastics, information, strategies and Cooperation,
volume 25 of Theory and Decision Library, Series C. Kluwer Academic Publishers,
Dordrecht, 2000.

[26] Raman Sanyal. Topological obstructions for vertex numbers of Minkowski sums. J.
Comb. Theory, Ser. A, 116(1):168–179, 2009.
http://dx.doi.org/10.1016/j.jcta.2008.05.009.
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A Omitted & full proofs

A.1 Omitted & full proofs of Section 3

Proof of Lemma 2. The result clearly holds for m = 0, since:

g
(0)
k (Y) = hk(Y) =

0∑

i=0

(−1)i
(

0
i

)
hk−i(Y).

Suppose the relation holds for some m ≥ 0. We will show it holds for m+ 1. Indeed:

g
(m+1)
k (Y) = g

(m)
k (Y)− g(m)

k−1(Y)

=
m∑

i=0

(−1)i
(
m
i

)
hk−i(Y)−

m∑

i=0

(−1)i
(
m
i

)
hk−1−i(Y)

=

m+1∑

i=0

(−1)i
(
m
i

)
hk−i(Y)−

m+1∑

j=1

(−1)j−1
(
m
j−1

)
hk−j(Y)

=
m+1∑

i=0

(−1)i
(
m
i

)
hk−i(Y)−

m+1∑

j=0

(−1)j−1
(
m
j−1

)
hk−j(Y)

=

m+1∑

i=0

(−1)i
(
m
i

)
hk−i(Y) +

m+1∑

i=0

(−1)i
(
m
i−1

)
hk−i(Y)

=

m+1∑

i=0

(−1)i
[(
m
i

)
+
(
m
i−1

)]
hk−i(Y)

=
m+1∑

i=0

(−1)i
(
m+1
i

)
hk−i(Y).

Proof of Lemma 3. By replacing hk−ν−j(Y) from its defining equation, we get:

g
(D−δ−ν)
k−ν (Y) =

D−δ−ν∑

j=0

(−1)j
(
D−δ−ν

j

)
hk−ν−j(Y)

=
D−δ−ν∑

j=0

(−1)j
(
D−δ−ν

j

) δ+1∑

i=0

(−1)k−ν−j−i
(

δ+1−i
δ+1−k+ν+j

)
fi−1(Y) (61)

=

D−δ−ν∑

j=0

(−1)j
(
D−δ−ν

j

)D+1∑

i=0

(−1)k−ν−j−i
(

δ+1−i
δ+1−k+ν+j

)
fi−1(Y) (62)

=
D+1∑

i=0

(−1)k−ν−ifi−1(Y)
D−δ−ν∑

j=0

(
D−δ−ν

j

)(
δ+1−i

k−ν−i−j
)

(63)

=

D+1∑

i=0

(−1)k−ν−i
(
D+1−ν−i
k−ν−i

)
fi−1(Y) (64)
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=
k−ν∑

i=0

(−1)k−ν−i
(
D+1−ν−i
D+1−k

)
fi−1(Y) (65)

=

k∑

j=ν

(−1)k−j
(
D+1−j
D+1−k

)
fj−ν−1(Y) (66)

=
D+1∑

j=0

(−1)k−j
(
D+1−j
D+1−k

)
fj−ν−1(Y) (67)

= Sk(Y;D, ν),

where:

• in order to go from (61) to (62), we used that
(

δ+1−i
δ+1−k+ν+j

)
= 0 for i > δ + 1,

• in order to go from (63) to (64), we used the combinatorial identity:

n∑

i=0

(
n
i

)(
m
k−i
)

=
k∑

i=0

(
n
i

)(
m
k−i
)

=
(
n+m
k

)
,

with n← D − δ − ν, m← δ + 1− i, i← j, k ← k − ν − i,

• in order to go from (64) to (65), we used that
(
D+1−ν−i
k−ν−i

)
= 0 for i > k − ν, and that(

D+1−ν−i
k−ν−i

)
=
(

D+1−ν−i
(D+1−ν−i)−(k−ν−i)

)
=
(
D+1−ν−i
D+1−k

)
, and, finally,

• in order to go from (66) to (67), we used that fj−ν−1(Y) = 0 for j < ν (i.e., for
j − ν − 1 < −1), and that

(
D+1−j
D+1−k

)
= 0 for j > k.

A.2 Omitted & full proofs of Section 4

Proof of Lemma 6. Using relation (14), and after rearranging the terms, the left hand side
of relation (19) becomes:

T1︷ ︸︸ ︷
(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3])

+

T2︷ ︸︸ ︷∑

R∈X2

[(k + 1)hk+1(FR) + (d+ 2− k)hk(FR)]

+

T3︷ ︸︸ ︷∑

R∈X1

[(k + 1)hk+1(FR) + (d+ 2− k)hk(FR)]

+

T4︷ ︸︸ ︷∑

R∈X1

[(k + 1)hk(FR) + (d+ 2− k)hk−1(FR)] .
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We are going to analyze each term in the expression above separately. For any R ∈ X2: (i)
the relation at the top of page 18 in [19, Lemma 3.2], (ii) relations (13), with R ∈ X2, and
(iii) relation (3.9) in [19], give:

(k + 1)hk+1(FR) + (d+ 1− k)hk(FR) =
∑

i∈R

∑

v∈Vi
[hk(KR/v)− gk(K{i}/v)]

=
∑

v∈VR
hk(KR/v)−

∑

∅⊂S⊂R

∑

v∈VS
gk(KS/v).

Hence term T2 can be rewritten as:

T2 =
∑

R∈X2

hk(FR) +
∑

R∈X2

∑

v∈VR
hk(KR/v)−

∑

R∈X2

∑

∅⊂S⊂R

∑

v∈VS
gk(KS/v)

=

T5︷ ︸︸ ︷∑

R∈X2

hk(FR) +

T6︷ ︸︸ ︷∑

R∈X2

∑

v∈VR
hk(KR/v)−

T7︷ ︸︸ ︷
2
∑

R∈X1

∑

v∈VR
gk(KR/v) .

(68)

Applying relation (18) to the (d − 1)-complex FR, R ∈ X1, and using the identity
FR ≡ KR(≡ ∂PR), we derive the following expressions:

(k + 1)hk+1(FR) + (d− k)hk(FR) =
∑

v∈VR
hk(KR/v),

khk(FR) + (d− (k − 1))hk−1(FR) =
∑

v∈VR
hk−1(KR/v),

which, in turn yield the following expansions for T3 and T4:

T3 =

T8︷ ︸︸ ︷∑

R∈X1

∑

v∈VR
hk(KR/v) +

T9︷ ︸︸ ︷
2
∑

R∈X1

hk(FR), (69)

T4 =

T10︷ ︸︸ ︷∑

R∈X1

∑

v∈VR
hk−1(KR/v) +

T11︷ ︸︸ ︷∑

R∈X1

[hk(FR) + hk−1(FR)] . (70)

On the other hand, utilizing the expressions in Lemma 5, we arrive at the following
expansion for the right-hand side of (19):

3∑

i=1

∑

v∈Vi


hk(K[3]/v) +

∑

{i}⊆R⊂[3]

hk−1(KR/v) + hk−2(K{i}/v)




+
∑

R∈X1

[hk(FR) + hk−1(FR)] +
∑

R∈X2

∑

∅⊂S⊆R
hk(FS).

(71)

Since

3∑

i=1

∑

v∈Vi
hk(K[3]/v) =

∑

v∈V[3]

hk(K[3]/v),
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3∑

i=1

∑

v∈Vi

∑

{i}⊆R⊂[3]

hk−1(KR/v) =
∑

R∈X2

∑

v∈VR
hk−1(KR/v) +

∑

R∈X1

∑

v∈VR
hk−1(KR/v),

3∑

i=1

∑

v∈Vi
hk−2(K{i}/v) =

∑

R∈X1

∑

v∈VR
hk−2(KR/v),

and ∑

R∈X2

∑

∅⊂S⊆R
hk(FS) =

∑

R∈X2

hk(FR) + 2
∑

R∈X1

hk(FR),

the expression in (71) can be rewritten in the following more convenient form:

T12︷ ︸︸ ︷∑

v∈V[3]

hk(K[3]/v) +

T13︷ ︸︸ ︷∑

R∈X2

∑

v∈VR
hk−1(KR/v) +

T14︷ ︸︸ ︷∑

R∈X1

∑

v∈VR
[hk−1(KR/v) + hk−2(KR/v)]

+

T15︷ ︸︸ ︷∑

R∈X1

[hk(FR) + hk−1(FR)] +
∑

R∈X2

hk(FR) + 2
∑

R∈X1

hk(FR) .

Solving relation (19) in terms of the term T1, we get:

T1 = T12 + T13 + T14 + T15 − (T2 + T3 + T4)

= T12 + T13 + T14 + T15 − [(T5 + T6 − T7) + (T8 + T9) + (T10 + T11)]

= T12 + (T13 − T6) + (T14 + T7 − T8 − T10) + (T15 − T5 − T9 − T11)

= T12 + (T13 − T6) + (T14 + T7 − T8 − T10),

where we used the fact that the terms T5, T9 and T11 cancel-out with the term T15. Observe
now that:

T13 − T6 =
∑

R∈X2

∑

v∈VR
hk−1(KR/v)−

∑

R∈X2

∑

v∈VR
hk(KR/v) = −

∑

R∈X2

∑

v∈VR
gk(KR/v),

while

T14 + T7 − T8 − T10 =
∑

R∈X1

∑

v∈VR
[hk−1(KR/v) + hk−2(KR/v)] + 2

∑

R∈X1

∑

v∈VR
gk(KR/v)

−
∑

R∈X1

∑

v∈VR
hk(KR/v)−

∑

R∈X1

∑

v∈VR
hk−1(KR/v)

=
∑

R∈X1

∑

v∈VR
{hk−1(KR/v) + hk−2(KR/v) + 2[hk(KR/v)− hk−1(KR/v)]

− hk(KR/v)− hk−1(KR/v)}
=
∑

R∈X1

∑

v∈VR
[hk(KR/v)− 2hk−1(KR/v) + hk−2(KR/v)]
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=
∑

R∈X1

∑

v∈VR
g

(2)
k (KR/v).

Hence,

T1 =
∑

v∈V[3]

hk(K[3]/v)−
∑

R∈X2

∑

v∈VR
gk(KR/v) +

∑

R∈X1

∑

v∈VR
g

(2)
k (KR/v)

=
∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR/v).

Proof of Lemma 8. By Lemma 7, relation (26) yields:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) ≤
∑

∅⊂R⊆[3]

(−1)3−|R|nR g
(3−|R|)
k (KR)

= n[3]hk(K[3])−
∑

R∈X2

nRgk(KR) +
∑

R∈X1

nRg
(2)
k (KR)

(72)

By relation (13) with R ≡ [3], we can write hk(K[3]) as:

hk(K[3]) = hk(F[3]) +
∑

R∈X2

gk(FR) +
∑

R∈X1

g
(2)
k (FR), (73)

whereas from relation (13) for all R ∈ X2 we easily get:

gk(KR) = gk(FR) +
∑

∅⊂S⊂R
g

(2)
k (FS). (74)

Since KR ≡ FR, for any R ∈ X1, we can employ relations (73) and (74) to rewrite
the right hand side of (72) as follows:

n[3]hk(K[3])−
∑

R∈X2

nR gk(KR) +
∑

R∈X1

nRg
(2)
k (KR)

= n[3]hk(F[3]) + n[3]

∑

R∈X2

gk(FR) + n[3]

∑

R∈X1

g
(2)
k (FR)

−


∑

R∈X2

nRgk(FR) +
∑

R∈X2

nR
∑

∅⊂S⊂R
g

(2)
k (FS)


+

∑

R∈X1

nRg
(2)
k (FR)

= n[3]hk(F[3]) +
∑

R∈X2

(n[3] − nR)gk(FR)

+

T︷ ︸︸ ︷
n[3]

3∑

i=1

g
(2)
k (F{i})−

∑

R∈X2

nR
∑

∅⊂S⊂R
g

(2)
k (FS) +

3∑

i=1

nig
(2)
k (F{i})


 .

http://jocg.org/


Journal of Computational Geometry jocg.org

Using the identity:

∑

R∈X2

nR
∑

∅⊂S⊂R
g

(2)
k (FS) = 2

3∑

i=1

nig
(2)
k (F{i}) +

3∑

i=1

n[3]\{i} g
(2)
k (F{i}),

we see that the last term (term T ) in the relation above vanishes:

n[3]

3∑

i=1

g
(2)
k (F{i})−

∑

R∈X2

nR
∑

∅⊂S⊂R
g

(2)
k (FS) +

3∑

i=1

n{i}g
(2)
k (F{i})

= n[3]

3∑

i=1

g
(2)
k (F{i})−

[
2

3∑

i=1

nig
(2)
k (F{i}) +

3∑

i=1

n[3]\{i} g
(2)
k (F{i})

]
+

3∑

i=1

nig
(2)
k (F{i})

=

3∑

i=1

(n[3] − 2ni − n[3]\{i} + ni) g
(2)
k (F{i}) = 0.

Hence, relation (72) simplifies to:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) ≤ n[3]hk(F[3]) +
∑

R∈X2

(n[3] − nR)gk(FR)

= n[3]hk(F[3]) +
∑

R∈X2

n[3]\R gk(FR) = n[3]hk(F[3]) +
3∑

i=1

nigk(F[3]\{i}),

from which we obtain the relation in the statement of the lemma.

A.3 Omitted & full proofs of Section 5

Proof of Lemma 11. The bound for hk(K[3]) holds as equality for k = 0, since by rela-
tion (13) with R = [3], (see also (73)), we have

h0(K[3]) = h0(F[3]) +
∑

R∈X2

g0(FR) +
3∑

i=1

g
(2)
0 (∂Pi)

= 1 +
∑

R∈X2

[h0(FR)− h−1(FR)] +
3∑

i=1

[h0(∂Pi)− 2h−1(∂Pi) + h−2(∂Pi)]

= 1 +
∑

R∈X2

[(−1)− 0] +
3∑

i=1

[1− 2 · 0 + 0] = 1.

Suppose now that k ≥ 1. Then, using relations (13) and (40), we get, for k ≥ 1:

hk(K[3]) = hk(F[3]) +
∑

R∈X2

gk(FR) +
∑

R∈X1

g
(2)
k (FR)

≤ hk(F[3]) +
∑

R∈X2

[
nR−d−3

k hk−1(FR) +
∑

i∈R

nR\{i}
k gk−1(∂Pi)

]
+

3∑

i=1

g
(2)
k (∂Pi)
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= hk(F[3]) +
∑

R∈X2

nR−d−3
k hk−1(FR) +

3∑

i=1

[
n[3]\{i}

k gk−1(∂Pi) + gk(∂Pi)− gk−1(∂Pi)
]
,

which finally yields:

hk(K[3]) ≤ hk(F[3]) +
∑

R∈X2

nR−d−3
k hk−1(FR) +

3∑

i=1

[
n[3]\{i}−k

k gk−1(∂Pi) + gk(∂Pi)
]
. (75)

Since nR−d−3 ≥ 2(d+1)−d−3 = d−1 > 0, for R ∈ X2, and n[3]\{i}−k ≥ 2(d+1)−(d+2) =
d > 0 for any 0 ≤ k ≤ d+2, we can use the upper bounds for hk(F[3]) and hk−1(FR), R ∈ X2

from Lemma 10 and [19, Lemma 3.3], respectively, in conjunction with the known upper
bounds for the elements of the g-vector of a d-polytope (cf. [31, Corollary 8.38]). More
precisely:

hk(K[3]) ≤
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
+
∑

R∈X2

nR−d−3
k

[
(
nR−d−2+k−1

k−1

)
−
∑

i∈R

(
ni−d−2+k−1

k−1

)
]

+

3∑

i=1

[
n[3]\{i}−k

k

(
ni−d−2+k−1

k−1

)
+ gk(∂Pi)

]

=
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
+
∑

R∈R2

nR−d−3
k

[
(
nR−d−3+k

k−1

)
−
∑

i∈R

(
ni−d−3+k

k−1

)
]

+
3∑

i=1

[
n[3]\{i}

k

(
ni−d−3+k

k−1

)
−
(
ni−d−3+k

k−1

)
+
(
ni−d−2+k

k

)
+ gk(∂Pi)−

(
ni−d−2+k

k

)]

=
(n[3]−d−3+k

k

)
−

3∑

i=1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

(
ni−d−3+k

k

)

+
∑

R∈X2

nR−d−3
k

[
(
nR−d−3+k

k−1

)
−
∑

i∈R

(
ni−d−3+k

k−1

)
]

+
3∑

i=1

n[3]\{i}
k

(
ni−d−3+k

k−1

)
+

3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

[
gk(∂Pi)−

(
ni−d−2+k

k

)]
.

From the proof of Lemma 9 it is easy to see that:

∑

R∈X2

nR−d−3
k

[
(
nR−d−3+k

k−1

)
−
∑

i∈R

(
ni−d−3+k

k−1

)
]

+
3∑

i=1

n[3]\{i}
k

(
ni−d−3+k

k−1

)

=
∑

R∈X2

[
(
nR−d−3+k

k

)
−
∑

i∈R

(
ni−d−3+k

k

)
]

=

3∑

i=1

(n[3]\{i}−d−3+k

k

)
− 2

3∑

i=1

(
ni−d−3+k

k

)

Hence we have:

hk(K[3]) ≤
(n[3]−d−3+k

k

)
−

3∑

i=1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

(n[3]\{i}−d−3+k

k

)
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− 2
3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

[
gk(∂Pi)−

(
ni−d−2+k

k

)]

=
(n[3]−d−3+k

k

)
+

3∑

i=1

[
gk(∂Pi)−

(
ni−d−2+k

k

)]
.

Since gk(∂Pi) −
(
ni−d−2+k

k

)
≤ 0, for all k ≥ 0, we get the sought-for bound in (44) for

0 ≤ k ≤ d+ 2. Furthermore, for d odd and k = bd2c+ 1, we have gk(∂Pi) = 0, which yields
the bound in (45).

To prove the equality claim, we distinguish between the cases k ≤ bd2c, and k =

bd2c+1 with d odd. Consider the case k ≤ bd2c first, and assume that hk(K[3]) =
(n[3]−d−3+k

k

)
.

From relation (75) we deduce that both hk(F[3]) and gk(∂Pi), 1 ≤ i ≤ 3, must be equal to

their maximum values, since otherwise we would have that hk(K[3]) <
(n[3]−d−3+k

k

)
. In view

of Lemma 10, the maximality of hk(F[3]) implies that fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
,

for all 0 ≤ l ≤ k, whereas the maximality of gk(∂Pi) implies that Pi is k-neighborly, for all
1 ≤ i ≤ 3, i.e., for all 1 ≤ i ≤ 3, fl−1(∂Pi) = fl−1(F{i}) =

(
ni
l

)
, for all 0 ≤ l ≤ k. But then

we also have that gk−1(∂Pi) =
(
ni−d−2+k−1

k−1

)
, which gives:

g
(2)
k (∂Pi) = gk(∂Pi)− gk−1(∂Pi) =

(
ni−d−2+k

k

)
−
(
ni−d−2−k−1

k−1

)
=
(
ni−d−3+k

k

)
. (76)

By relation (37), the maximality of hk(F[3]) implies that gk−1(F[3]\{i}) attains its maximum
value for all 1 ≤ i ≤ 3. By following the argumentation in the proof of Lemma 9, the
maximality of gk−1(F[3]\{i}) further implies that hl(F[3]\{i}) is maximal, for all 0 ≤ l ≤ k−1.
Solving, now, equation (13) (for R ≡ [3]) in terms of the sum of the hk(F[3]\{i})’s we get:

3∑

i=1

hk(F[3]\{i}) = hk(K[3])− hk(F[3]) +

3∑

i=1

hk−1(F[3]\{i})−
3∑

i=1

g
(2)
k (∂Pi).

Substituting in the above equation the values for hk(K[3]), hk(F[3]), hk−1(F[3]\{i}) and

g
(2)
k (∂Pi), it is easy to verify that

3∑

i=1

hk(F[3]\{i}) =

3∑

i=1


(n[3]\{i}−d−2+k

k

)
−

∑

j∈[3]\{i}

(nj−d−2+k
k

)

 .

In other words, the sum of the hk(F[3]\{i})’s attains its maximum value, which implies that
each of the summands attains its maximum value. We thus conclude that hl(F[3]\{i}) is
maximal, for all 0 ≤ l ≤ k, which, by [19, Lemma 3.3], implies that, for all R ∈ X2,
fl−1(FR) =

∑
∅⊂S⊆R(−1)2−|S|(nS

l

)
, for all 0 ≤ l ≤ k.

Let us now consider the reverse direction and assume that for all ∅ ⊂ R ⊆ [3],

fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤ k (for k ≤ bd2c, min{k, bd+|R|−1

2 c} = k).
Using Lemma 10, the condition above, for R = [3], implies that hl(F[3]) attains its upper
bound value for all 0 ≤ l ≤ k. Using [19, Lemma 3.3], the condition above, for R ∈ X2,
implies that hl(FR) attains its upper bound value for all 0 ≤ l ≤ k, and thus gk(FR) attains
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its upper bound value. Finally, the condition above, for 1 ≤ i ≤ 3, implies that Pi is
k-neighborly, which means that gl(∂Pi) = gl(F{i}) =

(
ni−d−2+l

l

)
, for all 0 ≤ l ≤ k, and thus

(cf. (76)) g
(2)
k (∂Pi) = g

(2)
k (F{i}) =

(
ni−d−3+k

k

)
. Appealing now to relation (13) for R ≡ [3],

it is easy to verify that hk(K[3]) =
(n[3]−d−3+k

k

)
.

We end the equality claim proof by considering the case k = bd2c + 1, for d odd.
Since for d odd, gb d

2
c+1(∂Pi) = 0, relation (75), simplifies to:

hb d
2
c+1(K[3]) ≤ hb d

2
c+1(F[3]) +

∑

R∈X2

nR−d−3

b d
2
c+1

hb d
2
c(FR) +

3∑

i=1

n[3]\{i}−b d2 c−1

b d
2
c+1

gb d
2
c(∂Pi), (77)

while relation (13) (with R ≡ [3]) simplifies to:

hb d
2
c+1(K[3]) = hb d

2
c+1(F[3]) +

3∑

i=1

gb d
2
c+1(F[3]\{i})−

3∑

i=1

gb d
2
c(∂Pi). (78)

The argument in this case is essentially the same as before. Assuming that hb d
2
c+1(K[3]) is

maximal, we deduce, from (77), that both hb d
2
c+1(F[3]) and gb d

2
c(∂Pi) are maximal, which,

imply, respectively, that fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ bd2c+1 = bd+2

2 c,
and that, for all 1 ≤ i ≤ 3, fl−1(F{i}) =

(
ni
l

)
, for all 0 ≤ l ≤ bd2c. The maximality of

hb d
2
c+1(F[3]) implies also the maximality of gl(FR), for all R ∈ X2, and for all 0 ≤ l ≤ bd2c,

and thus the maximality of hl(FR), for all R ∈ X2, and for all 0 ≤ l ≤ bd2c. By solving
equation (78) in terms of the sum of the hb d

2
c+1(FR)’s, we also deduce that hb d

2
c+1(FR)

is maximal, for all R ∈ X2. Hence, we have that hl(FR) is maximal, for all R ∈ X2,
and for all 0 ≤ l ≤ bd2c + 1 = bd+1

2 c, which, by [19, Lemma 3.3], gives that fl−1(FR) =∑
∅⊂S⊆R(−1)2−|S|(nS

l

)
, for all R ∈ X2, and for all 0 ≤ l ≤ bd+1

2 c.
Assuming now that, for all ∅ ⊂ R ⊆ [3], fl−1(FR) =

∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤

l ≤ min{bd2c+ 1, bd+|R|−1
2 c}, we deduce, from Lemma 10, that that hb d

2
c+1(F[3]) attains its

upper bound value for all 0 ≤ l ≤ bd+2
2 c = bd2c+1. Furthermore, Lemma 3.3 in [19], implies

that, for all R ∈ X2, hl(FR) attains its upper bound value for all 0 ≤ l ≤ bd+1
2 c = bd2c+ 1,

which means that gb d+1
2
c(FR) attains its upper bound value, for all R ∈ X2. Finally,

our assumption above, implies that, for all 1 ≤ i ≤ 3, Pi is neighborly, which means

that gb d
2
c(∂Pi) =

(ni−b d2 c−3

b d
2
c
)
. Appealing to relation (78) above, it is easy to verify that

hb d
2
c+1(K[3]) attains its upper bound in (45).

B Asymptotic analysis of Vandermonde-like determinants

We start by introducing what is known as Laplace’s Expansion Theorem for determinants
(see [11, 15] for details and proofs). Consider a n × n matrix A. Let r = (r1, r2, . . . , rk),
be a vector of k row indices for A, where 1 ≤ k < n and 1 ≤ r1 < r2 < . . . < rk ≤ n.
Let c = (c1, c2, . . . , ck) be a vector of k column indices for A, where 1 ≤ k < n and
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1 ≤ c1 < c2 < . . . < ck ≤ n. We denote by S(A; r, c) the k × k submatrix of A constructed
by keeping the entries of A that belong to a row in r and a column in c. The complementary
submatrix for S(A; r, c), denoted by S̄(A; r, c), is the (n − k) × (n − k) submatrix of A
constructed by removing the rows and columns of A in r and c, respectively. Then, the
determinant of A can be computed by expanding in terms of the k columns of A in c
according to the following theorem.

Theorem 15 (Laplace’s Expansion Theorem). Let A be a n × n matrix. Let c =
(c1, c2, . . . , ck) be a vector of k column indices for A, where 1 ≤ k < n and 1 ≤ c1 < c2 <
. . . < ck ≤ n. Then:

det(A) =
∑

r

(−1)|r|+|c| det(S(A; r, c)) det(S̄(A; r, c)), (79)

where |r| = r1 + r2 + . . .+ rk, |c| = c1 + c2 + . . .+ ck, and the summation is taken over all
row vectors r = (r1, r2, . . . , rk) of k row indices for A, where 1 ≤ r1 < r2 < . . . < rk ≤ n.

In what follows we recall some facts concerning generalized Vandermonde determi-
nants that will be in use to us later. Let n ≥ 2, x = (x1, . . . , xn) and µ = (µ1, µ2, . . . , µn),
where we require that 0 ≤ µ1 < µ2 < . . . < µn. The generalized Vandermonde determinant,
denoted by GVD(x;µ), is the n × n determinant whose ith row is the vector x with all
its entries raised to µi. While there is no general formula for the generalized Vandermonde
determinant, it is a well-known fact that, if the elements of x are in strictly increasing order,
then GVD(x;µ) > 0 (for example, see [12] for a proof of this fact).

In the remainder of this section we consider two determinants that are parameterized
by a positive parameter τ , and we study their asymptotic behavior with respect to τ . These
determinants are generalizations of the determinants that arise in the proofs of Lemmas 13
and 14 in Section 6, and are directly associated with the equations of some appropriately
defined supporting hyperplanes for the faces of FR where R ∈ X2 or R ≡ [3] (recall that
FR stands for the set of faces of the Cayley polytope of |R| polytopes Pi, i ∈ R, with
the property that each face in FR has at least one vertex from each polytope Pi). The
two determinants that we study are generalized-Vandermonde-like determinants that are
polynomial functions of τ , and correspond, respectively, to the two cases R ∈ X2 and R ≡ [3]
mentioned above. Since in Section 6 we are interested in small values of τ , our asymptotic
analysis in the two lemmas below is targeted towards revealing the term of τ of minimal
exponent.

We start-off with the generalized version of the determinant that arises in the upper
bound tightness construction in Section 6 when R ∈ X2.

Lemma 16. Fix two integers m ≥ 2 and n ≥ 2, with n + m ≥ 5. Let Dn,m(τ ; I, J,µ) be
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the (n+m)× (n+m) determinant:

(−1)J+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x1τ
α)µ1 · · · (xnτ

α)µ1 0 · · · 0

0 · · · 0 (y1τ
β)µ2 · · · (ymτ

β)µ2

f3(τ)(x1τ
α)µ3 · · · f3(τ)(xnτ

α)µ3 g3(τ)(y1τ
β)µ3 · · · g3(τ)(ymτ

β)µ3

f4(τ)(x1τ
α)µ4 · · · f4(τ)(xnτ

α)µ4 g4(τ)(y1τ
β)µ4 · · · g4(τ)(ymτ

β)µ4

f5(τ)(x1τ
α)µ5 · · · f5(τ)(xnτ

α)µ5 g5(τ)(y1τ
β)µ5 · · · g5(τ)(ymτ

β)µ3

(x1τ
α)µ6 · · · (xnτ

α)µ6 (y1τ
β)µ6 · · · (ymτ

β)µ6

(x1τ
α)µ7 · · · (xnτ

α)µ7 (y1τ
β)µ7 · · · (ymτ

β)µ7

...
. . .

...
...

. . .
...

(x1τ
α)µ` · · · (xnτ

α)µ` (y1τ
β)µ` · · · (ymτ

β)µ`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where 0 < x1 < x2 < . . . < xn, 0 < y1 < y2 < . . . < ym, ` = n + m, µ = (µ1, . . . , µ`),
with 0 ≤ µ1 ≤ µ2 < µ3 < . . . < µ`, (I, J) ∈ {(3, 4), (3, 5), (4, 5)}, fI(τ) = gJ(τ) = 1,
fi(τ) = gj(τ) = τM , for i 6= I and j 6= J , α > β ≥ 0, M ≥ α|µ| and τ > 0. Then:

Dn,m(τ ; I, J,µ) = Cτ ξ + Θ(τ ξ+1),

ξ = α

(
µ1 + µ3 +

n+2∑

i=4

µi − µJ
)

+ β

(
µ2 + µJ +

∑̀

i=n+3

µi

)
,

where C is a positive constant independent of τ .

Proof. For simplicity, we write Dn,m(τ) instead of Dn,m(τ ; I, J,µ), suppressing I, J and
µ in the notation. We denote by ∆n,m(τ) the matrix corresponding to the determinant
(−1)J+1Dn,m(τ). If we apply Laplace’s expansion with respect to the first n columns, i.e.,
when c = (1, 2, . . . , n), we get:

Dn,m(τ) = (−1)J+1
∑

r=(r1,r2,...,rn)
1≤r1<r2<···<rn≤n+m

(−1)|r|+|c| det(S(∆n,m(τ); r, c)) det(S̄(∆n,m(τ); r, c))

=
∑

r=(r1,r2,...,rn)
1≤r1<r2<···<rn≤n+m

(−1)|r|+
n(n+1)

2
+J+1 det(S(∆n,m(τ); r, c)) det(S̄(∆n,m(τ); r, c)).

(80)

The above sum consists of
(
n+m
n

)
terms. Among these terms:

(i) all those for which r contains the second row vanish (in this case the corresponding
row of S(∆n,m(τ); r, c) consists of zeros), and

(ii) all those for which r does not contain the first row vanish (in this case at least one
row of S̄(∆n,m(τ); r, c) consists of zeros).
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The remaining terms of the expansion are the
(
n+m−2
n−1

)
terms for which r contains 1 but

not 2, i.e., r = (1, r2, r3, . . . , rn), with 3 ≤ r2 < r3 < . . . < rn ≤ n + m. For any given r,
we denote by r̄ the vector of the m, among the n+m, row indices for ∆n,m(τ) that do not
belong to r (recall that 2 always belongs to r̄). Notice that the elements of the kth row of
∆n,m(τ) have exponent µk. Denoting by µr the vector the ith element of which is µri , we
have that:

(i) det(S(∆n,m(τ); r, c)) is the n × n generalized Vandermonde determinant GVD(ταx;
µr), multiplied by τM if J ∈ r.

(ii) det(S̄(∆n,m(τ); r, c)) is the m×m generalized Vandermonde determinant GVD(τβy;
µr̄), multiplied by τM if I ∈ r̄.

We can, thus, simplify the expansion in (80) to get:

Dn,m(τ) =
∑

{r|1∈r,26∈r}
(−1)|r|+

n(n+1)
2

+J+1 h(r, τ ; I, J)GVD(ταx;µr)GVD(τβy;µr̄)

=
∑

{r|1∈r,26∈r}
(−1)|r|+

n(n+1)
2

+J+1 h(r, τ ; I, J)τα|µr |+β|µr̄ |GVD(x;µr)GVD(y;µr̄),

(81)
where

h(r, τ ; I, J) =





1, I ∈ r and J 6∈ r,
τ2M , I 6∈ r and J ∈ r,
τM , otherwise.

In the remainder of the proof we seek to find the unique term in the expansion (81)
that corresponds to the minimum order of τ , or, equivalently, the minimum exponent for
τ . Since α > β ≥ 0, for any r, with I ∈ r and J 6∈ r, the exponent of τ is:

α|µr|+ β|µr̄| < α|µr|+ α|µr̄| = α|µ| ≤M,

where we used the fact that:

|µr|+ |µr̄| =
n∑

i=1

µri +
m∑

i=1

µr̄i =
∑

i∈r
µi +

∑

i∈r̄
µi =

∑̀

i=1

µi = |µ|.

This implies that the terms in (81) that correspond to the row vectors r that contain J
cannot be the terms of minimal order of τ , since for these terms the exponent of τ is at
least

α|µr|+ β|µr̄|+M > β|µr|+ β|µr̄|+M = β|µ|+M ≥M.

For the remaining terms, i.e., for those r that do not contain J , we have h(r, τ ;
I, J) = 1. For these terms the exponent of τ is α|µr| + β|µr̄|. Since α > β, we may write
α = β + θ for some θ > 0. This gives:

α|µr|+ β|µr̄| = (β + θ)|µr|+ β|µr̄| = β|µ|+ θ|µr|.
Clearly, in this case, the quantity α|µr|+ β|µr̄| attains its minimum when |µr| is minimal.
We distinguish between the following cases:
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• (I, J) = (3, 4). In this case |µr| attains its minimal value if and only if r is equal to
ρ = (1, 3, 5, 6, . . . , n+ 2). Furthermore,

|µρ| = µ1 + µ3 +
n+2∑

i=5

µi = µ1 + µ3 +
n+2∑

i=4

µi − µJ ,

|µρ̄| = µ2 + µ4 +
∑̀

i=n+3

µi = µ2 + µJ +
∑̀

i=n+3

µi

and

|ρ|+ n(n+ 1)

2
+ J + 1 =

n+2∑

i=1

i− (2 + 4) +
n(n+ 1)

2
+ 4 + 1

=
(n+ 2)(n+ 3)

2
+
n(n+ 1)

2
− 1

= n2 + 3n+ 3− 1

= (n+ 1)(n+ 2),

which is even for any n ≥ 2.

• I ∈ {3, 4} and J = 5. In this case |µr| attains its minimal value if and only if r is
equal to ρ = (1, 3, 4, 6, . . . , n+ 2). Furthermore,

|µρ| = µ1 + µ3 + µ4 +
n+2∑

i=6

= µ1 + µ3 +
n+2∑

i=4

−µJ ,

|µρ̄| = µ2 + µ5 +
∑̀

i=n+3

= µ2 + µJ +
∑̀

i=n+3

µi,

and

|ρ|+ n(n+ 1)

2
+ J + 1 =

n+1∑

i=1

i− (2 + 5) +
n(n+ 1)

2
+ 5 + 1

=
(n+ 2)(n+ 3)

2
+
n(n+ 1)

2
− 1

= n2 + 3n+ 3− 1

= (n+ 1)(n+ 2),

which is again even for any n ≥ 2.

We can thus rewrite (81) in the following form:

Dn,m(τ) = τα|µρ|+β|µρ̄|GVD(x;µρ)GVD(y;µρ̄) + Θ(τα|µρ|+β|µρ̄|+1).

The lemma immediately follows from the positivity of the generalized Vandermonde deter-
minants GVD(x;µρ) and GVD(y;µρ̄).
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We end with the following lemma, where we perform the asymptotic analysis of the
generalized version of the determinant that arises in the upper bound tightness construction
in Section 6 when R ≡ [3].

Lemma 17. Fix three integers m ≥ 2, n ≥ 2 and k ≥ 2, with n + m + k ≥ 7. Let
En,m,k(τ ;µ) be the (n+m+ k)× (n+m+ k) determinant:

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x1τ
2)µ1 · · · (xnτ

2)µ1 0 · · · 0 0 · · · 0

0 · · · 0 (y1τ)µ2 · · · (ymτ)µ2 0 · · · 0

0 · · · 0 0 · · · 0 zµ31 · · · zµ3k
(x1τ

2)µ4 · · · (xnτ
2)µ4 τM (y1τ)µ4 · · · τM (ynτ)µ4 τMzµ41 · · · τMzµ4n

τM (x1τ
2)µ5 · · · τM (xnτ

2)µ5 (y1τ)µ5 · · · (ymτ)µ5 τMzµ51 · · · τMzµ5n

τM (x1τ
2)µ6 · · · τM (xnτ

2)µ6 τM (y1τ)µ6 · · · τM (ymτ)µ6 zµ61 · · · zµ6m

(x1τ
2)µ7 · · · (xnτ

2)µ7 (y1τ)µ7 · · · (ymτ)µ7 zµ71 · · · zµ7k
...

. . .
...

...
. . .

...
...

. . .
...

(x1τ
2)µ` · · · (xnτ

2)µ` (y1τ)µ` · · · (ymτ)µ` zµ`1 · · · zµ`k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where 0 < x1 < x2 < . . . < xn, 0 < y1 < y2 < . . . < ym, 0 < z1 < z2 < . . . < zk,
` = n + m + k, µ = (µ1, µ2, . . . , µ`), with 0 ≤ µ1 ≤ µ2 ≤ µ3 < µ4 < µ5 < . . . < µ`,
M ≥ 2|µ| and τ > 0. Then,

En,m,k(τ ;µ) = C ′τ ξ + Θ(τ ξ+1), ξ = 2

(
µ1 + µ4 +

n+4∑

i=7

µi

)
+ µ2 + µ5 +

n+m+2∑

i=n+5

µi,

where C ′ is a positive constant independent of τ .

Proof. We write En,m,k(τ) instead of En,m,k(τ ;µ), suppressing µ in the notation. We denote
by En,m,k(τ) the matrix corresponding to the determinant −En,m,k(τ). If we apply Laplace’s
expansion theorem with respect to the first n columns, i.e., when c = (1, 2, . . . , n), we get:

En,m,k(τ) = −
∑

r

(−1)|r|+|c| det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c))

=
∑

r

(−1)|r|+
n(n+1)

2
+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c)). (82)

The above sum consists of
(
n+m+k

n

)
terms. Among these terms:

(i) all those for which r contains the second or third row vanish (the corresponding row
of S(En,m,k(τ); r, c) consists of zeros), and

(ii) all those for which r does not contain the first row vanish (in this case there exists a
row of S̄(En,m,k(τ); r, c) that consists of zeros).
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The remaining terms of the expansion are the
(
n+m+k−3

n−1

)
terms for which r = (1, r2, r3, . . . ,

rn), with 4 ≤ r2 < r3 < . . . < rn ≤ n+m+ k. As a result, the expansion in (82) simplifies
to:

En,m,k(τ) =
∑

r∈R
(−1)|r|+

n(n+1)
2

+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c)). (83)

where R is the set of row vectors that contain 1, but not 2 and 3, i.e., R = {r | 1 ∈ r, 2, 3 6∈
r}.

For any given r, we denote by r̄ the vector of the m + k row indices for En,m,k(τ)
that do not belong to r. Moreover, µr is the vector the ith element of which is µri . As in
the proof of Lemma 16, we seek to find the unique minimum term in the expansion (83)
that corresponds to the minimum order of τ , or, equivalently, the minimum exponent for τ .

Let us denote by R′ the set of row vectors R′ = {r ∈ R | 4 ∈ r and 5, 6 6∈ r}, and
let R′′ = R \R′. For any r ∈ R′, observe that:

(i) det(S(En,m,k(τ); r, c)) is the n× n generalized Vandermonde determinant GVD(τ2x;
µr).

(ii) det(S̄(En,m,k(τ); r, c)) is the (m+k)×(m+k) determinant Dm,k(τ ; 3, 4,µr̄) of Lemma
16 multiplied by (−1)4+1 = −1, with x← y, y ← z, µ← µr̄, (I, J) = (3, 4), α← 1,
β ← 0 and M ← M (since M ≥ 2|µ| > |µr̄|, the condition for M in Lemma 16 is
satisfied).

We can, thus, rewrite the expansion in (83) to get:

En,m,k(τ) =
∑

r∈R′
(−1)|r|+

n(n+1)
2

+1 GVD(τ2x;µr) (−Dm,k(τ ; 3, 4,µr̄))

+
∑

r∈R′′
(−1)|r|+

n(n+1)
2

+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c))

=
∑

r∈R′
(−1)|r|+

n(n+1)
2 τ2|µr |GVD(x;µr)Dm,k(τ ; 3, 4,µr̄)

+
∑

r∈R′′
(−1)|r|+

n(n+1)
2

+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c))

(84)

By Lemma 16 we have:

Dm,k(τ ; 3, 4,µr̄) = Cr τ
1·|µū|+0·|µv̄| + Θ(τ1·|µū|+0·|µv̄|+1) = Cr τ

|µū| + Θ(τ |µū|+1),

where ū = (2, 5, r̄5, . . . , r̄m+2), v̄ = (3, 6, r̄m+3, . . . , r̄m+k) and Cr > 0. Hence, for any
r ∈ R′, the term in the expansion of En,m,k(τ) that corresponds to r becomes:

(−1)|r|+
n(n+1)

2 Cr τ
2|µr |+|µū|GVD(x;µr) + Θ(τ2|µr |+|µū|+1).

From this expression we deduce that the minimum exponent of τ for any specific r ∈ R′ is:

2|µr|+ |µū| < 2|µr|+ |µr̄| < 2|µr|+ 2|µr̄| = 2|µ| ≤M,
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where we used the fact that:

|µr|+ |µr̄| =
n∑

i=1

µri +

m+k∑

i=1

µr̄i =
∑

i∈r
µi +

∑

i∈r̄
µi =

∑̀

i=1

µi = |µ|.

On the other hand, the terms in (84) that correspond to the row vectors r ∈ R′′ cannot be
the terms of minimal order of τ , since for these terms the exponent of τ is greater than M .
We can thus restrict our attention to the terms for which r ∈ R′, and rewrite (84) as:

En,m,k(τ) =
∑

r∈R′

(
(−1)|r|+

n(n+1)
2 Cr τ

2|µr |+|µū|GVD(x;µr) + Θ(τ2|µr |+|µū|+1)
)

+ Ω(τM+1).

From the expression above, we infer that the term of En,m,k(τ) for which the exponent of τ
is minimal is the term for which the quantity 2|µr|+ |µū| is minimized. However, we have
that:

2|µr|+ |µū| = 2|µr|+ |µū|+ |µv̄| − |µv̄| = |µr|+ |µr|+ |µr̄| − |µv̄| = |µr|+ |µ| − |µv̄|.

So, minimizing 2|µr| + |µū| amounts to determining the vectors r and v̄ for which the
difference |µr| − |µv̄| becomes minimal. Let ρ = (1, 4, 7, 8, . . . , n+ 4), ρ̄′ = (2, 5, n+ 5, n+
6, . . . , n+m+ 2) and ρ̄′′ = (3, 6, n+m+ 3, n+m+ 4, . . . , `). It is trivial to verify that

• |µr| > |µρ|, for all r 6= ρ, and

• |µv̄| < |µρ̄′′ |, for all v̄ 6= ρ̄′′.

From this observation we deduce that the unique minimal value for 2|µr|+ |µū| is attained
when r, ū and v̄ are equal to ρ, ρ̄′ and ρ̄′′, respectively. Moreover,

|ρ|+ n(n+ 1)

2
=

n+4∑

i=1

i− (2 + 3 + 5 + 6) +
n(n+ 1)

2
=

(n+ 4)(n+ 5)

2
− 16 +

n(n+ 1)

2

=
(n2 + 9n+ 20) + (n2 + n)

2
− 16 = (n2 + 5n+ 10)− 16 = (n− 1)(n+ 6).

Since (n−1)(n+ 6) is even for any n, the term in the expansion of En,m,k(τ) corresponding

to the minimum exponent for τ becomes Cρ τ
2|µρ|+|µρ̄′ |GVD(x;µρ). The claim in the

statement of the lemma immediately follows from the positivity of Cρ and GVD(x;µρ),
and by observing that 2|µρ|+ |µρ̄′ | equals ξ.
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