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Abstract

It is well known that the Delaunay Triangulation is a
spanner graph of its vertices. In this paper we show that
any bounded aspect ratio triangulation in two and three
dimensions is a spanner graph of its vertices as well.
We extend the notion of spanner graphs to environments
with obstacles and show that both the Constrained De-
launay Triangulation and bounded aspect ratio conform-
ing triangulations are spanners with respect to the corre-
sponding visibility graph. We also show how to kinetize
the Constrained Delaunay Triangulation. Using such
time-varying triangulations we describe how to main-
tain sets of near neighbors for a set of moving points in
both unconstrained and constrained environments. Such
nearest neighbor maintenance is needed in many virtual
environments where nearby agents interact. Finally, we
show how to use the Constrained Delaunay Triangula-
tion in order to maintain the relative convex hull of a
set of points moving inside a simple polygon.

1 Introduction

Let G be a connected n-vertex graph with arbitrary
positive edge weights. A subgraph G′ is a t-spanner
if for any pair of vertices, their distance in G′ is at
most t times longer than their distance in G. The
value t is the stretch factor associated with G′. Spanner
graphs have several applications. They appear as the
underlying graph structure in distributed systems and
communication networks [2, 18], as well as in biology
[3]. There are also works that deal with the problem
of computing sparse spanner graphs in the context of
points in Euclidean spaces [1, 7, 9, 8, 13, 14, 15].

A use of spanners of particular interest to us is for
nearest neighbor queries. Given a reference point in a
graph, we can perform a breadth first search on the as-
sociated spanner and prune the search using the current
distance along the spanner and the known stretch fac-
tor. In the physical world where motion is invariably
present, we may be interested in maintaining nearest
neighbors of certain or all the nodes as the underly-

ing graph evolves over time. Indeed, the behavior of
many physical or social systems can be modeled in terms
of short-range interactions between the nodes, contain-
ment of some nodes by other groups of nodes, etc.

In this paper we deal with the relationship between
bounded aspect ratio triangulations and spanner graphs
for a set of geometric points. First, we show that
bounded aspect ratio triangulations in two and three
dimensions are spanners with respect to the complete
graph induced by the Euclidean distance between the
points.

Second, we extend the notion of spanners for en-
vironments with obstacles. More specifically, if G is a
planar straight-line graph (PSLG), then the visibility
graph V(G) of G is the graph that consists of all the
edges of G, as well as all the edges between points in G
that do not properly intersect edges of G. Using V(G)
we can define what we call the geodesic distance be-
tween two points in G, which is the length of the short-
est path in V(G) between the two points. We show that
any bounded aspect ratio triangulation that conforms
with G is a spanner, and moreover that the Constrained
Delaunay Triangulation (CDT) is also a spanner, with
respect to this geodesic distance.

Next, we deal with the case of moving points
and obstacles. We discuss how to maintain the CDT
using the notion of Kinetic Data Structures (KDS)
[4, 10]. Using the Delaunay Triangulation (DT) as
the underlying structure we show how to maintain
near neighbors of points in moving point sets in two
and three dimensions. The same can also be done
for constrained environments in two dimensions, using
the CDT. Finally, we discuss how to use the CDT for
maintaining the relative convex hull of a set of points
moving inside a simple polygon.

Section 2 of the paper contains the proof that
bounded aspect ratio triangulations are spanners. Sec-
tion 3 discusses the generalization to environments with
obstacles. In Section 4 we show that the CDT is a
spanner graph as well. In Section 5 we discuss how
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Figure 1: The zone of the segment ab, and the chosen path from a to b in the triangulation.

to kinetize the CDT. In Section 6 we describe the near-
est neighbor maintenance algorithm and in Section 7 we
deal with the maintenance of the relative convex hull.
The final section of the paper is devoted to concluding
remarks and open problems.

2 Fat triangulations are spanners

2.1 Triangulations in two dimensions. Let abc be
a triangle and let h be its longest side (hypotenuse) and
v the corresponding height. The aspect ratio of abc is
typically defined to be A(abc) = h/v [6], a quantity
that is always at least 2

√
3/3 ≥ 1. There exist other

definitions for the aspect ratio of a triangle, which are
roughly equivalent to the one we are using in this work.
It can easily be shown that if θ is the smallest angle of
abc, then

(2.1)
1

sin θ
≤ A(abc) ≤ 2

sin θ
.

Let T be a triangulation. We define the aspect ratio
A(T ) to be the maximum of the aspect ratios of the
triangles in T . If θmin is the minimum angle in T then
the bounds (2.1) hold for A(T ) and θmin.

It is plausible to expect that the edges of convex
partitions of the plane all of whose faces are ‘fat’ (by
some measure) form a spanner graph of the partition
vertices. This is so because for every straight shortcut
through a fat face there is a path along the face
boundary whose length is larger than the length of
the shortcut by at most a constant factor. The main
result of this section is to validate a special case of
this intuition, by showing that bounded aspect ratio
triangulations are spanner graphs of their vertices.

Theorem 2.1. Let T be a triangulation of a point set
S, such that A(T ) ≤ α. If a and b are two points in S,
then dT (a, b) ≤ 2α d(a, b), where dT (a, b) denotes the

length of the shortest path in T between a and b, and
d(a, b) is the Euclidean distance between a and b.

Proof. Let a and b be two points in S. Without loss
of generality we can assume that no point of S lies on
the segment ab. If ab is an edge of T then dT (a, b) =
d(a, b) ≤ 2αd(a, b).

If not, then consider the triangles t0, t1, . . ., ts,
ts+1 crossed by ab. The line ab separates the points of
these triangles (except a and b) into two sets that lie in
different half-planes w.r.t. to ab. Moreover, there exists
an ordering of the edges of the ti’s crossing ab, induced
by the distance of their intersection with ab from a.

We construct a path from a to b zig-zagging above
and below the line ab, as follows. From a go to either
one of the points of t0 incident to a. If we are at a point
that is incident to b, then go to b. If we are at a point
di not incident to b, consider all the edges incident to
di that cross ab. Then di+1 is the endpoint incident to
di that corresponds to the edge of maximal order with
respect to the ordering induced by ab.

Let a = d0, d1, . . . , ds, ds+1 = b be the path defined
above (see Fig. 1). This path has the property that,
except at the endpoints, two consecutive vertices of the
path lie on different sides of the ab. Let ei be the
intersection of di−1di with the line ab, and let us focus
on the triangle eidiei+1. Let φi = ∠dieiei+1, ωi =
∠eiei+1di and θi = ∠eidiei+1. Clearly θmin ≤ θi ≤ π.

If θi > π/2, then

d(ei, di) + d(di, ei+1) ≤
π

2
d(ei, ei+1) ≤ 2α d(ei, ei+1).

If θi ≤ π/2, then using the sine law in the triangle
eidiei+1 and the bounds for θi we get

d(ei, di) + d(di, ei+1) =
d(ei, ei+1)

sin θmin

(sin ωi + sin φi)

≤ 2α d(ei, ei+1).
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Figure 2: A construction that gives the lower bound for
the optimal stretch factor copt.

Therefore,

dT (a, b) ≤
s∑

i=0

d(di, di+1)

≤ 2α
s∑

i=0

d(ei, ei+1) = 2αd(a, b) .

�

Let copt be the optimal constant that bounds the
ratio between the distances dT (a, b) and d(a, b). What
we have just proved is that copt ≤ 2α. It is also easy
to verify that copt ≥ α/2. Consider the triangulation
in Fig. 2; the distance between the points a and b on
the triangulation is d(a, b)/ sin θ, which is greater than
αd(a, b)/2.

2.2 Triangulations in three dimensions. In three
dimensions the aspect ratio of a tetrahedron is usually
defined as the ratio of the radius R of the smallest
containing sphere to the radius r of the largest sphere
inscribed in the tetrahedron [17]. The aspect ratio A(T )
of a three dimensional triangulation T is defined as
the maximum aspect ratio of any tetrahedron in the
triangulation. An interior angle of the triangulation is
an angle between two faces F and G where F and G are
a facet and an edge, two facets, or two edges, that have
a common intersection and that one face is not a subset
of the other (see [17]). If θmin is the minimum interior
angle of the triangulation and α a bound on the aspect
ratio of the triangulation, then there exist constants c1

and c2 such that

c1

θmin

≤ α ≤ c2

θmin

.

Proving the spanner property for fat triangulations
in three dimensions is more demanding. It requires two
steps: first we approximate the straight line path by a
path on the faces of the crossed tetrahedra, and then
that latter path by another path following only the
edges of the tetrahedra. The corresponding theorem
is as follows:

Theorem 2.2. Let T be a triangulation of a three
dimensional point set S, such that A(T ) ≤ α. Then

dT (a, b)

d(a, b)
≤ β2, β = max{2α

c1
,
π

2
} ,

where a, b are points in S, dT (a, b) is the distance of the
shortest path in T between a and b and d(a, b) is the
Euclidean distance between a and b.

Proof. We are going to describe a path on the tetra-
hedrization for which the suggested bound holds.

Consider two points a, b ∈ S and consider all the
triangles that intersect the interior of ab. The intersec-
tions of these triangles with ab induce an ordering for
the set of triangles. Also, any two consecutive triangles,
w.r.t. this ordering, share an edge. If more than two
consecutive triangles share a common edge, we discard
of all but the first and last triangle. In the remainder of
the proof we shall deal with this reduced set of triangles
t0, t1, . . . , ts, ts+1.

Let a = e0, e1, . . . , es, es+1 = b be the intersections
of the triangles with the line ab. We can construct a
two-leg polygonal path qi from ei to ei+1 that lies on
the triangles ti and ti+1, that has the property

(2.2) dqi
(ei, ei+1) ≤ β d(ei, ei+1).

Consider an endpoint w of the common edge of ti and
ti+1. Project ei and ei+1 on the common edge with lines
parallel to the edges incident to w. Then connect ei and
ei+1 to the midpoint fi of the two projections. The path
qi is the polygonal line eifiei+1. It can be easily seen
that the angle ∠eifiei+1 is bounded from below by θmin,
which establishes (2.2).

Using the construction above, we have created a
polygonal path Q with vertices a = e0, f1, e1, . . . , es, fs,
es+1 = b, that separates the endpoints of the edges of
the triangles ti in two disjoint sets (except for a and
b), depending on which side of the polygonal path they
reside (see Fig. 3). It also induces an ordering for the
edges of the ti’s that intersect it. Construct a three-
dimensional path from a to b using the edges of the ti’s
as follows. From a go to either one of its two incident
vertices in t0. If we are at a point di that is incident
to b, go to b. If we are at a point di not incident to
b, consider all edges incident to di, that intersect Q.
Among those edges choose the one of maximal order
w.r.t. the ordering induced by Q; di+1 is the endpoint
of this edge incident to di. This construction yields a 3D
path P with vertices a = d0, d1, . . . , dk, dk+1 = b, that
goes back and forth across the polygonal line Q. Let
f ′
1, f

′
2, . . . , f

′

k be the subset of the fi’s corresponding to
the edges didi+1, and let f ′

0 = a, f ′

k+1 = b. Since the
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Figure 3: The reduced set of triangles intersecting ab and the paths Q (dashed line) and P (thick solid line).

angles ∠f ′
idi+1f

′
i+1 are bounded from below by θmin,

we easily get

d(f ′

i , di+1) + d(di+1, f
′

i+1) ≤ β d(f ′

i , f
′

i+1)

which in turn yields :

dP (a, b) =

k∑

i=0

d(di, di+1) ≤ β

k∑

i=0

d(f ′

i , f
′

i+1).

But

k∑

i=0

d(f ′

i , f
′

i+1) ≤ dQ(a, b) =

s∑

i=0

dqi
(ei, ei+1).

Combining the above inequalities with (2.2) we get :

dP (a, b) ≤ β

s∑

i=0

dqi
(ei, ei+1)

≤ β2
s∑

i=0

d(ei, ei+1) = β2d(a, b) ,

the result to be shown. �

We believe that similar ideas can be used to prove
an analogous result for fat triangulations in any dimen-
sion.

3 Environments with obstacles

Let G be a PSLG. The graph G induces a subdivision
S(G) of the plane into regions. Let also V(G) be the
visibility graph associated with G. If v is a vertex of G,
then we denote with Fv the set of faces of S(G) adjacent
to v.

We focus on paths that lie entirely within one
face of the subdivision S(G) and do not cross any
constraining edges. The following definition captures
these requirements.

Definition 3.1. A path P on the plane between two
vertices u and w of G, such that Fu ∩ Fw 6= ∅, is called
legal if

1. the entire path P lies inside the closure of exactly
one face of S(G).

2. we can find a path as close as we want to P that
shares the same endpoints with P , and the interior
of which lies in the interior of the same face as P .

Definition 3.2. The geodesic distance dG(u, w), with
respect to the graph G, is the length of the shortest
legal path between u and w on V(G), measured in the
Euclidean metric.

We call a triangulation T (G) constrained (with
respect to G) if the vertices of T (G) are those of G
and every edge in G is an edge in T (G). We call a
triangulation conforming if every vertex in G is in T (G)
and every edge in G is the union of some edges in T (G).
Clearly a constrained triangulation is also conforming.

Theorem 3.1. Let G be a PSLG and let T (G) be a
conforming triangulation of G such that A(T ) ≤ α. If
u and w are two vertices in G sharing a face of S(G),
then dT (G)(u, w) ≤ 2α dG(u, w).

Proof. Let u = v0, v1, . . . vn = w be the sequence of
vertices of G that consist of the shortest legal path in
V(G). If vk−1vk is a portion of a constrained edge, then

dT (G)(vk−1, vk) = d(vk−1, vk) ≤ 2αd(vk−1, vk) .

If vk−1vk is not portion of a constrained edge then
consider the path from vk−1 to vk described in the
proof of Theorem 2.1. For this path we know that
dT (G)(vk−1, vk) ≤ 2αd(vk−1, vk). Moreover, it is easy to
find a homeomorphism from this path to the segment
vk−1vk, which implies that the path lies in the same face
as vk−1vk. Therefore,

dT (G)(u, w) ≤
n∑

k=1

dT (G)(vk−1, vk)

≤ 2α

n∑

k=1

d(vk−1, vk) = 2α dG(u, w) .

�



4 The CDT is a spanner

Dobkin, Friedman and Supowit [9] have shown that the
DT is a spanner graph of its vertices. The stretch factor
M they could prove was approximately 5.08. Later,
Kiel and Gutwin [14] improved the stretch factor to
approximately 2.42. It turns out that we can generalize
the proof in [9] for the constrained case, and therefore
show that the CDT is also a spanner, with respect to
the geodesic distance — with the same stretch factor as
in [9].

We will prove our result as follows. Let D(G) be
the CDT of G. If u and w are two vertices of G, we
find a path P from u to w on D(G) that is in the same
face as the shortest path from to u to w in the plane.
We shall then prove that the length of this path is at
most M times dG(u, w), where M = (1+

√
5) π/2 is the

stretch factor in [9]. This gives the desired result, since

CDT (u, w) ≤ dP (u, w) ≤ M dG(u, w) ,

where CDT (u, w) is the length of the shortest legal path
between u and w on D(G).

Let u = v0, v1, . . . , vn = w be the sequence of
vertices of G that consist of the shortest legal path on
V(G). If an edge vk−1vk is a constrained edge then
obviously it is an edge in the CDT; thus

CDT (vk−1, vk) = d(vk−1, vk) ≤ M d(vk−1, vk).

If vk−1vk is not a constrained edge then vk−1 is
visible from vk. It now suffices to find a path on D(G)
from vk−1 to vk for which the inequality holds.

The path P from vk−1 to vk is constructed in the
same manner as in [9], but instead of using the Voronoi
diagram we use the bounded Voronoi diagram [16].

Our proof that dP (vk−1, vk) is at most Md(vk−1, vk)
generalizes that in [9] by making sure that P lies in the
same face with the shortest legal path between vk−1 and
vk on D(G) :

Theorem 4.1. Let a, b be two points of G that are
mutually visible. Then there exists a CDT path P from
a to b of length dP (a, b), such that dP (a, b) ≤ M d(a, b),
where M = (1 +

√
5) π/2.

Proof. We can assume without loss of generality that
no point of G lies in the interior of ab. Using Vorb(G),
the bounded Voronoi diagram, construct the path from
a to b as in [9]. Let a = b0, b1, . . . , bm−1, bm = b be
the vertices corresponding to the sequence of bounded
Voronoi regions traversed by walking along the line ab.
The path a = b0, b1, . . . , bm−1, bm = b is called the direct
CDT path from a to b. This path lies on the CDT of G
due to Fact 2.3 in [16]. Lemmas 1, 2 and 3 in [9] still
hold and moreover so does:

Lemma 4.1. If a and b are mutually visible, then the
direct CDT path between a and b lies in the same face
as the segment ab.

Proof. Let pi+1 be the intersection with the line ab of
the common edge of the bounded Voronoi regions of bi

and bi+1. Let ti be the triangle bipi+1bi+1. The interior
of this triangle is empty of vertices and edges of G.
Moreover, the segments bipi and pibi+1 are also empty of
points or edges of G. Now consider the triangle pibipi+1,
which we call si. The interior of si is empty because it is
a subset of the bounded Voronoi region of bi. The union
of the interiors of the ti’s and the si’s, as well as the
segments pibi and bipi+1, cover the interior of the region
between the polygonal line b0b1 . . . bm and the line ab
and in fact that region is empty. Therefore, we can
define a homeomorphism from b0bm to the polygonal
line b0b1 . . . bm, which implies that the direct CDT path
lies in the same face as ab ≡ b0bm. �

The only thing that remains to be established is
that the paths zkzk+1 referred to in Lemma 4 in [9] lie
in the same face of the line ab. Because of Lemma 4.1
the direct CDT path between zk and zk+1 lies in the
same face as the segment zkzk+1. On the other hand
the segment zkzk+1 lies in the same face as the segment
ab. This is because the area {q : y(q) ≥ 0 and q below
zkzk+1} is empty, since otherwise zkzk+1 would not be
an edge of the convex hull. �

5 Kinetizing the CDT

We start off with a definition.

Definition 5.1. Let T be a triangulation and let e be
an edge in T . Let T1, T2 be the triangles adjacent to e
and let u, v be the endpoints of e. Finally let a, b be the
vertices of T1, T2 that are not u or v. We say that e
passes the InCircle test if and only if InCircle(a, u, v, b)
is false.

It is shown in [5, Lemma 3] that local InCircle tests
establish the global CDT property, i.e. :

Lemma 5.1. A triangulation T (G) of a PSLG G is the
CDT if and only if all the non-constrained edges of T
pass the InCircle test.

Therefore, in order to maintain the CDT we only
need to check when an edge fails its InCircle test; when
this happens, a single edge flip restores the correctness
of the CDT. If we assume that the moving vertices of
the CDT do not hit constrained edges, then the only
events are such edge flips. When such an event happens
we need O(1) time to update our KDS, i.e., the KDS for



the CDT is responsive. However, as in the DT case, the
KDS is not local since a moving point may be associated
with Ω(n) certificates. Finally, if the motions of the
vertices are algebraic, the total number of combinatorial
changes in the CDT, which is also the number of events
that we have to process, is O(n2λs(n)), where λs(n) is
the maximum length of a Davenport-Schinzel sequence
of length n and order s; the order s depends on the
complexity of the algebraic motion.

6 Nearest neighbor maintenance

Suppose that we have a set V of moving points in two
(three) dimensions and a point p ∈ V , for which we
want to know the points in V that are within a certain
distance rp from p. The naive approach is to maintain
the distance from p to every other point in V and keep
those that are within the prescribed distance. We show
how to do better using the Delaunay triangulation of V .
Let Cp be the circle (sphere) centered at p with radius
rp. Our crucial observation is that, if we are maintaining
the DT of V , the only points that enter or exit Cp are
endpoints of edges of the DT crossing Cp exactly once
(called crossing edges from now on). Hence, maintaining
the near neighbors of p reduces to maintaining the DT
and updating the set of crossing edges, whenever a point
enters or exits Cp.

This observation can be generalized for constrained
two-dimensional environments represented as a PSLG
G. A constrained edge e that intersects Cp twice is
called a blocking edge. The points q that we keep
track of are those that are inside Cp and not blocked
from p by a blocking edge. It turns out that all such
points can be approached from p using a path in the
CDT of G that lies entirely inside Cp. Again, as in
the unconstrained case, points of interest that enter
or exit Cp are endpoints of edges of the CDT crossing
Cp. Hence maintaining this point set of interest means
maintaining the CDT, as well as maintaining the set of
crossing edges.

In this section we will treat the 2D constrained
and unconstrained case together, since the DT is a
special case of the CDT, but we will treat the 3D case
separately. We will precisely define the set of points that
we want to maintain and prove that the CDT or DT
are good triangulations to use to encapsulate proximity
information between the points in our point set. We
shall then provide the nearest neighbor maintenance
algorithm, which essentially describes how to maintain
the set of crossing edges described above.

If we want to maintain the set of near neighbors
for a set S ⊆ V of points, we can apply the ideas de-
scribed above for each one of the points in S separately.
A noteworthy feature of our method is that, except for

the overhead of maintaining the Delaunay triangulation,
it is motion-sensitive: all other events processed by the
structure reflect actual changes to the neighborhoods of
the points of interest. Though the overhead of main-
taining the Delaunay triangulation can be significant in
the worst case, in practice it has nearly linear efficiency
and it can be a useful piece of infrastructure for other
applications as well, including clustering, communica-
tions, etc.

6.1 Kinetic nearest neighbors in 2D. Let G(V, E)
be a PSLG and p be a point in V . The points in V are
assumed to be moving. With p we associate a circle Cp,
containing p, of radius rp, which may be time varying.
The circle Cp will contain the point p in its interior
throughout time.

Definition 6.1. Let T be a constrained triangulation
of G. We call a point q in V approachable from p, if
q is inside Cp and there exists a path from p to q in T
that lies entirely in Cp.

Definition 6.2. We say that an edge e of T properly
intersects Cp, if one endpoint of e lies outside of Cp and
the other endpoint of e is approachable from p.

The fact that the point set that we want to maintain
is the set of approachable points w.r.t. the CDT is
established by the following theorem.

Theorem 6.1. (the maximality property) Let A be the
set of points in V ∩Cp that are not blocked from p by a
blocking edge. Then A is the set of approachable points
of p with respect to the CDT of G.

Proof. Let q ∈ A be a point not approachable from p.
This implies that there exists an edge e with endpoints
u and v, such that u, v are outside of Cp. The edge e
splits Cp in two regions and p, q are in different regions.
Consider the triangles that contain e, and let q′ be the
third vertex of the triangle that lies on the same half-
space as q. Clearly e cannot be a constrained edge,
since then q would not be approachable from p. If q′ is
not inside Cp, then the circle passing through q′uv must
contain either p or q, or some other point in Cp that is
visible from either u or v. This contradicts the CDT
property for e. If q′ is inside Cp then the circle passing
through q′uv must contain p or some other vertex in Cp

that is visible from u or v. Again we have contradicted
the CDT property for e. �

Finally we have the following key theorem, which is
the basis of the kinetization process.
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Figure 4: Keeping track of the points that may enter or
exit Cx.

Theorem 6.2. Let T be the CDT and let p ∈ V be
a point associated with a circle Cp. If a point q ∈ V
enters/exits the circle Cp at some time t0 and is visible
from at least one point inside Cp, then there exists an
edge of T between q and a point inside Cp.

Proof. At time t0, q is on the boundary of Cp. Let {Cr}
be the family of circles with center r that pass through
q, where r is a point on the segment pq. Consider the
circle Cr′ such that r′ is at maximal distance from q,
and Cr′ contains no points of V in its interior that are
visible from q. Note that because the set of points of V
that are visible from q at t0 is non-empty by assumption,
such a circle Cr′ always exists. Due to the maximality
of r′, Cr′ touches a point q′ ∈ Cp that is visible from q.
Clearly the edge qq′ is a CDT edge. �

6.2 The kinetic maintenance algorithm. Let Ap

be the set of approachable points from p w.r.t. the
CDT. Let also Ep be the set of edges of the CDT that
properly intersect Cp. As we have already mentioned
our goal is to maintain these two sets. In order to do
that we have to handle two types of events: edge flips
that are required to maintain the CDT, and events that
correspond to points entering or exiting Cp.

Whenever an edge flip happens we only have to
update the set Ep. If the old edge was in Ep we need
to delete it; if the new edge properly intersects Cp we
need to add it to Ep.

When a point q enters Cp we have to look at q’s
neighbors. For those neighbors that are outside Cp we
only need to add the corresponding edges to Ep. For
those that are inside and in Ap we need to remove the
corresponding edges from the edge set Ep. Finally for
the neighbors that are inside but not in Ap (this can only
occur in the constrained case) we need to add them to

the point set Ap and perform the same tests for their
neighbors recursively.

When a point q exits Cp the situation is entirely
symmetric: for all the neighbors that are outside delete
the corresponding edges from Ep. For the neighbors
that are inside and remain approachable after the point
exits, we need to add the corresponding edges to the
set Ep. Finally as far as the remaining neighbors are
concerned, we have to delete them from the set Ap of
approachable neighbors, delete any edges in Ep that
adjacent to them and recursively do the same for their
neighbors.

The construction and algorithm described above
can be directly generalized, for the unconstrained case,
to any Lp metric with 1 < p < ∞. In particular, we
can maintain in exactly the same way near neighbors
that are within distance r from a given point q in the
Lp metric by maintaining the Lp-metric version of the
DT.

A variant of the problem above is where we want
to maintain the k nearest neighbors of a point p.
Suppose that we have initially computed which are these
neighbors. Then the radius rp of Cp is the distance
between p and its k-th nearest neighbor pk – clearly in
this case rp is time varying. When a point exits Cp,
then this point becomes the new pk, and we have to
update how rp changes with time. If a point enters Cp,
then this point becomes the new pk, and the old one is
no longer in the set Ap, and again we need to update
rp. As far as the set Ep is concerned, the only difference
now is that we also maintain all the edges adjacent to
pk, no matter whether the neighbors of pk are inside or
outside of Cp.

6.3 Kinetic nearest neighbors in 3D. Our goal in
three dimensions is to maintain the set of points that are
inside Cp. As in two dimensions, if T is the Delaunay
triangulation, this set is the same as the set of Ap of
approachable points w.r.t. the DT, and Theorem 6.2
remains true. The proof is slightly more challenging in
this case — but we omit the details from this version of
the paper.

The three-dimensional Delaunay triangulation is
maintained by simply doing some face-edge or edge-face
flips [12]. As a result, what we need to do in the 3D case
in order to update our nearest neighbors structure is the
same as in the two-dimensional unconstrained case and
the kinetic maintenance algorithm works as is, the only
difference being that flips replace edges with facets (or
vice versa), as opposed to edges with edges.



7 The relative convex hull

Relative convex hulls have been of interest in both
the computer vision [19] and computational geometry
community [11]. In this section we describe how to
maintain the relative convex hull for a set of points S
moving inside a simple polygon P .

Let R be the relative convex hull of S with respect
to P . We will refer to the edges of P as p-edges and to
the edges of R as r-edges. Note that a p-edge can be
an r-edge, and also note that the graph G with vertices
the set P ∪ S and edges the union of the set of p-edges
and r-edges is a PSLG.

We want to construct and maintain the CDT of
G and properly update both G and the triangulation
whenever points need to be added or removed from R.
There are two kinds of events that we need to handle
other than the edge-flip events that we need to process
in order to maintain the CDT.

The first kind is the situation when a point in
(S ∪ P ) \ R becomes a point of R. Let p be the point
in (S ∪ P ) \ R and let q and r be the endpoints of the
r-edge that p hits. It can easily be verified that when
p becomes collinear with q and r, then the triangle pqr
is a triangle of the CDT. What we have to do in this
case is to remove qr, add qp and pr to the set of edges
in G, and retriangulate the area around p. This can
be done by triangulating the quadrangle created by the
deletion of qr, and then by simply invoking the standard
edge-flip algorithm for producing the CDT given any
triangulation, with the appropriate initial edge list [5].

The second kind of event is the symmetric one,
when a point in R becomes a point of (S ∪ P ) \R. Let
p be the point in R and let q and r be the endpoints of
the r-edges incident to p. Such an event can be detected
by scheduling CCW tests for all consecutive triplets in
R. What we have to do in this case is to delete all
the edges connecting p with points inside or outside R,
depending on whether p ∈ P or p ∈ S, respectively, add
the edge qr in G, remove the r-edges qp and pr from G
(but not from the CDT), triangulate the hole next to p
and reconstruct the CDT using the edge-flip algorithm.

8 Conclusions

In this paper we have shown that bounded aspect ratio
triangulations in two and three dimensions are span-
ner graphs. The same result holds true for conforming
bounded aspect ratio triangulations in two dimensions,
in which case the reference graph is the visibility graph
of the input PSLG. We have also proved that the CDT is
a spanner graph with respect to the underlying visibility
graph. We suspect that there is a common generaliza-
tion of the spanner property of these triangulations. We
conjecture that the spanner property holds whenever a

triangulation has the property that every triangle can
be circumscribed by a ‘fat’ shape not containing other
triangulation vertices (the witness circles do that for
Delaunay).

Based on locality properties of the CDT, we have
shown how to kinetize the CDT when the nodes of
the input PSLG are moving points. Knowing how to
kinetically maintain the DT and the CDT enables us to
maintain near neighbors for moving point sets in two
and three dimensions, as well as maintain the relative
convex hull of a set of points moving inside a polygon.
These are useful capabilities in the context of virtual
reality systems where object or agent behavior depends
on their immediate surroundings or environment.

Although the CDT has certain optimality proper-
ties, it does not have a bounded aspect ratio. This raises
the question of how to construct bounded aspect ra-
tio conforming triangulations that are easily kinetizable.
Finally, since the stretch factors that are presented in
this paper are not necessarily optimal, we would like to
compute optimal stretch factors for both the CDT and
bounded aspect ratio triangulations.

The algorithm that we propose for the relative
convex hull seems far from optimal in the sense that
it has to process lots of events that have to do with
with the CDT maintenance and not the combinatorial
structure of the RCH. We would like to investigate
alternative ways to approach this problem so that the
number of events associated with points inside the RCH
depends on their proximity to the hull.
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