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Shape-preserving interpolation in R*

by

P.D. Kaklis® and M.I. Karavelas**)

Abstract

In this paper we develop and test a simple automatic algorithm for constructing curvature- and
torsion-continuous interpolants in IR, which are shape-preserving in a sense that takes into account
the convexity, torsion, coplanarity and collinearity information contained in the polygonal line
connecting the interpolation points. This algorithm exploits the asymptotic properties of a family
of C2-continuous polynomial splines of non-uniform degree, which tend to the above-mentioned
polygonal line, as the segment degrees tend to infinity. The performance of the algorithm is tested
for a three-dimensional data set, containing coplanar and collinear groups of points as well.
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1. Introduction

Shape preservation for two- and three-dimensional interpolating curves is a subject of major im-
portance for the area of CAGD. But important as this subject is in its three-dimensional version,
the research activity has been hitherto restricted to the two-dimensional problem. As a result, the
CAD designer can appeal to numerous two-dimensional splines, which use various basis functions,
such as polynomials, rationals, exponentials, etc., and possess elegant shape-preserving properties;
for a brief literature review see, e.g., Kaklis and Pandelis (1990) for the functional, and Kaklis and
Sapidis (1995) for the parametric case.

In contrast to the two-dimensional case, the literature dealing with the problem of constructing
interpolating curves in IR, which preserve the shape of the data to be interpolated, is apparently
poor. In this connection, reference should be made to Goodman (1991), which introduces the
notion of inflection count as the maximum number of inflections that a curve can appear to have
when viewed from any direction. A “good” scheme for constructing shape-preserving curves in
three dimensions might then be one that produces curves with low inflection count. However,
Goodman does not proceed to construct a concrete shape-preserving interpolation scheme, but
simply suggests a Hermite scheme involving quadratic splines, which have a lower inflection count
than that of cubic splines. Further, Clements (1992) discusses the possibility of extending his
rational cubic interpolation scheme in three dimensions, in such a way that the sign of the torsion
of the constructed interpolant is preserved in each parameter segment.

The intention of this paper is to present an automatic algorithm for constructing shape-
preserving interpolants in IR®, which are curvature- and torsion-continuous. Two major tools
will achieve this intention, the one of geometric and the other of analytic nature. The geometrical
tool is a notion of shape-preserving interpolation in IR?, resulting from the quantification, with the
aid of the “Discrete Geometry” in Sauer (1970), of the shape information, namely the convexity,
torsion, coplanarity and collinearity information, contained in the polygonal line connecting the
interpolation points (see Definition 2.1). The analytical tool, which provides the working func-
tion space, is the natural 3D-extension of the family of polynomial splines of non-uniform degree,
introduced in Kaklis and Pandelis (1990) for functional C2-continuous convexity-preserving inter-
polation. The basic property of this family is that, as the segment degrees increase, the spline
tends to the polygonal interpolant, which contains the very basic shape information of our problem
(see Theorem 4.2).

The paper is divided into six sections. In Section 2 we define a concept of shape-preserving
interpolation in IR? (see Def. 2.1), and give its geometrical interpretation. This concept applies to
all curvature- and torsion-continuous curves, more accurately all Frénet-frame-continuous curves
of order 3, which interpolate a spatial point set with specified parametrization and appropriate
boundary conditions. The proposed shape-preserving notion is a local one, ensuring that the
distribution of the binormal and the sign of the torsion of a spatial interpolating curve behaves in
conformity with the corresponding “discrete” properties of the polygonal interpolant (see Parts (i)
and (i) of Def. 2.1). In addition, this notion ensures that, if the data contain subsets of coplanar
or collinear points, then the interpolant exhibits analogous behaviour in a user-specified closed
subinterval of the parametric domain, that corresponds to the coplanar or collinear interpolation
points (see Parts (u7) and (iv) of Def. 2.1).

In Section 3 we introduce the natural 3D-extension II' of the 2D-family of C?-continuous
polynomial splines of non-uniform degree, introduced in Kaklis and Pandelis (ibid.), and prove
that interpolation in II', under type-I, type-II' or periodic boundary conditions, and specified



parametrization, is well-posed. Moreover, we prove that curves in II' are Frénet-frame-continuous
of order 3 (see Theorem 3.1). It is worth pointing out that torsion continuity is due to an intrinsic
property of curves in II', namely their torsion vanishes at the parameter nodes.

In Section 4 we investigate the asymptotic properties of the family II' as the segment degrees
tend to infinity in various manners. Investigation focuses on the asymptotic behaviour of the
curvature, torsion and Frénet frame of a curve in I'. More specifically, curvature tends to zero
in the interior of a parameter segment, while the nodal curvature tends to infinity, in the case of
non-collinear triplets of interpolation points (see Theorem 4.5). As far as torsion is concerned, it
tends to zero in the interior of a parameter segment, with the exception of the midpoint, where
it tends to infinity for fully 3D data, or remains bounded in the case of coplanar quadruples of
interpolation points (see Theorem 4.7). Finally, with respect to the Frénet frame, the unit-tangent
vector tends to the corresponding “discrete” unit-tangent vector in the interior of a parameter
segment (see Theorem 4.8(7)). The binormal of the curve in the first half of a parameter segment
tends to the “discrete” binormal corresponding to the left node of the segment, whereas in the
second half it tends to the “discrete” binormal corresponding to the right node (see Theorem
4.8(i)). The asymptotic behaviour of the principal normal is then a direct consequence of the
asymptotic behaviour of the unit-tangent and the binormal (see Theorem 4.8(7i)).

Exploiting the asymptotic results of the preceding section, Section 5 develops an automatic
algorithm for constructing spatial shape-preserving interpolants with the aid of I'. These inter-
polants obey a shape-preserving criterion (see Def. 2.1*), slightly weaker than that introduced
in Section 2 (compare Parts (i) and (i17) of Defs. 2.1 and 2.1*). After stating Definition 2.1%,
the rest of the section is divided into five subsections. The first four are devoted to the deriva-
tion of discrete sufficient conditions for each one of the four criteria comprising Definition 2.1%,
namely the convexity, torsion, coplanarity and collinearity criterion. Each subsection consists of
pairs of lemmata and theorems, with the lemmata providing discrete sufficient conditions and the
theorems establishing that these conditions are met for appropriately large segment degrees (see
Lemma 5.1 and Theorem 5.2 for the convexity criterion, Lemma 5.3 and Theorem 5.4 for the
torsion criterion, Lemma 5.5 and Theorem 5.6 for Part 1 of the coplanarity criterion, Lemma 5.7
and Theorem 5.8 for Part 2 of the same criterion, and, finally, Lemma 5.9 and Theorem 5.10 for
the collinearity criterion). The last subsection contains the promised algorithm, which is iterative
and whose convergence is established by appealing to the theorems of the previous subsections.
Furthermore, this algorithm is computationally simple, since each iteration involves the solution
of a linear system with symmetric, positive-definite and tridiagonal or cyclic-tridiagonal matrix.

This work ends with Section 6, in which we present and discuss the performance of the algorithm
for a three-dimensional data set containing coplanar and collinear groups of points. The graphical
output of the algorithm is collected in Figures 6.1-6.5, where the shape-preserving interpolant
provided by the algorithm is compared with the standard C*-Quintic, interpolating the same
data set, with the same boundary conditions and parametrization. These results, along with the
numerical experience so far, permit us to assert that, for reasonable parametrizations (e.g., chord-
length), the proposed algorithm yields relatively small final segment degrees in the non-collinear
regions of the data, which produces visually-pleasing curves. Moreover, it should be noticed that,
in general, the standard C*-Quintic fails to be shape-preserving, which further justifies the need
for the algorithm. We end this section by numerically investigating and commenting on the effect
of the parametrization on the shape quality of the outcome of the algorithm. The graphical output
of this investigation is presented in Figures 6.6 and 6.7.



2. A notion of shape-preserving interpolation in IR®

In this section we introduce the henceforth adopted notion of shape-preserving interpolation in IR3.
We start with some preliminary notation. Let D = {I,,, m = 1(1)N} be a set of points in IR® with
I, #I41, m =1(1)N —1, Lp be the polygonal line connecting the points of D, Ly, = I, 41— Ly,
P, =Lp—1 X Ly, (see Fig. 2.1) and Ay, = |[Liy—1 Ly Lipg1] :=det ([Lyp—1 Ly Lit1]).

Appealing to the “Discrete Geometry” in Sauer (1970, Ch. I, § 2.2), the vectors P,, and the
scalars A, can be used to quantify the shape properties of the polygonal line £Lp. More specifically,
P,./|P.,| is the so-called discrete binormal at I,,, whereas A,, has the same sign as the so-called
discrete torsion

A A sin(dm,)

Tm = ———— =sgn(A ,
" Bl Porg] B A T

along the segment I,,1,,,41 of Lp. Here ¢,, is the bihedral angle of the discrete osculating planes
E,, and E,, 41 at L, and 1,41, respectively. In view of the definition of the discrete binormal P,,
at I, E,, is defined by the triplet I,,,_1,I,, and I,,,;1 (see Fig. 2.1).

Let Q(u), u € [u1,un], be a sufficiently smooth regular curve interpolating D with parametriza-
tion U = {uy,ug,...,uy : up < uy < ... < un} (Q(um) = I,), and satisfying appropriate
boundary conditions B. The smoothness assumptions imposed on Q(u) are the following :

()

0< om <, (2.1)

Q(u) € C3tm, Umy1], m=1(1)N —1, (2.2)
(ii)
vi(u), vp(u), &(u), 7(u) € Clui,un], (2.3)
where ( ) Q)
_ Qlu d(u) = al d(u :
=2 Q=T 1wl £ (24)
is the unit-tangent vector, with |-| denoting the Euclidean norm,
) = W) = Q) x G, ()] 20 (2.5
is the binormal, o)
RN 20
is the curvature and, finally,
) = oS ) = Q) Q) G, (.7

is the torsion of the interpolating curve Q(u). The class of curves characterized by the smoothness
assumptions (i) and (%) will be hereafter denoted by F2(U/). Note that the continuity of the
vectors vi(u), vp(u) implies that the principal normal vector

v (u) = vp(u) X vi(u) (2.8)

of Q(u) will also be continuous in [u1,uy]. As a consequence the elements of F3({/) exhibit Frénet-
frame continuity of order 3 (i.e., F3-continuity or F3-contact; see Mazure (1994)). Furthermore, it



can be shown that the continuity assumption (ii) can be replaced by the following matrix equation
at the interior parameter nodes :

. .o . .

Qn+) Qum+) Bumt)] = [Qum—) Qum—) un-)|-C, m=2)N -1, (290)

where C is the so-called connection matriz defined by

=®<
> 2

C= , a>0, 3,v,6 € R. (2.9b)

oo
o R,
Q
w

It is worth noticing that, if § = 3af, then Q(u) exhibits contact of order 3 (G3-continuity or
G3-contact) at the interior parameter nodes, which means that there exists a reparametrization
that renders the curve C3-continuous in [u;,uy]; see Boehm (1988).

Concerning, now, the boundary conditions B associated with the interpolation problem, three
types of boundary conditions will be employed in this work :

(i) Type-I boundary conditions : Q1 = s, Qn = sy, where Q,, = Q(um) and sg, sy are given
vectors in IR3.

(ii) Type-II' boundary conditions : Q. =Qy = (0,0,0)T, which induces zero curvature at the
endpoints I; and Iy of the curve.
Finally, in the case of closed data (I, = Iy),

(iii) Periodic boundary conditions : Q1 =Qn, Q1 = Qn.

In the case of type-I boundary conditions Lp is extended to Lpg, which connects the points

I(), Il, e ,IN, IN+1, where I() = 11 - hoSO, IN_|_1 = IN+hNSN, with h(), hN being arbitrary pOSitiVG
numbers. Lpp permits us to include in one polygonal line both internal and boundary shape infor-
mation. In the case of periodic boundary conditions Lpg connects the points Ip, Iy, ..., In,In41,

where Iy = Iy_; and Iy, =I,. Finally, Lpg = Lp for type-II’ boundary conditions.
We are now ready to precisely define the herein adopted notion of shape-preserving interpola-
tion in IR® :

Definition 2.1. A curve Q(u) € F3(U), which interpolates the data set D and satisfies bound-
ary conditions B, will be called shape-preserving provided that :

(i) (convezity criterion) If Py, - P11 > 0, then
w(u)-Pp >0, u€[um,umt1], n=m,m+1 (2.10)
(ii.1) (torsion criterion) If A,, # 0, then

T(u)Apm >0, € (U, Umt1)- (2.11a)

(ii.2) If Ap—1A,, > 0, then
T(Um)Ap >0, n=m-—1,m. (2.110)



(iii) (coplanarity criterion) If A,, = 0 and |P,||Pm+1| # 0, then

|w(u) X P,

0 = 1 2.12
|W(’I,L)||Pn| < 617 |W(u)| # 7 U e wm7 n m7m + Y ( )

where ¢; is a user-specified small positive number in (0, 1], and w,, a user-specified closed
interval such that [tm, Um+1] C wm C (Um—1, Um+2)-
(iv) (collinearity criterion) If |P,,| = 0 and Ly, 1 - L, > 0, then
|Q(u) X Ln|
|Q(w)]|Ln|

where ¢ is a user-specified small positive number in (0, 1], and 7,, a user-specified closed
subinterval of (w;,—1,%m+1) that includes u,, as an interior point.

<&y, UENm, n=m-—1m, (2.13)

The range of the index m that occurs in the definition of the various quantities given above,
e.g., L, Pm, A, depends on the imposed boundary conditions. More specifically, in the case
of type-I and periodic boundary conditions, 0 < m < N for L,,, 1 < m < N for P, and
1<m < N -1 for A,,, while in the case of type-II' boundary conditions, 1 < m < N —1 for L,,,
2<m<N-—-1for P,,, and 2 <m < N —2 for A,,.

We complete this section by giving the geometrical interpretation of the various parts of Def-
inition 2.1. The motivation for introducing Part (i) of this definition, also referred to as the
convexity criterion, is that, whenever the inner product of two consecutive discrete binormals
P../|Pml, Pims1/ |Pm+1]| is positive, the inner product of the binormal vy(u) in [tm, tm1], with
each one of P,,,/|Pn|, Prnt1/|Pmt1], should be positive too (see (2.10)). As a result, the spherical
image of the binormal vy(u) in [ty,, Um+1] is confined by the oblique bihedral angle of the discrete
osculating planes E,, and E,,11 at L, and I,,,+1, respectively. The intersection of this angle with
the plane, defined by P,, and P41, is the conjugate cone of P,,/|Pp,| and Ppyi1/|Pmy1|- A
further consequence of Part (7) of the definition is that, whenever P, - P, 11 > 0, the curve Q(u)
has no inflection points in [tm,, wm+1]. From this point of view, Part (i) of Definition 2.1 resembles
the convexity-preserving criteria employed in the two-dimensional case (see, e.g., Goodman and
Unsworth (1988)), which justifies its characterization as a convexity criterion.

Part (ii.1) of the definition compels the torsion 7(u) of Q(u) in (wp, Umt1) to have the same

sign as the corresponding discrete torsion T (see (2.1) and (2.11a)). This constraint is applied

to the nodal torsion 7(u,,) as well, if the neighbouring discrete torsions 4\-m—17 7/3m share the same

sign (see (2.11b)). A consequence of relation (2.11a) and the continuity of the torsion is that, if

ém_lé\'m < 0, then 7(uy,) = 0.

In the case of four consecutive coplanar points L1, I, Lnt+1 and Ly, without collinear
triplets, Part (7ii) of the definition enforces the osculating plane of Q(u) to be adequately close to
the plane defined by the four coplanar points (see (2.12)). The degree of closeness is governed by
the user-specified constant ¢; that constrains the absolute value of the sine of the bihedral angle
of these two planes, whereas the user-specified interval w,, determines the scope of this constraint
within the parameter segment (w,,—1, Um+2)-

Finally, in the case of collinear triplets I,,,—1, L., L1, with I, lying between I,,,_; and I,
(Ly—1 - Ly, > 0), Part (iv) of the definition enforces the curve to be sufficiently close to the linear
interpolant in the user-specified closed interval 7, C (tm—1,um+1) (see (2.13)). More accurately,
the user-specified constant ¢y bounds the absolute value of the sine of the angle of the tangent



vector of Q(u) and the line defined by I,,_1,1,, and I,,, 1. The case |P,,| = 0 with L,,_; - L, <0
(i.e., Ly—1 or I, 41 lying between the other two points) should not be associated with linear-like
behaviour, since such triplets are more likely to imply cusp- or loop-like behaviour.



3. The family I'(K) of curvature- and torsion-continuous poly-
nomial splines of non-uniform degree

In this section we introduce the natural three-dimensional extension of the two-dimensional family
of polynomial splines of non-uniform degree, used in Kaklis and Pandelis (1990) for constructing
functional, locally convex, C?-continuous interpolants. This family will be denoted, henceforth, as
I'K), K = {ks, m = 1(1)N —1}, with k,, being the degree of the polynomial spline in the m-th pa-
rameter segment. The parametric representation of an element Q(u) = (Q1(u), Qa2 (u), Q3(u))” €
I'(K) is given by the following formulae :

Q) = 1(u) + hp, QuFrn(1 =) + 77 Qs 1 Fn(t), w € [ty tmgn], 1<m <N -1, (3.1)

where

1(u) = (11 (u), o(u), I3(w)" = Tn(1 =) + Lyat, t= - ; S = Ut — Uy (32)

and
thm — ¢

ko (b — 1)
The parameter ¢ € [0, 1] is referred to as the “local” parameter, in contrast to the so-called “global”
parameter u € [uj,uy|. As can easily be seen from (3.1), Q(u) interpolates the data set D, i.e.,

Fon(t) = F(t: k) = te0,1], km >4 (3.3)

Q(um) = Ln, m=1(1)N. (3.4)

Note that, in addition to the conditions of Section 2, we require Q(um—) = Q(um+) = Qm. There-
fore, Q(u) € C%u1,uy], provided that Q(um—) = Q(um+), m = 2(1)N — 1. These conditions,
along with the chosen boundary conditions B, yield a linear system that defines the second-order
nodal derivatives Qm Depending on the boundary conditions imposed, these first derivative
continuity equations are as follows :

(i) Type-I boundary conditions :

d1Q1 4 e1Qy = by =51 — 80, (3.5a)
em—lcim—l + (dm—l + dm)Qm + €QO+1 =by, =s, — Sm—-1, M= 2(1)N -1, (35b)
en—1Qn-1+dy_1Qn = by =sy —sy_1, (3.5¢)
where
hm hm Im+1 - Im Lm
m = y  ldp = —, m=——=—, =1(1)N — 1. 3.5d
= T Cm — 1) ko I, poo M= 1) (3:5d)

(ii) Type-II' boundary conditions :

(d1 + d3)Qa + €2Q3 = by, (3.6a)
em—lQm—l + (dm—l + dm)Qm + €QO+1 = bm7 m = 3(1)N -2, (3'6b)
en—2Qn_2+ (dy_a +dy_1)Qn_1 = by_1. (3.6¢)



(ii1) Periodic boundary conditions :

(di +dy_1)Q1 + e1Qo + en_1Qn_1 =51 —sn_1, (3.7a)
emfImel + (dmfl + dm)Qm + eQO—}—l = bma m= 2(1)N -2, (37b)
en 1Qi+en 2Qn o+ (dv 2 +dy 1)Qn 1 =by 1. (3.7¢)

It is straightforward to prove that the above linear systems are solvable, because their matrices
are strongly diagonally dominant. Note that the matrices of systems (3.5) and (3.6) are symmetric
and tridiagonal, whereas the matrix of system (3.7) is symmetric and cyclic-tridiagonal.

Since Q(u) € C?[uy,uy], its unit tangent v;(u), binormal v(u) and curvature x(u) are contin-
uous at every regular point (|Q(u)| # 0). Regarding now the torsion 7(u), we first note that Q(u)
is not, in general, three times continuously differentiable with respect to w at the interior nodes
Uy, of the parametrization U. In view of this fact, we first restrict ourselves to the open interval
(U, Um+1), where Q(u) is a polynomial, and thus 7(u) is continuous, provided that x(u) # 0.
Then, combining (2.7) with (3.1), we get the following expression for the matrix :

T(U)T = Ap - B(t)7 u € (umvum-f-l)v (38)
where . .
A= [sm Qm Qui], (3.9)
and
1 0 0
B(t) = | —hmFL(1—t) F'(1-t) —h,'F"(1-1) |, (3.10)
hn Fy (2) Fr(t) ho Fr (1)
the accent denoting differentiation with respect to ¢. From (3.10) we readily get
det(B(t)) = (km — 2)h,[t(1 — )] 3 >0, (3.11)

which implies that 7(u) retains the sign of det(A,,) in (um,um+1) and vanishes at the nodes
U = U, Um+t1 (t = 0,1). As a consequence, the torsion 7(u) of an interpolant Q(u) in I'(K) is
continuous as well. This fact, in conjunction with the continuity of v;(u), v4(¢) and &(u), implies
that interpolants in I'(K) are F3-continuous (see (2.2) and (2.3)). This result could also be derived
by calculating the elements of the connection matrix C (see (2.9)). Indeed, using (3.1) and taking
into account that elements in I'(K) are already C2-continuous, it can be shown that

1 00

C= 5|, 6= -2
1

01 (3.12)
0 0
Note that, since § # 0 = 3a3, curves in I'(K) are not G3-continuous.

Collecting the results of the present section, we state

Theorem 3.1. Let D = {I,,, m = 1(1)N} be a given set of points in IR?, B a set of boundary
conditions (B=type-1, type-II' or periodic) and U = {uy,uz,...,uy : w3 < uz < ... < un}
a parametrization. The problem of constructing a C?-continuous spline Q(u) in I'(K) which
interpolates the data set D with parametrization I/ and satisfies the boundary conditions B, results
in a well-posed linear system for the second-order nodal derivatives Qm of Q(u) at u = wuy,
(see system (3.5) for B=type-I, system (3.6) for B=type-II' and system (3.7) for B:periodic).
Finally, if Q(u) is regular and &(u) # 0 in [u;,uy], then Q(u) is F3-continuous in [u;,uy], with
T(Upm) =0, m = 1(1)N.



4. The asymptotic properties of the family I'(K) for large de-
grees

This section is devoted to the investigation of the asymptotic properties of the family I'(K), as the
degrees k,,, m = 1(1)N — 1, tend to infinity in various manners. Roughly speaking, four degree-
increase patterns will occur in the sequel, namely local increase, i.e., ky,, — oo for some fixed m,
left-right increase, i.e., k, — 0o, n = m—1,m, semilocal increase, i.e., k, — co,n = m—1,m, m+1,
and, finally, global increase, i.e., k1, k2,...,kn_1 — o0o. The ensuing investigation will focus on the
asymptotic behaviour of the geometric invariants of a curve Q(u) € I'(K), namely its curvature,
torsion and Frénet frame.
We start by stating the following lemma, which will be used intensively within this section :

Lemma 4.1. There exists a positive number M, depending on the data set D, the parame-
trization I/ and the imposed boundary conditions B, but independent of k,,,, 1 < m < N — 1, such
that
. -
|R¢m| <M, Rim=qmQimi qm=dn1+dmn, dn= k—, 1<m<N-1, (4.1(1)
m
where i = 1,2,3 () and where le (resp. Rjy,) is the i-th component of Qm (resp. Ryp).
Furthermore, dg := dy := 0 for type-I and type-II' boundary conditions, and dg := dy_1, dy :=
d; for periodic boundary conditions. Finally,
lim R,, = b,,. (4.1b)

km—1,km—00

The proof of the above lemma is a direct consequence of Lemmata 3.1 and 4.2 in Kaklis and
Pandelis (1990).
Using, now, Lemma 4.1 and the asymptotic estimates :

Fn(t) = O(k,,2), F!(t) =0k}, t€[0,1], (4.2a)
Fp(t)=o(1), te][0,1), F(t)=0(1), telo,1], (4.2b)

we arrive at the following theorem, which is directly analogous to Theorem 3.1 in Kaklis and
Pandelis (ibid.).

Theorem 4.2. Let,
D, U, = max(|d"Q;(u)/du" — d"l;(u)/du"|,i =1,2,3), w€eU,, r=0,1,2, (4.3)

where U, denotes a closed subinterval of [w,, wm+1]. Furthermore, let [u,—1,u,). be an arbitrary
but fixed closed subinterval of [u,_1,u,) and similarly for (u,, tn+1)e and (wn41, Unt2]e- Then :

(i) If the degrees increase locally, i.e., k, — oo for some fixed m ®) and k,,n # m, remains
bounded, then

DO[uM7um—|—1] = O(k;z,z)a Dl(uma um—|—1)c = O(k,;?), DQ(uM7um—|—1)c = 0(1) (44)

(I The index i will always range over the set {1,2,3}.

() The range of index m appearing in the various theorems and lemmata of this section depends on the boundary
conditions imposed (see the paragraph that follows Definition 2.1).
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(ii) If the degrees increase semi-locally, i.e., km—1, km, kmt+1 — oo for some fixed m and k,,,n #
m — 1,m, m + 1, remain bounded, then

Dolug, ugs1] = Ok Y), £=m—1,m,m+1, (4.5a)

Difum—1,Um)c = O(k;lil), D1 (wmy m+1)e = O(k;zl)7 D1 (Wt 1; Umtale = O(k;ﬁ_l),
(4.50)
Dy(ug,upy1)e =0(1), £=m—1,m,m+ 1. (4.5¢)

(ii1) If the degrees increase globally, i.e., k1, ko, ..., kx_1 — 00, then
Do[tim, um+1] = O(kpy"), D1(tm; timi1)e = O(k"), Da(Um, tm1)e = o(1), (4.6)

for m =1(1)N — 1.

We shall now proceed to investigate the asymptotic behaviour of the curvature x(u) of an
element Q(u) € II'(K). For this purpose we state and prove the following lemma, which will also
be useful in studying the asymptotic behaviour of the torsion 7(u).

Lemma 4.3.
(1) If kp, ky—1 — oo with kp, /km—1 = O(1), then

{wlw)gm(1 = )} = hpim tel, %). (4.74)

’
m—lhm

(i3) Tf kg, k1 — 00 With Ep/kms1 = O(1), then

P, 1
L e (51) (4.70)

e g sl

(iii) If kpyy by — 00, n =m — 1 or m + 1, with k,,/k, = O(1), then

(Wi |(d -+ da)(5)* ™ = O(1), (470

where %4,, = %(um + Um+1). Moreover, if kp—1, km, km+1 — 00 with kp,/km—1 — ¢1 > 0 and
km/km+1 — c2 > 0, then

_ 1 2km} Pm Pm+1
{rlaman (G f = o (470
where &, = (Clhm_l + hm)/(hm + Cghm+1).
Proof. Lett € [0,3). Observing formulae (2.5) and (2.7) we have :
w(u) = (T31(t), —Tsa(t), Ts3(t))" (4.8)

where T3;(¢) denotes the minor of the element ¢3; of T(¢). Let us focus on the minor Ts3(¢). Using
formula (3.8) we find :

3
Ts3(t) = ) Am,3iBis(t), (4.9)

=1
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with A, 3:, Bi3(t) also denoting minors of the matrices A, and B(t) respectively. Evaluating B;3(¢)
n (4.9) with the aid of (3.10), and recalling that d,, = hp/km, we get :

B t km—2
ng(t)qm(l — t)2 erm :Am,3SQm + Am,S?Qm (1—_25)
gmdm ) < t )km_z 1
- O N 1|, teo,=]. (410
Am’?’lkm—l[ 14 € 2] ( )

We shall now derive bounds for the quantities |A, 32¢m| and |Ap, 31 ¢mdm|. For the first quantity
we arrive at the following inequalities :

q q
A 320m| < [stmBRomi1——| + |SomBRimi1——
gm+1 m+1
qm dm
< simBamy1—— |+ 32mR1,m—|—1_‘- (4.11)
dm dm

Given relation (4.1a) of Lemma 4.1 and since k., /km—1 = O(1), we conclude that the right-hand
side quantity in (4.11) remains bounded. Hence,

Am32q¢m =O0(1), as km—1,km — 00 with kp/km_1 = O(1). (4.12)
For the second quantity |A, 31¢mdy,| we similarly obtain :
A 314mdm| < |Rim||R2m1] + [Rom|| R1m1l, (4.13)
which, in view of Lemma 4.1, implies that
Am 31 qmdm = O(1), as  km—1,km — o0. (4.14)
Regarding now the quantity A, 33¢m, the limiting relation (4.1b) provides

lim Ay 33¢m = S1,m—152m — S1m52,m—1, (4.15)

km—1,km—00

where s;,, are defined by (3.5d). In view of (4.12), (4.14) and (4.15), equation (4.10) gives :

_ 1
{Tas()gm(1 = )>75} = 51 159m — S1ms2m-1, €D, 5): (4.16a)

as km—1, km — 0o with kp,/km—1 = O(1). Working analogously we get :

_ 1
{T32(t)qm(1 — 1)’ k’"} — $1m—153m — S1mS3,m—1, ¢t € [0, 5), (4.160)

and 1
{T:ﬂ(t)Qm(l - t)2_km} — $2.m—153m — S2mS3,m—1, t€ [0, §)a (4.16¢)

as kpm—1, km — 00 with kp,/km—1 = O(1). The validity of Part (i) of the lemma then follows from
(4.8) and (4.16). Part (ii) of the lemma can be proved similarly. Regarding now the asymptotic
estimate (4.7c,n = m — 1) of Part (iii), it readily follows by setting ¢ = £ in (4.10) and taking into
account (4.12), (4.14) and (4.15). The asymptotic estimate (4.7¢) for n = m + 1 can be proved

12



similarly. Finally, (4.7d) is a direct consequence of (4.10) for ¢ = £, (4.14), (4.15) and the following
limiting relations :

. q
lim = = Ems km/kmfl — (1, km/km-H — C2, (4.17)
km—lykmykm+l_’oo qm+1
and
lim Am,32 qm = gm(slmSQ,m—{—l - 31,m—|—152m)- (418)
km—lykmgkm-‘rl —00
]

For ¢t = 0 equation (4.10) degenerates to the condition

dm

T33(0)¢m = Am 33¢m + Am 31 my 1 (4.19)
m
Using then (4.14) and (4.15) we get :
T33(0)gm — S1,m—152m — S1mS2,m—1, (4.20)

as km—1,kn — o0, and similarly for T39(0) and Ts3;(0). Therefore, the following property is
obtained.

Corollary 4.4. 1If k1, ky — 00, then

P

—_— = . 4.21
hm—lhm 9 Wm W(um) ( )

qmWm —

It is noticeable that, in contrast to Lemma 4.3, the above corollary is free from any restrictions on
the relative rate of growth of k,,—1 and k.

We are now ready to focus on the asymptotic behaviour of the curvature x(u), which is the
subject of the next theorem.

Theorem 4.5.

(i) If k., — oo, then
K(u) = 0, U E (U, Umt1)- (4.22)

(ii) Let |Pp,| # 0. If kyy—1, by — 00, then

K(Um ) — 0. (4.23)

Proof. (i) Differentiating both sides of formula (3.1) we find

Q1(U) — Sim = _Rimh_mFyln(l — t) + R 1 o

m gdm+1

FL (%), (4.24)

where R;,, is given by (4.1a). Thus relation (4.1a) provides the inequality :

Em(1 —t)kmn=1 1
ke — 1

‘Qz(u) - Sim‘ < M{

ke thr 1 — 1
km — 1

} . (4.25)
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Since :

krllgloo %7_1 = O, v=torl— t, t e (0, 1), (426)
it follows that .
lim Q(u) =sn,, te€(0,1). (4.27)
k. —00
Analogously we get : .
JimQ(u) = (0,0, 0, te(0,1). (4.28)

On the other hand, from (2.6) we have :

< Qw)||Qw)| Q)
T jew el

(4.29)

which, in conjunction with (4.27), (4.28) and the fact that |s,,| # 0, implies the validity of (4.22).
(ii) Setting t = 0 in (4.25) we obtain

< 2M, (4.30a)

m

|Qi(um) - Sim‘ <M+ p M

which implies
‘Qz(um)| < max{|sim — 2M]|, |$im + 2M|}. (4.300)

The above inequality in conjunction with formula (2.6) and Corollary 4.4 establish (4.23), provided
that the curve remains regular at u = u,,, as the degrees k,,_1, ky, tend to infinity. This is proved
in the sequel.

Since |Qun| is uniformly bounded, the limiting relation (4.21) yields :

P
Pul o (4.31)

lim |meRm|:k lim |mebm|:ﬁ :
o0 m—1/tm

m—1,km—00 m—1,km

Thus, for sufficiently large degrees k,,—1, k., there exists a positive constant ¢ such that :

|Qun % b > ¢, (4.32a)
which provides
. . c
Qumllbm| > ¢ = [Qul> =, (4.32b)
b
ie., Q(u) is regular at u = wy, for sufficiently large degrees k,,—1, knm.- [

Having completed the study of the asymptotic behaviour of the curvature, we now turn to
study the asymptotic behaviour of the torsion. We start by proving the following lemma :

Lemma 4.6. Ifk,_1,kn,knt1 — 00, then

A,

_ 4.33
hm—lhmhm—l—l ’ ( )

det(Am )QQO—f—l -

where Ay, = |Lyy—1 Ly Lipta] (see §2).
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Proof. Using formula (3.9) and appealing to the limiting relation (4.154), we have :

lim {det(Am )gmam+1} = [Sm bm  bmy1].

km—lykmykm-i-l_’oo

Substituting the last of (3.5d) into (4.34), some straightforward algebra gives

. |Lm71 L., Lm+1|
1 det =
km—l,kml,%:n+1—>00{ ¢ (Am)QQO—f—l} hm—lh'mhm—I—l

7

which proves the lemma.

Now comes the basic result :

Theorem 4.7. (i) Let |Py,| # 0. If kpm_1, km, km+1 — 00 with &y, /km—1 = O(1), then

7(u) — 0, te€(0, %)

(’L’L) Let |Pm_|_1| 75 0. If kmfl,km,km_H — 00 with km/km+1 = 0(1), then

m(u) — 0, te (%,1).

(4.34)

(4.35)

(4.36a)

(4.36b)

(iii) Let Ap, # 0. If kyye1, by kg1 — 00 with kyy /kr—1 — ¢1 > 0 and &y, /kms1 — c2 > 0, then

|7 ()| — 00, U = 3 (U, + Umt1)-

(4.36¢)

(iv) Let A, = 0. If kype1, kiy k1 — 00 with kpy /km—1 — ¢1 > 0, kpy/kmy1 — c2 > 0 and

Prnhy )+ &mPrmithya] # 0, &m = (c1hm—1 + hm)/(han + c2hmy1), then

7(tm) = O(1).

(4.36d)

Proof. (i) Using formulae (2.7), (3.8) and the expansion (3.11) of the determinant of B(t), we

have : . b s
T(u) — det(Am)hm (km - Zg[t(l - t)] )
|w(u)]
Equivalently, we write :
( )QQO—}—lhm[t(l - t)]3_km o det(A'rn)QQO+1

(km = 2)g2,(1 = )4~ 2km (1w (u)|gm (1 — t)2~Fm]”’

from which, by virtue of Lemmata 4.3 and 4.6, we arrive at the limiting relation :

lim

m+1 D 1-1

km—l ,km 7km+l — 00

with kp, /km—1 = O(1). Since,

km — 2 t o\ Fml 1
i m —2 _ 1
k:mlinoo{ - t (1 — t) } 0, te(o, 2)7

15
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(u dm km - 2t_2 ( t >km1 _ Am(hm—lhmhm-f-l)i1
m |Pm|2(hm—1hm)72 ’

(4.37)

(4.38)

(4.39)

(4.40)



and
qm hm -1 km

< +1, 4.41
dm+1 hm kmfl ( )

which is bounded above as ky, 1,k — oo with &y, /k;,—1 = O(1), we conclude that :

1
lim T(u) =0, te(0, 5), with &y, /km—1 = O(1). (4.42)

km—1 )km 7km+1 —00

We can similarly prove Part (ii) of Theorem 4.7.
(iii) By setting ¢ = £, formula (4.38) degenerates to :

_@mtthm (b —2) 7 | det(Am ) |gmgm+1
|7 ()| 1 =—— RS (4.43)
m [ (@)l (3>~
Moreover, the limit (4.17) implies
m o km — 2
lim { ¢ } = 0. (4.44)
km—1,km,km4+1—00 | @m41 hom

Regarding the right-hand side fraction of (4.43), Lemma 4.6 ensures that, as ky—1, km, km41 — 00,
the numerator is bounded below by a positive quantity, for A,, # 0. Moreover, Lemma 4.3 (%ii)
guarantees that, as k1, km, kmy1 — oo with ky, /km—1 — ¢1 and &y, /kmy1 — c2, the denominator
of the same fraction is bounded above. Note that, if A,, # 0, then the vectors P,, and P,, 1
are linearly independent and, thus, the limit of the denominator is different from zero. Thus, the
left-hand side of formula (4.43) is bounded below by a positive quantity, as km—1, km, km+1 — 00
with &y, /km—1 — c1 and ky,/km41 — c2. By virtue of this result and the limiting relation (4.44)
we have :

lim |7 ()| = o0, (4.45)

kmfl :kmzkm-i-l —00

as required.
(iv) Let f,, = Ry, — by,. Recalling formula (3.9), we can write :

det(Afm) dmim+1 = |Sm bm + fm bm—|—1 + fm—l—l‘

(4.46)
= |sm bm bmii| +[sm fm bmti] +sm bm fms1l + [sm £ £l
Since A,, = 0, we have |s,;, b, by41| =0. Thus:
det(Am ) @m@m+1 = k' [Sm kmfm Dmgt] + k' ISm bo kmfng1| + 5m o fnsa|- (447
Note that : ) 1
|fm|:|Rm—bm|§\/§M(km1_1+km_1), (4.48)

which stems from relation (4.1a) and equations (3.5b) and (3.5d). Combining (4.47), (4.48) and
the given limits kn,/km—1 — 1, km/km+1 — c2 as km—1, km, kmy1 — 00, we conclude :

det(Am)QQO—H = O(k;zl) (4'49)
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Let us now rewrite equation (4.43) in the form :

_ 4 gm (k'm - 2)| det(Am)QQO+1|
|7 (@m)| = 7 : . (4.50)
m Ot | w(im)|gm (3)° ]
Combining the asymptotic estimate (4.49) with the limiting relations (4.17) and (4.7d) (see Part
(iii) of Lemma 4.3), we easily see that (4.36d) holds true, under the assumption |Pnh 1, +
EmPmt h;ﬂ_ﬂ # 0. It is noticeable that this assumption is always satisfied when the planar data

L 1,5, Lnt1, Lngo are locally convex (P, - Pp,q1 > 0). m

Finally, we state Theorem 4.8, which is concerned with the asymptotic properties of the Frénet
frame of an element Q(u) € I'(K) :

Theorem 4.8. Let v;(u), v,(u) and vi(u) be the unit-tangent vector, the principal normal and
the binormal vector of the Frénet frame of an element Q(u) € I'(K). Then :

(i) If k,, — oo, then
L,

_) —_—
L’

If k1, by — 00 with kp, /km—1 — c and |Sy—1hpm, + €Sphum—1| # 0, then

vi(u) te(0,1). (4.51a)

Sm—lhm + Csmhm—l

Vi(tm) — S thon  Comhm ]’ (4.510)
(ii) Let |Py,| # 0. If ky—1, by — 00 with &y /k—1 = O(1), then
V() = %, t e (0, %). (4.52a)
Let [Posi| # 0. Tf by, kst — 00 with Em/kme1 = O(1), then
V() — %, te (%,1). (4.528)

If km—lakm,km—i—l — oo with km/km—l — C1 Z 0, km/km—f—l — (3 Z 0 and ‘th;£1 +
ngm—}—lh;nl_Fl' 7é 07 gm = (Clhmfl + hm)/(hm + C2hm—|—1)a then

(Pm X Lm)h,;Ll_l + gm(Pm—i—l X Lm)h;{l—l
Pl g + EmPumsi b || L

Vn(um) -

(4.52¢)

Let |Pp,| # 0. If k1, b, — 00 with &y /km—1 — ¢ > 0 and |Sp—1hm + cSmbm—1| # 0, then

P X (Sm—1hm + cSmhm-1)
|Pm||sm—1hm + Csmhm—1| ’

(4.52d)

Vn (um) -
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(iii) Let |Pp| # 0. If Km—1, km — 00 With Em /km—1 = O(1), then

| 1

vp(u) — Pl telo, 5) (4.53a)

Let |Ppy1| # 0. If ki, k1 — 00 with kpy/km41 = O(1), then

1
Pt ¢ (=,1]. (4.53b)

vp(u) > ——i,
b( ) |Pm+1‘ 9

f B 1y ks ka1 — 00 with kp/km_1 — ¢1 > 0, kp/kmi1 — c2 > 0 and |P,h 0, +
ng'm-I-lh;ﬁi—l' #0,6m = (cth—l + hM)/(hm + Cth—I—l)a then

Pl + &Pt hr_nl+1
|th171171 + mem-l—lh;z{H'

Vi (Tm) — (4.53¢)

Proof. The limits (4.51a), (4.52a — ¢) and (4.53) can be proved easily, using the defining
formulae (2.4), (2.5) and (2.8) of v4(u), vp(u) and v,,(u), respectively, in conjunction with Lemma
4.3 and the limiting relation (4.27). Regarding now (4.51b), setting ¢ = 0 in formula (4.24) gives :

. hon Rm
Um) =Sm — Rpm——— — R, . 4.54
Q( ) kam th km(km - 1)Qm—|—l ( )
Using the limit (4.10) and the fact that k., /km—1 — ¢ as ky—1, kymy — 00, we find
. . 1 hmSm—1 + € hm—1Sm
b Qlum) = 1 + fim 1 + o (4.55)

In view of (2.4), (4.55) and the fact that by assumption [S;,—1hm +CSmhm—1| # 0, the limit (4.51b)
is true. Note that [s;,—1hm + ¢Smhm—1| # 0 is always satisfied if L,,—1 - L, > 0. Finally, the
limiting relation (4.52d) is a direct consequence of the defining formula (2.8) and the limits (4.51b)
and (4.53a). ]

Noting that, if A,, = 0 and P,, - Ppyy1 > 0, then P,, and P41 are parallel, Theorem 4.8
provides the following property.

Corollary 4.9. Let Ay, = 0 and Py, - Prpr > 0. If k1, by kip1 — 00 with kpy /km—1 —
c1 > 0 and kp,/km41 — c2 > 0, then

PnxLy Paoyi XLy
vp(u) — = , t€(0,1), 4.56
1 ]~ PG € O (4.56)

and
Pm o Pm—|—1

- - ’
|Pm| |Pm+1‘

vi(u) teo,1]. (4.57)

We end this section with some qualitative remarks on the various results obtained above. At
first, by virtue of Theorem 4.2, we have that a spline Q(u) € I'(K) tends to the linear interpolant
1(u), as the degrees increase. Moreover, its curvature tends to vanish in (wp,, um+1) (see Theorem
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4.5(i)), but it tends to infinity at the node u = u,,, provided that the points I,,_1,I,,,L,11 are
not collinear (see Theorem 4.5(77)).

Regarding now the asymptotic behaviour of the Frénet frame, Theorem 4.8 (%ii) implies that, as
the degrees increase, the binormal of Q(u) tends to the discrete binormal at I, for u € [y, Um,),
Uy, = %(um+um+1). In (@, Um+1], however, the binormal tends to the discrete binormal at I,,41.
These results are in agreement with the asymptotic behaviour of the torsion 7(u) of Q(u), which
tends to zero in (Um, Um ) U (Um, Um+1) (see Theorem 4.7(7),(13)). However, if I, 1, Ly, Imt1, Imto
are not coplanar, then the torsion becomes unbounded at the midpoint @,, (see Theorem 4.7 (443 )).
On the other hand, if I,,_1, L, Iny1, Iinyo belong to the same plane, then the torsion remains
finite at u = 4, (see Theorem 4.7(iv)).
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5. Shape-preserving interpolation in IR® with the aid of I'(K)

Based on the results obtained in the preceding sections we shall develop an automatic algorithm for
constructing F3-continuous interpolants in I'(K), which are shape-preserving in a slightly different
sense from that of Definition 2.1. Specifically, the algorithm to be constructed obeys the following
shape-preserving criterion.

Definition 2.1*. A curve Q(u) € F3(U), which interpolates the data set D and satisfies bound-
ary conditions B, will be called shape-preserving provided that :

(i) (convezity criterion) If Py, - Py,11 > 0, then

w(u)-Pp >0, u€ um,umt1], n=m,m+1 (5.1)

(ii) (torsion criterion) If A,, # 0, then

T(u)Ap >0, € (U, Uppp1)- (5.2)

(iii.1) (coplanarity criterion) If A, =0 and Py, - Ppyy1 > 0, then

|w(u) x P,

<er, |ww)|#0, u€wn n=m,m+1l, (5.3a)
W (u)|[ Pl "

where £; is a user-specified small positive number in (0, 1], and w,, a user-specified closed
interval such that [t Um+1] C wm C (Um—1, Um+1), Un = % (un + Upt1), n=m—1,m+ 1.
(iii.2) If Ay, =0 and Py, - Ppyp < 0, then

|[w(u) x Py

<er, |wu)|#0, w€VdyUbmyr, n=m,m+1, (5.3b)
[w(w)][Pn|

where ¥, C [, @m) and Fmy1 C (tm, 47, ] are user-specified closed intervals with @Y, and
il,,, 1 being user-specified constants such that ,, 1 < ﬂf;l < U, and Upg1 < Uy g < Upgd-

(iv) (collinearity criterion) If |P,,| =0 and Ly,_1 - Ly, > 0, then

|Q(“) X Ln|
|Q(w)|[Ln|

where ¢( is a user-specified small positive number in (0, 1], and 7,, a user-specified closed
subinterval of (1, um+1) that includes u,, as an interior point.

<&y, UEMNm n=m-—1and/orm, (5.4)

Definition 2.1* lacks Part (4.2) of Definition 2.1, due to an intrinsic property of curves in
II'(K), namely 7(um) = 0,m = 1(1)N. As far as Part (7i.1) is concerned, it is again the structure
of I'(K) that requires wy, to lie inside (@m,—1, @m+1), which is clearly contained in (wp,—1, Umt2),
appearing in Definition 2.1. In particular, Lemma 4.3 implies that, as the segment degrees k,,n =
(m — 2)(1)(m + 2), increase, the limiting osculating planes corresponding to [tm—1,Um—1) and
(Um+1,Um+2] are in general different from the limiting osculating plane of (%m—1, @m+1), which is
exactly the common plane of the points I,,,_1,I;,, In+1 and I,,,49. This remark applies also to Part
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(#43.2) of Definition 2.1*, with the additional characteristic that the midpoint @, of [tm, tm+1] has
to be excluded from the parameter domain of the coplanarity criterion. Indeed, for A, = 0 with
P, - Ppy1 <0, the distribution of the limiting binormal exhibits a discontinuity at the midpoint
Um, (see expressions (4.7a) and (4.7b)).

We shall now proceed to derive conditions ensuring that an element Q(u) € I'(K) satisfies
each one of the five parts of Definition 2.1*. More specifically, for each part we shall provide a
lemma and a theorem. The lemma will contain sufficient, and if possible necessary, conditions
for satisfying the corresponding part, whereas the theorem will guarantee the validity of these
conditions for appropriately large degrees in suitably chosen parameter intervals. These conditions
will be discrete and will depend on nodal quantities only, so that they can be tested efficiently in
practice.

To improve the readability of the text, the rest of this section is divided into five subsections.
The first four address the convexity, torsion, coplanarity and collinearity criteria of Definition 2.1%,
while the last one is devoted to the shape-preserving algorithm.

5.1. The convexity criterion

Lemma 5.1. Let P, - P,,,y1 > 0 and g, := Qm—i—l X Qm Furthermore, we introduce the
assertions

(i) W - Pp, >0, Wy - Py >0, n=m,m+1.
(ii) gm - Pn >0 or
8m - Pa| < bt 257k, — 1) min{|wy, - Po|, [Wini1 - Pol}, (5.5)
for n =m,m + 1.

Then, (i) is necessary, whereas (i) along with (4i) are sufficient conditions for satisfying the con-
vexity criterion (i) of Definition 2.1*.

Proof.  Necessity of (i) : The necessity comes directly from relation (5.1) for © = Uy, Upt1-
Sufficiency of (i) and (ii) : Using formulae (3.1) and (2.5), we get after some straightforward
algebra the following expression for w(u) :

w(u) = W, Fir (1 —t) + Wi 1 FL(8) + honmem (), U € [Wim, Um1], (5.6)
where " " km—2 km—2
F (t)F (1 —t tPmTo(1 —t)"m—
oy RO FRQ =)ttt
km —1 kpm — 1
Let g, - P, > 0. Then, as F)(¢) and F)’ (1 — t) are non-negative for ¢ € [0,1] and do not vanish

simultaneously, we readily conclude from (3) that w(u) - P, > 0, u € [um, wm1]-
Turning to (5.5), we also deduce from (7) and (5.6) that the condition

t € [0, 1]. (5.7)

. "eq4 . "
max {lgm - Pulhmgn(®)) < min (W - Pa)EG(L 1) + (Wit - PFLWOL). ()
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is sufficient for the validity of w(u)-P,, > 0 For the left-hand side of the above inequality, we have

(g Pullinen()) = lgn Pullnon(§) =l Pullns . (5.00)
Recalling that w,, - P,, and w11 - P, are positive as well as F” (t) > 0, we can write
|(Wem - Pr) Fp (1 = 1) + (Wnp1 - Pr) Fra (2))]
> min{|Wp, - P, [Wing1 - PolH(Fp (1 =) + Fp (1))
> min{|Wp, - Pnl, [Wm41 - Pnl} tér[léﬂ]{F’rI?{L(]‘ —t) + F(t)} (5.90)

1, .
= 2FrIrIL(§) min{|Wp, « Py, [Winq1 - Py}

= 23—km min{| Wy, - Py, [Wm+1 - Pal}, t € [0,1].

In view of (5.9a) and (5.9b), we readily conclude that a sufficient condition ensuring the validity
of (5.8) is :

24—2km
hin 1 1&m - Pl < 27" min{{wy, - Pul, [ Wi - P, (5.10)
which obviously coincides with (5.5). Since, n = m,m + 1, the above results ensure that Part (i)
of Definition 2.1* is fulfilled. |

The following theorem provides a manner to satisfy inequalities (5.5).

Theorem 5.2. IfP,, P, # 0 and k,,—1, bk, kg1 are sufficiently large, then
l&m - Po| < bl 25 Yk, — 1) min{|wi - Pol, [Wimg1 - Pal}, n=m,m + 1. (5.11)

Proof. For the left-hand side of (5.11), Lemma 4.1 (rel. (4.1a)) gives :
QQO—H'gm : Pn| < 3M2|Pn|' (5'12)
For the right-hand side of (5.11), it can easily be seen that :

GmGmt1 o 257 (ke — 1) min{|wo, - P, [Wing1 - Pal} (5.13)

> h;zl?km_l(km - 1)dm mln{|wm . Plema |Wm—|—1 . Pn|Qm—|—1}-

Recalling now Corollary 4.4, we have :
Pon-Pu| [Prss - P
hm—lhm ’ hmhm—i—l

}  (5.14)

which, in conjunction with the fact that d,;, = hy,/ky, and the assumption P, - P, 11 # 0, gives :

h;kam_ldm(km — 1) min{|wnm - Pu|@m, [Wm+1 - Pr|gm+1} — 00, (5.15)

lim min{| W, - Po|gm, [Wm+1 - Pol|gm+1} = min{
kmflykmakm-{—l_)()o

as km—1, km, km+1 — 00. In view of (5.12), (5.15) and the positivity of the multiplier ¢,,¢m+1, it
is inferred that the lemma in question holds true. |
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5.2. The torsion criterion

As far as the torsion criterion (%) of Definition 2.1* is concerned, formulae (2.7) and (3.8) in
combination with inequality (3.11) yield

Lemma 5.3. Let A,, # 0. Then Q(u) satisfies the torsion criterion (i) of Definition 2.1*, if
and only if det(A,,)A,, > 0.

Using now Lemma 4.6, we readily establish

Theorem 5.4. If A, # 0 and ky,—1, km, kms1 are sufficiently large, then det(A,,)A,, > 0.

5.3. The coplanarity criterion

Having treated the convexity and torsion criteria of Definition 2.1*, we now turn to the coplanarity
criterion of the definition. We shall, at first, deal with the case A,, =0 and P, - P11 > 0 (see
Part (74i.1) of Def. 2.1*). In this case the following lemma is valid.

Lemma 5.5. Let A,, =0, Py - Prpr1 > 0 and wyy, = [ﬁfﬁn,ﬁ”mﬂ], U1 < 05 < U, Umir <
Uyt 1 < Umy1, be the user-specified interval involved in the coplanarity criterion (:i.1) of Definition
2.1*. This criterion is satisfied in wy, if there exist constants ay,, a4, and of,_; in (0,2 —1) such
that the following seven inequalities are true :

Wit W1 > 0, (5.16q)
gl < VZ @bt (b — 1252 min{[winl, Wi 1]}, (5.161)
V2 max{|Wn, X Py, |[Wmt1 X Py|}
cpr(m,n) = -
vV Bm min{|[Wo,|, [Wii1]} [P

V2 (b — 17 gm X Po|bim <1)’“m1 < (5.16¢)

VB min{ | W, [ W1 [} [Pr] \2 ’

n=m,m+ 1, B =1—a2, —2am,

km—1—2
11—t 1 — ¢, )fm—172
cplb(m) := |Wyn 1| ( ;0 ) + han—1|gm—1] % < g [Wi,
m m—

(5.16d)
tom Tm ot (]
cplr(m,n) := [Wim-1 X Pyl (1 — tfn>km_l2 + _Wm X Pu]
VB WP \ B VB (Wil [P
L 18met X Pl (b1 = 1)1 = t7) 172 - (5.16¢)

V85 (Wil [P

n:m7m+17 ﬂr{zzl_(afn)Q_Qagm
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T 1 km+1 2 ('r 1)km+172
cprb(m + 1) := [Wi 2| (ﬁ) + Py 1|8t % < Oy 1 Wil
m
r ’LALZ‘TL 1 — Um+1 1
gl = # [0, 5), and
m
(5.16/)
kma1—
cprr(m + 1,n) [Wimt1 X Po [Wint9 X P ( m1 ) e
\/ Br+1 ‘Wm+1||Pn| v 1 [Wint1]|Pn| 1=tn,
+|gm+1 X Pr|hmg1 (kg1 — 1) 71, 4y )fomt1 =2 <e (5.169)
7
v Brt1 Wit | [P
n:mvm"i_lv ﬁ;H—l :1_(05%—}—1)2_204%—}—1'

Proof. The technique of the proof derives lower bounds on the denominator and upper bounds

on the numerator of the left-hand side fraction of inequality (5.3a). Furthermore, this technique

handles separately the three intervals [af,, um], [m, Um+1] and [tm+1, @7, 1], which partition wy,.
Let us start with [wy,, 4m41]- From equation (5.6) we obtain

\w(u)|2 = |WmF'l{rIL(1 - t) + Wm+1FrlrlL(t)|2 + |gmhm§0m(t)|2

+2 (Wi F (1 — 1) + Wiy 1 Fpp (1)) - (8mbmom (1))

(5.17)
> [WinFyh (1= £) + Wi 1 Fp (D[ = |gmbmom(t)[?
=2 [WinFyn (1 = ) + Wi 1 Fy (8)] |gm Ao ()]
Assuming that
|gm‘hm¢m(t) < am‘me:m(l - t) + Wm+1F7lrlz(t)|7 (5'18)
(5.17) implies
[W(@)? > B mind[win ?, [wing1 |2} [(Fln(1 =) + (Fis(2))°] + 519

+2 B (Wi - Wi 1) FLL (1 — )LL),

Since, by hypothesis, Wy, - W1 > 0, and B, > 0, due to the restriction 0 < ay,, < v2 — 1, we get
the lower bound

W) 2 VB min{[wal, Wi [} (FA(1 - 0)° + (F(0)*. (5.20)

On the other hand, we deduce from equation (5.6) that the numerator in (5.3a) satisfies

1
|w(u) x Pp| < max{|wy, X Py, [Wpy1 X Py} [Frlrlz(l —t)+ Frlrlz(t)] + |gm X Pn|hm‘Pm( ), (5.21)
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taking account of the fact that p,(3) = max;e(o,1] ¥m(t). Using now (5.20) and (5.21), we find
that the left-hand side fraction of inequality (5.3a) is bounded by

(w(u) X Py| _ max{wpy X Po|, W1 X Pal}  Fi(1—1) + F(t)

[w(u)||Prn| = V/Bm min{|w,|, |[Wmi1|} Pl \/(F//l(l —1))? + (F (1) (5.22)

N |gm X Pn‘hm (Pm(%)

VB min{|w|, [Wit1|}HPal \/(F,’,’l(l — t))2 + (F'rlrll(t))2

Since 1\ km—2
min (Va0 + Eorh=va (3) 7 (:230)
Fl'(1—t)+ F'(t) <2 (5.23b)

VLA =) + (Fa®)”
and @ (3) = (km — 1) (3)**=*, the right-hand side of (5.22) provides
[w(u) X Py

TG, < ) o

In view of (5.24) and (5.16¢), we can summarize the hitherto obtained results by stating that, if
(5.16a), (5.18) and (5.16¢) hold true, then the coplanarity criterion (4.1) is valid in [wm,, Umt1]-
Next, we derive a discrete sufficient condition for the validity of (5.18). Making use of (5.16a), we
obtain

(Wi Fp (1= 1) + Win1 Fpf (8)* 2 min{|[win|?, [ Wi 1|} min]{[FqZ(l =) + [F (1)}

teo.1 1\ Bhrt (5.25)
= 2 minfjwn % fwnin) (3) -
On the other hand,
1 2k —4
b om () < |gm|hm m(t) = |gm|hm (km — 1)1 = : 5.26
Bl (®) < gl 1% 2 (8) = gl = 1) (5 (5.26)
Thus, a sufficient condition for (5.18) is :
1 2k, —4 1 ki —2
gnlin(in =17 (5) " <VZan (3) 7 min{wal waslh (520

which is the same as inequality (5.16b). Thus, (5.16a), (5.16b) and (5.16¢), if true, ensure the
validity of the coplanarity criterion (%ii.1) in [t Um+1]-
Let us now turn our attention to the neighbouring interval [it%,, u,,]. In this case we introduce
the hypothesis
s (0)] < 0 [ Wan Py ()], € [y, ], (5.28)

where the replacement of m by m — 1 in (5.6) provides
o1 (1) == wW(u) = Wiy 1 (8) = W1 Fry 1 (1= ) + @m—1hm—1¢m-1(t). (5.29)
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Based on this hypothesis we find

()| = (Wi Fthy (8)[2 4 [y (w)[2 + 2 (Wi - 15 () Foy (2)
> [Winl? (Fi 1 (8)* = [F 1 ()[2 = 2 [Win| [,y (w) | Py (2) (5.30)
> (1= (af,)? = 205, [wal? (Fip_i(8)* = BE, [wml? (Fis_1(£)° .

On the other hand, recalling (5.6) and (5.7), we get :

(W(u) X Pp| < [Wm-1 X Pp|Ff_ (1 —t) + [Wim X Pyp|Fy_1 () + |8m—1 X Pn|hm-—10m-1(t)

< F!_ (1) ] Loty
S Win—1 X Pp| ; + [ Wi X Py

+lgm—1 X Pulhm1(km—1 — 1) ' Fp_1(t) max F&r_ (1—t)
teftt, 1]

1-tt

tm

km—1—2
< Fpoo(t) {|Wm—1 X P ( ) + [Wo X Py

1— tZ km_1—2 X
+|gm71 X Pn“hnl% X u € [ufn,um],
m—

(5.31)
where ¢ is defined in (5.16d). Combining (5.30) and (5.31), it is readily seen that, under hypoth-
esis (5.28), (5.16¢) is a sufficient condition for the validity of the coplanarity criterion (%ii.1) in
[@f,,um]. Tt Temains to establish (5.28). To do so, we deduce the bound

|r;knfl(u)| < |Wm_1|FTIrIL71(]‘ - t) + |gm—1‘hm—190m—1(t)

1 —t)km-1-2 F'" (1—t
= F#L—l(t) {|Wm—1‘ <T> + |gm—1‘hm—1 #} (532)

km—1—2 _
1—tf 1 —th,)km—172
< F'_ (1) {\wm_n( m) g [y Gt L

te, |

Therefore (5.28) is satisfied if (5.16d) holds true. Summarizing, (5.16d) and (5.16e) imply the
validity of the coplanarity criterion (i4i.1) in [@%,, tm)-

In an analogous manner it can be proved that inequalities (5.16f) and (5.16¢) suffice to guar-
antee that Part (44i.1) of the coplanarity criterion holds true in [tmq1, 4y, 1], as well. ]

The following theorem confirms that, for sufficiently large degrees ky,—1, km, km+1, inequalities
(5.16) of Lemma 5.5 become true.

Theorem 5.6. Let A, =0, Py, - Ppyy1 > 0, wyy, be a user-specified interval as in Lemma 5.5
and of,, am, al, 1 € (0,4/2 —1). Then :
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(1) If kpp—1, km, km+1 are sufficiently large, then inequalities (5.16a) and (5.16b) hold true.

(ii) I kpm—1, km, km+1 are sufficiently large with k,,—1 = kp, = km41, then inequality (5.16¢)
holds true.

(iii) If kp,—1, kn, are sufficiently large with k,,—1 = k;,,, then inequalities (5.16d) and (5.16¢e) hold
true, and

(i) If kp,, km41 are sufficiently large with k., = kp,+1, then inequalities (5.16f) and (5.16¢) hold
true.

Proof. (i) Since Py, - Ppyy1 > 0 and ¢, > 0, n = m,m + 1, Corollary 4.4 readily implies
that inequality (5.16a) will be satisfied for sufficiently large k., 1, ki, kmt1. Regarding, now, the
left-hand side of inequality (5.166), Lemma 4.1 and g, := Qm+1 X Qm give

QMQm+1|gm| S |Rm||Rm—|—1‘ S 3M2 (533)
Moreover, Corollary 4.4 and P, - P11 > 0 provide
\/iam hr_n,l(km - 1)2km_2QQO+1 mln{|wm|7 |Wm—|—1|}
(5.34)
> \/iamhy_nl(km - 1)2km_2dm min{|Qme|7 |Qm—|—1wm—|—1|} — 00,
as km—1, kms km+1 — oo. It follows from (5.33) and (5.34) that inequality (5.16b) holds true for
large enough kp—1, ks kmt1-

(i) Since ky—1 = kuy = k1, the common denominator of the two fractions on the left-hand side
of (5.16¢), multiplied by ¢,,, has the value

. . hm—l + hm
Im V Bm mln{|wm|, |Wm+1‘}‘Pn‘ =V Bm mln{'Qme|’ |CQO+1Wm+l‘}‘Pn|7 m=7"7"75",
hm + hm—}—l
(5.35)
which, in view of Corollary 4.4, tends to
. P P
B 5 o o

as km—1, km, km+1 — 00. We now examine the asymptotic behaviour of the numerators of the
fractions in (5.16¢), also multiplied by ¢;,,. For the first numerator we have :

V2 gm max{|wy, X Py, [Wmi1 X Py} = V2 max{|¢mWm X Pn|, [(mgm+1Wms1 X Pnl},  (5.37)

which, by virtue of Corollary 4.4 once again, tends to

|P. X Py |Prmt1 X Pn|}
2 m =0, 5.38
\/_ max{ hm_lhm ,C hmhm+1 ( )

as k-1 = km = km41 — 00, because A, = 0 implies |P,,, X Py| = |Py1 X Py =0, n =m,m+1.
For the second numerator, using Lemma 4.1 and the definition of g,,, we find

V2 e 1y it
- < -
T — 1|gm X Pp|hm <2> = Do o — 1)|Rm||Rm+l||Pn|hm <2>

<vatm_sypip (l)km_l
- Em — 1 "2 ’

(5.39)
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which tends to zero as k,, — oco. Thus the numerators of the fractions in (5.16¢), multiplied by
Gm, tend to zero as ky—1 = kpy = kmy1 — 00, whereas the common denominator, multiplied by
the same quantity, tends to a positive constant (see (5.36)). This completes the proof of Part (ii)
of this theorem.

(iii) We now turn to inequalities (5.16d) and (5.16¢) for sufficiently large k,,—1, km, with kp—1 =
km. As far as the first term on the left-hand side of (5.16d) is concerned, the definition (2.5) of
w(u) and Lemma 4.1 give the bound

km—l_2 km—1_2
1t . 1t
Qm—1|wm—1| ( m) S |Qm—1HRm—1| ( 'm)

t t

(5.40)

. 146\
i (158)

t

which tends to zero as k1 — 00, since |Qp—1| is bounded (see (4.30b)) and £, € (3,1]. Regarding

the second term on the left-hand side of (5.16d ), some recent arguments provide

(1= th)em 12

1— ¢l )fem1=2
P e | TR DA
m—1 m—1 m—1 (541)
km—l —
< 3M2 (1 - tfn)k"Hl 27

km—1 —1

which also tends to zero as k,,—1 — oo. Thus, the left-hand side of inequality (5.16d), multiplied
by ¢m—1, tends to zero as k,,—1 — c0. On the other hand, its right-hand side, also multiplied by
¢m—1, has the lower bound

d'm—l l hm—l l
A |G Wi | = ———————— @, | Wm|, 5.42
T ol = L Ol (5.4

Qm—lafnlw'm| Z

where we have used k,,—1 = k.. Recalling now Corollary 4.4, we obtain

hm—l

oze h —1 |P |
—_— m T d 0 5.43
hm—l + hm > ( )

hm—l + hm hm—lhm ’

Ol G Wi | —

as km—1,km — oo. Based on the above results, the validity of inequality (5.16d) for sufficiently
large ki1, km With k1 = kqy, is secured.
Let us now consider inequality (5.16¢), and recast its left-hand side in the form

_ km—1—2
qumlfl‘Qm—lwm—l X Pn| (1 — tfn) ! |Qmwm X Pn|

_.l_
V5 g [P V5% g [P .40

q;L1—1|(Rm X Rim—1) X Pp|hm—1(km—1 — 1 - tfn)km71_2

V ﬁfn |Qme||Pn|

Treating the numerators of the first and the third fractions of (5.44) as in (5.40) and (5.41),
respectively, and noting that ¢,', < d.'| and ¢ud," | = 1+ hy/hm—1, it becomes clear that
both numerators tend to zero, as k,,_1, k. — oo with k,,_1 = k;,. The same conclusion can be

_|_
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drawn for the numerator of the second fraction of (5.44), by simply applying Corollary 4.4 and
recalling that |P,, x P,| =0, n = m,m + 1. Finally, appealing once again to Corollary 4.4, we
can establish that, for sufficiently large degrees k,,—1, km, the common denominator in (5.44) is
bounded below by a positive constant. Therefore Part (iii) of this theorem holds true.

(iv) This part can be proved in a directly analogous manner to that employed for proving Part

(i13). -

Lemma 5.5 and Theorem 5.6 treat in detail the case of coplanar data (A, = 0) with P, -
Pry1 > 0. In the case Py, - Pry1 < 0, the analogous properties are as follows.
Lemma 5.7. Let A, =0, Py, - Pryyy < 0 and 9y, = [, 40,]), Oyt = [05, 14,87, ,1] be the
user-specified intervals in the coplanarity criterion (7::.2) of Definition 2.1*, where @, 1 < ﬁfn <
Uy < Uy < Uy, < ﬂf;H_l < Upg1 L Ay, yq < Umgr. This criterion is satisfied, if inequalities (5.16d),
(5.16¢€), (5.16f), (5.16g) of Lemma 5.5 and the following four inequalities hold true :

tr ko —2 B B
cprb(m) = [Wyy1| <1 _mtr ) + g (B — 1)1 )72 < Al |Win,
m (545(1)
o —u 1
tT = u e 0’ =),
= 2t e (0,)
cprr(m,n) = [Wm X Py [Wing1 X Py < tm )km_Q
X Pl (b — 1) 7127 )em—2
o X Palbnin =070
V B [Win || P
Em—2
1t ™ 11—t )km—2
cplbim +1) = W (f) T
m+1 m (5.45¢)
0
U —u 1
o= e (2,
o= L e 2
k2
x P 1—t¢ m x P
cplr(m + 1,n) := ﬁ)W"‘L n:|P | ( ) m+1> + ﬁ|zme ﬁ'P |
\/ Pm+1 +1 m V Pm+1 +1 (545d)

+|gm X Pn|hm(km - 1)_1(1 - tfn—l—l)km_2

\ 51&-4—1 [Wini1||Pnl

where of, and af,,, are constants from (0,v/2 — 1) and where 37, and S, take the values
1—(ap,)? —2ah, and 1 — (o, 1) — 2af, 4, respectively.

<e, n=m,m+1,

Theorem 5.8. Let A,, =0, P, - P,,,s1 <0, ¥, and 9,11 be user-specified intervals as in
Lemma 5.7 and of, o’ € (0,v/2—1), n =m,m + 1.

(i) If kpy—1, k, ave sufficiently large with k,,—1 = k,,, then inequalities (5.16d), (5.16¢), (5.45a)
and (5.45b) hold true, and
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(i) If kp, km+1 are sufficiently large with k,, = kp,41, then inequalities (5.45¢), (5.45d), (5.16f)
and (5.16¢) hold true.

The truth of Lemma 5.7 and Theorem 5.8 can be obtained by employing the techniques used
in the proofs of Lemma 5.5 and Theorem 5.6. More specifically, one can treat conditions (5.45a)
and (5.45b) as (5.16f) and (5.16¢), respectively. The same stands for the pairs (5.45¢), (5.45d)
and (5.16d), (5.16¢). Note that conditions (5.45a), (5.45b) and (5.45¢), (5.45d) ensure the validity
of the coplanarity criterion in the “interior” intervals [w,, @7,] and [@5, | 1, Um+1], whereas (5.16d),
(5.16¢) and (5.16f), (5.16¢) ensure the validity of the coplanarity criterion in the “exterior” inter-
vals (44, wm] and [um1, @0, 1]-

5.4. The collinearity criterion

We complete the investigation of Definition 2.1*, by deriving sufficient conditions for the collinearity
criterion.

Lemma 5.9. Let|P,,| =0, L,,_1-L,, > 0and n,, = [@},, @], Um_1 < @ < Um < U0y < Umit,
be the user-specified interval involved in the collinearity criterion (iv) of Definition 2.1*. This
criterion is satisfied, if the four inequalities

- Ay - ko .
cllb(m) := ['Rm—l|(1 —tl Yemol LR, [ (1 — () 1)] ﬁ <AL Q)

m m—1 —
l ﬂﬁn — Um-—1
th =m0 < (0,1),
hm—l
(5.46a)
clir(m, n) == [Qm .X Lo T [|Rm_1 v Ln|(.1 ) i
V85 QL V85 1Qul L

+

Gl dp 1 [ Ry X Ly (1 — (tﬁ)kmﬂ)} 1t (5.46b)
k

; < &g,
\/ 65 |Qum|| L
l

n=m-1m, &, =1-(5)%—2+%,

m—l_]-

dm r — T — km T
crb(m) := ||Rp|—=(1 — (1 — 7))+ |Ryppa | (27, ) 1] y—] < Y| Qmls ( )
m m 5.46¢
= “mh;“m €(0,1), and
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. . Ln _ldm Rm Ln 1—(1—1¢" km—1
clrr(m,n) = Q .X | + 4m | X ‘( ( ) )
V05 |Qml|Ln| VO, |Qum]|Ln|

Rini1 X Ln|<t:n>km—1] Fm (5.464)

: < €o,
n=m-—1m, 6:71:1_(7;1)2_27;17

hold true, where 7%, and 47, are constants from (0,2 — 1).

Proof. We seek upper bounds on the numerator and lower bounds on the denominator of the

left-hand side fraction of inequality (5.4). Furthermore, the proof handles separately the intervals

[, U] and [, @i%,], which partition 7,,, though qualitatively it is the same for both of them.
In the first case u € [ib,, um], we introduce the hypothesis

Tm—1(u)] < 75| Quml, (5.47)
where ) ) ) )
rmo1(t) = Qu) = Qm = —hm—1Qum—1¥1(t) + him—1Qumib2(2), (5.484)
_ (1 _ t)kmflfl _ tkmfl_]- -1
Yi(t) = k=1 Pa(t) = o1 (5.48D)
It follows from (5.47) and the first part of (5.48a) that |Q(u)|? is bounded below by
Q)P 2 1Qul* (1 = (7)* = 27) = 8, Quil - (5.49)

We now come to the numerator on the left-hand side of (5.4). Using the definition (5.484) of the
residual r,,—1(u), we deduce the inequalities :

Q1) X Lp| < |Qm X Li| + [t 1(u) X Ly|

. B o —

< 1Qm X Ln| + == Rono1 X L[y ()] + == Ron x Lul[Yo(2)
Y. dm—l _ pem—1-1

= |Qm X Ln| + 7 |Rm—1 X Ln‘(l t)

m—1 (5.50)

km—1
Ry, X Ly |(1 — ¢Fm-17! ] e
[Rin < L ( |

_I_dm—l

m
< |Qm X Ln| + ['Rm—l X Ln‘(]- _ tfn)km—lfl

d
+

_ km—

™ 1IR,, X Ly|(1 — (tfn)’“m—ll)] _mmel G < u < up.

m km—1—1

In view of (5.49) and (5.50), we conclude that (5.47) and (5.46b) ensure the validity of the collinear-
ity criterion in [@,, um]. We only have to establish (5.47), which can be achieved as in (5.50).
This leads to the bound

dm—l km—l

Pt ()] < |[Rom1 (1 = ty,)*m17" 4 IR, |(1 — (£4,)Fm-1-1)
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It is now obvious that (5.46a) and (5.46b) are sufficient conditions for securing the validity of the
collinearity criterion in [, , um)].

It can be proved similarly that (5.46¢) and (5.46d) guarantee that the collinearity criterion
holds true in [wm,, 4],]- ]

The question that now arises is whether inequalities (5.46) of Lemma 5.9 can be satisfied for
sufficiently large degrees. The following theorem provides an answer to this question.

Theorem 5.10. Let |P,,| =0, L,,—1 - Ly, > 0 and n,, be a user-specified interval as in Lemma
5.9. If

hn
hm—l

hm— m ~ SOm—

A, = om = Smorl g g =
|hmsm—1 + hm—15m|

and £, € (M, v2 = 1), 47, € (\7,,3/2 — 1), then inequalities (5.46) are satisfied for sufficiently

large degrees ky,—1, km with k1 = kp,. In the case of type-I boundary conditions, the above

result is also true for m =1 and m =N — 1 if

M, <V2 -1 (5.52)

)\qz%<\/§—l, M €(\,V2-1), and (5.53a)

A = % <V2-1, A5 e(§,vV2-1), (5.53b)
N

respectively.

Proof. First we consider condition (5.46a) as km 1 = km — 00. Lemma 4.1 and tf, € (0,1)
imply that the left-hand side of (5.46a) tends to

hm—1|bm| _ hm—l‘sm - Sm—1|

(5.54)

On the other hand, appealing to the limiting relation (4.55) with ¢ = k;;,/ky—1 = 1, we find that

¢ |hmsm—1 + hm—lsm|
" hm—l + hm

(5.55)

is the limit of the right-hand side of (5.46a). Thus, a sufficient condition for (5.46a) to be true
asymptotically is that (5.54) be strictly less than (5.55), which is true since 7%, € (\,, V2 — 1) by
assumption.
We now turn to (5.46b). Setting ¢ = 1 in (4.55) again and using Lemma 4.1, we deduce
|hm(Sm_1 X Ln) + hm—l(sm X Ln)|

|Qm X Ly| — T h =0, (5.56a)

IR 1 X Lp|(1 = t5,)fm=171 < VBM|L,|(1 — t5,)F171 — 0, (5.56b)
hm—1
hm—1+ hm
which imply that the numerators of the left-hand side fractions of (5.46b) tend to zero, as ky,—1 =
knm — oo. This result and the fact that the common denominator @ |Qum||Ly| in (5.46b) tends

to
hmsm—l + hm—lsm|
5E| L, 0 5.57
R R (5:57)

Gtdm_ 1| Ry X Ly | (1 — (8 )em—171) — by X Ly| =0, (5.56¢)
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as km—1 = km — 00, leads to the conclusion that condition (5.46b) is fulfilled for k,,—1 = ky, large
enough. The remaining conditions (5.46¢) and (5.46d) can be handled similarly.

In the case of type-I boundary conditions with, e.g., |[Py| = 0, Ly_; - Ly > 0, the proof
above has only to be modified at the following points. Instead of expression (5.54), the limit of
the left-hand side of (5.46a) is

by|=|sy —sn-1], (5.58)
whereas, the right-hand side of (5.46a) is equal to 75 |sy|. Secondly, with regard to the left-hand
side of (5.46b), we have

|IQy x Ly,| =|sy xL,| =0, and (5.59a)

ay'dv—1 /Ry x LoJ(1 = (#5)% 1) = [Ry x Lo|(1 = (¢4)" 171 = by x Ly| =0, (5.500)

while (5.56b) remains valid. Finally, the common denominator in (5.46b) is equal to /6% |sn||Lx],
which is a positive constant. u

Remark: Obviously, there exist data sets for which the assumptions (5.52) are not satisfied.
Whenever this happens, one can modify the parametrization locally, so that h, = |L,|, n =
m — 1,m (chord-length parametrization), which implies A, = A7, = 0 < v/2 — 1. Moreover, for
type-I boundary conditions the nullification of A] and A%, can be achieved by setting k1 = |L1|/|so|
and hny_1 = |Ly_1|/|sn|, respectively.

5.5. The shape-preserving algorithm

Collecting the conditions in Lemmata 5.1, 5.3, 5.5, 5.7 and 5.9, we propose the following auto-
matic algorithm for constructing Frénet-frame-continuous interpolants in I'(K), which are shape-
preserving in the sense of Definition 2.1*. In order to lighten its complexity, we shall restrict
ourselves to data which contain only disjoint coplanar quadruples and/or collinear triplets of in-
terpolation points. Furthermore, the algorithm below is valid for type-I boundary conditions. In
the case of type-II' and periodic boundary conditions, the range of the index m has to be modified
slightly.

The algorithm SPIN3D®)
STEP 0.0:

(i) Calculate the vectors L,,, m = 1(1)N — 1, Ly = sg, Ly = sy, Py, m = 1(1)N, and the
scalars A,,, m = 1(1)N — 1.

(ii) Determine the sets :

Ti={meTn_1: Am#0}, Tn_1={1,2,...,N—1}, (5.60)
Jo={me€Tn:|Pmn|=0 A Lp_1-L, >0}, (5.61)
Ko={m € Tn_1:Pp-Ppy1 >0}, (5.62)

In the case of planar sets, set Mg = M; =0 and GOTO STEP 0.2. Otherwise,
Mo={meTn_1: 20, =0 A Py Py >0}, (5.63)
Mi={meTn_1: 00, =0 AN Py, -Ppp1 <0} (5.64)

(®)The acronym SPIN3D stands for Shape-Preserving INterpolation in 3 Dimensions.
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STEP 0.1: If MguM; =0 GOTO STEP 0.2. Otherwise :
(i) Specify the constant 1 € (0, 1].

(ii) For m € (MoU M)\ {1}, specify the parameter value %, € (tm_1,Um|, Um_1 = %(um,g +
Unm_1) and set af, = (v/2—1)/2. For m € My, set ay, = (v/2 —1)/2. For m € (MgUM;)\
{N — 1}, specify the parameter value 47,1 € [tm41,Um+1) and set ol .1 = (V2 —1)/2.
For m € Mj, specify the parameter values 4, € (Um,Um), ﬁf;bﬂ € (lm,Ums1) and set
ap, = gy = (V2 -1)/2.

STEP 0.2: If 7o =0 GOTO STEP 0.3. Otherwise :
(i) Specify the constant g € (0, 1].

(ii) Calculate the ratios A’ , A" 'm € Jy, by formula (5.52), where \{ := A7 if 1 € Jy and
Ny = Ay if N € Jp. Furthermore, let

|SO|_17 m =1,
pm =13 |sy|7!, m =N, (5.65)
1, otherwise.
For m € Jy, if
max{\5, Ar 1 < V2 -1, (5.66)

then set 75, = (A, +v2 —1)/2, 7%, = (A", + V2 — 1)/2. Otherwise, set h, = pn|Ln|,

(iii) For m € Jy\ {1}, specify the parameter values @’, € (Um_1,Um). For m € Jy \ {N}, specify
the parameter values 4}, € (U, Um+1)-

STEP 0.3: Set j = 0 and initialize the degrees D =4, m = 1(1)N =1 or D =3, m =
1(1)N — 1 in the case of planar sets.

STEP 1: Let Q(KY)) be the curve that has the parameter values ky, = kg), m=1(1)N — 1,
where K(j) denotes the set {k%) :m = 1(1)N — 1}. Calculate Qm (K9, Qu(KY)), m = 1(1)N,
gm(EKU), m = 1(1)N — 1, wp(KO) = Qu X Quy m = 1(1)N and det(Ap) = —Sm - 8my m =
1(1)N — 1.

STEP 2: Determine the “failure” sets :

Ty = {m € I; : det(Ap, ) A, <0}, (5.67)
Ko = {m Ekyg:w,, - P, <0 V w,,- Pm+1 < 0}, (5.68)
ICH:{m—leICo:wm-PmSO V Wm-Pm_lf()}, (5.69)

IC()g:{mEICO:gm-Pn<O A

|gm . Pn| > hr_nlzkm_l(km - 1) min{|wm ' Pn‘a |Wm+1 . Pn|}7 n=m or m-+ 1}5
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Mopp={meMy:wWp - Wpy1 <0V

(5.71)
|gm| > V2 ambhy (km — 1252 min{|wp, |, [ W1},
Moz = {m € Mg : cpr(m,m) > e} 4, (5.72)
My ={m € My : cprb(m) > a;,|wWm| V cprr(m,m) > e}, (5.73)
Mig = {m € My :cplb(m +1) > a1 [Wims1] V. cplr(m +1,m) > 81} , (5.74)
Mg:{mEMOUMlzufn<um A
(5.75)
(cplb(m) > affwin| v cplr(m,m) > e1) }.
M, = mEMOUMlzuIn > Umg1 A
{ i (5.76)
(cprb(m +1) > af, 11 [Wmt1| V cprr(m +1,m) > &) },
Jor = {m € Jo\ {1} : clib(m) > 75| Qum| v clir(m,m) > o}, (5.77)
Toz = {m € Jo \ {N}: clrb(m) > 77,|Qm| v clrr(m,m) > eo}. (5.78)

STEP 3: HIfailure =711 UK UK11 UKga UM UMga UM UM UMUM,.UTy1UJo2 = 0,
STOP. Otherwise, determine the sets

N1 =711 U Ky U My, (5.79@)

Nay = Kp1 U K11, (5.79b)

N3 = Mg U(M;NM)U (M, N M) U (MgN Miz) U (Mg N Mia), (5.79¢)
Ny = MpU My U T U Jo2, (5.79d)

N5 = M, U Mi (5.79¢)

(note that Ireiiure = Uf,zl Np). For each N, p = 1(1)5, determine the sets {£}’,,, n € Tn_1}men;,
such that :

mo=kD 41, n=m—1mm+1, meM, (5.80a)

=k +1, n=m—1,m, meNs, (5.80b)

mo=max{k? + 1,89 + LA 41}, n=m—Lmm+1, meN;, (5.80¢)
m,=max{k% | +1,kE) +1}, n=m—1,m, me N, (5.80d)
ro=max(k) + LG, 41}, n=m,m+1, meANs, (5.80¢)

®Since Po /|Pm|=Pmt1/|Pmt1]| for Ap =0 with P, - Prrgr > 0, cpr(m, m) = cpr(m,m + 1) (see rel. (5.16¢)).
As a consequence, the set Mos would not have been altered if, instead of cpr(m,m), we had used cpr(m,m + 1).
Analogous comments can be said for cprr(m, m) in M1, cplr(m + 1, m) in M2, cplr(m,m) in My, cprr(m + 1, m)
in M., cllr(m, m) in Jo1 and clrr(m, m) in Jo2.
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o = k) for all other n, p = 1(1)5. (5.80f)

Then '
kgj-f—l) = max {&r}, n=11N-1. (5.809)
ISPS%

Finally, increase the index ;7 by one and GOTO STEP 1.

The convergence of the algorithm SPIN3D is achieved provided that, after a finite number of
iterations, Zfqiture = 0. This is the case with the degree increase pattern (5.80) of STEP 3 of the
above algorithm. This pattern ensures that the segment degrees will increase by at least one and
in conformity with the required patterns in Theorems 5.2, 5.4, 5.6, 5.8 and 5.10, whenever the
corresponding failure sets are non-empty.

More accurately, (5.80a) in conjunction with Theorem 5.4 ensures that the torsion failure set
711 eventually becomes the empty set. The same can be said for the convexity failure sets Koq
and Ki1, as a consequence of (5.800) and Corollary 4.4. As far as Ky is concerned, (5.80a) and
Theorem 5.2 imply that this failure set will also become the empty set.

We now move to the failure index sets M;;,7 = 0,1,5 = 1,2, and My, M, related to the
coplanarity criterion. Parts (i) and (i) of Theorem 5.6, in conjunction with (5.80a) and (5.80¢),
guarantee that the index sets My, and Mye will become empty. Moreover, Parts (iii) and (iv)
of Theorem 5.6, along with Theorem 5.8 and (5.80¢), (5.80d) and (5.80¢), ensure that M, and
M, will become empty, as well. The same can be said for the sets M1; and Mi9 on the basis of
(5.80¢), (5.80d), (5.80e) and Theorem 5.8 alone.

Finally, with regard to the collinearity failure sets Jp1 and Jp2, we deduce from (5.80d) and
Theorem 5.10 that Jy; and Jp2 will eventually become empty. Note that STEP 0.2(i:) of SPIN3D
ensures the validity of the assumptions (5.52) and (5.53) (see the remark just after the proof of
Theorem 5.10).

We conclude this section by commenting on various aspects of the algorithm. To begin with,
the parametrization U plays a crucial role on the shape quality of the outcome of SPIN3D. Our
numerical experience suggests that a good choice, also recommended by the literature on poly-
nomial spline interpolation in general, is the chord-length parametrization, which is the natural
parametrization of the polygonal interpolant (see also §6).

Regarding now the values of the parameters o, a”,, um, af, 11> @y 1, the algorithm sets them
equal to the midpoint of the admissible interval (0,v/2 — 1) (see STEP 0.1(7i) of SPIN3D). This
choice avoids values of these parameters that are near the boundaries of (0,v/2 — 1). To clarify
the need for this strategy, let us consider the parameter oy, which appears in inequalities (5.16b)
and (5.16¢). It is seen that, as a,, tends to zero, the right-hand side of (5.16b) tends to zero,
whereas the left-hand side cpr(m,n) of (5.16¢) decreases. As a consequence, inequality (5.16b)
becomes more difficult to be satisfied, which ultimately leads to larger final segment degrees. On
the other hand, when a, tends to v/2 — 1 the degree of difficulty between (5.165) and (5.16¢)
is interchanged, which is due to the fact that, in this case, cpr(m,n) tends to infinity, while the
right-hand side of (5.16b) increases. Analogous comments can be made for the chosen values of
the parameters 75, € (A\f,,v/2—1) and 77, € (\",,v/2—1) (see STEP 0.2(ii) of SPIN3D). However,
the user is free to modify interactively the values of these internal parameters in order to achieve
lower segment degrees.

The rate of convergence of the algorithm is also affected by the choice of the boundary points
of the user-specified intervals wp,, ¥m, ¥m+1 and n,, appearing in the coplanarity and collinearity
criteria of Definition 2.1*, as well as the associated Theorems 5.6, 5.8 and 5.10. For example, if
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the left boundary point i’, of the interval n,, = [if,, @7,] tends to w,,_1, then the left-hand side
of inequality (5.46a) increases, thus making the fulfilment of this inequality more difficult. This
in its turn leads to larger final segment degrees.

Finally, we note that, since planar data give planar interpolants in II'(K), the coplanarity
failure sets M;;,7 = 0,1,5 = 1,2, My, and M, should be empty, which is achieved by simply

setting Mo = My = 0 in STEP 0.0(ii) of SPIN3D.
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6. Numerical results

The algorithm SPIN3D described in the previous section has been implemented in the Mathematica
Programming Language (see Wolfram (1991)). In this final section we present the results of this
implementation in the case of a single three-dimensional data set that contains coplanar as well as
collinear groups of points. As a result, all steps of SPIN3D are activated.

The data in question consists of 13 points, the co-ordinates of which are given in the following
table :

Lm ] om [ gm | 2m |
1| 0.00 | 0.00 | 6.00
2| 1.20 | 0.00 | 0.00
3| 2.50 | 0.50 | 0.00
4| 3.75 | 2.50 | 0.00
5| 3.50 | 6.00 | 0.00
6| 2.50 | 8.00 | -3.00
71 0.00 | 8.00 | -3.00
8 |-2.50 | 8.00 | -3.00
9|-3.50 | 6.00 | 0.00
10 | -3.75 | 2.50 | 0.00
11 | -2.50 | 0.50 | 0.00
12 | -1.20 | 0.00 | 0.00
13 | 0.00 | 0.00 | 6.00

Table 6.1: The z, y, z co-ordinates of the points of the data set.

This yz-symmetric data contains two distinct quadruples of coplanar points (Mg = {3,10}) and
one triplet of collinear points (Jp = {7}). In this example we impose periodic boundary conditions
and employ chord-length parametrization.

The chosen values of the input parameters in STEP 0.1 of SPIN3D, which is related to the
coplanarity part of the algorithm, are collected in Table 6.2.

PARAMETER VALUE
&1 0.2
al, FUm—1 + 2 U, m = 3,10
ar, 3 Umt1 + § Umg2, m = 3,10

Table 6.2: Values of the parameters related to the coplanarity part of the algorithm.

The choice ¢1 = 0.2 ensures that the angle of the binormal of the curve and the discrete
binormal will be less than 11.5370°. Furthermore, the interval [i Uy—1 + %um, %umﬂ + %um+2]
defines the subinterval of (@y,—1, Wm+1), where the coplanarity criterion (74.1) of Definition 2.1* is
to be satisfied by the algorithm.
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The chosen values of the input parameters in STEP 0.2 of SPIN3D, linked with the collinearity
part of the algorithm, are given in Table 6.3.

PARAMETER VALUE

&0 0.1

~{ 3 1
Uy U6+ 7 ur
uy %lw + %UE;

Table 6.3: Values of the parameters related to the collinearity part of the algorithm.

Note that these choices ensure that, in the parameter interval [i%, @} = [% ug + %u% iw + %us],
the angle between the unit tangent of the curve and the line connecting the corresponding collinear
triplet will be less than 5.73917°.

The algorithm converges after nine iterations, during which all criteria of Definition 2.1* are
activated. Indeed, the convexity criterion is triggered in the parametric intervals [ug,us], [ug,us),
[us,ug], [us,ugl, [ug,u10] and [u11,u12], and the torsion one in [ui,us] and [ui2,u13]. Part 1 of the
coplanarity criterion is triggered in [% wm—1 + 3 Um, 3 Umt1 + 3 Umt2], m = 3,10 (see also Table
6.2), and the collinearity one in [% ug+ % w7, i w—l—% ug] (see also Table 6.3). Note that Part 2 of the
coplanarity criterion is not activated, for the data set does not contain coplanar points (A,, = 0)
with Py, - Ppyy < 0. The final segment degrees are KO = {6,9,9,10,10,13,13,10,10,9,9,6}. In
general, the degrees corresponding to the coplanar and collinear subsets of the data can be further
reduced by finely tuning the parameters af,, a”, o, af, 41,0, 1 and 7t A" of Steps 0.1 and 0.2 of
the algorithm. In our case, setting of, = ay,, = ay, 1 = 0.16 (default value= 0.207107), m = 3, 10,
and 44 = 47 = 0.17 (default value= 0.207107) results in K = {6,8,8,10,10,12,12,10,10,8,8,6}.

The graphical output of the algorithm for K = {6,9,9,10,10,13,13,10,10,9,9, 6} is shown in
Figures 6.1-6.5. Figure 6.1 depicts the first iteration (thin solid line), the last iteration (thick solid
line) and the standard C*-Quintic spline interpolating the given data set with the same boundary
conditions and parametrization as those adopted by the algorithm (dotted line). All three curves
retain, as expected, the symmetry of the interpolated data, while the most striking failure of both
the first iteration and the C*-Quintic, from the shape-preservation point of view, is that they are
self-intersecting.

Figure 6.2 contains the torsion plots of the curves in Figure 6.1. The left half of this figure
depicts the corresponding torsion plot in smaller 7-scale in order to better illustrate the failure of
the first iteration and the standard C*-Quintic, with regard to the torsion criterion. It can be seen
that the torsion of both these curves fails to have the correct sign in [u1,u2] and [u;2, u13]-

Figure 6.3 shows the plots of the ratios (w(u) - Pa)/(|w(u)||P2|), (w(u) - Ps)/(|w(u)||Ps]|)
and (w(u) - Pg)/(|w(u)||Pg|) in the parameter intervals [ug, us], [u4, us] and [us, ug], respectively.
Negative values indicate failure with respect to the convexity criterion of Definition 2.1*, which
happens on the first iteration (thin solid line) and for the C*-Quintic (dotted line). It is worth
noticing that this failure appears in the inner product of the binormal of the curve at a parameter
node, e.g., w(us)/|w(ug)|, with the discrete binormal at the other node of the corresponding
parameter interval, i.e., Py/|P2|. Analogous results hold true for the parameter intervals [ug, ug],
[UQ, ulo] and [un, U12].

Figure 6.4 depicts the plot of the coplanarity ratio |[w(u)xPs|/(|w(w)||Ps|) in [+ us+3 ug, 3 ug+
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%u;,]. Clearly, the first-iteration and the C*-Quintic ratios fail to be less than the user-specified
level €1 = 0.2 (dashed line).

Finally, Figure 6.5 contains the collinearity ratio |Q(u) x L7|/(|Q(w)||L7|) in the parameter
interval [% ug + i uy, i w7 + % ug]. Tt is again clear that the first-iteration and C*-Quintic ratios do
not satisfy the collinearity constraint, which requires the ratios to be less than 9 = 0.1 (dashed
line).

We conclude this section by investigating the effect of the parametrization on the shape quality
of the outcome of SPIN3D, when applied to the data of Table 6.1 with the same boundary condi-
tions and different parametrizations. For equidistant parametrization the algorithm yielded, after
seventeen iterations, the following final segment degrees: K.(g};) = {4,21,21,20,6,15,15,6, 20, 21,
21,4}. For the so-called centripetal parametrization (um+1 — Um = hm = /|Lm|, m = 1(1)N — 1,
u; = 0), the algorithm gave K\ = {4,11,11,10,8,14,14,8,10,11,11,4}. Comparing K+ and
Kg,o) with the final degree distribution K((:?l), corresponding to chord-length parametrization, it
can be seen that the degrees in Kg};) and Kg,l,o) are, in general, larger than those in Kg?l). In the
parameter intervals [u1, u2] and [u12,u13], however, the segment degrees k1 and kj2 have not been
altered during the execution of the algorithm with equidistant and centripetal parametrization.
This is in contrast to the chord-length case, where the torsion criterion is triggered, resulting in
kg?c)h = k%g?ch = 6. Noting that hieq = h12,eq = 1.0 and hy¢p = h12,p = 2.47363 are smaller
than hqcp = hia,cn = 6.11882, we have experimented by decreasing hy ., and hiz ., and retaining
unchanged the remaining parameter distances h, cp, m = 2(1)11. This experimentation resulted
in the following hybrid parametrization : hy py = higpy = 5.0, A hy = Bm,ch, m = 2(1)11, which
in its turn yielded the final degree distribution: Kggy) = {4,9,9,10,10,13,13,10,10,9,9,4}.

Figure 6.6 depicts the shape-preserving interpolant provided by SPIN3D for (a) equidistant,
(b) centripetal, (c¢) chord-length and (d) the above-mentioned hybrid parametrization. Comparing
Fig. 6.6(c) with Figs. 6.6(a) and 6.6(b), it is easily seen that chord-length parametrization yields
a more visually-pleasing curve in the area of coplanar data, where equidistant and centripetal
parametrizations exhibit a rather linear-like behaviour. Moreover, the transition from the coplanar
data to the off-plane point is smoother in the case of chord-length parametrization. This is also
reflected in the torsion plots 6.7(a), 6.7(b) and 6.7(c), where the maximum of the torsion in
the transition intervals [ug,us] and [ui1,u12], for equidistant and centripetal parametrization, is
considerably larger than that for chord-length parametrization. The remaining local extrema of
the torsion plots in question are, in general, of the same order. Regarding now the chord-length
and the hybrid parametrization, Figs. 6.6(c), 6.6(d), as well as the corresponding torsion plots
6.7(c) and 6.7(d), imply that the resulting curves are more or less of the same shape quality, even
in the parameter intervals [u1,us] and [u12,u13], where k1 py = k12.hy = 4 < k1,cn = k12,ch = 6.
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Figure 2.1: “Discrete Geometry” of the polygonal line (thick line) connecting the interpolation
points L, 1,1, Iny1 and Iq9.
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Figure 6.1: The first iteration (thin solid line), the last iteration (thick solid line) and the standard
C*-Quintic (dotted line).
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Figure 6.2: The torsion plot 7(u) of the curves in Fig. 6.1. Left-half scale: [—1.2,1.2]. Right-half
scale: [—8,8].
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Figure 6.3: Plots of the following convexity ratios of the curves in Fig. 6.1: (w(u) - P2)/(|w(u)]
Pal), u € [ug, us], (W(u) - Ps)/(|w(w)|[Ps]), u € [ug, us] and (w(u)-Ps)/(|w(u)||[Ps]), u € [us, u]-
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Figure 6.4: Plot of the coplanarity ratio |w(u) x Ps|/(|w(u)||P3]), u € [ us + 3 uz, 3 us + 1 us),
of the curves in Fig. 6.1.
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Figure 6.5: Plot of the collinearity ratio |Q(u) x Lz|/(|Q(u)||Lz|), u € [2 ug + % ur, $ur + 3 ug), of

the curves in Fig. 6.1.
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Figure 6.6: The last iteration using : (a) equidistant, (b) centripetal, (¢) chord-length and (d) a
hybrid parametrization.
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Figure 6.7: The torsion plots of the curves in Fig. 6.6.
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