
Root comparison techniques applied to computing the additively

weighted Voronoi diagram

Menelaos I. Karavelas
∗

Ioannis Z. Emiris
†

Abstract

This work examines algebraic techniques for comparing
quadratic algebraic numbers, thus yielding methods for
deciding key predicates in various geometric construc-
tions. Our motivation and main application concerns a
dynamic algorithm for computing the additively weighted
Voronoi diagram in the plane. We propose efficient, ex-
act, and complete methods, which are crucial for a fast
and robust implementation of these predicates and the
overall algorithm. Our first contribution is to minimize,
on the one hand, the algebraic degree of the computed
quantities, thus optimizing precision and, on the other
hand, the total number of arithmetic operations. We fo-
cus on the hardest predicate, which involves quadratic
polynomials, and detail the corresponding algorithms,
which are based on polynomial Sturm sequences; ancil-
lary tools include geometric invariants, multivariate re-
sultants, and polynomial factorization. Our last contri-
bution is a general and efficient implementation, which
has been extensively tested in order to demonstrate the
practical performance of our methods and the improve-
ments achieved over existing approaches.

Keywords: Computational Geometry, Symbolic Com-
putation, Voronoi Diagrams, Algebraic Predicates.

1 Introduction

In this paper we study techniques for comparing
quadratic algebraic numbers. This is an instance of the
more general problem of deciding the order between the
real roots of given polynomial equations. This turns out
to be an important predicate in several geometric con-
structions, as illustrated below. Manipulating algebraic
numbers is a vast problem in real algebraic geometry,
and admits a variety of approaches, whose full descrip-
tion goes beyond our scope. Instead, we develop and
compare methods suitable to the case of quadratic uni-

∗INRIA Sophia-Antipolis, 2004 route des Luci-
oles, BP 93, 06902 Sophia-Antipolis, France; email:
Menelaos.Karavelas@sophia.inria.fr

†Department of Informatics & Telecoms, University of
Athens, Greece and INRIA Sophia-Antipolis, France; email:
emiris@di.uoa.gr

variate polynomials. This problem is by itself important
in building geometric software, as is manifest by the re-
lated efforts mentioned in the sequel.

Our main motivation comes from Voronoi diagrams,
which are among the most studied constructions in com-
putational geometry due to their numerous applications,
including motion planning and collision detection, com-
munication networks, graphics, and growth of micro-
organisms or plants. This paper considers the planar
Additively Weighted Voronoi diagram, or simply AW-
Voronoi diagram. The input consists of a set of points
and a set of weights associated to them; these are the
weighted points or sites. We denote the Euclidean dis-
tance as d(·, ·) and define the distance δ(p, B) between
a point p ∈ R2 and a site B as δ(p, B) = d(p, b) − r,
where b ∈ R2 is the center (or point) of B and r its
weight. The AW-Voronoi diagram is the subdivision
of the plane induced by assigning each point p to the
nearest site with respect to the distance function δ(p, ·).
If all weights are positive, the AW-Voronoi diagram is
the Voronoi diagram for a set of circles. In contrast to
the usual Euclidean Voronoi diagram for points, sites in
an AW-Voronoi diagram may have empty Voronoi cell;
these sites are called trivial.

There have been several algorithms for this prob-
lem, e.g. [3, 10, 12, 15, 18, 23], however the question of
completely evaluating the predicates has seldom been
treated and even less often implemented. In particu-
lar, [12, 23] discuss the predicates required, but they
are rather complicated. The algorithm presented in [18]
treats Voronoi diagrams in an abstract way and thus re-
quires the predicates as input. In [17], an implementa-
tion of the Delaunay triangulation of the input points is
used, followed by edge flips, in order to arrive at the AW-
Voronoi diagram. However, the algorithm has quadratic
worst-time complexity, it is off-line and it handles nei-
ther intersecting nor trivial sites. More recently, [2] has
examined one important predicate in the algorithm of
[3], which is nonetheless of quadratic complexity and
off-line. Interestingly, this predicate is decided by al-
gebraic expressions of maximum degree 16 in the input
parameters.

The algorithm of [15] is fully dynamic, i.e., sup-



ports arbitrary insertions and deletions of sites. Its
asymptotic complexity is quadratic in the worst case,
in terms of the total number of input sites, but on the
average it is O(nT (h) + h log h), where n, h are, respec-
tively, the number of input sites and the number of non-
trivial sites, and T (h) bounds the complexity of locat-
ing the nearest neighbor of a given site among all non-
trivial sites. Moreover, experimental evidence suggests
an O(n log h) behavior.

This algorithm requires 5 main predicates, which
are implemented by 9 primitive operations. A full
description of these predicates and primitives is beyond
the scope of this paper; see [14, 15]. Here, we focus on
algorithms for evaluating one of these predicates, which
is the hardest from the point of view of algorithm design
and algebraic complexity. It essentially reduces to
comparing two algebraic numbers defined by quadratic
polynomials. Our algorithms have been used in an
implementation of all the predicates required by the
algorithm in [15]. The experimental results in Section
5 compare different approaches to implementing the
predicates of the overall algorithm, and, in particular,
the hardest one.

Since the studied predicate amounts to comparing
two quadratic roots, our methods apply to general prob-
lems dealing with algebraic numbers of low degree, thus
leading to several potential applications; see also Section
1.1. In particular, techniques for exact comparisons of
algebraic numbers are at the heart of software packages
in computational geometry and solid modeling, such as
Core, Leda, and Mapc [11, 20, 16]. Our experiments
examine different approaches and compare their practi-
cal behavior on the basic algebraic operations with, but
also without, reference to the Voronoi diagram under
construction.

Predicate evaluation must be efficient and exact,
in order to be fast and robust in practice, as well as
complete in order to cover all input cases, including de-
generacies. The goal of efficiency refers first to mini-
mizing the algebraic degree of the computed quantities
in the input parameters, thus optimizing the precision
required for exact arithmetic. This is becoming nowa-
days a question that heavily influences algorithm design
in computational geometry, e.g. [5, 19, 6]. Besides alge-
braic degree, a second and related task is to minimize
the total number of arithmetic operations. This twofold
goal corresponds roughly to minimizing bit complexity,
which is the most realistic measure reflecting the run-
ning time, when using exact rational arithmetic. Com-
pleteness refers to applying our methods and analysis
to arbitrary inputs, including degeneracies. Our algo-
rithms make use of polynomial Sturm sequences, the
classical geometric invariants, multivariate resultants,

Descartes’ rule of sign, and multivariate polynomial fac-
torization.

This paper is structured as follows. The next sub-
section discusses existing work for the specific problem,
and states our main results. Section 2 formally defines
the examined predicate in algebraic terms, and relates
it to the geometric problem. Section 3 describes our al-
gebraic methods. Section 4 applies our methods to or-
dering quadratic algebraic numbers, and Subsection 4.1
discusses degenerate cases. These two sections prove
our main claim on the maximum algebraic degree of
the tested quantities. The implementation and several
experimental results are described in Section 5. We con-
clude with directions of further work.

1.1 Past and new results. We discuss existing
approaches to comparing two specific roots of two
quadratic polynomials, and indicate our contributions.
In the sequel, when we refer to degrees, we refer to the
algebraic degrees of the corresponding expressions with
respect to the input data of the AW-Voronoi diagram
algorithm, i.e., the coordinates of the center of the
weighted point and its weight.

The most straightforward approach is to use radi-
cals in order to express the specific roots that must be
compared, then develop these expressions with the re-
quired squaring in order to arrive at an evaluation of
rational quantities. For the predicate in question, the
largest tested expression has degree 36 in the input pa-
rameters, which is more than twice that encountered in
our Sturm-based method of Section 4. We may con-
sider the corresponding computation tree, and assume
that all branches are equally likely. At each node, we
multiply the number of required arithmetic operations
by the algebraic degree of the computed quantity, thus
obtaining a total of 180 for ordering the larger roots of
the two polynomials: It is substantially higher than the
methods detailed in the sequel.

Certain existing generic software packages, such as
Core or Leda [11, 20], rely on estimates on the bit
precision required to decide the sign of an expression,
defined by its evaluation tree. Their capabilities are
of course very general. Our experiments consider
the number type of Leda reals and show that our
implementation runs significantly faster on the specific
predicate and the overall algorithm.

A first approach is letting x1 = t + x2, where t is
a new variable whose sign indicates the order between
the xi roots. Comparing the roots of f1(t + x2), f2(x2)
by expressions of nested radicals reduces the algebraic
degree to 28. Even better, the Sylvester resultant R of
f1(t + x2), f2(x2) with respect to x2 is a polynomial in
t. By studying its roots, we can solve the problem at



hand. This turns out to be equivalent to the resultant-
based approach of [9] for deciding the main predicates in
an algorithm computing arrangements of circular arcs
defined by the intersection of a circle and a straight
line. The primitive studied in [9] can be expressed
precisely as an ordering question between two quadratic
algebraic numbers. We review their resultant-based
method and show how our techniques can yield an
improvement in terms of algebraic degree as well as
number of operations.

Polynomial R(t) can be obtained as the resultant
of f0(x1, x2) := −t + x1 − x2, f1(x1), f2(x2) with re-
spect to x1, x2. This can be seen as an instance of
the u-resultant, where the u-polynomial is f0. For
background on multivariate resultants, see Section 3.
In [14] we elaborate their application to our problem,
including the computation of R(t) as a single matrix
determinant. Let us write R(t) =

∑
i Rit

i, where
R(t) = (α1α2)

2t4 + 4α1α2Jt3 + (4J2 + 2α1α2K)t2 +
4KJt + (G2 − 4JJ ′), where αi are the leading coeffi-
cients of fi and J, J ′, K, G, ∆i are functions of these co-
efficients defined in Section 4. By applying Descartes’
rule of sign (cf. Section 3) to the signed coefficients of
R(t), it is possible to know the sign of the roots of t in
almost all cases. See, for illustration, Table 3, where the
cases are defined in Table 1. In certain cases, an addi-
tional test is required on the sign of E := ∆1α

2
2−∆2α

2
1.

The maximum degree of any computed quantity in the
input parameters is 20. For comparing the two larger
roots, and assuming that each branch in an evaluation
procedure is equally likely, the expected number of op-
erations is 12 3

4 , which becomes 150 1
4 when we multiply

the count of each operation by the maximum degree of
its arguments. If we suppose that all cases are equally
likely, then we require 12 3

4 operations on the average.
In the above cost computations we assume that ∆1

and ∆2 are given. Such an assumption is realistic, given
that the primitives that are of interest in this paper
are at the bottom-most levels of the overall evaluation
of the predicates, and the quantities ∆1 and ∆2 have
already been computed at higher evaluation levels.
Moreover, we would like to stress that the evaluated
estimate of the bit complexity (average of number
of operations multiplied by degree) is of qualitative
nature. In particular, since we use the maximum
degree of the quantities involved in the computation of
a node, we over-estimate the actual cost of computing
the intermediate quantities. On the other hand, we
under-estimate the cost of multiplications, which are
superlinear in the bit size of the multiplied quantities.

By definition, resultants offer the smallest condition
for the solvability of a system of n + 1 polynomials in
n variables; in our case n = 2. This implies that the

algebraic degree of 20 is optimal, provided that the
input polynomials have generic coefficients. However,
this is clearly not the case. By writing these coefficients
in terms of the input parameters, we were able to
factorize the constant coefficient in R(t), which is the
only one of degree 20; this is discussed in Section 4.
The bottleneck now becomes the sign of E, a quantity
of degree 18.

Our contribution is a general approach based on
Sturm sequences. We show that the expected num-
ber of operations under the 3 measures used above is
always smaller than the corresponding numbers when
using only resultants. This improvement can be read-
ily applied to the predicates in [9]. More importantly,
our method can better exploit factorization to reduce
the maximum algebraic degree appearing in the predi-
cates for the AW-Voronoi diagram down to 16. Exper-
imental results illustrate our improvements. Interest-
ingly enough the quantities that are being tested by our
Sturm sequence approach are the same with those ob-
tained using other algebraic techniques [21], including
quadrics’ theory, application of a theorem by Hermite
and Bezoutian matrices.

Further related work includes [1], in particular
the χ2 primitive, which offers an alternative way for
deciding our predicate by reducing the decision to the
sign of a determinant of radicals. But this approach
involves expressions of degree up to 18 for generic
input, whereas with ours the corresponding degree is 14.
Moreover the average number of operations is more than
15 and the corresponding count, when the algebraic
degree is incorporated, exceeds 174.

2 Order on bisector

The main predicate in the algorithm under consider-
ation determines the type of the conflict region of a
query site with a given Voronoi edge. Depending on
whether this Voronoi edge lies on an infinite or finite
bisector of two input sites, certain subpredicates will be
called. The hardest case is when the bisector is finite, in
which case the main subpredicate is OrderOnBisec-

tor. This decides the order of two points on the (ori-
ented) bisector and uses, in its turn, two primitives: The
Orientation primitive, which is straightforward and
well-known in computational geometry, and the Radi-

iDifference primitive, which is the focus of this paper.
More precisely, the Orientation primitive is applied to
two input points and the Voronoi vertex of three sites.
It can be decided for arbitrary inputs, in a straightfor-
ward manner, using expressions of degree at most 14
[14].

Let us refer to Figure 1 in order to define these prim-
itives formally and independently of the original predi-



Figure 1: A typical configuration for the RadiiDiffer-

ence primitive.

cate. Consider input sites B1, B2 (red circles, north and
south in Figure 1) which define a bisector curve (blue,
almost parallel to the equator). There are another two
sites (green, west and south-east), each making up a
triplet with B1, B2. Each triplet of sites corresponds
to a Voronoi circle (orange, tritangent circles), whose
center lies on the bisector curve. The subpredicate Or-

derOnBisector has to order the centers of the two
Voronoi circles on the bisector. If the centers lie on
opposite sides of the line joining the centers of B1, B2

(black line, close to vertical), the subpredicate can be
decided with only Orientation tests. Otherwise, the
configuration is as in Figure 1, and RadiiDifference

can decide the subpredicate by comparing the radii of
the two Voronoi circles.

We use an inversion approach, based on the follow-
ing map in the complex plane: z 7→ 1/(z − z0), where
z0 is an arbitrary fixed point. This transforms circles
through z0 to lines, while all other circles remain as
such. In particular, we can choose z0 so that a Voronoi
circle is mapped to a bitangent line because, given any
set of sites, one can be reduced to a point and the others
will have their radii decreased, perhaps to a negative
value. This transformation essentially transforms the
problem of computing an additively weighted Voronoi
cell to that of computing the convex hull of a set of
circles. The interested reader may refer to [4] for the
details of this transformation.

The RadiiDifference primitive can be reduced to
deciding sign(1/y1 − 1/y2), where yi is a specific root of
γiy

2
i − 2βiyi + αi = 0, for i = 1, 2, and the αi, βi, γi are

functions of the input quantities of degree 4, 5, and 6
respectively. By letting xi = 1/yi, we may concentrate
on

(2.1) fi := αix
2
i − 2βixi + γi = 0, i = 1, 2.

The problem now becomes that of ordering two specific
algebraic numbers defined by the fi (cf. [14]).

3 Algebraic preliminaries

In this section, we briefly describe the basics of multi-
variate resultants, Sturm theory and Descartes’ rule of
sign. The expressions involved are greatly simplified by
the use of classical geometric invariants. For further in-
formation on resultants and invariants see [8], whereas
for Sturm sequences see [24].

We start with Descartes’ rule of sign. For a
sequence (α0, . . . , αn) of nonzero reals, the number of
sign variations is the number of integers i > 0 such that
αiαi−1 < 0.

Proposition 1. [8] The number of sign variations in
the sequence of the nonzero coefficients of a univariate
polynomial exceeds the number of positive real roots by
an even integer, possibly zero.

Passing to resultants, consider a system of n + 1
polynomials in n affine variables, whose coefficients are
regarded as indeterminate parameters. The resultant
R of this system is an irreducible polynomial in the
indeterminate parameters. It has integer coefficients
and is well-defined up to a sign. The given system
has a common root precisely when the indeterminate
coefficients take values such that the resultant evaluates
to zero. Different resultants exist depending on the
space of the roots we wish to capture, including the
projective (or classical) resultant and the toric (or
sparse) resultant. They vanish respectively when there
exists a common root in projective space Pn or in the
corresponding toric variety.

Different ways of expressing R are possible, e.g., by
means of a matrix determinant or a divisor of such a
determinant. There are two main families of matrices,
named after Sylvester (or Macaulay) on the one hand,
and Bézout (or Dixon) on the other. When we are
given a well-constrained system f1, . . . , fn in variables
x1, . . . , xn, one has to define an over-constrained system
in order to apply the resultant method. One way is by
adding an extra linear polynomial f0 := u0 + u1x1 +
· · · + unxn, as in Section 1.1. This is known as the
u-resultant; its properties can be found in [8] and the
references thereof.

The rest of the section discusses Sturm sequences.
Given univariate polynomials P0, P1 ∈ R[x], their Sturm
sequence is any (pseudo-remainder) sequence of polyno-
mials P0, P1, . . . , Pn ∈ R[x], n ≥ 1, such that aPi−1 =
QPi + bPi+1, i = 1, . . . , n − 1, for some Q ∈ R[x],
a, b ∈ R, and ab < 0. When a sequence is understood
and p ∈ R is given, we denote by VP (p) the number



of sign variations of the sequence of values of the Pi

evaluated at p.

Proposition 2. For relatively prime polynomials
A, B ∈ R[x], where A is assumed square-free, consider
any Sturm sequence (Pi) of A, A′B. Then for any
p < q non-roots of A, it holds that

VP (p) − VP (q) =
∑

A(ρ)=0, p<ρ<q

sign(B(ρ)).

The Sturm sequence here may be (A, A′B,−A, . . . ).
We shall apply this proposition to the polynomials

defined in 2.1, namely A(x) = f1(x), B(x) = f2(x).
To simplify the computations we apply the classical
geometric invariants, just as in [9], namely: ∆i =
β2

i − αiγi, i = 1, 2, J = α1β2 − α2β1, J ′ = β1γ2 − β2γ1,
K = α1γ2 + α2γ1 − 2β1β2. The ∆i, K are invariant
by the action of SL2(C), and J, J ′ are invariant with
respect to translations. G = α1γ2 − α2γ1 is not an
invariant but its expression looks like one. Besides
these quadratic quantities, we also use certain cubic and
quartic invariants.

Supposing that f1, f2 have no common root and
that αi, ∆i 6= 0, we have the Sturm sequence below:

P0(x) = f1(x)

P1(x) = f ′

1(x)f2(x)

P2(x) = −f1(x)

P3(x) = 2α1[(2β1J − α1G)x + (γ1J − α1J
′)]

P4(x) = −α1∆1(2β1J − α1G)2(G2 − 4JJ ′)

If the algorithm has to consider the larger root of
f1(x), it evaluates the Pi at p = β1

α1
and x → ∞.

Then, assuming α1 > 0, sign(P3(p)) = sign(J) and
computing sign(P3(∞)) reduces to testing 2β1J −α1G.
The quantity 2β1J − α1G is a cubic invariant with
respect to translations, whereas R0 := G2 − 4JJ ′ is
a quartic invariant by the action of SL2(C). There are
alternative ways to write various of the above quantities.
For example, 2β1J −α1G = −(α1K + 2α2∆1), whereas
G2 − 4JJ ′ = K2 − 4∆1∆2. The expressions actually
used in the computations are the ones that require the
minimum number of operations for their computation.
For example, if ∆1 and ∆2 are given, the expressions
α1K + 2α2∆1 and K2 − 4∆1∆2 are used. If this is not
the case, the expressions 2β1J−α1G and G2−4JJ ′ can
yield a lower operation count.

4 Application of Sturm sequences

In this section, we apply Sturm theory to deciding
the ordering of two specific roots, given two quadratic
polynomials. We use the notation of the previous
section.

case order of roots

1 x−
2

< x+

2
< x−

1
< x+

1

2 x−
2

< x−
1

< x+

2
< x+

1

3a x−
2

< x−
1

< x+

1
< x+

2

3b x−
1

< x−
2

< x+

2
< x+

1

4 x−
1

< x−
2

< x+

1
< x+

2

5 x−
1

< x+

1
< x−

2
< x+

2

Table 1: The possible orderings of the roots of two
quadratic polynomials and the corresponding cases.

f2(x
+

1
) f2(x−

1
) f ′

2
(x+

1
) f ′

2
(x−

1
) J case

− − any any any 3a
− + any − + 4
− + any + infeasible

+ − − any infeasible
+ − + any − 2

+ + − − + 5
+ + − + infeasible

+ + + − any 3b
+ + + + − 1

Table 2: Cases according to the first 4 signs, for αi, ∆i >
0; sign(J) is shown if it can be derived from the first 4
signs. The cases are as per Table 1.

In our case we always have ∆i ≥ 0. Geometrically
this is due to the fact that given two circles Ci and Cj

no-one is contained inside the interior of the other. For
a geometric interpretation of the quantities J , J ′, K
and R0 the interested reader may refer to [9].

By the proposition, VP (p)− VP (∞) = sign(f2(x
+
1 ))

and VP (−∞)−VP (p) = sign(f2(x
−

1 )), where x+
1 and x−

1

is, respectively, the larger and smaller root of f1. Our
algorithm uses also Sturm sequence Q of f1, f

′

1f
′

2 :

Q0(x) = f1(x)

Q1(x) = f ′

1(x)f ′

2(x)

Q2(x) = −α2[Jx + (α2γ1 − β1β2)]

Q3(x) = 4α2∆1α
2
1J

2(α1∆2 + α2K)

which supplies the signs of f ′

2(x
+
1 ), f ′

2(x
−

1 ). Table
2 distinguishes the different cases based on these 4
signs. When comparing x+

1 with x+
2 , this leads to the

procedure shown in Figure 2. The shown procedure
can also handle the cases where any or several of the
tested quantities vanish, but this is not made explicit in
Figure 2 for the sake of simplicity and readability. The
evaluation tree in Figure 2 is not the only possible one.
Its design, however, reflects our main aims:

1. Conclude as fast as possible (e.g., Case 5 is decided
after only two comparisons, those of J and K).



This is also achieved by using certain quantities as
filters for others (e.g., J ′ is a filter for P4).

2. Re-use computed quantities (e.g., J can be used to
compute P3(∞) and P4; K or J ′ can be used to
compute P4). This helps minimizing the expected
number of operations in the tree.

3. Compute high-degree quantities as rarely as possi-
ble, i.e., the high-degree quantities should appear
as low as possible in the tree (e.g., P4, the highest-
degree quantity, is a leaf of the tree).

Analogous procedures are obtained for comparing the
other root pairs.

Given the tree of Figure 2, we estimate the average
number of arithmetic operations for ordering x+

1 , x+
2 .

Supposing that all branches are equally likely, the
expected number of operations is 11 1

4 . If each number of
operations is multiplied by the maximum degree of the
corresponding quantities, this count becomes 133 1

4 . If
we consider all 6 cases of Table 1 equally likely, then the
expected number of arithmetic operations is 12 1

4 . These
estimates, when compared with those corresponding to
the computation tree of [9], show that our Sturm-based
approach is about 5% to 15% faster, on inputs that
make the algorithm reach the maximum depth of the
evaluation tree.

For reducing arithmetic precision, it is important to
minimize the algebraic degree of the computed expres-
sions in the input variables. By noting that αi, βi, γi

have degree 4, 5, and 6, respectively, it is clear that the
maximum degree of any computed expression is 20, de-
termined by P4. But if we develop the above expressions
in terms of the input parameters, R0 factorizes to two
polynomials of degrees 12 and 8, respectively; this has
been achieved with the Maple software package. Then,
the maximum degree is 14, provided that the input is
sufficiently generic for the above Sturm sequences to
hold.

The procedure of Figure 2 cannot be obtained from
Table 2 exactly as shown. In particular, when deciding
that K < 0, it is not possible to exclude case 1
(case 5, respectively), provided that J < 0 (J > 0,
resp.). But if we consider the information given by
the resultant coefficients in conjunction with Descartes’
rule, we conclude that case 1 (case 5, resp.) can be
excluded; cf. Table 3. Although this shortcut does
not change the evaluation procedure in this case, it
illustrates how different information can be used to
optimize the predicate evaluation.

4.1 Degeneracies. Due to the factorization of R0

to two expressions of degree 12 and 8 in the input

R4 R3 R2 R1 R0 N+ case

+ − − − − 1 infeasible
+ − − − + 2 infeasible
+ − − + − 3 2
+ − − + + 2 3
+ − + − − 3 2
+ − + − + 4 1
+ − + + − 3 2
+ − + + + 2 3

+ + − − − 1 4
+ + − − + 2 3
+ + − + − 3 infeasible
+ + − + + 2 infeasible
+ + + − − 1 4
+ + + − + 2 3
+ + + + − 1 4
+ + + + + 0 5

Table 3: Different cases according to the coefficient signs
in the resultant, assuming αi > 0. N+ denotes the
number of positive real roots of the resultant.

parameters respectively, the maximum algebraic degree
now appears in the case of degenerate input, namely
αi = 0 6= αj for {i, j} = {1, 2}. Geometrically this
corresponds to 3 sites which have a common tangent
line, or equivalently to 3 sites whose Voronoi circle has
infinite radius. In this case we need quantities of degree
16 to answer our problem. It is interesting to note that
these quantities do not factorize to expressions of lower
degree. Recall that factorization does not commute with
taking projections of polynomials modulo an ideal: here
the ideal is defined by the polynomial αi developed
in terms of the input parameters. In particular, the
Sturm sequence P of f1, f

′

1f2, assuming α1 = 0 < α2,
ends with P3(x) = 4β2

1α2f2(γ1/(2β1)). The quantity
4β2

1f2(γ1/(2β1)) is of degree 16. Notice that the Sturm
sequences cannot be obtained simply by specializing the
quantities that vanish because specialization does not
commute with pseudo-remaindering.

One may consider as degenerate any configuration
that makes one or more of the tested quantities equal to
zero. One such degenerate setting is when αi > 0 but
2β1J − α1G = 0, in which case the polynomial P3(x) is
a constant. Geometrically this means that the roots of
the two polynomials fi(x), i = 1, 2, satisfy the following
relation :

(x+
1 − x+

2 )(x+
1 − x−

2 )

(x−

1 − x+
2 )(x−

1 − x−

2 )
= −1.

But then, we may compute the Sturm sequence under
this hypothesis and see that all tested quantities are
of lower degree. In particular, P3 becomes 2α1∆1J

′,
hence the maximum degree of any tested quantity is 11.
Note that this expression for P3 can also be obtained by



PSfrag replacements

33

3

44

44

66

9

1010

1111

1414

2020

Case 1, 2, 3

Case 1, 2

Case 2, 3

Case 2, 3a

Case 2, 3b

Case 2 Case 3a

Case 3a

Case 3, 4, 5

Case 4, 5

Case 3, 4

Case 3a, 4

Case 3b, 4

Case 3b Case 4

Case 4

KK

J

J ′J ′

P3(∞)P3(∞)

P4P4

f2(x
+
1

) > 0

f2(x
+
1

) > 0

f2(x
+
1

) > 0f2(x
+
1

) > 0

f2(x
+
1

) < 0

f2(x
+
1

) < 0

f2(x
+
1

) < 0

f2(x
+
1

) < 0

f2(x
−

1 ) > 0f2(x
−

1
) < 0

f′

2(x
+
1

) > 0

f′

2(x
+
1 ) < 0

f′

2(x
−

1
) > 0

f′

2(x
−

1
) < 0

f2(x
+
1

), f′

2(x
−

1
) > 0 f2(x

−

1
), f′

2(x
+
1

) > 0

<

<

<

<<

< >

>

>

>

Figure 2: Evaluation procedure for deciding x+
1 � x+

2 , where � ∈ {<, >}. At each tested quantity we indicate the
number of operations needed in order to compute it (left) and its algebraic degree in the input (right).

simply specializing the polynomial P3(x).
We have checked that all degeneracies can be han-

dled by the procedure of Figure 2 (and the analogous
procedures for testing different pairs of roots) without
modifying the shown tree substantially. More specifi-
cally, for certain nodes, the zero case can be incorpo-
rated in one of the two non-zero cases considered al-
ready. For the rest of the nodes, when the tested quan-
tity vanishes, it is possible to conclude almost imme-
diately and decide which case occurs. Therefore, the
maximum degree of expressions tested by our algorithm
becomes 16 when dealing with arbitrary inputs, includ-
ing the degenerate cases. This discussion, together with
that of the previous section, proves our main algorith-
mic result.

Theorem 1. It is possible to implement the algorithm
of [15] for constructing the additively weighted Voronoi
diagram by testing quantities of degree at most 16 in the
input parameters.

It is possible to use polynomials fi(y) for y = 1/x;
cf. also the definition of fi in (2.1). The maximum
algebraic degree of any tested quantity in this case
is 16. On the upside, we can avoid all of the above
degeneracies, since γi > 0 by definition. This yields an
alternative approach with the same maximum degree as
that of Theorem 1.

5 Experimental results

We describe our code, the sample inputs, and a series
of experiments that illustrate our contributions. Our
code is in C++ and uses the Cgal library [7]. We have
implemented caching of intermediate expressions when
evaluating the predicates, which reduces significantly
the number of operations. For reasons of programming
simplicity, we have used the approach sketched just after
Theorem 1. In our current preliminary implementation,
the factorization of R0 to polynomials of degree 12 and 8
is not undertaken. The main reason is that this requires
a large number of operations; e.g., the first factor is
comprised of 205 monomials in the input parameters.
Thus the maximum degree of the expressions actually
tested by our program is 20. We plan to conduct
further experiments in order to decide whether it is
worth implementing the factorization that leads to lower
algebraic degree.

We present two series of experiments. The first fo-
cuses on the entire algorithm. Two data sets are con-
sidered, one random and one in almost degenerate po-
sition (Table 4). The random set consists of N = 5 · 105

sites with integer coordinates uniformly distributed in
the square [−M, M ]× [−M, M ], where M = 1014. The
weights of the sites are integers uniformly distributed in
the interval [0, R], where R = 1011. About 3% of the
sites are trivial. The almost degenerate data set consists



of N sites which are approximately tangent to the circle
centered at the origin of radius M . The coordinates of
the site centers are random integers. The radii of the
sites are also random integers uniformly distributed in
[0, R]. Less than 1% of the sites are trivial.

The algorithm used is that of the AW-Voronoi
hierarchy in [15]. We use two methods for evaluating
the predicates. The first assumes that the operations
{+,−,×, /,

√ } are performed exactly. The second
uses the procedure of Figure 2 and assumes that only
the operations {+,−,×} are performed exactly. We
refer to the two evaluation methods using the keywords
simple and Sturm, respectively. We consider various
number types: Leda reals, the multiprecision floating
point number MP Float provided by Cgal, and the
GNU multiprecision integer GMP [13]. We use the
keywords real, mpfloat and gmp to refer to these
number types, respectively. We also consider filtered
versions of the above exact number types, where the
filtering is dynamic and is performed via the interval
arithmetic package of Cgal [22]. The built-in double

of C++ is also used for the random data. For the
almost degenerate data, double is insufficient, i.e., the
predicates cannot be evaluated correctly.

The second series of experiments focuses on the
comparison between two algebraic numbers of degree
2 (Table 5). In particular, we are given the polynomials
in (2.1) and we want to compare x+

1 and x+
2 . We use

3 different methods, namely the one that represents the
roots as radicals, the method presented in [9] and our
method based on the evaluation tree of Figure 2. We use
the keywords simple, DFMT and Sturm, respectively.
We consider 3 models for the bit size of the coefficients
αi, βi and γi. These are (4b, 5b, 6b), (b − 2, b − 1, b)
and (b, b, b), where b is a parameter. The first one
corresponds to our geometric problem, where b is the
bit size of the inputs of our algorithm. The second and
third model correspond to a homogeneous and a generic
polynomial. The number types used are the same as
in the first series of experiments. The experiments
using doubles are only given for reference. We consider
polynomials with randomly chosen coefficients, using
two scenarios : (1) the roots of the two polynomials are
entirely independent (random data), and (2) the larger
roots of the two polynomials are equal (degenerate

data).
All experiments were conducted on a Pentium-

III architecture at 1 GHz. We used version 4.2 of
Leda and 2.4 of Cgal. The compiler used was the
GNU g++ compiler, version 2.95.3 (with options -O2

-mcpu=pentiumpro -march=pentiumpro). We observe
that the running times of the filtered approach with ran-
dom inputs are only 3 to 5 times larger than those with

floating point arithmetic; this holds for all three tables.
This may go against popular belief that assumes exact
arithmetic to be excessively costly, when compared to
numerical computation. The latter, moreover, offers no
guarantee and would lead to inconsistencies when (near)
degeneracies occur; in the case of AW-Voronoi diagrams,
inconsistencies may appear even with certain random
inputs. Our experiments thus provide another confir-
mation that carefully implemented exact arithmetic im-
poses a reasonable overhead on efficiency.

An important observation is that the filtered ap-
proach is usually at least two times faster than the non-
filtered approach, and more so for almost degenerate
inputs; cf. Table 4. Among the filtered methods, our
Sturm-based techniques run about twice as fast as the
simple method. It is natural that for almost degener-
ate inputs, the number of tests increases with filtering,
because in certain cases an augmented precision is re-
quired. This increase occurs for both OrderOnBisec-

tor and RadiiDifference, and for both simple and
Sturm methods, but not to the same extent. This is a
manifestation of the fact that the two methods do not
use the same error bounds; a larger input sample may
shed light to this phenomenon.

It was expected that the number of tests should
increase between random and almost degenerate inputs.
It is less obvious, though, that this would not hold for
the tests on P4, the quantity examined at the maximum
depth of the evaluation tree; cf. the last column of Table
4. Experimental data, not shown here, confirm that
the output cases do not occur with the same frequency
when the input is almost degenerate. Recall that the
last 3 columns of Table 4 refer to those instances that
require comparing x+

1 and x+
2 , and different pairs of

cases are distinguished by P3(∞) and P4. In our random
data the prevailing cases are 3b (J > 0) and 4; hence
the numerous P4 tests. In the almost degenerate data
the vast majority of cases is distributed between 2, 3b
(J < 0) and 5. In this case P3(∞) can decide the order
of x+

1 , x+
2 in about 99% of the cases for which K cannot

yield an answer.
Another interesting corollary of our experiments is

the clear improvement upon the method of [9], thanks to
the procedure based on Sturm sequences, which reduces
the number of operations; cf. Table 5. In addition, the
inputs that do not require going to maximum depth of
the evaluation tree have a lower algebraic degree, since
we have replaced testing E by P3(∞). This may have
also allowed for better filtering.

Further conclusions can be drawn from Table 5 by
considering the complexity as a function of bit size.
We observe that, for random inputs, the cost increases
in sublinear fashion, because several tests can be per-



Algorithm for Additively Weighted Voronoi Diagram using hierarchy

Method
Number Insertion OrderOnBisector RadiiDifference x+

1
-x+

2
tree P3(∞) P4

type time time # calls time # calls # calls # evals # evals

R
a
n
d
o
m

simple
double 60.63 1.62

50201

< 0.01

10035

n/a n/a n/areal 761.17 19.8 0.04
filter + real 197.68 5.08 0.04

Sturm

double 60. 1.5 0.02

8896 6198 6072

real 778.59 20.32 0.12
gmp 3562.92 93.06 0.52

mpfloat 2493.55 66.54 0.97
filter + real 204.47 5.69 0.06
filter + gmp 190.15 5.35 0.08

filter + mpfloat 190.67 5.23 0.09

A
l
m
o
s
t

D
e
g
e
n
e
r
a
t
e

simple
real 3291.61 129.6 2621874 14.97 1533280

n/a n/a n/a
filter + real 3134.17 95.72 2622036 14.32 1533426

Sturm

real 1712.26 93.64
2621874

12.31
1533280 767489 598460 825gmp 5282.56 402.89 62.04

mpfloat 3550.62 331.4 74.11
filter + real 1276.53 53.85

2622054
7.39

1533374 767523 598493 858filter + gmp 1178.41 53.1 8.18
filter + mpfloat 852.85 47.79 9.47

Table 4: Comparison of different number types and methods for the algorithm in [15] and its predicates. Running
times are in sec and refer to the total time spent in the corresponding module. “# evals” denotes number of
evaluations and “n/a” refers to cases where the corresponding entry is not applicable.

formed accurately at low precision. As far as degener-
ate inputs are concerned, this is again true with multi-
precision integer or floating-point arithmetic, which is
adaptive in this sense. However, using reals implies a
superlinear dependence on bit size because of lazy eval-
uations, which require that several evaluations be re-
peated as precision increases. The GMP package uses
asymptotically faster algorithms than those supporting
MP Float. But this is not obvious from our experiments
since they never treat quantities of more than about 200
bits.

6 Further work

The C++ implementation is scheduled to become part
of the Cgal library. We are working on applying our
approach to the 3D Voronoi problem, as well as in
computing arrangements of special classes of conic arcs
in the plane, such as elliptic curves.

Acknowledgments

Work partially supported by the IST Programme of
the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-2000-26473 (ECG - Effective
Computational Geometry for Curves and Surfaces). We
thank Olivier Devillers for fruitful discussions and for
letting us use the implementation of the methods in
[9]. We would also like to thank Monique Teillaud
and Sylvain Pion for useful comments that helped us
improve early versions of this paper.

References

[1] P. Angelier. Algorithmique des Graphes de Visibilité.
PhD thesis, Université Paris VII, 2002.

[2] F. Anton, J.-D. Boissonnat, D. Mioc, and M. Yvinec.
An exact predicate for the optimal construction of
the additively weighted Voronoi diagram. In Europ.

Workshop Comput. Geom., 2002.
[3] F. Aurenhammer. Power diagrams: properties, algo-

rithms and applications. SIAM J. Comp., 16:78–96,
1987.

[4] J.-D. Boissonnat and M. I. Karavelas. On the combina-
torial complexity of euclidean voronoi cells and convex
hulls of d-dimensional spheres. These proceedings.

[5] J.-D. Boissonnat and F. P. Preparata. Robust plane
sweep for intersecting segments. SIAM J. Comp.,
29(5):1401–1421, 2000.

[6] C. Burnikel. Exact Computation of Voronoi Diagrams

and Line Segment Intersections. Ph.D thesis, Univer-
sität des Saarlandes, March 1996.

[7] The CGAL Manual, 2002. Release 2.4.
[8] D. Cox, J. Little, and D. O’Shea. Using Algebraic Ge-

ometry. Number 185 in Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1998.

[9] O. Devillers, A. Fronville, B. Mourrain, and M. Teil-
laud. Algebraic methods and arithmetic filtering for
exact predicates on circle arcs. Comp. Geom: Theory

& Appl., Spec. Issue, 22:119–142, 2002.
[10] R. L. Drysdale, III and D. T. Lee. Generalized Voronoi

diagrams in the plane. In Proc. 16th Allerton Conf.

Commun. Control Comput., pages 833–842, 1978.



Methods for number types that support {+,−,×, /,
√ }

Degree model b double real filter + real

(αi ,βi, γi) simple DFMT Sturm simple DFMT Sturm simple DFMT Sturm
R

a
n
d
o
m

4b, 5b, 6b
4 0.37 0.28 0.24 2.42 2.82 3.7 1.23 1.06 0.86
8 0.24 0.26 0.32 3.63 5.35 5.1 1.39 0.84 0.79

b-2, b-1, b
25 0.28 0.23 0.24 2.41 2.95 3.73 1.28 1.1 0.81
50 0.35 0.31 0.22 4.17 5.5 5.24 1.33 0.91 0.79

b, b, b
25 0.35 0.27 0.25 2.51 2.96 3.66 1.39 0.83 0.79
50 0.21 0.25 0.26 3.66 5.69 5.49 1.33 0.99 0.98

D
e
g
e
n
e
r
a
t
e 4b, 5b, 6b

4 0.23 0.3 0.26 114.53 122.05 111.01 117.44 125.58 113.65
8 0.29 0.23 0.34 485.95 421.69 367.17 488.23 426.66 372.79

b-2, b-1, b
25 0.25 0.25 0.32 127.23 128.83 128.68 130. 132.58 131.23
50 0.44 0.23 0.42 538.78 427.07 376.2 543.46 433.61 380.87

b, b, b
25 0.27 0.24 0.33 126.84 129.41 129.62 130.6 132.51 131.68
50 0.38 0.23 0.27 538.71 427.24 375.95 543.66 433.86 380.48

Methods for number types that support {+,−,×}
Degree model b gmp mpfloat filter + gmp filter + mpfloat

(αi,βi, γi) DFMT Sturm DFMT Sturm DFMT Sturm DFMT Sturm

R
a
n
d
o
m

4b, 5b, 6b
4 25.95 23.25 11.65 9.69 0.97 0.81 0.89 0.81
8 27.61 25.42 14.82 12.24 1.07 0.77 0.84 0.93

b-2, b-1, b
25 25.63 23.7 12.83 9.68 0.88 0.87 0.84 0.75
50 29.96 25.7 17.38 13.49 0.94 0.86 1.1 0.92

b, b, b
25 26.2 23.04 12.84 10.07 1.08 0.9 0.95 0.95
50 30.44 26.75 18.4 13.89 0.87 0.97 0.93 1.09

D
e
g
e
n
e
r
a
t
e 4b, 5b, 6b

4 43.16 37.68 19.42 15.78 53.33 46.26 28.53 23.58
8 46.28 39.91 25.67 20.74 56.75 49.62 34.97 28.37

b-2, b-1, b
25 44.01 37.9 20.54 15.59 53.8 46.88 28.7 24.37
50 49.54 41.7 30.13 23.15 60.1 51.45 38.79 31.67

b, b, b
25 43.82 37.8 20.53 17.03 53.24 46.71 29.83 24.57
50 49.94 42.37 31.07 24.19 60.25 51.06 40.33 32.96

Table 5: Running times for the comparison of x+
1 and x+

2 considering various models and bit sizes for the
coefficients. The measurements are in µsec and are the averages of 106 random input sequences.

[11] Z. Du, S. Pion, and C. Yap. The CORE Library, 1.5
edition, 2002. http://www.cs.nyu.edu/exact/core.

[12] S. Fortune. A sweepline algorithm for Voronoi dia-
grams. In Proc. 2nd Annu. ACM Sympos. Comput.

Geom., pages 313–322, 1986.
[13] T. Granlund. GMP, the GNU multiple precision

arithmetic library. http://www.swox.com/gmp/.
[14] M. I. Karavelas and I. Z. Emiris. Predicates

for the planar additively weighted Voronoi diagram.
Technical Report ECG-TR-122201-01, INRIA, 2002.
http://www.inria.fr/prisme/ECG/Results.

[15] M. I. Karavelas and M. Yvinec. Dynamic additively
weighted Voronoi diagrams in 2D. In Proc. ESA, pages
586–598, 2002. Also INRIA Tech. Report RR-4466,
INRIA Sophia-Antipolis.

[16] J. Keyser, T. Culver, D. Manocha, and S. Krishnan.
MAPC: A library for efficient and exact manipulation
of algebraic points and curves. In Proc. ACM Symp.

Comput. Geometry, pages 360–369, 1999.
[17] D.-S. Kim, D. Kim, and K. Sugihara. Voronoi diagram

of a circle set from Voronoi diagram of a point set: I.
Topology. CAGD, 18:541–562, 2001.

[18] R. Klein, K. Mehlhorn, and S. Meiser. Randomized
incremental construction of abstract Voronoi diagrams.
Comp. Geom: Theory & Appl., 3(3):157–184, 1993.

[19] G. Liotta, F. P. Preparata, and R. Tamassia. Robust
proximity queries: An illustration of degree-driven
algorithm design. SIAM J. Comp., 28:864–889, 1999.

[20] K. Mehlhorn and S. Näher. LEDA: A Platform for

Combinatorial and Geometric Computing. Cambridge
University Press, Cambridge, UK, 2000.

[21] D. Perrucci. Personal communication, 2002.
[22] S. Pion. Interval arithmetic: An efficient implemen-

tation and an application to computational geometry.
In Workshop on Appl. of Interval Analysis to Systems

and Control, pages 99–110, 1999.
[23] M. Sharir. Intersection and closest-pair problems for a

set of planar discs. SIAM J. Comp., 14:448–468, 1985.
[24] C. K. Yap. Fundamental Problems of Algorithmic

Algebra. Oxford University Press, New York, 2000.


