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Abstract

Proximity structures are of central importance in Computational Geometry. They

appear in several applications such as robotics, motion planning, collision detection

and also in simulations of virtual and physical systems. In the real world, in most of

these applications the geometric objects involved are often moving. It is thus essential

to be able to maintain in an efficient way proximity structures for moving objects.

In this thesis we deal with two kinds of proximity structures: sparse spanner

graphs and Voronoi diagrams. We prove that bounded aspect ratio triangulations in

two and three dimensions are spanner graphs. We also show that both conforming

two-dimensional bounded aspect ratio triangulations and the Constrained Delaunay

triangulation are spanner graphs.

Using the Kinetic Data Structures (KDS) framework, we show how to maintain

near neighbors for moving points in two and three dimensions when the underlying

structure is the Voronoi diagram. In the more realistic case of a set of possibly

intersecting disks moving on the plane we show how to maintain the Euclidean Voronoi

diagram. Using then the Voronoi diagram as a basis, we describe how to maintain

the closest pair of the set of disks, a spanning sub-graph of the connectivity graph of

the set of disks and near neighbors of disks.

Finally, we discuss the problem of handling kinetic simulations of geometric objects

whose motion is represented as polynomials of high degree. In this setting, the mo-

ments in time that a change happens in the combinatorial structure of the attribute

of interest are roots of polynomials of high degree. We present an algorithm that

speeds up the kinetic simulations by representing the roots of the afore-mentioned

polynomials as intervals, instead of computing them explicitly.

v



Acknowledgements

First of all, I would like to thank my advisor Leonidas J. Guibas for his constant

support, help and encouragement throughout the years that I was working towards

my Ph.D. Working with him has been a very rewarding experience on several levels.

I am grateful to him.

Many thanks are due to Rajeev Motwani, Ron Fedkiw, Oussama Khatib and Leon

Simon for being in my reading and oral committee. I would like to thank them for

their advice and patience.

Many thanks to several members of Leonidas’ group for their valuable help. They

would always allocate some time to discuss with me, read my papers and provide

helpful and constructive feedback. In particular, I would like to thank Julien Basch,

João Comba, Olaf Hall-Holt and Li Zhang. Julien and Li saved me a lot of time by

providing me their error-free kinetic data structures source code based on which I

implemented my own kinetic data structures.

Andrew Stuart and Leonidas are probably the best two teachers that I met at

Stanford. I had the opportunity and privilige to be a student and a teaching assistant

for both. Their organization inside and outside the classroom are remarkable and

their ability to trasmit knowledge is amazing. Although I never had the chance to

work on the research level with Andrew, I would like to express my graditude for his

encouragement and belief in me during my years at Stanford.

John Gerth has a special place in my heart. Not only was he there to solve any

problems with my computer, but also, on numerous occasions, spent lots of time

explaining how this or that worked. I would also like to thank Jutta, Evelyn, Hoa,

Ada and Heather for being there and helping me resolve all sorts of administrative

issues.

vi



Stanford was not only a place to do graduate work, but also to meet new people

and make new friends. Some of them are still here, while some others are gone. All

of them, however, made life here much more pleasant and fun. In particular, I would

like to thank Aris G., Artemis E., Athina M., Chrysoula T., Costas S., Costis M.,

Dimitris P., George C., George G., Maria G., Nikos F., Persa K., Phaedon K., Tasos

G., Vasilis V., Yiannis K. and Yiannis O.

Finally, I would like to thank my parents and my brother who guided me in their

own way throughout these past few years. They were always encouraging me to

continue and finish up what I had started. I thank them for their love and constant

support.

vii



Contents

iv

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Identifying Proximity Structures . . . . . . . . . . . . . . . . . . . . . 2

1.3 Event-Driven Simulations . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Kinetic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Motion Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7.1 Spanner Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7.2 Kinetic Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 10

2.1 Models of Motion and Computation . . . . . . . . . . . . . . . . . . . 10

2.2 Envelopes and Davenport-Schinzel Sequences . . . . . . . . . . . . . . 11

2.3 The KDS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Spanner Graphs 15

3.1 Fat Triangulations are Spanners . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Triangulations in Two Dimensions. . . . . . . . . . . . . . . . 16

viii



3.1.2 Triangulations in Three Dimensions. . . . . . . . . . . . . . . 19

3.2 Environments with Obstacles . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The Constrained Delaunay Triangulation is a Spanner . . . . . . . . . 25

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Kinetic Voronoi Diagrams and Applications 34

4.1 Kinetic Constrained Delaunay Triangulation . . . . . . . . . . . . . . 34

4.2 Near Neighbors in 2D and 3D . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 The Kinetic Maintenance Algorithm . . . . . . . . . . . . . . 39

4.2.2 Maintaining the k-nearest neighbors . . . . . . . . . . . . . . . 40

4.3 Near Neighbors in Constrained Environments . . . . . . . . . . . . . 42

4.3.1 The Kinetic Maintenance Algorithm . . . . . . . . . . . . . . 45

4.4 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 The Relative Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Voronoi Diagrams for Moving Disks 52

5.1 The Voronoi Diagram for Disks and its Properties . . . . . . . . . . . 56

5.2 The Local Property of the Delaunay Triangulation . . . . . . . . . . . 59

5.3 Kinetizing the Delaunay Triangulation . . . . . . . . . . . . . . . . . 65

5.3.1 The Cocircularity Event . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 The Appearance Event . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 The Disappearance Event . . . . . . . . . . . . . . . . . . . . 69

5.4 Combinatorial Changes of the Voronoi Diagram . . . . . . . . . . . . 69

5.5 Closest Pair Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Kinetic Connectivity of Disks . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Near Neighbor Maintenance . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Conditions for the Cocircularity Event . . . . . . . . . . . . . . . . . 81

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Interval Methods for Kinetic Simulations 87

6.1 Kinetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 91

ix



6.3 The Interval-Based Kinetic Scheduler . . . . . . . . . . . . . . . . . . 93

6.4 A Theoretical Justification . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Degree vs. Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion 109

7.1 Approximate Shortest Path Maintenance . . . . . . . . . . . . . . . . 109

7.2 Kinetic Bounded Aspect Ratio Triangulations . . . . . . . . . . . . . 110

7.3 Euclidean Voronoi Diagram for Spheres in 3D . . . . . . . . . . . . . 110

Bibliography 112

x



List of Figures

3.1 The zone of the segment ab, and the chosen path from a to b in the

triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 A construction that gives the lower bound for the optimal stretch factor

copt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The construction of the polygonal path Qi. Top: the shortest path

between ei and ei+1 crosses uv. Bottom: the shortest path between ei

and ei+1 does not cross uv. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 The reduced set of triangles intersecting ab and the paths Q (dashed

line) and P (thick solid line). . . . . . . . . . . . . . . . . . . . . . . 22

3.5 A legal (left) and a non-legal path (right). . . . . . . . . . . . . . . . 24

3.6 Proof of Lemma 7. The dark gray areas correspond to triangle inter-

sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 The direct CDT path from a to b is one-sided. . . . . . . . . . . . . . 30

3.8 The shortcut from bi to bj. . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 The flip-edge event. The think solid segment is a constrained edge.

The thin solid line is the edge e that is flipped. The dotted circles are

the circumcircles of the triangles adjacent to e. The white points are

points of G not visible from e. . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Keeping track of the points that may enter or exit Cp. The only edges

that we have to look at are those that properly intersect Cp, i.e., the

edges that cross Cp exactly once (solid edges in this figure). . . . . . . 37

4.3 The proof of Theorem 13 in two dimensions. . . . . . . . . . . . . . . 39

xi



4.4 Maintaining the near neighbors of p as the point q enters (left to right)

or exits (right to left) the circle Cp. The black points are in the set Ap.

Solid edges belong to the set Ep. . . . . . . . . . . . . . . . . . . . . . 40

4.5 Maintaining the k-nearest neighbors of p as the (k − 1)-th nearest

neighbor becomes the k-th nearest neighbor. . . . . . . . . . . . . . . 41

4.6 Maintaining the k-nearest neighbors of p as the (k + 1)-th nearest

neighbor becomes the k-th nearest neighbor. . . . . . . . . . . . . . . 41

4.7 Some of the cases in the proof of Theorem 14. Top left: q ′ is inside Cp,

the circle through q′uv contains p. Top right: q′ is inside Cp, the circle

through q′uv contains r 6= p; p is not visible from both u, v. Bottom

left: q′ is outside Cp, the circle through q′uv contains r 6= p, q; both p

and q are not visible from both u, v. Bottom right: q′ is inside Cp and

the circle q′uv contains q but not p. . . . . . . . . . . . . . . . . . . . 44

4.8 The proof of Theorem 15. The segment q′q′′ is a constrained edge. . . 45

4.9 Maintaining the near neighbors of p as the point q enters (left to right)

or exits (right to left) the circle Cp. The segment qr (thick solid line)

is a constrained edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 The Relative Convex Hull events. The thick solid line is the polygon P .

The thin solid line is the relative convex hull R and the dashed edges

are the non-constrained edges of the CDT. Left to right: p becomes a

point of the RCH. Right to left: p is no longer a point of the RCH. . 50

5.1 Top: the edge connecting B1 and B2 is locally Delaunay because the

exterior tangent ball of B1, B2 and D1 does not intersect D2. Bot-

tom: the edge connecting B1 and B2 is locally Delaunay because the

interior tangent ball of B1, B2 and D1 is not contained in D2. The

exterior/interior tangent ball of B1, B2 and D1 is shown in light gray. 53

5.2 The Voronoi diagram for a set of disks (top) and the corresponding

Augmented Delaunay Triangulation (bottom). The disks in dark gray

are trivial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 A case in which the Voronoi diagram consists of a single connected

component. The dual is a (generalized) triangulation of the plane. . . 57

xii



5.4 A case in which the Voronoi diagram consists of two connected com-

ponents. Left: the dual of the Voronoi diagram is not a (generalized)

triangulation of the plane. Right: the graph corresponding to the com-

pactified version of the dual of the Voronoi diagram; in this case we

have a (generalized) triangulation. . . . . . . . . . . . . . . . . . . . . 57

5.5 Three disks and their eight common tangent balls. The solid tangent

ball does not contain any of the disks. The three dotted tangent balls

contain exactly one disk. The three dashed tangent balls contain eactly

two disks. The dash-dotted tangent ball contains all three disks. . . . 60

5.6 The various cases that can possibly happen with respect to the number

of exterior or interior tangent balls of three disks B1, B2 and B3. The

tangent balls are shown in light gray. From left to right and top to

bottom: no exterior or interior tangent balls; only one exterior tan-

gent ball; only one interior tangent ball; one exterior and one interior

tangent ball; two exterior tangent balls; two interior tangent balls. . . 62

5.7 The four cases (assuming k 6= l) for the predicate InCircle(Bi, Bj,

Bk, Bl). Left: the predicate is false. Right: the predicate is true. . . . 63

5.8 Proof of the local property. . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9 The cocircularity event. Top: the Voronoi diagram. Bottom: the

Delaunay triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 The appearance event. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.11 Proof of Theorem 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.12 The disappearance event. Top: the Voronoi diagram. Bottom: the

Delaunay triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.13 Proof of Theorem 20. Top: the case δ(B1, B2) ≥ 0. Bottom: the case

δ(B1, B2) < 0 and both B1, B2 are non-trivial. . . . . . . . . . . . . . 75

5.14 A case in which the a winner-loser relationship changes. Top: the white

node is the closest pair. Bottom: the gray node becomes the closest

pair; the gray node is propagated all the way up the tournament tree. 76

xiii



5.15 Removing a node from the tournament tree. The gray node is the one

to be deleted. The white node is the last loser leaf node. Top: the

tree before the removal of the gray node. Bottom: the tree after the

removal of the gray node; the white node is propagated up the tree. . 77

5.16 Adding a node to the tournament tree. The gray node is the the first

leaf node. The white node is the new node. Top: the tree before the

addition of the new node. Bottom: the tree after the addition of the

new node; the new node is propagated up the tree. . . . . . . . . . . 77

5.17 Proof of Theorem 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Mean running times in seconds and ratios of running times for main-

taining the Delaunay triangulation of 10 and 20 points on a plane using

the three different methods for handling the events times: the interval-

based, the eigenvalue one and a hybrid one; 10 initial configurations

were used for each point set. . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Mean running times in seconds and ratios of running times for main-

taining the closest pair of 10 and 20 points on a plane using the three

different methods for handling the events times: the interval-based, the

eigenvalue one and a hybrid one; 10 initial configurations were used for

each point set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Mean running times in seconds for maintaining the Delaunay triangu-

lation of 5 moving points as a function of the degree dL of the approxi-

mate splined motions. The points are moving originally on polynomial

trajectories of degree dH = 32; the running time for the simulation us-

ing the original trajectory is shown by a square. Four different values

for ε are considered: 10−i, i = 2, 3, 4, 5. The stop time is Tmax = 1. 10

initial configurations are used for each point set. The interval-based

method is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiv



Chapter 1

Introduction

1.1 Motivation

Geometric objects that move with time appear in many applications. These applica-

tions include motion planning, geometric modeling, computer simulations of physical

or virtual systems, robotics, collison detection, computer graphics and animation,

mobile communications and ad hoc networks. The common aspect of all these appli-

cations is that the behavior of the geometric objects depends on their nearby environ-

ment. The aim is to be able to answer questions concerning proximity information

among the geometric objects in an efficient and accurate way. In particular, we are

interested in: (1) identifying geometric structures that can give us the wanted prox-

imity information and (2) maintaining promixity structures in an efficient manner, as

the geometric objects are moving.

Proximity information that may be of interest in the applications mentioned above

is the closest pair of a set of geometric objects or the near neighbors of a reference

object. In other cases we are interested in reporting reachability between pairs of

objects that are static or moving. Shortest paths or approximate shortest paths

between static or moving geometric objects are also of interest. Structures that

can provide such promiximity information are called Proximity Structures. Such

structures are the closest pair of a set of objects, the nearest neighbor of an object,

sparse spanner graphs, the Voronoi diagram, or its dual the Delaunay triangulation,

and others.

1
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Proximity structures are of central importance in Computational Geometry. How-

ever, most of the work so far has focused on proximity structures for static geometric

objects, or in the dynamic setting, in which we are interested in data structures and

algorithms for efficiently inserting and deleting static geometric objects. However,

in real world, objects are moving or deforming. The changes are mostly continuous,

in contrast to the dynamic setting. In this thesis we focus on identifying classes of

geometric structures that can provide proximity information and on studying and

maintaining proximity structures for continuously moving objects.

1.2 Identifying Proximity Structures

As we mentioned in the previous section proximity structures are of central impor-

tance in Computational Geometry. One natural question then arises. What/which

is a good proximity structure? Of course the answer depends on the application in

mind.

For example, if we are interest in the extent of a set of geometric objects, we might

want to know the farthest pair since then we can compute a bounding sphere for our

objects. Ideally, in this context, we would like to know the convex hull of our set. In

several applications, like collision detection, behavioral simulations or physics based

simulations the critical information is the information about the nearby environment.

In this context knowing the closest pair of the set of objects, or the objects that

are within a certain distance from a reference object is really important. In mobile

communications we are often interested in whether a node A in the network can be

reached from another node B. We might also be interested in knowing the shortest

path in the network between A and B or an approximate shortest path between these

two nodes.

In this thesis we present several structures that can provide proximity information,

such as near neighbors, approximate shortest paths, closest pair and connectivity

between objects. In addition, we present how to maintain efficiently most of these

structures as the geometric objects are moving.
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1.3 Event-Driven Simulations

In real world applications involving geometric objects that are moving the motions

of the objects may be complex. The representations of the motions may change

throughout time, or may even be implicit. However, the typical characteristic of these

motions is that they are continuous in time. Therefore, in order to design efficient

algorithms that deal with moving geometric objects, we need to take advantage of

this temporal coherence in motion.

The traditional approach taken in simulations of moving objects is the time-

discretization approach. The time axis is discretized. At each time step the positions

of the objects are computed and then the structure of interest is re-computed from

scratch. The major drawback of this approach is that it does not take easily advantage

of the temporal coherence in motion. Due to temporal coherence, we would expect

the structure of interest not to change too much between two instances in time, and

hence we waste computation time when re-computing the structure from zero. In

this context there have been several attempts to use information about the objects’

motion from the previous time step in order to compute the structure of interest at

the current time step [6, 13, 21, 37, 39]. However, this approach is not systematic

and does not have any guarrantees. Another major problem of the time-discretization

approach is the choice of the time step. The fastest moving objects are typically the

ones that impose the choice of the time step: the time step must be very fine, so at

not to miss critical changes in the structure.

Another approach taken to handle motion is the dimension-lifting approach. The

time axis in this approach is simply one more dimension for the problem. Hence,

instead of solving a problem for moving objects in d dimensions, we solve a static

problem in d + 1 dimensions [18, 25, 47]. The first step is to convert the problem

from d dimensions to d + 1 dimensions, and then solve it. The problem with this

approach stems mainly from the potential complexity of the motions. If the motions

are complex, then also the (d + 1)-dimensional objects will be complex. In addition,

this approach assumes full knowledge of the objects’ motion throughout time and

cannot account for motion changes midstream. Finally, the method is not applicable

in situations where we know the objects’ motion implicitly.

Finally, we have the event-driven approach. In this approach the times of critical
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events, that change the structure of interest, are computed, and we advance the

simulation to the nearest, in time, critical event. In this thesis we are focusing on such

event driven simulations and we present algorithms that take advantage of temporal

coherence in the interest of maintaining proximity structures.

1.4 Kinetic Data Structures

Basch, Guibas and Hershberger [7, 8] proposed the Kinetic Data Structures (KDS)

framework as a systematic way to design and analyze event-driven simulations and

maintenance of geometric structures for moving objects. The main idea is that the

correctness of a structure can be verified through a set of conditions. These conditions,

which are called certificates, can be thought of as the choices that an algorithm makes

to construct the geometric structure. Clearly, the certificates are functions of the

geometric objects. If the objects are moving the certificates become functions of time

and can be expressed as inequalities of the form F (t) > 0. For example, consider a set

of n sorted (distinct) real numbers x1(t), . . . , xn(t). The O(n) conditions that verify

that the set of numbers is sorted are the conditions xi(t) > xi+1(t), i = 1, . . . , n− 1.

Equivalently, these conditions can be written as xi+1(t)− xi(t) > 0.

As long as the certificates remain valid, i.e., as long as the inequalities of the form

F (t) > 0 remain true, we know that the combinatorial structure of interest is correct.

When a certificate fails, we need to replace it by new certificates and get a new proof

of correctness for the structure. Such a certificate failure is called an event. The idea

in KDS is that we maintain this proof of correctness as time elapses. The critical

events in the event-driven simulation are the times that the certificates fail and the

purpose and aim of the KDS is to efficiently update the set of certificates when critical

events happen. In contrast to the fixed-time methods, the KDS approach does not

suffer from the dependance on the worst behaving object. The events that are being

processed are the ones that are naturally suited to the problem addressed.

In principle every algorithm can be kinetized, using the choices that the algorithm

makes when computing the structure of interest. However, such an approach may not

result in efficient kinetic data structures. A KDS is considered well designed when

it is of small space, can be updated efficiently when certificates fail or the objects’
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motions are changed, and when it processes few events with respect to the number

of combinatorial changes that the structure of interest undergoes as the objects are

moving. We are going to discuss kinetic data structures and their efficiency issues

later on in Section 2.3.

1.5 Motion Complexity

Typically, in Kinetic Data Structures the certificates are polynomial functions of the

motions of the geometric objects. Thus, if the geometric objects move along polyno-

mial trajectories, then the kinetic certificates are nothing but polynomial inequalities.

Although in most cases the certificates are low degree functions of the motions of the

objects, the motions themselves may be described as high degree polynomials, which

suggests that the polynomials involved in the kinetic certificates are also of high

degree.

Finding the roots of polynomials is not a trivial task, and for polynomials of de-

gree greater than 5 there are no closed form solutions. Therefore, for the purposes of

our kinetic simulations we may need to compute the roots of high degree polynomials

in order to resolve the ordering of the critical events of the simulation. Unfortunately,

root finding for polynomials typically involves the computation of eigenvalues of ma-

trices and the existing algorithms can only provide us with both the complex and real

roots of a real polynomial at the same time. The natural question that then arises

is whether we can do better than computing all the roots of a polynomial in order

to perform the time comparisons required by the event queue. Moreover, what if we

do not want to use numerical techniques in order to compute these roots, but rather

stay within a numerical error free symbolic environment?

The key observation with respect to this question is that, for the purposes of

determining the sequence of events in a kinetic simulation, we do not really need

to know the exact values of the critical event times, but rather their sequence. In

addition, we would like to spend more computing resources for the event times that

are in the near future than those that are far away.
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1.6 Results and Contributions

This thesis is concerned with two basic classes of problems. The first one is existence

results in the theory of sparse spanner graphs and the second is results in the theory

of kinetic Voronoi diagrams.

Spanner graphs are, roughly speaking, graphs that provide good approximations

to dense graphs with respect to path metrics. In this thesis we prove that bounded

aspect ratio triangulations of point sets in two and three dimensions are spanner

graphs with respect to the complete Euclidean graph (Section 3.1). We also prove

that, given a Planar Straight-Line Graph (PSLG) in two dimensions, bounded aspect

ratio constrained and conforming triangulations of the PSLG are spanner graphs with

respect to the PSLG’s visibility graph (Section 3.2). Finally, we prove that the Con-

strained Delaunay triangulation is a spanner graph with respect to the corresponding

visilibility graph (Section 3.3).

In the theory of Kinetic Voronoi diagrams we design and analyze algorithms for

the maintenance of near neighbors of moving points in two and three dimensions,

using the Delaunay triangulation of the point set as the underlying structure (Section

4.2). The same idea applies also to the maintenance of the k-nearest neighbors of

moving points again in two and three dimensions. We also show how to maintain the

Constrained Delaunay triangulation using the KDS framework (Section 4.1). Using

the CDT as the base structure, we can also maintain near neighbors of points when

obstacles in the environment are present (Section 4.3). Finally, the CDT can also be

used to maintain the relative convex hull of a set of points moving inside a simple

polygon (Section 4.5).

In addition, we describe how to kinetize of the Euclidean Voronoi diagram for

moving disks on the plane. The main contribution in this case is that the disks are

allowed to intersect (Section 5.3). Using the Euclidean Voronoi diagram for disks,

or its dual the Delaunay triangulation, we have devised algorithms for maintaining

the closest pair of a set of planar moving disks as well as for maintaining a spanning

subgraph of the connectivity graph of the set of moving disks (Sections 5.5 and 5.6).

Finally, we present how to use the Euclidean Voronoi diagram for (non-intersecting)

disks in order to maintain the near neighbors of a reference disk, or the k-nearest

neighbors of a reference disk (Sections 5.7).
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As mentioned in Section 1.5, computations in kinetic simulations can be very

costly when the geometric objects are moving along trajectories that are high-degree

polynomial functions of time. In this context, we present an algorithm for speeding-

up these computions. The key observation that we exploit is that we do not really

need the actual values of the event times, but rather their sequence. The certificates

in this case are polynomial inequalities, and the event times are the real roots of these

polynomials. The idea is to represent the event times by bounding intervals. Then

we simply perform the needed event time comparisons using the bounding intervals.

If the information encoded in the intervals does not permit us to decide the relative

ordering of the event times, we refine the intervals appropriately until we acquire the

needed ordering information (Chapter 6).

1.7 Related Work

1.7.1 Spanner Graphs

Let G be a connected n-vertex graph with arbitrary positive edge weights. A subgraph

G′ is a t-spanner if the length of the shortest path between any two vertices in G′ is at

most t times the length of the shortest path between the two vertices in G. The value

t is the stretch factor associated with G′. Sparse spanner graphs have appeared as the

underlying graph structure in communication networks [4, 43], as well as in biology

[5]. They have also been of interest to computational geometers in the context of

points in Euclidean spaces.

In particular, Dobkin, Friedman and Supowit [17] proved that the Euclidean De-

launay triangulation of a planar point set is a spanner graph with respect to the

complete graph. The stretch factor that they found was approximately 5.08. Later,

Keil and Gutwin [32] improved the stretch factor to approximately 2.42. Chew [14]

proved that the Delaunay triangulation with repsect to the L1 distance is also a span-

ner graph, and the corresponding stretch factor is
√

10. Finally, Chew [15] showed

that the Delaunay triangulation with respect to a convex (triangle) distance metric

is a spanner graph and the stretch factor in this case is 2.

Das and Joseph [16] proved that Euclidean graphs that satisfy a certain condition

are spanner graphs. As a corollary they showed that the greedy triangulation and the
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minimum weight triangulation are spanner graphs. They also presented an algorithm

for constructing Euclidean linear size spanner graphs, the total edge weight of which

is only a constant factor away from the weight of the minimum spanning tree of the

corresponding point set. Levcopoulos and Lingas [36] also considered the problem of

constructing Euclidean linear size spanner graphs the total edge weight of which is

a constant factor away from the weight of the minimum spanning tree of the point

set. In their paper they show how to construct spanner graphs with stretch factor

(1 + 1
r
) 2π

3 cos π
6

, the total edge weight of which is at most 2r + 1 times the weight of the

minimum spanning tree. Here the approximation parameter r is a positive rational.

Their algorithm runs in linear time if the Delaunay triangulation is given. Keil [31]

proposed what is known as θ-graphs. These are spanner graphs of linear size, which

may have edge crossings. The stretch factor for these graphs is a function of the input

angle θ, and in particular it is equal to (cos θ(1− tan θ))−1.

Finally, Althöfer et al. [2] considered the more general problem of constructing

a spanner graph with respect to a given graph with arbitrary positive weights. The

measure of quality of the spanner graph does not only depend on the stretch factor,

but also on its size and the ratio of the total edge weight of the spanner graph over

the weight of the minimum spanning tree of the reference graph. In particular, they

showed how to compute, in polynomial time, a (2t+1)-spanner of the original graph,

the size of which is O(n1+1/t) and its total weight is at most 1+n/2t times the weight

of the minimum spanning tree of the reference graph. If the given graph is planar,

they showed how to compute, in polynomial time, a (2t+1)-spanner, the size of which

is at most (n − 1)(1 + 1/t) and the total weight of which is at most (1 + 1/t) the

weight of the minimum spanning tree of the reference planar graph.

1.7.2 Kinetic Voronoi Diagrams

There has been a tremendous amount of research and results in the theory of static

Voronoi diagrams. The interested reader should refer to the survey paper by Auren-

hammer [3] and the book by Okabe, Boots, Sugihara and Chiu [41].

In the theory of kinetic Voronoi diagrams, Guibas, Mitchell and Roos [22] showed

how to kinetize the Euclidean Voronoi diagram for a set of points moving on the

plane. They also proved a non-trivial upper bound on the number of combinatorial
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changes that the Voronoi diagram can undergo, as the points are moving along pseudo-

algebraic trajectories. The bound on the number of changes is roughly cubic on the

number of points. Guibas and Zhang [24] described how to maintain the Power

diagram, or its dual the regular triangulation for a set of non-intersecting moving

disks on the plane. The Power diagram is the Voronoi diagram for a set of disks in

which the distance of points on the plane from the disks is measured in the power

metric. Zhang in his thesis [52] showed how to maintain the Power diagram for a

set of non-intersecting spheres in three dimensions. Guibas, Snoeyink and Zhang

[23] described how to maintain a compact version of the Voronoi diagram for a set

of non-intersecting polygons moving on the plane. Finally, Gavrilova and Rokne

[19] presented algebraic conditions as to when four non-intersecting moving disks

have a common tangent disk and describe without many details how to maintain the

Euclidean Voronoi diagram for a set of non-intersecting disks moving on the plane.

However, their approach seems to work only in the case that the disks are roughly of

the same size, and they did not provide any bounds on the number of combinatorial

changes that the Voronoi diagram undergoes, as the disks are moving.



Chapter 2

Preliminaries

2.1 Models of Motion and Computation

There are many ways to represent motion. The position of a moving object can be

represented explicitly as an analytic function of time. It can be represented implic-

itly as the solution of a differential equation, or even using a statistical model. In

this thesis we deal with geometric objects whose motion is known explictly. In par-

ticular, we assume that geometric object move along pseudo-algebraic trajectories.

A family of m unary functions f1(x), f2(x), . . . , fm(x) are called pseudo-algebraic

functions of degree d, if for any m-variate polynomial of degree d′ the function

h(x) = g(f1(x), f2(x), . . . , fm(x)) is either 0, or has at most dd′ roots. It is easy to

verify that polynomial or rational functions of constant degree are pseudo-algebraic

functions. Moreover, given that certificates in KDSs are low degree functions of the

objects’ motion, the pseudo-algebraicity assumption ensures that a certificate will

only fail a constant number of times throughout time. This is observation greatly

helps our analysis and is the sole reason for choosing this motion model.

The computational model that we use is based on the Algebraic Computational

Tree model (see [44, Section 1.4] for a brief introduction). For our purposes we need

to augment the ACT model with additional capabilities. In particular, in addition

to the usual arithmetic operations, we require that finding roots of polynomials of

constant degree can be done in constant time. This enables us to compute failure

times of certificates in constant time.

10
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2.2 Envelopes and Davenport-Schinzel Sequences

One of the analysis tools that are used in this thesis are results on the complexity of

the lower (upper) envelope of a set of pseudo-algebraic functions. Let F = {fi} be a

set of n pseudo-algebraic functions of maximum degree n. Then the lower envelope

Γ(F) of F is the function mini fi. Correspondingly, the upper envelope of F is the

function maxi fi. In the remainder of this section we only refer to lower envelopes.

The results for upper envelopes are entirely analogous. The complexity of Γ(F) is

known to be related to the maximum length of Davenport-Schinzel sequences. A

(n, s) Davenport-Schinzel sequence is a sequence composed of at most n symbols,

with the additional properties that no two consecutive symbols in the sequence are

the same and that any two symbols can have at most s alterations in the sequence.

The length of the longest possible (n, s) Davenport-Schinzel sequence is denoted by

λs(n).

Let now F be a set of n pseudo-algebraic functions fi of maximum degree s,

defined on the entire real line. Then

Theorem 1 ([49]). The complexity of the lower envelope Γ(F) of a set F of pseudo-

algebraic functions is O(λs(n)).

If instead of pseudo-algebraic functions defined over the entire real line we have a

set of n x-monotone pseudo-algebraic arcs defined on intervals of the real line, then

Theorem 2 ([49]). The complexity of the lower envelope Γ(F) of a set F of x-

monotone pseudo-algebraic arcs is O(λs+2(n)).

Clearly, if the functions fi are polynomials of maximum degree s then the same

results hold.

The functions λs(n) are super-linear for s ≥ 3, but glow very slowly with n. Let

α(n) be the inverse function of the Ackermann function. Then
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Theorem 3 ([49]). The maximum length λs(n) of a (n, s) Davenport-Schinzel se-

quence satisfies the following relations. Here s is assumed to be a constant.

λ1(n) = n,

λ2(n) = 2n− 1,

λ3(n) = Θ(nα(n)),

λ4(n) = Θ(n · 2α(n)),

λs(n) ≤ n · 2(1+o(1))α(n)
s−2

2 , if s is even, s > 4,

λs(n) ≤ n · 2(1+o(1))α(n)
s−3

2 log α(n), if s is odd, s > 4.

Since α(n) is an extremely slowly growing function (α(n) is almost constant for

all practical values of n), λs(n) is very close to a linear function for constant s. In

this thesis we sometimes use λ(n) to denote λs(n) for some constant s. We also define

βs(n) = λs(n)/n, and use β(n) to denote βs(n) for some constant s.

2.3 The KDS Framework

Let us consider a set of geometric objects that are moving. Every object is assumed

to have posted a flight plan, which provides information about its current motion.

The geometric objects are assumed to move in a continuous way. However, they are

allowed to change their motion description throughout time. Such a flight plan change

is called an update, and it can occur because of interactions between the object and

the environment or because of interactions with other moving objects.

The aim is to maintain a geometric attribute, which we are going to refer to

as configuration function. The basic idea in the Kinetic Data Structures (KDS)

framework is that the correctness of the configuration function can be established

through a set of conditions. These conditions can be thought of as the choices that

an algorithm makes for constructing the configuration function. The choices can be

expressed as inequalities, which are typically low-degree algebraic sign conditions,

and typically depend on the positions of only a small number of geometric objects.
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We are going to call these inequalities certificates.

Once we allow the geometric objects to move, then the certificates become func-

tions of time. As long as the sign conditions do not change sign, the certificates remain

valid, and so does the configuration function. Although the geometric structure of

the configuration function changes in a continuous way, the combinatorial structure

of the configuration function changes only at discrete points in time. In particular,

the only points in time that the combinatorial structure of the configuration func-

tion could possibly change are the times when the certificates change sign. We call

these times the kinetic events. The kinetic events can be computed using the flight

plans that the objects, involved in the corresponding certificate, have posted. Once

a certificate fails, then we have to update the set of certificates and possibly update

the configuration function. If the flight plan of an object changes, then we need to

recalculate the times of sign change of all the certificates that the object is involved

into.

Kinetic Data Structures are very similar to sweep-line or -plane techniques used

extensively in Computational Geometry. In our case the dimension being swept over

is time. In order to process the kinetic events we maintain an event queue on the

certificates that verify the correctness of our configuration function. The priorities

of the certificates are their failure times, i.e., the times they change sign. When a

kinetic event takes place we need to update the event queue by deleting some of the

certificates, inserting some new ones or updating the priorities of others. When flight

plan of a geometric object is updated we have a similar scenario: the priorities of all

the certificates involving the object, whose flight plan changed, need to be updated

as well.

There are several measures to analyze and evaluate a KDS. First of all, we are

interested in the cost of processing a single kinetic event. This cost is at least Ω(log n),

since whenever a kinetic event happens we need to insert and/or delete certificates in

the event queue, or update the priorities of certificates in the event queue. If the cost

of processing a single kinetic event is small, our KDS is called responsive. By small

we mean that the cost of updating a single event is O(Polylog(n)) or O(nε), for every

ε > 0.

Moreover, we want kinetic data structures that are of low cost. The cost of a KDS
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is defined as the worst-case number of events that we have to process when the mo-

tions of the geometric objects are pseudo-algebraic functions of time. We distinguish

between the events that we need to process in the following way. The events that are

related to actual changes in the combinatorial structure of the configuration function

are called external events. These are events that we must process in order to maintain

the configuration function correctly. There is also another type of events, the internal

events, which are events that the KDS processes for its own internal needs, and do not

correspond to changes in the combinatorial structure of the configuration function.

Our aim is to develop kinetic data structures for which the worst-case total number

of events processed is asymptotically of the same order, or slightly larger than, the

worst-case number of external events. By slightly larger we mean that the ratio of

the worst-case total number of events over the worst-case number of external events

must be O(nε), for any ε > 0. A kinetic data structure that has this property is called

efficient.

Another measure of optimality of kinetic data structures is their size. By size we

define the maximum number of events that the event queue contains at any time. A

kinetic data structure is called compact is its size is nearly linear in the number of

moving objects.

Finally, the degree of a kinetic data structure is the maximum number of events

in the event queue that depend on a single object. This measure is crucial when we

want to handle flight plan updates efficiently. A KDS is called local is the degree is

polylogarithmic in the number of moving objects.



Chapter 3

Spanner Graphs

Let G be a connected n-vertex graph with arbitrary positive edge weights. A subgraph

G′ is a t-spanner if for any pair of vertices, their distance in G′ is at most t times longer

than their distance in G. The distance between two vertices in a graph is defined as

the length of the shortest path in the graph between the two vertices. The value t is

the stretch factor associated with G′. Sparse spanners are of particular interest to us

for nearest neighbor queries. Given a reference point in a graph, we can perform a

breadth first search on the associated spanner and prune the search using the current

distance along the spanner and the known stretch factor. In the physical world, where

motion is invariably present, we may be interested in maintaining nearest neighbors

of certain or all the nodes as the underlying graph evolves over time. Indeed, the

behavior of many physical or social systems can be modeled in terms of short-range

interactions between the nodes, containment of some nodes by other groups of nodes,

etc.

In this chapter we deal with the relationship between bounded aspect ratio tri-

angulations and spanner graphs for a set of geometric points. First, we show that

bounded aspect ratio triangulations in two and three dimensions are spanners with

respect to the complete graph induced by the Euclidean distance between the points.

Second, we extend the notion of spanners for environments with obstacles. More

specifically, if G is a planar straight-line graph (PSLG), then the visibility graph

V(G) of G is the graph that consists of all the edges of G, as well as all the edges

15
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between points in G that do not properly intersect edges of G. Using V(G) we can de-

fine what is called the geodesic distance between two points in G, which is the length

of the shortest path in V(G) between the two points. We show that any bounded

aspect ratio triangulation that conforms with G is a spanner. Finally, we show that

the Constrained Delaunay Triangulation (CDT) is also a spanner, with respect to the

geodesic distance.

3.1 Fat Triangulations are Spanners

3.1.1 Triangulations in Two Dimensions.

Let abc be a triangle and let h be its longest side (hypotenuse) and v the corresponding

height. The aspect ratio of abc is typically defined to be A(abc) = h/v [12], a quantity

that is always at least 2
√

3/3 ≥ 1. There exist other definitions for the aspect ratio

of a triangle, which are roughly equivalent to the one we are using in this work. It

can easily be shown that if θ is the smallest angle of abc, then

1

sin θ
≤ A(abc) ≤ 2

sin θ
. (3.1)

Let T be a triangulation. We define the aspect ratio A(T ) to be the maximum of

the aspect ratios of the triangles in T . If θmin is the minimum angle in T then the

bounds (3.1) hold for A(T ) and θmin :

1

sin θmin
≤ A(T ) ≤ 2

sin θmin
. (3.2)

It is plausible to expect that the edges of convex partitions of the plane all of whose

faces are ‘fat’ (by some measure) form a spanner graph of the partition vertices. This

is so because for every straight shortcut through a fat face there is a path along the

face boundary whose length is larger than the length of the shortcut by at most a

constant factor. The main result of this subsection is to validate a special case of this

intuition, by showing that bounded aspect ratio triangulations are spanner graphs of

their vertices.
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Theorem 4. Let T be a triangulation of a point set S, such that A(T ) ≤ α. If a and

b are two points in S, then dT (a, b) ≤ 2α d(a, b), where dT (a, b) denotes the length of

the shortest path in T between a and b, and d(a, b) is the Euclidean distance between

a and b.

Proof. Let a and b be two points in S. Without loss of generality we can assume that

no point of S lies on the segment ab. If ab is an edge of T then dT (a, b) = d(a, b) ≤
2αd(a, b).

If not, then consider the triangles T0, T1, . . ., Tk, Tk+1 crossed by ab. The line

ab separates the points of these triangles (except a and b) into two sets that lie in

different (open) half-planes w.r.t. to ab. Moreover, there exists an ordering of the

edges of the ti’s crossing ab, induced by the distance of their intersection with ab

from a.

We construct a path from a to b zig-zagging above and below the line ab, as

follows. From a go to either one of the points of t0 incident to a. If we are at a point

that is incident to b, then go to b. If we are at a point di not incident to b, consider

all the edges incident to di that cross ab. Then di+1 is the endpoint incident to di

that corresponds to the edge of maximal order with respect to the ordering induced

by ab.
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Figure 3.1: The zone of the segment ab, and the chosen path from a to b in the
triangulation.



CHAPTER 3. SPANNER GRAPHS 18

PSfrag replacements

a

b

θ

θ

θ

θ

Figure 3.2: A construction that gives the lower bound for the optimal stretch factor
copt.

Let a = d0, d1, . . . , ds, ds+1 = b be the path defined above (see Fig. 3.1). This

path has the property that, except at the endpoints, two consecutive vertices of the

path lie on different sides of the ab. Let ei be the intersection of di−1di with the line

ab, and let us focus on the triangle eidiei+1. Let φi = ∠dieiei+1, ωi = ∠eiei+1di and

θi = ∠eidiei+1. Clearly θmin ≤ θi ≤ π.

If θi > π/2, then

d(ei, di) + d(di, ei+1) ≤
π

2
d(ei, ei+1) ≤ 2α d(ei, ei+1) .

If θi ≤ π/2, then using the sine law in the triangle eidiei+1, as well as the lower bound

for θi, we get

d(ei, di) + d(di, ei+1) =
d(ei, ei+1)

sin θi
(sin ωi + sin φi) ≤ 2α d(ei, ei+1) .

Therefore,

dT (a, b) ≤
s

∑

i=0

d(di, di+1) ≤ 2α

s
∑

i=0

d(ei, ei+1) = 2αd(a, b) ,

which gives the desired result.

Let copt be the optimal constant that bounds the ratio between the distances

dT (a, b) and d(a, b). What we have just proved is that copt ≤ 2α. It is also easy to

verify that copt ≥ α/2. Consider the triangulation in Fig. 3.2; the distance between the

points a and b on the triangulation is d(a, b)/ sin θ, which is greater than αd(a, b)/2.
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Hence :

Theorem 5. Let copt be the optimal stretch factor for a bounded aspect ratio trian-

gulation T of a two-dimensional point set S, such that A(T ) ≤ α. Then,

α

2
≤ copt ≤ 2 α .

3.1.2 Triangulations in Three Dimensions.

In three dimensions the aspect ratio of a tetrahedron is usually defined as the ratio

of the radius R of the smallest containing sphere to the radius r of the largest sphere

inscribed in the tetrahedron [40]. The aspect ratio A(T ) of a three dimensional

triangulation T is defined as the maximum aspect ratio of any tetrahedron in the

triangulation. An interior angle of the triangulation is an angle between two faces F

and G where F and G are a facet and an edge, two facets, or two edges, that have a

common intersection and that one face is not a subset of the other (see [40]). If θmin

is the minimum interior angle of the triangulation and α a bound on the aspect ratio

of the triangulation, then there exist constants c′1 and c′2 such that (see [40])

c′1
θmin

≤ α ≤ c′2
θmin

.

It is easy to verify that if the above relations hold, then there exist constants c1 and

c2, such that
c1

sin θmin

≤ α ≤ c2

sin θmin

.

Proving the spanner property for fat triangulations in three dimensions is more

demanding. It requires two steps: first we approximate the straight line path by a

path on the faces of the crossed tetrahedra, and then that latter path by another path

following only the edges of the tetrahedra. The corresponding theorem is as follows:

Theorem 6. Let T be a triangulation of a three dimensional point set S, such that

A(T ) ≤ α. Then
dT (a, b)

d(a, b)
≤ β2, β = max{2α

c1

,
π

2
} ,
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where a, b are points in S, dT (a, b) is the distance of the shortest path in T between

a and b and d(a, b) is the Euclidean distance between a and b.

Proof. We are going to describe a path on the tetrahedrization for which the suggested

bound holds.

Consider two points a, b ∈ S and consider all the triangles that intersect the

interior of ab. The intersections of these triangles with ab induce an ordering for the

set of triangles. Also, any two consecutive triangles, w.r.t. this ordering, share an

edge. If more than two consecutive triangles share a common edge, we discard of all

but the first and last triangle. In the remainder of the proof we shall deal with this

reduced set of triangles T0, T1, . . . , Ts, Ts+1.

Let a = e0, e1, . . . , es, es+1 = b be the intersections of the triangles with the line

ab. We can construct a two-leg polygonal path Qi = eifiei+1 that lies on the triangles

Ti and Ti+1, that has the property

dQi
(ei, ei+1) ≤ β d(ei, ei+1). (3.3)

Let uv be the common edge of Ti, Ti+1. The idea is to choose fi to be a point in

uv, such that the angle θi = ∠eifiei+1 is bounded below by θmin. Let Πi, Πi+1 be

the supporting half-planes of the triangles Ti, Ti+1, respectively (see Fig. 3.3). Let

eiwei+1 be the shortest path from ei to ei+1 that lies on Πi and Πi+1. If w lies in

the interior of uv (Fig. 3.3(top)), then choose fi to be the point w. Then the angle

θi = ∠eiwei+1 is greater or equal than the bihedral angle of Πi and Πi+1, which is

greater than θmin, i.e., θi ≥ θmin. If w does not lie inside uv, then we can assume

without loss of generality that v is closer to w than u. Then project ei and ei+1 on uv

using lines parallel to vv′ and vv′′, respectively (Fig. 3.3(bottom)). Let e′i and e′i+1

be these projections. In this case we choose fi to be the one among e′i and e′i+1 that

is closer to v. Then θi ≥ ∠v′vv′′ ≥ θmin. Now, if θi > π/2, then

dQi
(ei, ei+1) ≤

π

2
d(ei, ei+1) ≤ β d(ei, ei+1). (3.4)

If θi ≤ π/2, then using the sine law in the triangle eifiei+1 and the lower bound for

θi, we get

dQi
(ei, ei+1) ≤

2α

c1
d(ei, ei+1) ≤ β d(ei, ei+1). (3.5)
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Figure 3.3: The construction of the polygonal path Qi. Top: the shortest path
between ei and ei+1 crosses uv. Bottom: the shortest path between ei and ei+1 does
not cross uv.

Combining inequalitites (3.4) and (3.5) we establish (3.3).

Using the construction above, we have created a polygonal path Q with vertices
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a = e0, f1, e1, . . . , es, fs, es+1 = b, that separates the endpoints of the edges of the

triangles Ti in two disjoint sets (except for a and b), depending on which side of

the polygonal path they reside (see Fig. 3.4). It also induces an ordering for the

edges of the Ti’s that intersect it. Construct a three-dimensional path from a to b

using the edges of the Ti’s as follows. From a go to either one of its two incident

vertices in T0. If we are at a point di that is incident to b, go to b. If we are at a

point di not incident to b, consider all edges incident to di, that intersect Q. Among

those edges choose the one of maximal order w.r.t. the ordering induced by Q; di+1 is

the endpoint of this edge incident to di. This construction yields a 3D path P with

vertices a = d0, d1, . . . , dk, dk+1 = b, that goes back and forth across the polygonal

line Q. Let f ′
1, f

′
2, . . . , f

′
k be the subset of the fi’s corresponding to the edges didi+1,

and let f ′
0 = a, f ′

k+1 = b. Since the angles ∠f ′
idi+1f

′
i+1 are bounded from below by

θmin, we get the following bound, in exactly the same manner that we established

bound (3.3) :

d(f ′
i , di+1) + d(di+1, f

′
i+1) ≤ β d(f ′

i , f
′
i+1).

This in turn yields :

dP (a, b) =
k

∑

i=0

d(di, di+1) =
k

∑

i=0

[d(f ′
i , di+1) + d(di+1, f

′
i+1)] ≤ β

k
∑

i=0

d(f ′
i , f

′
i+1).

But
k

∑

i=0

d(f ′
i , f

′
i+1) ≤ dQ(a, b) =

s
∑

i=0

dQi
(ei, ei+1) ≤ β

s
∑

i=0

d(ei, ei+1).
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Combining the above inequalities with (3.3) we get :

dP (a, b) ≤ β

k
∑

i=0

d(f ′
i , f

′
i+1) ≤ β2

s
∑

i=0

d(ei, ei+1) = β2d(a, b) ,

the result to be shown.

We believe that similar ideas can be used to prove an analogous result for fat

triangulations in any dimension.

If copt is the optimal stretch factor for bounded aspect ratio triangulations in three

dimensions, we just proved that copt ≤ β2. It is easy to show that copt ≥ α/c2. Let

cde be an equilateral triangle on the xy-plane, the barycenter of which is the origin.

Consider the triangulation formed by the two tetrahedra acde and bcde, where a, b

are the points a = (0, 0, +ε), b = (0, 0,−ε), where ε is such that the angles of the

edges ac and bc with the xy-plane are θ. Let α be a bound on the aspect ratio of this

triangulation. Clearly,
c1

sin θ
≤ α ≤ c2

sin θ
.

The length of the shortest path from a to b in this case is

dT (a, b) = d(a, c) + d(c, b) =
d(a, b)

sin θ
≤ α

c2
d(a, b).

Hence :

Theorem 7. Let copt be the optimal stretch factor for a bounded aspect ratio trian-

gulation T of a three-dimensional point set S, such that A(T ) ≤ α. Then,

α

c2
≤ copt ≤ β2, β = max{2α

c1
,
π

2
} .

3.2 Environments with Obstacles

Let G be a PSLG. The graph G induces a subdivision S(G) of the plane into regions.

Let also V(G) be the visibility graph associated with G. If v is a vertex of G, then

we denote with Fv the set of faces of S(G) adjacent to v.
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We focus on paths that lie entirely within one face of the subdivision S(G) and do

not cross any constraining edges. The following definition captures these requirements

(see also Fig. 3.5).

Definition 1. A path P on the plane between two vertices u and w of G, such that

Fu ∩ Fw 6= ∅, is called legal if

1. the entire path P lies inside the closure of exactly one face of S(G).

2. we can find a path as close as we want to P that shares the same endpoints with

P , and the interior of which lies in the interior of the same face as P .

Definition 2. The geodesic distance dG(u, w), with respect to the graph G, is the

length of the shortest legal path between u and w on V(G), measured in the Euclidean

metric.

We call a triangulation T (G) constrained (with respect to G) if the vertices of

T (G) are those of G and every edge in G is an edge in T (G). We call a triangulation

conforming if every vertex in G is in T (G) and every edge in G is the union of some

edges in T (G). Clearly a constrained triangulation is also conforming.

Theorem 8. Let G be a PSLG and let T (G) be a conforming triangulation of G

such that A(T ) ≤ α. If u and w are two vertices in G sharing a face of S(G), then

dT (G)(u, w) ≤ 2α dG(u, w).
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Proof. Let u = v0, v1, . . . vn = w be the sequence of vertices of G that consist of the

shortest legal path in V(G). If vk−1vk is a portion of a constrained edge, then, since

α ≥ 1,

dT (G)(vk−1, vk) = d(vk−1, vk) ≤ 2α d(vk−1, vk) .

If vk−1vk is not a portion of a constrained edge then consider the path from vk−1 to

vk described in the proof of Theorem 4. For this path we know that

dT (G)(vk−1, vk) ≤ 2αd(vk−1, vk).

Moreover, since vk−1 and vk are visible from each other, it is easy to find a homeo-

morphism from this path to the segment vk−1vk, which implies that the path lies in

the same face as vk−1vk. Therefore,

dT (G)(u, w) ≤
n

∑

k=1

dT (G)(vk−1, vk) ≤ 2α

n
∑

k=1

d(vk−1, vk) = 2α dG(u, w) .

3.3 The Constrained Delaunay Triangulation is a

Spanner

Dobkin, Friedman and Supowit [17] have shown that the DT is a spanner graph of

its vertices. The stretch factor M they proved was approximately 5.08. Later, Kiel

and Gutwin [32] improved the stretch factor to approximately 2.42. It turns out that

we can generalize the proof in [17] for the constrained case, and therefore show that

the CDT is also a spanner, with respect to the geodesic distance — with the same

stretch factor as in [17]. We begin with some definitions.

Definition 3. The CDT distance CDT (u, w) is the length of the shortest legal path

between u and w on D(G), where D(G) is the CDT of G.

Definition 4. The bounded Voronoi diagram of G Vorb(G) is a planar subdivision

that partitions the plane into regions R(v), whwre v is a vertex in G, such that a point
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p belongs to the R(v) if and only if pv is the shortest straight-line segment connecting

p with a vertex of G that does not intersect any edge of G.

In order to prove that the CDT is a spanner graph, the following two properties

of the bounded Voronoi diagram will be useful. Both of them have been proved in

[38] and we state them here for completeness.

Lemma 1. Let u, w be vertices of G, where R(u) and R(w) share an edge e in

Vorb(G). Let also c be a circle passing through u and w with the center in a point p

inside e. Then no vertex v of G visible from u or w is in the interior of the circle c.

Lemma 2. Let G be a PSLG. The straight-line dual of Vorb(G) is a subset of every

CDT of G.

We will prove our main result in the following way. If u and w are two vertices

of G, we are going to find a path P from u to w on D(G) that is in the same face as

the shortest path from to u to w on the plane. We shall then prove that the length

of this path is at most M times dG(u, w), which gives the wanted result, since

CDT (u, w) ≤ dP (u, w) ≤M dG(u, w).

Let u = v0, v1, . . . , vn = w be the sequence of vertices of G that consist of the

shortest legal between u and w path on V(G). If an edge vk−1vk is a constrained edge

then obviously it is an edge in the CDT and thus

CDT (vk−1, vk) = d(vk−1, vk) ≤M d(vk−1, vk)

and our result holds true for this portion of the path from a to b.

If vk−1vk is not a constrained edge then vk−1 is visible from vk and moreover, since

vk−1vk is an edge of V(G) there are no points of G on the segment vk−1vk (since then

vk−1vk would not be an edge of V(G)). For the purpose of proving our result it suffices

to find a path on D(G) from vk−1 to vk such that the inequality holds.

Let now a and b be two points of G. We assume that a and b lie on the x-axis,

that x(a) < x(b) and that a and b are the endpoints vk−1 and vk of a non-constrained

edge ek of the shortest path on V(G) between two points on the plane. The proof
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is a generalization of that in [17]. Let a = b0, b1, . . . , bm−1, bm = b be the vertices

corresponding to the sequence of bounded Voronoi regions traversed by walking along

the x-axis.

Definition 5. The path a = b0, b1, . . . , bm = b is called the direct CDT path from a

to b.

Let pi be the point on the x-axis that also lies on the boundary between Vorb(bi−1)

and Vorb(bi), for i = 1, . . ., m. By the definition of the bounded Voronoi diagram pi

is the center of a circle Ci passing through bi−1 and bi.

Direct CDT paths have the following properties, some of which we prove here and

some of which have already been proved in [17].

Lemma 3. The segments bi−1bi, i = 1, . . . , m belong to the CDT of G.

Proof. By Lemma 2, all the edges of the dual of Vorb(G) are edges of the CDT.

Lemma 4. x(pi−1) ≤ x(pi), for i = 1, . . . , m.

Proof. It is a direct consequence of way the pi’s are constructed.

Lemma 5 ([17]). x(bi−1) ≤ x(bi), for i = 1, . . . , m.

Lemma 6. For all i = 0, . . . , m, bi is contained within or on the boundary of

circle(a, b).

Proof. Let k be such that the midpoint c of (a, b) lies in the bounded Voronoi region

of bk. Then

x(pk) ≤ x(c) ≤ x(pk+1) (3.6)

and since c is in the bounded Voronoi region of bk we have

d(bk−1, c) ≥ d(bk, c), d(bk+1, c) ≥ d(bk, c). (3.7)

Now consider bi, bi+1, 0 ≤ i ≤ k − 1. Then x(pi+1) ≤ x(c) and pi+1 is visible from

both bi and bi+1 and d(bi, pi+1) = d(bi+1, pi+1). But the portion of the circle with

center pi+1 and radius d(bi+1, pi+1) to the left of x(bi) lies entirely within the circle
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with center c and radius d(bi, c). Hence, since bi+1 is on that portion of the circle, we

have d(bi+1, c) ≤ d(bi, c). Similarly we can prove that

d(bi+1, c) ≤ d(bi, c), k ≤ i ≤ m− 1. (3.8)

Thus all the bi’s lie inside circle(a, b).

Lemma 7. If a and b are visible, then the direct CDT path between a and b lies in

the same face as the segment ab.

Proof. Let Si be the triangle pibipi+1. Since the entire segment pipi+1 lies in the

Voronoi region of bi, we get that the triangle Si lies in the Voronoi region of bi, and

thus it is empty of vertices or edges of G. Consider now the triangle bipi+1bi+1, which

we call Ti. By Lemma 1, the interior of Ti does not contain any vertices of G that are

visible from bi and bi+1. Suppose though that it contains a vertex v that is not visible

by bi and bi+1, and let e be a constrained edge that separates v from bi and bi+1.

Then e would have to cross the edges bipi+1 and pi+1bi+1 of Ti, which cannot happen

since pi+1 is visible from both bi and bi+1. Hence the interior of the triangle Ti, as

well as the interior of the segments bipi+1 and pi+1bi+1 are empty of vertices or edges

of G. The union of the interiors of the Ti’s and the Si’s, as well as the interiors of the

segments pibi and bipi+1, cover the interior of the region between the polygonal line

b0b1 . . . bm and the x-axis and in fact that region is empty (see Fig. 3.6). Therefore,
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we can define a homeomorphism from b0bm to the polygonal line b0b1 . . . bm, which

implies that the direct CDT path lies in the same face as ab ≡ b0bm.

Another lemma that will be useful is the following.

Lemma 8 ([17]). Let D1, D2, . . . , Dk be circles all centered on the x-axis such that

D =
⋃

1≤i≤k Di is connected. Then boundary(D) has length at most π (xr−x`), where

x` and xr are the least and greatest x-coordinates of D, respectively.

We are now ready to prove the following theorem.

Theorem 9. Let a, b be two points of G, that are visible from each other and no

other point of G lies on the segment ab. Then there exists a CDT path from a to b of

length CDT (a, b), such that

CDT (a, b) ≤ 1 +
√

5

2
π d(a, b)

Proof. Let us assume that all the bi’s happen to be above the x-axis. In this case we

say that the direct CDT path from a to b is one-sided (see Fig. 3.7). Handling one-

sided paths is easier than generic ones, since we can use Lemma 8 to bound the length

of the path. In particular, for one-sided paths, the length of the path is bounded by

half the length of boundary(C), that lies above the x-axis. Moreover, due to Lemma

7, the direct one-sided CDT path lies in the same face of S(G) as a and b. But then,

due to Lemma 8, this is bounded above by π
2
d(a, b), which is consistent with our

result.

The trouble arises when we do not have one-sided paths. As in [17], we try to stay

above the x-axis. If the direct path dips below the x-axis, we determine how costly

the dip will be. If the cost is not too expensive then we follow the direct path below

the x-axis and then back up. Otherwise, we construct a shortcut between the two

points above the x-axis. What remains to show is that the shortcut is not too long

and that it is in the same face as the line ab.

Let a = b0, b1, . . . , bm−1, bm = b be the direct CDT path from a to b. Assume that

we are at point bi of the path such that y(bi) ≥ 0, i < m and y(bi+1) < 0. Let j be

the least number greater than i such that y(bj) ≥ 0 (see Fig. 3.8). Let Tij denote the
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path along the boundary of C clockwise from bi to bj. Let wij denote the length of

the projection of Tij onto the x-axis, i.e.,

wij = x(bj)− x(bi), (3.9)

and let

hij = min{y(q) : q lies on Tij}. (3.10)
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Now if hij ≤ wij/4 we continue along the direct path to bj, otherwise we take a

shortcut as follows. Construct the lower convex hull bi = z0, . . . , zn = bj of the set

{q ∈ G : x(bi) ≤ x(q) ≤ x(bj) and y(q) ≥ 0 and q lies under bibj}.

Note that these convex hull edges are not part of the direct CDT path from a to b.

The shortcut then is the path from zk to zk+1, for each 0 ≤ k ≤ n− 1. The key facts

are the two following:

Lemma 9. Let zkzk+1 be an edge of the lower convex hull described above and let zk

be visible from zk+1. Then the direct CDT path from zk to zk+1 is one-sided.

Proof. The proof is identical to that of Lemma 4 in [17].

Lemma 10. The direct CDT path from zk to zk+1 lies in the same face as the segment

ab.

Proof. Consider the area Rk = {q : y(q) ≥ 0 and q below zkzk+1}. Let R be the

union of the Rk’s (shaded region in Fig. 3.8). There cannot be a vertex of G in Rk

because zkzk+1 would not be an edge of the convex hull. Suppose that there exists a

constrained segment e that separates zkzk+1 from the x-axis. Since the Rk’s do not

contain any vertices of G, the end points of e must either both be outside R or one

of them is outside R and the other is one of the zl’s. In any of the two cases, since a

and b are visible from each other, e must cross one of the segments bivi or bjvj, where

vi, vj are the projections of bi, bj on the x-axis. But then e has to cross one of the

segments bibi+1 or bj−1bj, which cannot happen since they are segments of the CDT.

Hence R has to be empty of vertices or edges of G. On the other hand, by Lemma 7

the direct CDT path between zk and zk+1 lies in the same face as the segment zkzk+1.

Therefore, the direct CDT path between zk and zk+1 lies in the same face as ab.

Using the two lemmas above the result then follows in exactly the same way as in

[17].

Let’s get back to our original setting. If u = v0, v1, . . ., vn = w is the sequence of
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vertices of G of the shortest legal path from u to w, then

dG(u, w) =

n
∑

k=1

d(vk−1, vk), (3.11)

and all the segments vk−1vk lie in the same face F of S(G). For each one of these

segments we constructed a direct CDT path such that the entire path lies in F and

moreover,

CDT (vk−1, vk) ≤
1 +
√

5

2
π d(vk−1, vk). (3.12)

Since

CDT (u, w) ≤
n

∑

k=1

CDT (vk−1, vk) (3.13)

we have proved the following.

Theorem 10. Let u, w be two points of G that share a common face in S(G). Then

CDT (u, w)

dG(u, w)
≤ 1 +

√
5

2
π (3.14)

If copt is the optimal stretch factor for the CDT, we have just shown that

copt ≤
1 +
√

5

2
π .

It has been shown in [15] that a lower bound on the stretch factor for the DT is π/2.

Since the CDT is a generalization of the DT, the same result holds for the CDT as

well. Hence,

Theorem 11. Let copt(CDT ) be the optimal stretch factor for the Constrained De-

launay Triangulation of a planar straight-line graph G. Then,

π

2
≤ copt(CDT ) ≤ 1 +

√
5

2
π .
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3.4 Conclusion

Theorems 5 and 7 provide lower and upper bounds on the optimal stretch factors for

bounded aspect ratio triangulations in two and three dimensions. We do not know if

these bounds are tight. It is thus an interesting open problem to devise constructions

that will reduce the gap between the lower and upper bounds. Analogous results for

higher dimensional bounded aspect ratio triangulations would also be desirable, and

we believe that the approach described in this chapter can be used for proving such

results.

The best known upper bound for the stretch factor for the Delaunay triangulation

of a two-dimensional point set is [32]

2π

3 cos(π
6
)
.

It has been conjectured by Chew [15] that the upper bound on the stretch factor

of Delaunay triangulation is actually close to π/2. This is still an interesting open

problem. It also of great interest to have a tighter result, than that of Theorem 11,

for the Constrained Delaunay triangulation.

Three-dimenional Delaunay triangulations can be of Ω(n2) complexity. In that

respect, knowning whether the 3D Delaunay triangulation is a spanner graph is not

of the same importance as in the 2D case. However, it is useful to have such a result,

since in many cases the complexity of the Delaunay triangulation in three dimensions

is subquadratic.

Finally, what has been presented here is a relationship between fat triangulations

and spanner graphs. It is plausible that such a relationship holds for more general

fat subdivisions of the plane. One interesting issue, for example, is whether planar

subdivisions, in which the faces are of bounded aspect ratio, with respect to some

measure, are spanner graphs as well.



Chapter 4

Kinetic Voronoi Diagrams and

Applications

In this chapter we present how to maintain the CDT of a planar straight-line graph G

using the Kinetic Data Structures (KDS) framework. We also deal with the problem

of maintaining near neighbors of moving points. In particular, given a set of points

in two or three dimensions, we show how to maintain the near neighbors of some

reference points, or how to maintain the k-nearest neighbors of some reference points.

We use the Delaunay triangulation of the point set as the underlying structure. On

top of the DT we build an additional KDS for each one of the reference points, that

keeps track of the near neighbors. Using the CDT as the underlying structure we also

show how to maintain near neighbors in environments where obstables are present.

Finally, we discuss how to use the CDT for maintaining the relative convex hull for a

set of points moving inside a simple polygon.

4.1 Kinetic Constrained Delaunay Triangulation

Maintaining the Voronoi diagram, or its dual the Delaunay triangulation, for a set of

points on the plane is done by exploiting the local property of the Delaunay trian-

gulation. This property states that an edge in the triangulation is globally Delaunay

if it is locally Delaunay. The certificates in this case are the InCircle tests for the

edges of the triangulation. When a certificate fails we simply have to do an edge flip

34
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to restore the correctness of the Delaunay triangulation [7].

In the case of the Constrained Delaunay triangulation the situation is analogous.

The fact that a triangulation is the CDT can be established through a set of local

conditions on the non-constrained edges of the CDT. In particular, it has been shown

[11, Lemma 3] that if the non-constrained edges of the CDT are locally Delaunay

then the triangulation is globally the CDT. The definition of local Delauniness is the

same as in the case points but it only applies to the non-constrained edges of the

triangulation.

For the sake of completeness we are going to prove that if a triangulation is locally

Delaunay then it is the CDT, using a different approach than that in [11]. We start

with a definition.

Definition 6. Let T be a triangulation and let e be an edge in T . Let T1, T2 be the

triangles adjacent to e and let u, v be the endpoints of e. Finally let a, b be the vertices

of T1, T2 that are not u or v. We say that e passes the InCircle test if and only if

InCircle(a, u, v, b) is false.

It is shown in [11, Lemma 3] that local InCircle tests establish the global CDT

property. We prove the same result here using a different approach.

Lemma 11. An edge uv is in the CDT if and only if for all a, b both visible from

both u and v to the left and right of uv we have that InCircle(a, u, v, b) is false.

Proof. Let {Ct} be the one-parameter family of circles passing through u and v, where

t denotes the distance of the center of Ct from the midpoint of uv. The edge uv is in

the CDT if and only if there is a circle passing through u, v such that no points that

are visible from u and v are in the interior of the circle. This is true if and only if

every circle auv with a to the left of uv corresponds to a value of t less than of equal

to that of any circle vub with b to the right of uv and a, b both visible from u and v.

This proves our result.

Using the above lemma we can now state and prove the relationship between the

local and global CDT property.

Theorem 12. A triangulation T (G) of a PSLG G is the CDT if and only if all the

non-constrained edges of T pass the InCircle test.
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Proof. Let e be an edge of T that fails the InCircle test and let a and b as in

Definition 6. Then it cannot be that e is an edge of the CDT, because a, b are both

visible from u, v and InCircle(a, u, v, b) is true (see Lemma 11). Conversely, if T is

not the CDT there exists an edge uv and two vertices a, b both visible from u, v, such

that InCircle(a, u, v, b) is true, with a, b being on different sides of uv according to

Lemma 11. Among all such quadruples choose the one for which the sum ∠vau+∠ubv

is maximum. Clearly, no edge or vertex of T can enter the triangles auv or vub. Hence

these are the triangles incident to uv and obviously uv fails the test.

Therefore, in order to maintain the CDT we only need to check when a non-

constrained edge fails its InCircle test; when this happens, a single edge flip restores

the correctness of the CDT (see Fig. 4.1). If we assume that the moving vertices

of the CDT do not hit constrained edges, then the only events are the edge flips.

When such an event happens we need O(log n) time to update our KDS, i.e., the

KDS for the CDT is responsive. The size of our KDS is proportional to the number

of non-constrained edges, i.e., O(n), and our KDS is compact. However, as in the

DT case, the KDS is not local since a moving point may be associated with Ω(n)

certificates. Finally, if the motions of the vertices are pseudo-algebraic, the total

number of combinatorial changes in the CDT, which is also the number of events

that we have to process, is O(n3β(n)). The best lower bound on the number of

Figure 4.1: The flip-edge event. The think solid segment is a constrained edge. The
thin solid line is the edge e that is flipped. The dotted circles are the circumcircles
of the triangles adjacent to e. The white points are points of G not visible from e.



CHAPTER 4. KINETIC VORONOI DIAGRAMS AND APPLICATIONS 37

combinatorial changes of the DT, and thus the CDT, is Ω(n2) [22]. Hence, the KDS

presented above may not be efficient.

4.2 Near Neighbors in 2D and 3D

Suppose that we have a set V of moving points in two (three) dimensions and a point

p ∈ V , for which we want to know the points in V that are within a certain distance

Rp from p. The obvious approach is to maintain the distance from p to every other

point in V and keep those that are within the prescribed distance. We show how to

do better using the Delaunay triangulation of V . Let Cp be the ball centered at p

with radius Rp. In two dimensions Cp is actually a circle, whereas in three dimensions

it is a sphere. Our crucial observation is that, if we are maintaining the DT of V , the

only points that enter or exit Cp are endpoints of edges of the DT crossing Cp exactly

once (called crossing edges from now on). Hence, maintaining the near neighbors of

p reduces to maintaining the DT and updating the set of crossing edges, whenever a

point enters or exits Cp (see Fig. 4.2).

In this section we shall treat the two- and three-dimensional case together. The

PSfrag replacements
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Figure 4.2: Keeping track of the points that may enter or exit Cp. The only edges
that we have to look at are those that properly intersect Cp, i.e., the edges that cross
Cp exactly once (solid edges in this figure).
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two-dimensional case where obstacles in the environment are present will be addressed

in the next section.

If we want to maintain the set of near neighbors for a set S ⊆ V of points, we

can apply the ideas described above for each one of the points in S separately. A

noteworthy feature of our method is that, except for the overhead of maintaining

the Delaunay triangulation, it is motion-sensitive: all other events processed by the

structure reflect actual changes to the neighborhoods of the points of interest. Though

the overhead of maintaining the Delaunay triangulation can be significant in the

worst case, in practice it has nearly linear efficiency and it can be a useful piece of

infrastructure for other applications as well, including clustering, communications,

etc.

We shall generalize our setting in order to avoid the restriction that p has to be

the center of Cp. Thus, let V be a set of points in two or three dimensions and let

p be a point in V . Let T be a triangulation of V . The points in V are assumed to

be moving. With p we associate a ball Cp, containing p, of radius Rp, which may be

time varying. The ball Cp will contain the point p in its interior throughout time.

In order to prove our main theorem that associates the edges of the DT with near

neighbor maintenance we need the following definition.

Definition 7. We say that an edge e of T properly intersects Cp, if one endpoint of

e lies outside of Cp and the other endpoint of e is inside Cp.

The basis of the kinetization process is the following theorem, which holds true in

both two and three dimensions.

Theorem 13. Let T be the DT and let p ∈ V be a point associated with a ball Cp. If

a point q ∈ V enters/exits Cp at some time t0, then there exists an edge of T between

q and a point inside Cp.

Proof. At time t0, q is on the boundary of Cp. Let {Cr} be the family of balls with

center r that pass through q, where r is a point on the segment pq. Consider the ball

Cr′ such that r′ is at maximal distance from q, and Cr′ contains no points of V in its

interior. Note that because p is inside Cp throughtout time, such a circle Cr′ always

exists. Due to the maximality of r′, Cr′ touches a point q′ ∈ Cp that is inside Cp.

Clearly the edge qq′ is a DT edge (see Fig. 4.3).
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Figure 4.3: The proof of Theorem 13 in two dimensions.

4.2.1 The Kinetic Maintenance Algorithm

Let Ap be the set of points inside Cp. Let also Ep be the set of edges of the DT that

properly intersect Cp. As we have already mentioned our goal is to maintain these

two sets. In order to do that we have to handle two types of events:

1. events that correspond to points entering or exiting Cp,

2. events that correspond to the maintenance of the DT.

In two dimensions the DT can be maintained via edge-edge flips [7], whereas in three

dimensions the DT can be maintained using face-edge or edge-face flips [30, 52].

When a point q enters Cp we have to look at q’s neighbors. For those neighbors

that are outside Cp we only need to add the corresponding edges to Ep. For those

that are inside Cp, we need to remove the corresponding edges from the edge set Ep.

Obviously, we also need to add q to the set Ap (see Fig. 4.4, from left to right).

When a point q exits Cp the situation is entirely symmetric: for all of q’s neighbors

that are outside Cp delete the corresponding edges from Ep. For the neighbors that

are inside Cp we need to add the corresponding edges to the set Ep. Finally, we need

to delete q from the set Ap (see Fig. 4.4, from right to left).

As far as the second type of event is concerned we shall distinguish between the two

and three dimensional case. In two dimensions, whenever an edge-edge flip happens
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Figure 4.4: Maintaining the near neighbors of p as the point q enters (left to right)
or exits (right to left) the circle Cp. The black points are in the set Ap. Solid edges
belong to the set Ep.

we only have to update the set Ep. In particular, if the old edge was in Ep we need

to delete it; if the new edge properly intersects Cp we need to add it to Ep. In three

dimensions, if we have an edge-face flip and the edge to be deleted was in Ep, we

simply need to delete it from the set Ep. If a face-edge flip is performed, we need to

check if the newly created edge properly intersects Cp; if this is the case we add it to

Ep.

The construction and algorithm described above can be directly generalized to

any Lp metric with 1 < p < ∞. In particular, we can maintain in exactly the same

way near neighbors that are within distance R from a given point q in the Lp metric

by maintaining the Lp-metric version of the DT.

4.2.2 Maintaining the k-nearest neighbors

A variant of the problem above is the one where we want to maintain the k-nearest

neighbors of a point p. Suppose that we have initially computed which are these

neighbors. Then the radius Rp of Cp is now the distance between p and its k-th

nearest neighbor pk – clearly in this case Rp is time varying. The set Ap now consists

of all the points inside Cp including pk. The set Ep consists of all the edges of the

DT crossing Cp exactly once. The edges that are adjacent to pk are considered to be

crossing edges. In order to maintain the k nearest neighbors of p we have to handle
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Figure 4.5: Maintaining the k-nearest neighbors of p as the (k−1)-th nearest neighbor
becomes the k-th nearest neighbor.
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Figure 4.6: Maintaining the k-nearest neighbors of p as the (k+1)-th nearest neighbor
becomes the k-th nearest neighbor.

three types of events:

1. the (k − 1)-th nearest neighbor of p becomes the k-th nearest neighbor of p,

2. the (k + 1)-th nearest neighbor of p becomes the k-the nearest neighbor of p.

3. events that correspond to the maintenance of the DT.
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Let q be the k-th nearest neighbor of p and r the (k − 1)-th nearest neighbor of

p (see Fig. 4.5). When an event of the first type happens then all edges of the DT

connecting r to points inside Cp are added to Ep. In addition, all edges of the DT

connecting q to points inside Cp are deleted from Ep. Finally, we have to update how

Rp changes with time.

Let now q be the k-th nearest neighbor of p and s be the (k + 1)-th nearest of p

(see Fig. 4.6). When an event of the second type happens we have to add s to the

set Ap and remove q from it. All the edges of the DT connecting q to points outside

Cp are deleted from Ep and all the edges of the DT connecting s to points outside Cp

are added to Ep (see Fig. 4.6). Again, we need to update how Rp changes with time.

The third type of event is treated in exactly the same way as in our original

problem.

4.3 Near Neighbors in Constrained Environments

The approach and algorithm of the preceeding section can be generalized for con-

strained two-dimensional environments represented as a PSLG G. A constrained

edge e that intersects Cp twice is called a blocking edge. The points q that we keep

track of are those that are inside Cp and not blocked from p by a blocking edge. It

turns out that all such points can be approached from p using a path in the CDT of G

that lies entirely inside Cp. Again, as in the unconstrained case, points of interest that

enter or exit Cp are endpoints of edges of the CDT crossing Cp. Hence maintaining

this point set of interest means maintaining the CDT, as well as maintaining the set

of crossing edges.

In this section we shall precisely define the set of points that we want to maintain

and prove that the CDT is a good triangulation to use to encapsulate proximity

information between the points in our point set. We shall then provide the nearest

neighbor maintenance algorithm, which essentially describes how to maintain the set

of crossing edges described above.

Let G(V, E) be a PSLG and p be a point in V . Let T (G) be a constrained

triangulation of G. The points in V are assumed to be moving. Again, as in the

unconstrained case, we associate with p a circle Cp, containing p, of radius Rp, which
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may be time varying. The circle Cp will contain the point p in its interior throughout

time.

Definition 8. Let T (G) be a constrained triangulation of G. We call a point q in V

approachable from p, if q is inside Cp and there exists a path from p to q in T (G)

that lies entirely in Cp.

Due to the existence of blocking edges, the definition of proper intersection has to

be modified slightly. In particular,

Definition 9. We say that an edge e of T (G) properly intersects Cp, if one endpoint

of e lies outside of Cp and the other endpoint of e is approachable from p.

The difference here is that the point insize Cp is now required to be an approach-

able point instead of any point inside Cp.

The fact that the point set that we want to maintain is the set of approachable

points w.r.t. the CDT is established by the following theorem.

Theorem 14. (the maximality property) Let A be the set of points in V ∩ Cp that

are not blocked from p by a blocking edge. Then A is the set of approachable points

of p with respect to the CDT of G.

Proof. Let q ∈ A be a point not approachable from p. This implies that there exists

an edge e with endpoints u and v, such that u, v are outside of Cp. The edge e splits

Cp in two regions and p, q are in different regions. Consider the triangles that contain

e, and let q′ be the third vertex of the triangle that lies on the same half-space as

q. Clearly e cannot be a constrained edge, since then q would not be in A. If q ′

is not inside Cp, then the circle passing through q′uv must contain either p or q, or

some other point in Cp that is visible from either u or v. This contradicts the CDT

property for e. If q′ is inside Cp then the circle passing through q′uv must contain p

or some other vertex in Cp that is visible from u or v. Again we have contradicted

the CDT property for e.

The following theorem is the basis of the kinetization process for the case of

constrained environments.
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Figure 4.7: Some of the cases in the proof of Theorem 14. Top left: q ′ is inside Cp,
the circle through q′uv contains p. Top right: q′ is inside Cp, the circle through q′uv
contains r 6= p; p is not visible from both u, v. Bottom left: q ′ is outside Cp, the circle
through q′uv contains r 6= p, q; both p and q are not visible from both u, v. Bottom
right: q′ is inside Cp and the circle q′uv contains q but not p.

Theorem 15. Let T (G) be the CDT of G and let p ∈ V be a point associated with

a circle Cp. If a point q ∈ V enters/exits the circle Cp at some time t0 and is visible

from at least one point inside Cp, then there exists an edge of T (G) between q and a

point inside Cp.

Proof. At time t0, q is on the boundary of Cp. Let {Cr} be the family of circles with

center r that pass through q, where r is a point on the segment pq. Consider the

circle Cr′ such that r′ is at maximal distance from q, and Cr′ contains no points of V

in its interior that are visible from q. Note that because the set of points of V that
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Figure 4.8: The proof of Theorem 15. The segment q ′q′′ is a constrained edge.

are visible from q at t0 is non-empty by assumption, such a circle Cr′ always exists.

Due to the maximality of r′, Cr′ touches a point q′ ∈ Cp that is visible from q. Clearly

the edge qq′ is a CDT edge (see Fig. 4.8).

4.3.1 The Kinetic Maintenance Algorithm

Let now Ap be the set of approachable points from p w.r.t. the CDT. Let also Ep be

the set of edges of the CDT that properly intersect Cp. As we have already mentioned

our goal is to maintain these two sets. In order to do that we have to handle two

types of events:

1. edge flips that are required to maintain the CDT,

2. events that correspond to points entering or exiting Cp.

Whenever an edge flip happens we only have to update the set Ep. If the old edge

was in Ep we need to delete it; if the new edge properly intersects Cp we need to add

it to Ep.

When a point q enters Cp we have to look at q’s neighbors. For those neighbors

that are outside Cp we only need to add the corresponding edges to Ep. For those
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Figure 4.9: Maintaining the near neighbors of p as the point q enters (left to right)
or exits (right to left) the circle Cp. The segment qr (thick solid line) is a constrained
edge.

that are inside and in Ap we need to remove the corresponding edges from the edge

set Ep. Finally for the neighbors that are inside but not in Ap we need to add them

to the point set Ap and perform the same tests for their neighbors recursively (see

Fig. 4.9, from left to right).

When a point q exits Cp the situation is entirely symmetric: for all the neighbors

that are outside delete the corresponding edges from Ep. For the neighbors that are

inside and remain approachable after the point exits, we need to add the corresponding

edges to the set Ep. Finally as far as the remaining neighbors are concerned, we have

to delete them from the set Ap of approachable neighbors, delete any edges in Ep that

adjacent to them and recursively do the same for their neighbors (see Fig. 4.9, from

right to left).

4.4 Cost Analysis

In this section we are going to provide a cost analysis of the algorithms presented

here and compare our method with other methods for solving the same problems.

Our analysis is applicable to the two-dimensional case in both constrained and un-

constrained environments. We assume thoughout this section that the points in the
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point set in question move along trajectories which are pseudo-algebraic functions of

time.

Assume that we have a point set V of n points and that we want to maintain

near neighbors for r points in V , 1 ≤ r ≤ n. We are going to consider four different

measures for evaluating the different methods : (1) the number of events that the

KDS has to process, which is basically the efficiency of the KDS, (2) the number

of certificates in the event queue, which is the compactness of the KDS, (3) the

update cost per event, which is the responsiveness of the KDS, and (4) the number

of certificates in which a single point participates; the maximum value is called the

locality of the KDS.

The obvious way to maintain near neighbors of the reference points is to maintain

the distances from every reference point to all other points in V . In the kinetic

framework this translates to a KDS of size Θ(rn), since the number of certificates

that we have to maintain per reference point is Θ(n). The cost per event is clearly

O(log n) which is the cost of inserting a certificate in the event queue. The worst

case number of events than this KDS has to process is O(rn), which is the number

of times that points enter or exit the reference circles. Finally, a single point in V

appears in Θ(r) certificates, one for each reference point.

Another way of maintaining near neighbors is to maintain two kinetic heaps for

every reference point, one for the points inside the reference circle and one for the

points outside. A kinetic heap is nothing but a regular heap in which the priorities

of the nodes in the heap are time varying. In our case the priorities are the squares

of the distances of the points from the reference circle. Clearly, at every time instant

the only points that are candidates for exiting or entering the reference circles are the

roots of the two kinetic heaps. In this case, in addition to the events corresponding

to points entering or exiting reference circles, we also have events associated with

the kinetic heaps’ maintenance. We know that the worst case number of events that

a kinetic heap processes is O(n
√

n log n), if the priorities of the heap nodes depent

linearly on time [9]. A lower bound on the number of events is Ω(n log n) [9]. However,

for higher degree dependances, like in our case, where the priorities are second degree

functions of time, we do not know an upper bound on the number of events processed.

Hence the total number of events that our KDS processes in this case if O(rn + rH),
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where H is the worst case number of events that each kinetic heap processes. The

cost per event is again O(log n), which is the time to schedule an event in the priority

queue. The total number of certificates in this case is again Θ(rn), since for every

reference point we have two kinetic heaps of total size Θ(n). Finally, the locality for

this KDS is Θ(r) certificates, since every point participates in a constant number of

certificates per reference point.

We now turn to the analysis of the KDS presented in this section of the paper. We

call our method the kinetic Delaunay method. As we discussed in a previous subsec-

tion a bound on the number of combinatiorial changes of the Delaunay triangulation

is O(n3β(n)). This is the best known upper bound for the number of combinatorial

changes of the DT, whereas the best known lower bound is Ω(n2). Since the num-

ber of times that points can enter or exit the reference circles is O(rn), we conclude

that our KDS processes O(rn + D) events in the worst case, where D is the number

of Delaunay events, and D = O(n3β(n)). Among those events, the ones that corre-

spond to Delaunay edge-flips take O(r+log n) time to process, since we have to check

whether the new edge crosses any of the reference circles, and schedule/reschedule in

the event queue a constant number of certificates. However, when we check to see if

the new edge crosses any of the r reference circles, we can actually restrict ourselves

to only those reference circles that cross the edges of the quad in the triangulation

surrounding the new edge. In practice, this implies that we need to check the new

edge against many fewer than r reference circles. The events that correspond to points

entering/exiting reference circles take O(n) time to process. This is because we have

to look at the neighbors of the point entering/exiting a reference circle, which can be

O(n) in the worst case. Clearly, the locality of the kinetic Delaunay method is O(n).

It seems, at first, that the kinetic Delaunay method is not better, at least in the

asymptotic sense from the other two methods. However, in many applications the

moving points are uniformly distributed on the plane. In a situation like this, the

expected degree of the vertices in the Delaunay triangulation is O(1) and the expected

number of events associated with combinatorial changes of the Delaunay triangulation

is O(n3/2) [53]. Hence the total number of events for the kinetic Delaunay method is

O(rn+n3/2). Moreover, if the size of the reference circles is small, w.r.t. the diameter

of the point set, both the number of points inside the reference circle and the number
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of crossing edges is constant. Hence the number of certificates in the event queue

is O(r + n) = O(n), and the locality of the kinetic Delaunay method is O(r). The

cost per event becomes O(log n), since the expected number of circles crossing the

surrounding quad of the new edge, when an edge-flip happens, is constant. When the

reference circles are large, say of the order of the diameter of the point set, then we

expect the number of crossing edges per reference circle to be O(
√

n). In this case, the

number of certificates in the event queue is O(r
√

n + n), which is again better than

the obvious and kinetic heap methods. The locality of the kinetic Delaunay method

becomes O(r) on the average, whereas the cost per event is still O(log n), since again

we expect the number of reference circles crossing the quad of the new edge, when a

Delaunay flip occurs, to be a constant. The situation becomes even more favorable

for the kinetic Delaunay method when r = Θ(n).

4.5 The Relative Convex Hull

Relative convex hulls have been of interest in both the computer vision [50] and

computational geometry community [26]. In this section we describe how to maintain

the relative convex hull for a set of points S moving inside a simple polygon P .

Let R be the relative convex hull of S with respect to P . We will refer to the

edges of P as p-edges and to the edges of R as r-edges. Note that a p-edge can be

an r-edge, and also note that the graph G with vertices the set P ∪ S and edges the

union of the set of p-edges and r-edges is a PSLG.

We want to construct and maintain the CDT of G and properly update both G

and the triangulation whenever points need to be added or removed from R. There

are two kinds of events that we need to handle other than the edge-flip events that

we need to process in order to maintain the CDT.

The first kind happens when a point in (S∪P )\R becomes a point of R. Let p be

the point in (S∪P )\R and let q and r be the endpoints of the r-edge that p hits (see

Fig. 4.10(left to right)). It can easily be verified that when p becomes collinear with q

and r, then the triangle pqr is a triangle of the CDT. What we have to do in this case

is to remove qr, add qp and pr to the set of edges in G, and retriangulate the area

around p. This can be done by triangulating the quadrangle created by the deletion
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Figure 4.10: The Relative Convex Hull events. The thick solid line is the polygon
P . The thin solid line is the relative convex hull R and the dashed edges are the
non-constrained edges of the CDT. Left to right: p becomes a point of the RCH.
Right to left: p is no longer a point of the RCH.

of qr, and then by simply invoking the standard edge-flip algorithm for producing the

CDT given any triangulation, with the appropriate initial edge list [11].

The second kind of event is the symmetric one, when a point in R becomes a

point of (S ∪ P ) \R. Let p be the point in R and let q and r be the endpoints of the

r-edges incident to p (see Fig. 4.10(right to left)). Such an event can be detected by

scheduling CCW tests for all consecutive triplets in R. What we have to do in this case

is to delete all the edges connecting p with points inside or outside R, depending on

whether p ∈ P or p ∈ S, respectively, add the edge qr in G, remove the r-edges qp and

pr from G (but not from the CDT), triangulate the hole next to p and reconstruct

the CDT using the edge-flip algorithm.

4.6 Conclusion

In this chapter we presented how to maintain the near neighbors of moving points in

two and three dimensions. In particular, we described how to maintain all the points

that are within a fixed (possibly time-varying) distance from a reference point and

how to maintain the k-nearest neighbors of a reference point. We also showed how to

maintain the Constrained Delaunay triangulation; using that as the underlying struc-

ture we discussed how to maintain near neighbors in two dimensions when obstacles

are present. Finally, we presented an algorithm for maintaining the relative convex
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hull for a set of points moving inside a simple polygon.

One very interesting problem is that of maintaining the set of points that are

visible from a reference point. This problem seems much more complicated than

that of maintaining near neighbors. The obvious solution is to try to maintain the

visibility graph of the point set and the environment. However, the visibility graph

can be of quadratic size, which is prohibitive. On the other hand, the CDT does

not seem to contain enough information for efficiently maintaining the set of visible

points. It would be really nice to have a structure for maintaining the visible set of a

reference point, that lies somewhere in between these two extremes. All the algorithms

involving obstacles that are presented in this chapter are tied to two dimensions. We

would like to extend these structures to three or higher dimensions. Finally, the

algorithm presented here for the maintenance of the relative convex hull does not

seem to be efficient. It would be of interest to find other KDSs that can be used in a

more efficient manner for the maintenance of the relative convex hull.



Chapter 5

Voronoi Diagrams for Moving

Disks

In this chapter we tackle the problem of maintaining the Euclidean Voronoi diagram,

or its dual the Delaunay Triangulation (DT) for a set of disks moving in the plane.

The Euclidean Voronoi diagram of disks is defined in the same way as the Voronoi

diagram for points: we assign every point on the plane to the disk to which it is

closer. We measure the distance of a point from a disk as the Euclidean distance of

the point from the center of the disk minus the radius of the disk. The set of points

assigned to a disk is the Voronoi cell of that disk and the collection of the boundaries

of the Voronoi cells is the Euclidean Voronoi diagram of the set of disks. It turns out

that the Voronoi diagram of the disks is a subdivision of the plane. We can define its

dual, called the Delaunay triangulation, by connecting the centers of the disks whose

Voronoi cells are adjacent. We define the Voronoi diagram and its dual the Delaunay

triangulation more precisely in Section 5.1.

The major contribution here is that the disks are allowed to intersect. This enables

us to not only report collisions between disks, but also to report when the penetration

depth between two disks achieves a certain value, or when a disk is wholly contained

inside another disk. Moreover, our data structure can be used for maintaining the

connectivity of the set of disks as the disks move, or to maintain near neighbors of

disks.

The Voronoi diagram is maintained using the Kinetic Data Structure (KDS)

52
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Figure 5.1: Top: the edge connecting B1 and B2 is locally Delaunay because the
exterior tangent ball of B1, B2 and D1 does not intersect D2. Bottom: the edge
connecting B1 and B2 is locally Delaunay because the interior tangent ball of B1, B2

and D1 is not contained in D2. The exterior/interior tangent ball of B1, B2 and D1

is shown in light gray.

framework introduced in [8] and is discussed in more detail in Chapter 2. The kine-

tization process relies heavily on the fact that the local Delaunay property for the

edges in the DT ensures that the triangulation is globally Delaunay. Let e be an

edge connecting the disks B1, B2 and having the disks D1, D2 as its neighbors in the

triangulation. The local Delaunay property states that the edge e is an edge of the

DT if the exterior tangent ball of B1, B2 and D1 does not intersect the disk D2, or

if the interior tangent ball of B1, B2 and D1 is not contained in D2 (see Fig. 5.1).

The global Delaunay property states that there exists an edge in the DT between two

disks B1 and B2 if there exists an exterior tangent ball to B1 and B2 that does not

intersect any other disk or if there exists an interior tangent ball to B1 and B2 that

is not contained in any other disk. In this chapter we prove the relationship between

the global and local Delaunay properties.

Using the local Delaunay property, we can maintain the Voronoi diagram for the

set of disks using three types of events, two of which appear only in the case of

intersecting disks. The data structure that we use is called the Augmented Delaunay

Triangulation (ADT) of the set of disks. It consists of the Delaunay triangulation of

the disks augmented with some additional linear size data structure associated with

the disks that do not contribute to the Voronoi diagram (see Fig. 5.2). We call these

disks trivial. Since the edges in ADT \DT are associated with trivial disks, the ADT
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Figure 5.2: The Voronoi diagram for a set of disks (top) and the corresponding
Augmented Delaunay Triangulation (bottom). The disks in dark gray are trivial.
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differs from the DT only when we have trivial disks. In particular, if we do not allow

disk intersections the DT and ADT coincide.

An interesting property of the ADT is that the closest pair of the set of disks is

realized between two disks that share an edge in the ADT. Thus, knowing how to

maintain the ADT enables us to maintain the closest pair of the set of disks using a

tournament tree on the edges of the ADT. The distance between two disks B1 and

B2 is defined as follows :

δ(B1, B2) =







d(b1, b2)− r1 − r2, B1 6⊆ B2 and B2 6⊆ B1

−2 min{r1, r2}, B1 ⊆ B2 or B2 ⊆ B1

, (5.1)

where bi are the centers of the disks Bi, ri their radii, and d(·, ·) denotes the Euclidean

metric. If the set of disks does not have any intersecting disks the distance function

(5.1) gives us the closest pair in the usual sense. If there are intersecting disks,

then the closet pair with respect to (5.1) is either the pair of non-trivial disks with

maximum penetration depth among all intersecting pairs of disks, or the largest trivial

disk and its container.

Another important property of the ADT is that a subgraph of the ADT is a

spanning subgraph of the connectivity graph of the set of disks. Knowing how to

maintain the ADT enables us to maintain the connectivity of the set of disks by

maintaining the afore-mentioned spanning subgraph.

Finally, the DT of a set of non-intersecting disks has the property that if we want

to find the near neighbors of a disk we only need to look at its neighborhood in the

DT. Therefore, in order to maintain the near neighbors of a disk we simply need to

look at its neighborhood in the DT and update this neighborhood as the DT changes.

We make this statement more precise in Section 5.7.

The rest of the chapter is structured as follows. In Section 5.1 we introduce the

Voronoi diagram for disks, and discuss some of its properties. Section 5.2 is devoted

to proving the relationship between the global and local Delaunay properties. In

Section 5.3 we show how to kinetize the Voronoi diagram. In Section 5.5 we prove

that the closest pair of the set of disks is realized between disks that share an edge

in the ADT and describe how to maintain the closest pair. In Section 5.6 we prove

that a properly chosen subset of the ADT is a spanning subgraph of the connectivity
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graph of the set of disks. Finally, in Section 5.7 we discuss the maintenance of near

neighbors of disks.

5.1 The Voronoi Diagram for Disks and its Prop-

erties

Let S be a set of n disks Bj, with centers bj and radii rj. Let d(·, ·) be the Euclidean

distance. We define the distance δ(p, B) between a point p ∈ E
2 and a disk B = {b, r},

as δ(p, B) = d(p, b)− r. We define the Voronoi diagram for the set S as follows. For

each j 6= i, let Hij = {y ∈ E
2 : δ(y, Bi) ≤ δ(y, Bj)}. Then we define the (closed)

Voronoi cell of Bi to be the cell Vi =
⋂

i6=j Hij. The Voronoi diagram VD(S) of S

is defined to be the set of points which belong to more that one Voronoi cell. For

simplicity we assume that no point in VD(S) belongs to more than three Voronoi

cells; this is a generalization of the assumption made for point sets, in which no more

than three points are cocircular. The Voronoi diagram just defined is a subdivision

of the plane. It consists of straight or hyperbolic arcs and each Voronoi cell is star-

shaped with respect to the center of the corresponding disk (see [48, Properties 3 and

4]).

In contrast to the Voronoi diagram for points, there may be disks whose corre-

sponding Voronoi cell is empty. In particular, the Voronoi cell Vi of a disk Bi is empty

if and only if Bi is wholly contained in another disk (see [48, Property 2]). A disk

whose Voronoi cell has empty interior is called trivial, whereas a disk whose Voronoi

cell has non-empty interior is called non-trivial.

We define the dual of VD(S) as follows. The vertices are the centers of the non-

trivial disks. If Vi ∩ Vj 6= ∅, we add an edge [bi, bj] for every open arc α of Vi ∩ Vj.

It turns out that the dual graph is a planar graph [48, Property 6]. We can define a

planar embedding of the dual graph by mapping every edge eα to two straight line

segments bix and xbj where x is an interior point of α. This planar embedding has

the property that all but its outer face contain at least three edges. This implies

that the size of both the Voronoi diagram and its dual is O(n) [48, Property 7]. The

Voronoi diagram just defined may consist of more than one connected component

(see [48, Property 9]). If it consists of a single connected component and the disks
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Figure 5.3: A case in which the Voronoi diagram consists of a single connected com-
ponent. The dual is a (generalized) triangulation of the plane.
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Figure 5.4: A case in which the Voronoi diagram consists of two connected compo-
nents. Left: the dual of the Voronoi diagram is not a (generalized) triangulation of
the plane. Right: the graph corresponding to the compactified version of the dual of
the Voronoi diagram; in this case we have a (generalized) triangulation.

are in general position, the dual graph is a generalized triangulation of the plane. By

generalized we mean that the edges of the triangles may be curved arcs or polygonal

lines instead of straight line segments and that all but its outer face contain exactly

three edges (see Fig. 5.3). If it consists of more than one connected component then

we can add a disk at infinity and appropriately add edges from the disks on the convex

hull of S to the disk at infinity. The compactified graph is a generalized triangulation,

in which every face consists of exactly three edges (see Fig. 5.4).



CHAPTER 5. VORONOI DIAGRAMS FOR MOVING DISKS 58

We assume throughout the rest of the chapter that the Voronoi diagram consists

of only one connected component. We shall refer to the dual graph of VD(S) as the

Delaunay Graph DG(S) of S. If the disks are in general position we refer to the dual

graph as the Delaunay Triangulation DT(S) of S.

Let Bi and Bj be two disks such that no disk is contained inside the other. A ball

tangent to Bi and Bj that does not contain either of the two is an exterior tangent

ball. A ball tangent to Bi and Bj that lies in Bi ∩Bj is an interior tangent ball. The

following theorem couples the existence of edges in DG(S) with exterior and interior

tangent balls of disks in S.

Theorem 16 (Global Property). There exists an edge [bi, bj] in DG(S) between Bi

and Bj if and only if one of the following holds: (1) there exists an exterior tangent

ball to Bi and Bj which does not intersect any disk Bk ∈ S, k 6= i, j; (2) there exists

an interior tangent ball to Bi and Bj, which is not contained in any disk Bk ∈ S,

k 6= i, j.

Proof. Let [bi, bj] be an edge of DG(S). Then the intersection of Vi and Vj consists

of at least one arc α with non-empty interior. Let y be a point in the interior of

α. Consider the ball C centered at y with radius |δ(y, Bi)| = |δ(y, Bj)|. Then C is

tangent to both Bi and Bj. If y ∈ Bi∩Bj suppose that C is contained in a third disk

Bk. If y 6∈ Bi ∩ Bj suppose that C intersects with a third disk Bk. In both cases,

if C is not tangent to Bk, then δ(y, Bk) < δ(y, Bi) = δ(y, Bj), which contradicts the

assumption that y ∈ Vi ∩ Vj. If C is tangent to Bk, then y belongs to Vk as well. But

this contradicts the fact that y is an interior point of α. Hence C is the desired ball.

Conversely, assume there exists an exterior tangent ball C to both Bi and Bj, that

does not intersect with any other disk Bk. Let y be the center of C. Then y ∈ Vi∩Vj,

since δ(y, Bi) = δ(y, Bj) and δ(y, Bi) < δ(y, Bk), for all k 6= i, j. Suppose that y is

an end point of an arc in VD(S). Then there exists a third disk Bk that is tangent

to C; this contradicts the assumption that C intersects with only Bi and Bj. Hence

y has to be in the interior of some arc α of VD(S). But then the edge [bi, bj] is an

edge of DG(S). Assume now that C is an interior tangent ball to both Bi and Bj,

which is not contained inside any disk Bk, k 6= i, j. Let y be the center of C. Then

δ(y, Bi) = δ(y, Bj) and since C is not contained inside another disk Bk, k 6= i, j, we

have that δ(y, Bk) > δ(y, Bi). Hence y ∈ Vi ∩ Vj. If y was an end point of Vi ∩ Vj,
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then there would be a third disk Bk, k 6= i, j, with δ(y, Bk) = δ(y, Bi). But then C

would be contained in Bk, which contradicts our assumption. Hence y is an interior

point of Vi ∩ Vj, which implies that [bi, bj] is an edge in DG(S).

In order to account for the trivial disks, we augment the Delaunay triangulation

with some additional edges. For a trivial disk D we add an edge between D and its

container disk. If D has more than one container we need to add an edge to only one

of its containers, chosen arbitrarily. We call this structure the Augmented Delaunay

Triangulation ADT(S) of S. The set of additional edges forms a forest, and the root

of each tree in the forest is a non-trivial disk. Clearly, the forest has linear size. Hence

the size of ADT(S) is still O(n).

5.2 The Local Property of the Delaunay Triangu-

lation

In this section we present the local Delaunay property for a set of possibly intersecting

disks and we show that the local Delaunay property is a sufficient and necessary

condition for a (generalized) triangulation of the set of disks to be globally Delaunay.

We only consider non-trivial disks, since trivial disks do not contribute to the Voronoi

diagram. The relationship between the local and global Delaunay property of the

triangulation is central in the kinetization process, since this is the property that

enables us to describe a global property though a set of local conditions.

Let πij be the bisector of Bi and Bj. The bisectors are lines or hyperbolas which

can be oriented. We define the orientation to be such that bi is to the left of πij. Let ≺
be the linear ordering on the points of πij. Let oij be the midpoint of the subsegment

of bibj that lies either in free space or in Bi ∩Bj. We can parameterize πij as follows:

if p ≺ oij then ζij(p) = −(δ(p, Bi)− δ(oij, Bi)); otherwise ζij(p) = δ(p, Bi)− δ(oij, Bi).

When we have no degeneracies, the function ζij is a 1–1 and onto mapping from πij

to R. Let ω(p, Bi) be the ball with center p and radius |δ(p, Bi)|. Clearly, ω(p, Bi) is

tangent to Bi and Bj, and ω(p, Bi) either does not contain any of Bi and Bj or lies

in Bi ∩ Bj.

Let Bi, Bj and Bk be three disks such that no disk is contained inside another.
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The three disks may have up to eight common tangent balls (see Fig. 5.5). Among

those we are interested in only two kinds: those balls that do not contain any of the

three disks, which we call exterior tangent balls and those that are contained entirely

in the intersection of the three disks, which we call interior tangent balls (see Fig.

5.6). Let Pi, Pj, Pk be the points of tangency of the disks Bi, Bj, Bk with their

common tangent ball. If CCW(Pi, Pj, Pk) > 0 we call the common tangent ball the

Figure 5.5: Three disks and their eight common tangent balls. The solid tangent ball
does not contain any of the disks. The three dotted tangent balls contain exactly
one disk. The three dashed tangent balls contain eactly two disks. The dash-dotted
tangent ball contains all three disks.
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left tangent ball of the triple Bi, Bj, Bk. If CCW(Pi, Pj, Pk) < 0, we call the common

tangent ball the right tangent ball of the triple Bi, Bj, Bk. Note that three disks have

at most one left/right exterior/interior tangent ball (see Fig. 5.6). Finally, we define

ζL
ij(Bk) to be the parameter value of the center c ∈ πij of the left tangent ball of Bi,

Bj and Bk. Correspondingly, ζR
ij (Bk) is the parameter value of the center of the right

tangent ball of Bi, Bj and Bk.

Let T (S) be a (generalized) triangulation of S that is constructed as follows. The

vertices of T (S) are the centers of the disks in S. An oriented edge ekl
ij in T (S) is an

edge that connects the disks Bi and Bj and has, as neighbors in T (S), the disks Bk

and Bl to its left and right, respectively. It is possible that the disks Bk and Bl are the

same. The disk Bk is called the left neighbor of ekl
ij and the disk Bl is called the right

neighbor of ekl
ij . Note that the quadruple (i, j, k, l) uniquely defines edges in T (S), i.e.,

there can be at most one oriented edge in the triangulation starting from Bi, ending

at Bj and having Bk and Bl to its left and right, respectively. The left tangent ball

of the triple Bi, Bj, Bk is called the left (tangent) ball of ekl
ij , and similarly, the right

tangent ball of the triple Bi, Bj, Bl is called the right (tangent) ball of ekl
ij . We assume

that for every edge in T (S) its left and right tangent balls exist. Then we can embed

ekl
ij with a two-leg polygonal line bixbj, where x is a point on πij with parameter value

ζij(x) in between ζL
ij(Bk) and ζR

ij(Bl). For every triangle ∆ijk ∈ T (S) that connects

the disks Bi, Bj and Bk, in counterclockwise order, we associate the left tangent ball

∆̃ijk of the triple Bi, Bj, Bk. This is called the Delaunay ball of ∆ijk. Note that there

is an 1–1 correspondance between triangles ∆ in T (S) and their Delaunay balls ∆̃.

An edge ekl
ij in T (S) is called locally Delaunay if the predicate InCircle(Bi, Bj,

Bk, Bl) is false. A triangle ∆ in T (S) is called locally Delaunay if all its edges are

locally Delaunay. The InCircle predicate is defined below. We are going to discuss

the algebraic conditions associated with the InCircle predicate in Section 5.8.

Definition 10. Let Bi, Bj, Bk, Bl be four disks. The predicate InCircle(Bi, Bj,

Bk, Bl) is true if k 6= l and either Bl intersects the exterior left tangent ball of Bi, Bj

and Bk, or Bl contains the interior left tangent ball of Bi, Bj and Bk.

Note that if an edge ekl
ij is locally Delaunay then ζL

ij(Bk) > ζR
ij (Bl). This imples

that if a triangle ∆ is locally Delaunay, then the center c∆̃ of its Delaunay ball ∆̃ lies
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Figure 5.6: The various cases that can possibly happen with respect to the number
of exterior or interior tangent balls of three disks B1, B2 and B3. The tangent balls
are shown in light gray. From left to right and top to bottom: no exterior or interior
tangent balls; only one exterior tangent ball; only one interior tangent ball; one
exterior and one interior tangent ball; two exterior tangent balls; two interior tangent
balls.



CHAPTER 5. VORONOI DIAGRAMS FOR MOVING DISKS 63

PSfrag replacements

Bi

Bj

Bk

BlPSfrag replacements

Bi

Bj

Bk

Bl

PSfrag replacements

Bi

Bj

Bk

Bl

PSfrag replacements

Bi

Bj

Bk

Bl

Figure 5.7: The four cases (assuming k 6= l) for the predicate InCircle(Bi, Bj,
Bk, Bl). Left: the predicate is false. Right: the predicate is true.

in the interior of ∆. We are now ready to prove the main result of this section, namely

the relationship between the local and global property of the Delaunay triangulation.

Theorem 17 (Local Property). A (generalized) triangulation T (S) is the Delau-

nay triangulation of S if and only if all the triangles in T (S) are locally Delaunay.

Proof. It is straightforward to verify that if a triangulation is globally Delaunay then

it is locally Delaunay as well.

Suppose now that we have a triangulation T (S) that is locally Delaunay but not

globally. We assume without loss of generality that for all triangles the corresponding

Delaunay balls are interior. If this is not the case we can increase the radii of all the

disks by a sufficiently large quantity. The triangulation T (S) is not affected by this

change, other than that all the Delaunay balls become interior.
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Since T (S) is not globally Delaunay there exists a triangle ∆ that is locally De-

launay but its Delaunay ball ∆̃ is contained inside some disk B = {b, r}. Consider

the distance between the disk B and the Delaunay ball ∆̃. This distance is

δ(∆̃, B) = d(b, c∆̃) + r∆̃ − r ,

where c∆̃ and −r∆̃ are the center and radius of ∆̃ (interior Delaunay balls are con-

sidered to have negative radius). Among all triangles ∆ for which ∆̃ ⊂ B, choose ∆

to be the one for which δ(∆̃, B) is minimized.

Let e = [b1, b2] be the (oriented) edge of ∆ that the segment c∆̃b intersects (see

Fig. 5.8). Let L be the two-leg polygonal line b1c∆̃b2. Let ∆′ be the left neighboring

triangle of e in T (S). Since c∆̃b intersects e, b must lie in the half-plane H bounded by

L that contains e. Since both ∆ and ∆′ are locally Delaunay the quad Q = b1c∆̃b2c∆̃′

is contained inside ∆ ∪ ∆′, and clearly b cannot lie inside Q. But then we have

∆̃′ ⊂ B, and moreover δ(∆̃′, B) < δ(∆̃, B), which contradicts the fact that δ(∆̃, B)

is minimal.
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5.3 Kinetizing the Delaunay Triangulation

Maintaining the Voronoi diagram or its dual, the Delaunay triangulation, for a set

of points moving on the plane is straightforward [22]. This is due to the local prop-

erty of the Delaunay triangulation, which states that if the triangles of the Delaunay

triangulation are locally Delaunay, then the triangulation is the Delaunay triangula-

tion. When one of the conditions fails we simply have to do an edge-flip operation to

restore the correctness of the Delaunay triangulation. The same principle is exploited

to maintain the power diagram of non-intersecting moving disks [24] and the Voronoi

diagram for rigidly moving polygons [23].

In the case of non-intersecting disks the very same ideas can be used. The local

Delaunay property is also true for the Delaunay triangulation of disks, as we showed

in the preceding section, and thus the critical events happen at times when four

disks become cocircular or when three disks lying on the convex hull of S have a

common tangent line. In fact if we add a disk at infinity and connect every disk

lying on the convex hull of S with the disk at infinity, the compactified version of

the Delaunay triangulation of S consists of triangles only and every triangle has

exactly three neighboring triangles. In this setting, the case of three disks having a

common tangent reduces to a cocircularity event with one of the disks being a disk

at infinity. When such a cocircularity event happens we only need to perform an

edge-flip operation to restore the correctness of the Delaunay triangulation, and its

dual the Voronoi diagram.

However, when we allow disk intersections the situation changes considerably.

Unlike the points’ case, there are disks that are not associated with a particular

Voronoi cell, namely the trivial disks. We need to account for these disks, since

as the disks move some of the trivial disks may become non-trivial and vice versa.

This is done by considering the Augmented Delaunay triangulation instead of the

Delaunay triangulation. There are three types of events that change the combinatorial

structure of ADT(S) : the cocircularity, the appearance and the disappearance event.

All three events are associated with edges of the ADT(S). In particular, an edge

in DT(S) is associated with a cocircularity and a disappearance event. An edge in

ADT(S) \DT(S) is associated with an appearance event. We now discuss each type

of event separately.
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5.3.1 The Cocircularity Event

The cocircularity event happens when four distinct disks have a common exterior

or interior tangent ball. Let Bi, i = 1, 2, 3, 4 be the four disks associated with the

cocircularity event and let [b1, b3] be the edge to be flipped. We need to delete that

edge and add the edge [b2, b4] (see Fig. 5.9).

The cost of this event is O(log n). We need O(1) time to perform the edge-flip,

O(log n) time to schedule the cocircularity event for the new edge, O(log n) time to

schedule the disappearance event for the new edge, and O(log n) time to reschedule

the four cocircularity events of the edges surrounding the new edge.

PSfrag replacements

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

B3

B3

B4

B4B4

B4
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5.3.2 The Appearance Event

The appearance event occurs when a disk B1 contained inside a disk B2 is no longer

wholly contained inside B2. There are two possibilities when this happens: (1) B2
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Figure 5.10: The appearance event.
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is a trivial disk and (2) B2 is a non-trivial disk. If B2 is a trivial disk we delete the

edge [b1, b2] and add the edge [b1, b3], where B3 is the container disk of B2 (see Fig.

5.10(a)). If B2 is a non-trivial disk we need to first check its neighbors in the DT

to see if B1 is contained in any one of them. If such a neighbor B3 exists we delete

the edge [b1, b2] and add the edge [b1, b3] (see Fig. 5.10(b)). If B1 is not contained in

any of the neighbors of B2, we need to identify the edge [b2, b3] that corresponds to

the edge of the Voronoi cell of B2 that the half-line b2b1 intersects. Then duplicate

this edge and add the edge [b1, b3], thus creating two new triangles in DT(S) (see Fig.

5.10(c)).

The cost of the appearance event in the first case is O(log n), since we need O(1)

time to update the ADT and O(logn) time to schedule the new appearance event.

In the second case, the cost of the appearance event is O(n), since we have to look

at all the neighbors of B2 to find if B1 is contained in any one of them. Hence the

overall cost of this event is O(n).

There is one issue, however, that we did not discuss in detail. In particular, it was

suggested above implicitly, that when B1 exits B2 and is contained inside another

non-trivial disk B3, then this disk is a neighbor of B2. The answer to this question is

formally answered by the following theorem.

Theorem 18. Let B1 be a trivial disk in S that at time t0 exits its non-trivial con-

tainer disk B2. If B1 remains trivial at time t0, then there exists a non-trivial disk

B3 6= B2 that contains B1, and B3 is a neighbor of B2 in DT(S).

Proof. We will prove the theorem by contradiction. Suppose than at time t0 none of

the non-trivial disks than contain B1 is a neighbor of B2 in DT(S). Let B such a

non-trivial disk, that contains B1 at time t0 and does not share an edge with B2 in

DT(S). Consider the ball C(B2, B) than is an interior tangent ball to both B2, B

and has its center on the line b2b1 (see Fig. 5.11). Let r(B2, B) be the (absolute value

of the) radius of C(B2, B). Among all non-trivial disks B that contain B1, choose B

to be the one for which r(B2, B) is maximal. Since B2 and B do not share an edge in

the DT(S), there must be a non-trivial disk B ′ that contains the ball C(B2, B). But

then B1 ⊂ B′, and moreover r(B2, B
′) > r(B2, B), which contradicts the maximality

of r(B2, B).
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Figure 5.11: Proof of Theorem 18.

5.3.3 The Disappearance Event

The disappearance event takes place between two disks B1 and B2 when, e.g., B1

becomes wholly contained in B2. When the disappearance event occurs, the edge

[b1, b2] belongs to two triangles with a common third point b3 corresponding to a disk

B3. We simply need to delete the edge [b1, b3], and identify the two edges [b2, b3], thus

deleting two triangles from DT(S) (see Fig. 5.12).

The cost to process the disappearance event is O(log n). It takes O(1) time to

delete the two triangles from the triangulation, O(logn) time to schedule the appear-

ance event for the edge [b1, b2] and O(log n) time to reschedule the cocircularity events

for the edge [b2, b3] and its four surrounding edges.

5.4 Combinatorial Changes of the Voronoi Dia-

gram

In this section we study the number of combinatorial changes of the Voronoi dia-

gram for disks. For the purposes of our analysis, we assume that the disks move in

pseudo-algebraic motions with constant degree. Since the conditions corresponding

to certificate failure times are algebraic functions of the disk motions, each certificate

involving the same set of disks can fail only a constant number of times during the
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entire motion process. The analysis that follows is very similar to that in [23] for the

case of moving polygons. Our analysis, however, applies to the case of intersecting

disks, whereas the analysis in [23] is done for non-intersecting polygons only.

Let p ∈ πij. If p 6∈ Bi ∩ Bj, we say that p is shaded by Bk if ω(p, Bi) ∩ Bk 6= ∅.
If p ∈ Bi ∩ Bj, we say that p is shaded by Bk if ω(p, Bi) ⊆ Bk. Let Sij,k be the set

of points on πij shaded by Bk. Let S̃ij,k be the set of parameter values represented

by the shaded portion, i.e., S̃ij,k = {ζij(p) | p ∈ Sij,k}. Since πij and πik intersect

at most twice (see [48, Property 5]), S̃ij,k must have the form ∅, (−∞, a], [b,∞),

(−∞, a] ∪ [b,∞), [a, b] or (−∞,∞), where a and b correspond to the parameter

values of the Voronoi vertices defined by Bi, Bj and Bk. When S̃ij,k has the form
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(−∞, a] or (−∞, a] ∪ [b,∞), we say that πij is half-shaded by Bk at a. Notice that

if neither πij nor πji is half-shaded by Bk, then S̃ij,k must have the form ∅ or [a, b],

where a < b. Assume that Bk is not contained inside Bi or Bj. A consequence of the

above analysis is the fact that follows.

Fact 1. The shaded set S̃ij,k is of the form [a, b], where a < b, if and only if Bk is not

contained in Bi or Bj, and Bk lies completely inside the region defined by the disks

Bi and Bj and their common outer tangent lines.

Clearly a point in VD(S) lies in one of the πij’s, and in particular it cannot be a

shaded point. This is the essence of the following fact.

Fact 2. A point p ∈ πij is in VD(S) if and only if ζij(p) is not in the interior of S̃ij,k,

∀ k 6= i, j.

As we discussed in Section 5.3, events occur when three disks have a common

tangent line or four disks have a common tangent ball, or when two disks become

tangent. Since the total number of times that two disks can become tangent is O(n2)

and the total number of times that three disks have a common tangent line is O(n3),

the number of events in our KDS is dominated by the total number of times that

four disks have a common exterior or interior tangent ball. We can get the immediate

upper bound of O(n4) for constant degree pseudo-algebraic motions. However, we

show a significantly smaller upper bound of O(n3β(n)).

Our main task is to prove the following theorem.

Theorem 19. Suppose that S is a set of n disks. When the disks in S move pseudo-

algebraically, the Voronoi diagram VD(S) changes O(n3β(n)) times.

In order to prove our result we need the following facts.

Fact 3. The Voronoi diagram of three disks changes O(1) times.

Fact 4. The distance function δ(Bi, Bj) consists of O(1) rational arcs with constant

degree when Bi and Bj move pseudo-algebraically with constant degree.

For three disks B1, B2 and B3 recall that S12,3 is the set of points that are on

π12 and shaded by B3. The parameters S̃12,3 of this shaded set may be of the form
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∅, (−∞, a], [b, +∞), (−∞, a] ∪ [b, +∞), [a, b] or (−∞, +∞). We define the function

φ12,3(t) as follows. If at time t, π12 is half-shaded by B3 at a, then φ12,3(t) is defined

to be a. Otherwise, it is undefined. Since an end point of S̃12,3 corresponds to the

parameter value of a Voronoi vertex when considering B1, B2 and B3 only, Facts 3

and 4 say that φ12,3 consists of O(1) pieces of rational arcs. Likewise, we define the

function φij,l for each triplet i, j, l. For a pair of disks Bi and Bj, we have a family of

functions Φij = {φij,l | l 6= i, j}. Let Γ(Φij) be the upper envelope of a set of functions

Φij. We first show that

Lemma 12. A cocircularity event can be charged to a break point on Γ(Φij) or the

overlay between Γ(Φij) and −Γ(Φji), for some i 6= j.

Proof. Suppose that at time t, a cocircularity event happens to B1, B2, B3 and B4.

We claim that among those four disks, there always exist two, say B1 and B2, so that

S̃12,3 and S̃12,4 are not closed intervals with the form [a, b]. This claim stems from

Fact 1.

Suppose v is the coincident Voronoi vertex at time t. Let x = ζ12(v). By Fact 2,

at time t, there cannot be any other Bi (i 6= 1, 2, 3, 4) such that x is in the interior

of S̃12,i. Since S̃12,3 is not a closed interval, either φ12,3(t) = x or φ21,3(t) = −x. The

same argument applies to φ12,4(t) and φ21,4(t). The fact that v is not shaded by any

other Bi allows us to charge such an event either to a break point on Γ(Φ12) or Γ(Φ21)

or to an intersection between Γ(Φ12) and −Γ(Φ21).

Given the above lemma we can prove our main theorem.

Proof. (Theorem 19) As we have already mentioned the Voronoi diagram changes

when four disks become cocircular, i.e., they have a common tangent ball. By Lemma

12, these events can be charged to break points on the lower or upper envelopes of

Φij’s or their overlay. Since each φij,l consists of O(1) pieces of rational arcs, the

complexity of Γ(Φij) is bounded by λs(n) = nβ(n), for some constant s. The overlay

between two envelopes has the same complexity. Thus, the number of cocircularity

events is bounded by
∑

i,j O(1)nβ(n) = O(n3β(n)).
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5.5 Closest Pair Maintenance

In this section we discuss how to maintain the closest pair of a set S of disks. The

distance function that we use is given by relations (5.1). The trivial way to do the

maintenance is to consider all
(

n
2

)

pairs of disks and maintain the one of minimum

distance with respect to the distance function (5.1). It turns out, however, that there

always exists an edge in ADT(S) between the two disks comprising the closest pair.

This suggests that we only need to look at O(n) edges in order to determine the

closest pair. We assume throughout this section that the closest pair is unique, i.e., if

B1, B2 is the closest pair in S then δ(B1, B2) < δ(Bi, Bj), for all (i, j) 6= (1, 2), with

i 6= j.

We first state three facts for the closest pair with respect to the distance function

(5.1).

Lemma 13. The closest pair in S is realized either between two non-trivial disks or

between a trivial and a non-trivial disk.

Proof. Let B1, B2 be the closest pair in S. Suppose that both B1 and B2 are trivial

disks. We assume, without loss of generality, that r2 ≤ r1. By the definition of the

disk distance function we have δ(B1, B2) ≥ −r2. Let D be a container of B1. Then

we have δ(B1, D) = −r1 ≤ −r2 = δ(B1, B2), which contradicts the fact that B1, B2

is the closest pair. Hence B1 cannot be a trivial disk.

Lemma 14. If the closest pair is realized between a trivial and a non-trivial disk, the

non-trivial disk is the only container of the trivial disk.

Proof. Let B1, B2 be the closest pair in S and let B2 be the trivial disk. Let D be a

container of B2. Suppose that B1 is not a container of B2. Then by the definition of

the disk distance function we have that δ(B1, B2) > −r2 = δ(D, B2), which contra-

dicts the fact that the disks B1, B2 are the closest pair. Hence B1 is a container of

B2. The uniqueness of B1 as a container of B2 stems from the uniqueness assumption

on the closest pair.

Lemma 15. If the closest pair is realized between a trivial and a non-trivial disk,

then the trivial disk is the largest trivial disk in S.
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Proof. Let B1, B2 be the closest pair in S and let B2 be a trivial disk. By Fact 14, B1

is a container of B2, i.e., δ(B1, B2) = −r2. Suppose B3 is another trivial disk in S such

that r3 > r2. Let D be a container of B3. Then δ(D, B3) = −r3 < −r2 = δ(B1, B2),

which is a contradiction. Hence B2 is the largest trivial disk in S.

We are now ready to state and prove the main theorem of this section.

Theorem 20. Let B1, B2 be the closest pair in S. Then there exists an edge [b1, b2]

in ADT(S).

Proof. We will prove the theorem by contradiction. Assume that B1 and B2 is the

closest pair, but there does not exist an edge [b1, b2] in ADT(S).

Let δ(B1, B2) ≥ 0 (see Fig. 5.13(top)). By Lemmas 13 and 14 both B1, B2

must be non-trivial. Let q1, q2 be the points of tangency of ω(o12, B1) with B1, B2,

respectively (see Fig. 5.13(top)). Suppose that there exists a third disk B3 ∈ S such

that B3 ∩ ω(o12, B1) 6= ∅. Let q3 ∈ B3 ∩ ω(o12, B1). Since q3 ∈ ω(o12, B1), the edge

q1q2 is the hypotenuse of the triangle q1q2q3. Hence,

δ(B1, B3) ≤ d(q1, q3) ≤ d(q1, q2) = δ(B1, B2),

which contradicts the assumption that B1, B2 is the closest pair. Therefore Bi∩
ω(o12, B1) = ∅, for all i 6= 1, 2, which by Theorem 16 implies that there exists an edge

[b1, b2] in ADT(S).

Let δ(B1, B2) < 0, and let both B1 and B2 be non-trivial (see Fig. 5.13(bottom)).

Since B1, B2 do not share an edge in DT(S), there exists a non-trivial disk B3 that

contains ω(o12, B1) (see Fig. 5.13(bottom)). Let C be the interior tangent ball of

B1 and B3 that has its center on the line b1b2, and let r be the (absolute value of

the) radius of C. Let r12, r13 be the (aboslute values of the) radii of ω(o12, B1) and

ω(o13, B1), respectively. Then

δ(B1, B3) = −2r13 ≤ −2r ≤ −2r12 = δ(B1, B2),

which contradicts the fact that B1, B2 is the closest pair in S. Hence B1 and B2 share

an edge in ADT(S).
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Figure 5.13: Proof of Theorem 20. Top: the case δ(B1, B2) ≥ 0. Bottom: the case
δ(B1, B2) < 0 and both B1, B2 are non-trivial.

Finally, let δ(B1, B2) < 0 and let B2 be a trivial disk. Then, by Lemmas 13 and

14, B1 has to be non-trivial and B1 is the only container of B2. Clearly, there exists

an edge [b1, b2] in ADT(S) \DT(S).

Now that we have established that we only need to look at the edges of the ADT(S)

to find the closest pair, we simply need to maintain a tournament tree T on the edges

of ADT(S). Before describing how to actually maintain T we need some definitions.

Let t1 and t2 be two nodes of T . We say that t1 ≺ t2 if the depth of t1 is smaller than
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the depth of t2 in T , or if t1, t2 are of the same depth and t1 is to the left of t2 in T .

A node t1 is adjacent to a node t2 in T if they have the same parent. A node t is a

loser if its parent is its adjacent node. Finally, a node t is a winner if its parent is

itself.

The certificates associated with T are the winner-loser relationships. T changes

due to changes in the winner-loser relationships or due to changes of the ADT(S),

because of cocircularity, appearance and disappearance events. When a winner-loser

relationship changes we simply propagate the new winner up the tree, deschedule the

old winner-loser relationships and schedule the new ones. During this propagation

we visit O(log n) nodes of the tree and schedule/deschedule O(log n) certificates in

total. Hence the cost per winner-loser relationship change is O(log2 n) (see Fig. 5.14).

When an edge disappears we replace the corresponding leaf node with the last loser

leaf node and delete the last winner and loser leaf nodes. Then we propagate the last

loser leaf node up the tree as in the case of a winner-loser relationship change. Again

this takes O(log2 n) time (see Fig. 5.15). Finally, when an edge appears we create

two new leaf nodes in the tree: one for the new edge and one for the first leaf node.

We attach the two new nodes under the current first leaf node and propagate the

Figure 5.14: A case in which the a winner-loser relationship changes. Top: the white
node is the closest pair. Bottom: the gray node becomes the closest pair; the gray
node is propagated all the way up the tournament tree.
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Figure 5.15: Removing a node from the tournament tree. The gray node is the one
to be deleted. The white node is the last loser leaf node. Top: the tree before the
removal of the gray node. Bottom: the tree after the removal of the gray node; the
white node is propagated up the tree.

Figure 5.16: Adding a node to the tournament tree. The gray node is the the first
leaf node. The white node is the new node. Top: the tree before the addition of
the new node. Bottom: the tree after the addition of the new node; the new node is
propagated up the tree.
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winner between these two nodes up the tree (see Fig. 5.16). Once again this takes

O(log2 n) time.

The number of changes in a single winner-loser relationship is constant for disks

moving along pseudo-algebraic trajectories of constant degree. Hence the number of

events that we have to process is dominated by the number of combinatorial changes

of ADT(S), which is O(n3β(n)). All, but the appearance event, are processed in

O(log2 n) time; the appearance event is processed in O(n) time.

5.6 Kinetic Connectivity of Disks

In this section we discuss how to kinetically maintain the connectivity for a set of

disks of different radii. The problem for unit disks has already been studied in [20].

The connectivity graph K of a set of disks S is defined as follows. The vertices of

K are the centers of the disks in S. Two disks share an edge in K if they intersect.

Let G be the subgraph of ADT(S) defined as follows. An edge e in ADT(S) belongs

to G if and only if it is an edge between two non-trivial intersecting disks or between

a trivial disk and its container disk. Clearly, G is a subgraph of the connectivity

graph K of S (modulo multiple edges between two disks in DT(S)). We show that G

captures all the connectivity infromation that K has. This is really important since

the size of K is Ω(n2) in the worst case, whereas the size of G is O(n). The main

result of this section is the following.

Theorem 21. If B1, B2 ∈ S belong to the same connected component in K, then

there exists a path in G that connects B1 and B2.

In order to prove the above theorem we need a few definitions and a preparatory

lemma. Let Go be the subgraph of G that consists of the edges connecting non-trivial

intersecting disks. Let Gr be the subgraph of G that consists of the edges that connect

trivial disks with their containers. Let us consider first the case that the disks B1, B2

are non-trivial and intersect. Then the following lemma gives the desired result.

Lemma 16. Let B1 and B2 be two non-trivial intersecting disks. Then there exists

a path in Go that connects B1 and B2.
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Proof. If there exists an edge e12 ∈ DT(S) between B1 and B2, then e12 ∈ Go, and we

are done. If such an edge does not exist, consider the line segment [b1, b2] connecting

the centers of B1 and B2 and let V1, . . . , Vk be the sequence of Voronoi cells that

[b1, b2] intersects. Let B1 ≡ C1, . . . , Ck ≡ B2 be the corresponding disks. Consider the

intersection p of the Voronoi edge corresponding to the pair Ci, Ci+1 with the segment

[b1, b2]. Since p ∈ Vi ∩ Vi+1, there exists an edge [ci, ci+1] in DT(S). Since B1 and B2

intersect p ∈ B1 or p ∈ B2. We can assume without loss of generality that p ∈ B1.

This implies that δ(p, B1) ≤ 0. Since p ∈ Vi we must have δ(p, Ci) ≤ δ(p, B1) ≤ 0.

Similarly, δ(p, Ci+1) ≤ 0. This implies that p lies in Ci ∩ Ci+1, i.e., the disks Ci

and Ci+1 intersect. Hence the edge [ci, ci+1] ∈ DT(S) is in Go. Moreover since

p ∈ B1∩Ci ∩Ci+1, the disks Ci and Ci+1 lie in the same connected component as B1.

Consider the path defined by the edges [ci, ci+1], i = 1, . . . , k− 1. This is a path that

lies entirely in Go, since [ci, ci+1] ∈ Go, for all i = 1, . . . , k − 1.

Now we are ready to prove the main theorem.

Proof. (Theorem 21) Let us assume first that B1 and B2 are non-trivial. Since B1

and B2 belong to the same connected component in K, there exists a sequence of

non-trivial disks B1 ≡ C1, . . . , Ck ≡ B2 such that Ci ∩Ci+1 6= ∅. By Lemma 16 there

exists a path Pi in Go that connects Ci with Ci+1 for all i = 1, . . . , k − 1. Consider

the union U of these paths. Clearly, U is a path in Go that connects B1 to B2.

If B1 and/or B2 are trivial, then find the roots R1 and R2 of the trees in Gr that

B1 and B2 belong to. Since R1, R2 are non-trivial, there exists a path Po in Go that

connects R1 and R2. Let P1, P2 be the paths in Gr that connect B1 to R1 and R2

to B2, respectively. Then the path P ≡ P1PoP2 is a path in G that connects B1 to

B2.

We can maintain the connectivity of the disks using the dynamic graph data

structure of Holm, de Lichtenberg and Thorup [27]. This data structure supports

edge insertions and deletions in O(log2 n) amortized time, and connectivity queries in

O(log n/ log log n) time. The graph that we maintain is the graph G defined above.

Once we have ADT(S), maintaining G is really simple. First we color the edges of

ADT(S) as follows: edges between non-intersecting non-trivial disks are green, edges

between intersecting non-trivial disks are orange and edges between trivial disks and
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their containers are red. Clearly, G is the union of orange and red edges. The

color of an edge changes if the corresponding disks become tangent. In particular,

whenever a green edge becomes an orange edge or whenever an orange or a red edge

appears we simply add it to G. Whenever an orange edge becomes a green edge

or whenever an orange or a red edge disappears we simply delete it from G. Since

the cost per insertion/deletion of edge in G is O(log2 n), in the amortized sense, the

cost per update of G is O(log2 n) (amortized), except when we have an appearance

event, in which case the update cost is O(n). The number of times that two disks,

moving along pseudo-algebraic trajectories of constant degree, can become tangent

is constant. This implies that the number of events due to disk tangencies is O(n2).

The total number of events for maintaining G is thus dominated by O(n3β(n)), which

is the number of times that the Delaunay triangulation of the set of disks can change

combinatorially.

5.7 Near Neighbor Maintenance

Suppose that we have a set S of non-intersecting moving disks in two dimensions. Let

P be a disk in S for which we want to know the disks in S that are within a certain,

possibly time varying, distance RP from P . Let CP be the disk centered at P with

radius RP . The obvious approach is to maintain the distance from P to every other

disk in S and keep those that intersect CP . In fact, we can do better than that. If

we are maintaining the DT of S, the only disks that can enter or exit CP are those

that are end points of edges of the DT crossing CP exactly once. This is the essence

of the following theorem.

Theorem 22. Let T (S) be the DT(S) and let P ∈ S. If a disk Q ∈ S enters/exits

the disk CP at some time t0, then there exists an edge in T (S) between Q and some

disk that intersects CP .

Proof. At time t0, Q is tangent to CP . Let {CR} be the family of balls with center

R that are tangent to Q, lie inside CP and their center lies on the segment cQKP ,

where cQ, KP are the centers of Q and CP , respectively (see Fig. 5.17). Consider

the ball CR′ such that R′ is at maximal distance from Q and the ball CR′ does not
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intersect the interior of any disk in S. Let Q′ 6= Q be the disk that CR′ is tangent

to. Q′ always exists since the set A is non-empty (P ∈ A). Let cQ′ be the center of

Q′. The edge [cQ, cQ′] is an edge in DT(S), since CR′ does not intersect the interior

of any disk in S.

Maintaining the near neighbors of P then reduces to maintaining the DT of S

and updating the set EP of DT edges, one end disk of which intersects CP and the

other does not. The set EP changes when disks enter or exit CP . Edge flips due to

the maintenance of DT(S) may also change EP . In case we want to maintain the

k-nearest neighbors of P the same algorithm applies with two slight modifications:

(1) the distance RP is defined to be the distance of the center of P from Pk, where

Pk is the k-th nearest neighbor of P and (2) the edges of DT(S) adjacent to Pk are

all included in EP .

We shall omit the details of the algorithms since they are essentially the same as

the corresponding algorithms for points in Section 4.2.

5.8 Conditions for the Cocircularity Event

In this section we present the algebraic conditions associated with cocircularity events.

A cocircularity event happens when four distinct disks have a common exterior or
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interior tangent. If one of the four disks is the disk at infinity, the cocircularity event

is equivalent to requiring that three distinct disks have a common tangent line. The

conditions of Theorem 24 have been derived in [19] for the case of non-intersecting

disks. It turns out that they are still valid in the case of intersecting disks. Although

the proofs of Theorems 23 and 24 can be directly derived using the analysis presented

in [19, Theorem 1], we present them here for the shake of completeness. Note that

the conditions presented below are algebraic functions of the disk motions.

Theorem 23. Let Bi = {(xi = xi(t), yi = yi(t)), ri}, i = 1, 2, 3, be three distinct disks

moving on the plane. The first time that these disks have a common tangent line such

that all disks lie on the same side of the line is the smallest root t0 of the equation

a2 + b2 − c2 = 0, (5.2)

where
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Proof. Let L = {αx + βy + γ = 0, α2 + β2 = 1} be the line that is tangent to all

three disks Bi, i = 1, 2, 3. The condition that the line L is tangent to Bi, i = 1, 2, 3,

can be written as

αxi + βyi + γ = ri, i = 1, 2, 3.

Using Cramer’s rule we can immediately find the solution of this system in terms of

α, β, γ. In particular,

α =
1

D

∣

∣

∣

∣

∣

∣

∣

r1 y1 1

r2 y2 1

r3 y3 1

∣

∣

∣

∣

∣

∣

∣

, β =
1

D

∣

∣

∣

∣

∣

∣

∣

x1 r1 1

x2 r2 1

x3 r3 1

∣

∣

∣

∣

∣

∣

∣

, γ =
1

D

∣

∣

∣

∣

∣

∣

∣

x1 y1 r1

x2 y2 r2

x3 y3 r3

∣

∣

∣

∣

∣

∣

∣

,

where

D =

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

.

However, in order for L to exist α and β must satisfy α2 +β2 = 1, which immediately
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gives relation (5.2).

Theorem 24. Let Bi = {(xi = xi(t), yi = yi(t)), ri}, i = 1, 2, 3, 4, be four distinct

disks moving on the plane. The first time that these disks have a common exterior or

interior tangent disk is the smallest root t0 of the equation

a2 + b2 − c2 = 0, (5.3)

satisfying the conditions

ax∗
i + by∗

i

dpi

≤ 1, i = 1, 2, 3, (5.4)

where

a =

∣

∣

∣

∣

∣

∣

∣

y∗
1 r∗1 p1

y∗
2 r∗2 p2

y∗
3 r∗3 p3

∣

∣

∣

∣

∣

∣

∣

, b =

∣

∣

∣

∣

∣

∣

∣

x∗
1 r∗1 p1

x∗
2 r∗2 p2

x∗
3 r∗3 p3

∣

∣

∣

∣

∣

∣

∣

, c =

∣

∣

∣

∣

∣

∣

∣

x∗
1 y∗

1 p1

x∗
2 y∗

2 p2

x∗
3 y∗

3 p3

∣

∣

∣

∣

∣

∣

∣

, d =

∣

∣

∣

∣

∣

∣

∣

x∗
1 y∗

1 r∗1

x∗
2 y∗

2 r∗2

x∗
3 y∗

3 r∗3

∣

∣

∣

∣

∣

∣

∣

,

and x∗
i = xi − x4, y∗

i = yi − y4, r∗i = ri − r4, pi = (x∗
i )

2 + (y∗
i )

2 − (r∗i )
2, i = 1, 2, 3.

Proof. We can assume without loss of generality that B4 is the disk of smallest radius

r4. Let r∗i = ri − r4, i = 1, 2, 3, 4. Consider the disks Zi = (zi, r
∗
i ), i = 1, 2, 3, 4,

where zi = (xi, yi) is the center of the disk Zi. Clearly, the problem of determining

the times that the disks Bi, i = 1, 2, 3, 4, have a common tangent ball is equivalent

to the problem of finding the times for which there exists a ball that is tangent to Zi,

i = 1, 2, 3, and passes through the point Z4. We think of the disks Zi as embedded on

the complex plane. Let (z, r) be the ball that is tangent to Zi, i = 1, 2, 3, and passes

through Z4. Note that (z, r) is an exterior tangent ball to all Zi, i = 1, 2, 3. Consider

the transformation W = W (z) = 1/(z − z4). This tranformation maps circles on the

Z-plane that do not pass through z4 to circles on the W -plane, and circles on the

Z-plane that pass through z4 to lines on the W -plane. Under this transformation the

disks Zi, i = 1, 2, 3, map to the disks Wi = (wi, ρi) = ((ui, vi), ρi), i = 1, 2, 3, where

wi =
zi − z4

pi

, ρi =
r∗i
pi

, pi = |zi − z4|2 − (r∗i )
2.
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Note that all pi > 0, since no one of the four original disks is contained inside another.

The ball (z, r) is mapped to a line L. Let L = {αu + βv + γ = 0, α2 + β2 = 1} be

the line that is tangent to all Wi, i = 1, 2, 3. Note that under the transformation

W = W (z), the point at infinity is mapped to zero. Since the infinite point and all

Zi, i = 1, 2, 3, lie on the same side of the ball (z, r), the circle Wi, i = 1, 2, 3, and zero

must lie on the same side of the line L. This requirement can be formulated as

αui + βvi + γ

γ
≥ 1, i = 1, 2, 3,

or equivalently
αui + βvi

γ
≥ −1, i = 1, 2, 3. (5.5)

The condition that L is tangent to the disks Wi, i = 1, 2, 3, can be written as

αui + βvi + γ = ρi, i = 1, 2, 3.

Using Cramer’s rule we immediately get the following solution in terms of α, β and

γ.

α =
1

D

∣

∣

∣

∣

∣

∣

∣

ρ1 v1 1

ρ2 v2 1

ρ3 v3 1

∣

∣

∣

∣

∣

∣

∣

, β =
1

D

∣

∣

∣

∣

∣

∣

∣

u1 ρ1 1

u2 ρ2 1

u3 ρ3 1

∣

∣

∣

∣

∣

∣

∣

, γ =
1

D

∣

∣

∣

∣

∣

∣

∣

u1 v1 ρ1

u2 v2 ρ2

u3 v3 ρ3

∣

∣

∣

∣

∣

∣

∣

,

where

D =

∣

∣

∣

∣

∣

∣

∣

u1 v1 1

u2 v2 1

u3 v3 1

∣

∣

∣

∣

∣

∣

∣

.

However, α and β must satisfy α2 + β2 = 1, which implies

∣

∣

∣

∣

∣

∣

∣

ρ1 v1 1

ρ2 v2 1

ρ3 v3 1

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

u1 ρ1 1

u2 ρ2 1

u3 ρ3 1

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

u1 v1 1

u2 v2 1

u3 v3 1

∣

∣

∣

∣

∣

∣

∣

2

.

Substituting ui, vi and ρi in terms of x∗
i , y∗

i , r∗i and pi, we get relation (5.3).
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Finally, it is easy to verify that

α = − 1

D′

∣

∣

∣

∣

∣

∣

∣

y∗
1 r∗1 p1

y∗
2 r∗2 p2

y∗
3 r∗3 p3

∣

∣

∣

∣

∣

∣

∣

, β =
1

D′

∣

∣

∣

∣

∣

∣

∣

x∗
1 r∗1 p1

x∗
2 r∗2 p2

x∗
3 r∗3 p3

∣

∣

∣

∣

∣

∣

∣

, γ =
1

D′

∣

∣

∣

∣

∣

∣

∣

x∗
1 y∗

1 r∗1

x∗
2 y∗

2 r∗2

x∗
3 y∗

3 r∗3

∣

∣

∣

∣

∣

∣

∣

,

where

D′ =

∣

∣

∣

∣

∣

∣

∣

x∗
1 y∗

1 r∗1

x∗
2 y∗

2 r∗2

x∗
3 y∗

3 r∗3

∣

∣

∣

∣

∣

∣

∣

.

Substituting the above expressions in equalities (5.5) and expressing ui and vi in

terms of x∗
i , y∗

i and pi, we get inequalities (5.4).

5.9 Conclusion

In this chapter we showed how to kinetically maintain the Voronoi diagram for a set

of disks moving in the plane. The key steps in the kinetization process where the

introduction of the Augmented Delaunay triangulation and the establishment of the

relationship between the local and global Delaunay properties. We also proved that

the closest pair of the set of disks is realized between two disks that share an edge in

the ADT, and that a properly chosen subset of the ADT is a spanning subgraph of

the connectivity graph of the set of disks. Based on these properties, and using the

ADT as the underlying structure, we showed how to maintain the closest pair and the

connectivity of the disks as the disks move. Finally, we showed how to maintain the

disks that are within a prescribed distance from a reference disk and how to maintain

the k-nearest neighbors of a reference disk.

We strongly believe that the results presented in this paper can be generalized to

general additively weighted Voronoi diagrams, in which the weights can be positive

as well as non-positive. We would also like to extend the results presented here to

general smooth convex objects or to environments where obstacles are present. Fi-

nally, the best known lower bound on the number of combinatorial changes of the

DT is Ω(n2), whereas our upper bound is O(n3β(n)). Given this upper bound, the
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algorithms presented here for maintaining the DT, the closest pair and disk connec-

tivity are not efficient; it would be of interest to find kinetic data structures that solve

these problems efficiently, or prove a tighter lower or upper bound on the number of

combinatorial changes of the DT.



Chapter 6

Interval Methods for Kinetic

Simulations

Discrete-event simulation is commonly used by geometric algorithms to solve a variety

of problems, in both the static and kinetic settings. Many classic geometric algorithms

are of the sweep-line type (or sweep-plane, etc, in higher dimensions), in which a sweep

is used to reduce a static problem in a given dimension to a dynamic problem in one

less dimension. A sweep algorithm typically maintains an event queue, where the

event times are the moments when the sweep line needs to stop and perform updates

to the data structures it maintains, including the event queue itself. A famous classic

example of such an algorithm is the Bentley-Ottmann line-sweep algorithm [10] for

detecting all intersections among a set of line segments in the plane. All kinetic data

structures are also based on an event queue, where the event times are certificate

failures associated with the proof of correctness of a computation of the KDS attribute

of interest. When a certificate fails, the proof, and with it the event queue, needs

to be updated. In both cases a priority queue on event times is maintained and the

algorithm repeatedly advances the clock to the next event and updates the queue.

We will refer to both of these scenarios as kinetic simulations, because they involve

the continuous evolution of a system punctuated by discrete events.

The calculation of an event time is frequently a non-trivial computational task.

For example, it may involve computing the intersection of three-surfaces in the sweep-

plane case, or the time when moving points become coplanar or co-spherical, in the

87
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kinetic case. The cost of such computations cannot always be justified in terms of the

final result that needs to be computed. For example, almost all kinetic simulations

involve the de-scheduling of events — these are events that will not happen because the

associated certificates were removed from the proof, and the computational resources

that went into their event-time calculation will be wasted. In general, of course, it is

hard to know, at the time an event is scheduled, that it will be de-scheduled at some

future time in the kinetic simulation. Moreover, in many sweep and kinetic problems

the exact time when events happen may not be needed, as long as we can guarantee

that the correct sequence of events will be generated. This is exactly the case in the

classic Bentley-Ottmann sweep, where the output is a purely combinatorial list of

intersecting pairs of segments.

In this chapter we present an approach for reducing the cost of event-time calcu-

lations in kinetic simulations, through the use of interval methods, akin to interval

arithmetic [1]. Instead of exact event times, we will focus on time intervals guar-

anteed to contain one or more events. The key intuition is that we do not need

to know very precisely events scheduled to happen far into the future. We want to

devote computational resources to refining the intervals associated with these events

only as they get closer to the present time in the simulation. By using intervals for

all event-queue operations as well, we are often able to resolve comparisons between

event times without further refinement of the associated intervals. The result is that

we are able to generate the correct sequence of events for the kinetic simulation, but

at a substantial savings in the cost of the event-time calculations.

To realize and evaluate experimentally this idea, we concentrate in this chapter on

events whose event times can be calculated by solving polynomial equations. Since

almost without exception kinetic certificates are low degree polynomial functions of

attributes (e.g., positions) of a small number of the moving bodies (e.g. the CCW or

InCircle tests), this restriction covers the case where the motions themselves are

polynomial (in the sweep case an equivalent condition is that the curves or surfaces

involved are polynomial functions). Polynomials are an attractive class of functions

to consider, because efficient root isolation methods for them have been well stud-

ied. We specifically make use of the technique of standard sequences to determine

intervals containing the roots (event times) of interest. Furthermore, more general
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functions can often be well approximated by polynomials in certain ranges (e.g., Tay-

lor expansions). Our techniques can be extended to this case by including additional

certificates whose failure indicates that a particular approximation is invalid and a

new polynomial approximation needs to be generated.

The remaining sections of the chapter are as follows. In Section 6.1 the over-

all framework of a kinetic simulation is described in more detail. In Section 6.2 we

present the algebraic and analytic tools used to develop our algorithm, i.e., we present

the notion of standard sequences, as well as Sturm’s and Bolzano’s theorems. Then

in Section 6.3 we present the details of the interval-based kinetic scheduler, includ-

ing the refinement and update policies for intervals isolating polynomial roots, and

the priority queue maintenance using intervals as opposed to exact event times. In

Section 6.4 we provide an informal theoretical justification of the advantages of our

approach. In Section 6.5 we provide a framework for comparing the interval and

ordinary schedulers and present empirical data on the superiority of the interval ap-

proach. In Section 6.6 we discuss a trade-off between degree and number of pieces for

splined motion trajectories. Finally we conclude in Section 6.7 with some additional

remarks.

6.1 Kinetic Simulations

The inner loop of a kinetic simulation is the maintenance of the associated event

queue. The entries of the event queue are the future failure times of the certificates

currently in the kinetic proof — we will call these the active certificates. At each step

of the kinetic simulation the next certificate to fail is obtained from the priority queue

and the kinetic proof is updated to accommodate the altered state of the world. As

a result, typically a number of active certificates leave the proof (and event queue)

and a number of other new certificates enter the proof and become active.

Each certificate is typically a simple algebraic inequality on the positions/poses of

a small number of features of the moving objects. In fact, in most kinetic simulations

only a small number of different types of certificates are ever used (for example,

a kinetic Voronoi/Delaunay simulation for point sites can be done using only the

InCircle test).
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The above considerations motivate the following formulation of the problem: let

S be a set of polynomials {f1(t), f2(t), . . .,fk(t)} (corresponding to the certificates in

the KDS), the real roots of which represent possible events in our simulation. There

is a notion of a current time t0 and we are interested in quickly finding the time t1,

which is the smallest root of any of the fi greater that t0. Then we perform some

changes in the set S and advance in time by setting t0 ← t1.

The naive solution to this problem is the following: for each polynomial fi compute

all its roots to the required precision, discard those that are complex and insert

its smallest real root greater than the current time into the event queue (we can

think of the event queue as a priority queue implemented using a heap). Some

methods for computing the roots of a polynomial are the Jenkins/Traub method

[29], the eigenvalue method [51, 45] in which we construct the companion matrix of

the polynomial and compute its eigenvalues, Muller’s and Laguerre’s methods [45]

and a more recent method by Lang and Frenzel [35]. Among these methods the

last one, although very accurate for high degree polynomials, is rather expensive.

Muller’s, Laguerre’s and the Jenkins/Traub methods, however, are not stable enough

for polynomials of degree greater than 60 or so. Thus we decided to adopt the

eigenvalue method for both our theoretical analysis as well as the implementation of

the KDS. As already mentioned, our goal is to avoid spending resources in computing

real roots that correspond to events that may never happen, or complex roots that

are of no interest for our simulation. In addition, we want to compute the real roots

of the polynomials only to such accuracy as required to resolve root comparisons and

determine which polynomial among the two being compared has the earliest failure

time.

The approach that we employ in this work is to use the standard sequence [28] of

a polynomial f in the queue to maintain an ordered list of intervals that contain and

isolate its real roots. The leftmost among these intervals is the one that represents

the certificate for f in the priority queue. The comparison of two polynomials in

the queue is done by comparing the intervals and splitting them as necessary. This

process of resolving comparisons, as well as the forward stepping in time related to

the update of the current time t0, cause us to refine these interval lists and obtain

tighter bounds on the roots of the polynomials.
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The main advantages of this approach are as follows. First of all, operations

on the interval list are only performed when needed, that is when the information

obtained so far about the roots is not sufficient to resolve root comparisons, and

thus to determine the relative priority of the two polynomials in the queue. These

operations are focussed on the smallest root of each polynomial, rather than all the

roots at the same time, thus avoiding spending computation time on possible events

that may eventually not happen. Moreover, if we were to use a symbolic algebra

system for performing computations, then our algorithm could be implemented with

exact operations — unlike the naive method which must always resort to numerical

techniques.

6.2 Mathematical Preliminaries

Let y = {y1, y2, . . . , ym} be a finite sequence of non-zero numbers. We define the

number of variations in sign of y to be the number of indices i, 1 ≤ i ≤ m − 1,

such that yiyi+1 < 0. If y = {y1, y2, . . . , ym} is an arbitrary sequence of numbers,

then we define the number of variations in sign of y to be that of the subsequence y ′

obtained by dropping the zeros in y. For the example the number of sign variations

of {4.5, 0, 0, 0.5,−1.3, 0, 10−30, 4,−200} is 3.

Let now f(x) be a polynomial of positive degree with real coefficients. Then the

sequence of polynomials {f0(x), f1(x), . . ., fs(x)} defined by repeated division as:

f0(x) = f(x) (6.1)

f1(x) = f ′(x) (6.2)

f0(x) = q1(x)f1(x)− f2(x) (6.3)
...

fi−1(x) = qi(x)fi(x)− fi+1(x) (6.4)
...

fs−1(x) = qs(x)fs(x) (i.e., fs+1 = 0), (6.5)

where the degrees of the fi monotonically decrease, is called the standard sequence
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for f(x) [28]. As it can easily be verified, the fi(x), i ≥ 2 are obtained by modifying

Euclid’s algorithm for finding the g.c.d. of f(x) and f ′(x) in such a way that the last

polynomial obtained at each stage is the negative of the remainder1 in the division

process:

fi+1(x) = −fi−1(x) mod fi(x), i = 1, . . . , s− 1. (6.6)

In view of the above, fs(x) is the g.c.d. of f(x) and f ′(x). In particular, if fs(x) is

a constant polynomial then f(x) has no multiple roots. Moreover, if fs(x) is not a

constant polynomial, set gi(x) = fi(x)/fs(x), 0 ≤ i ≤ s. Then g0(x) has the same

roots as f(x), but now all the roots of g0(x) are simple. Moreover the sequence

{gi(x)}si=0 is the standard sequence for g0(x).

Using the notion of standard sequences just described we are ready to state Sturm’s

theorem, which addresses the problem of counting the number of real roots of a

polynomial in an interval of the real line:

Theorem 25 (Sturm’s Theorem 2). Let f(x) be a polynomial of positive degree

with real coefficients and let {f0(x) = f(x), f1(x) = f ′(x),. . ., fs(x)} be the standard

sequence for f(x). Assume [a, b] is an interval of the real line such that f(a) 6= 0,

f(b) 6= 0. Then the number of distinct real roots of f(x) in (a, b) is Va − Vb where Vc

denotes the number of variations in sign of {f0(c), f1(c), . . . , fs(c)}.
It is shown in [54] that the roots of p(x) = anxn + an−1x

n−1 + . . . + a1x + a0 lie in

[−α, α], where

α = 1 +
max{|an−1|, . . . , |a0|}

|an|
. (6.7)

Hence, if µ = α+ε (for some ε > 0) and {p0(x) = p(x), p1(x) = p′(x),. . ., ps(x)} is the

standard sequence of p(x), then the total number of distinct real roots of p(x) is V−µ−
Vµ, where, as before, Vc is the number of variations in sign of {p0(c), p1(c), . . . , ps(c)}.

Another very well-known theorem that will be of use is Bolzano’s theorem:

Theorem 26 (Bolzano’s Theorem). Let f(x) be a continuous real valued func-

tion in the interval [a, b], and assume that f(a) and f(b) have opposite signs, i.e.,

1An algorithm for finding such division remainders for two polynomials with real coefficients can
be found in [34].

2Sturm’s theorem holds true for polynomials with coefficients in any real closed field R. The
statement of the theorem that we present deals only with the case of real coefficients (see [28] for
the generic statement).
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f(a)f(b) < 0. Then there is at least one c in the open interval (a, b) such that

f(c) = 0.

Based on the above two theorems we can define the two primitives we will use,

Tf (a, b) and Sf,N(a, b). The primitive Tf (a, b) counts the number of distinct real roots

of the polynomial f(x) in (a, b), provided that f(a)f(b) 6= 0. The primitive Sf,N(a, b)

gives the number of (distinct) real roots of f(x) in (a, b) provided that f(a)f(b) 6= 0

and that the number of real roots of f(x) in (a, b) does not exceed N .

The purpose of introducing the second primitive is that if we know that N = 1 and

that f(x) has only simple roots, if any, in (a, b), then we can determine the number of

real roots of f(x) in (a, b) by simply checking whether f(a)f(b) < 0 or not. This test

is much cheaper, especially for high degree polynomials, than the one suggested by

Sturm’s Theorem. Note that if f(x) has only simple roots in (a, b) and degf(x) ≥ 2,

then Tf (a, b) is equivalent to Sf,N(a, b) for N = degf(x).

Finally, given two polynomials f(x) and g(x) and an interval [a, b] we can deter-

mine, using the above machinery, whether they have a common real root in [a, b].

This can be done by computing the g.c.d. h of f and g, and then using the above

mentioned predicates to determine if h has a real root in [a, b].

6.3 The Interval-Based Kinetic Scheduler

In order to reduce the cost of event time calculations in the event queue, we keep

intervals that contain one or several of those event times. This choice enables us to

avoid wasting computing resources when the comparison between two event times can

be resolved by considering their corresponding intervals. Moreover, by our approach,

we avoid spending computing time on events that are scheduled to happen in the

future, and which may be de-scheduled before their time of occurrence (e.g., because

the flight plans of the objects in the kinetic simulation have changed in the meantime,

or because of other changes in the kinetic proof). By using intervals we are able to

focus only on the first event time associated with a certain certificate that is greater

than the current time; computations that have to do the remaining event times related

to the certificate in question are postponed until later, when they are actually needed.

Clearly, the better estimates we have for our event times, the easier the comparisons
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are. For this purpose, if during the process of comparing event times based on their

interval representation we get finer bounds on these times we store and use these to

facilitate other comparisons that are performed during the process of updating the

event queue.

Let f(x) be a polynomial that represents one of the certificates in our kinetic

simulation. With each such polynomial we associate an ordered interval list (a1, b1),

. . ., (am, bm) such that bi ≤ ai+1, i = 1, . . . , m− 1, f(ai)f(bi) 6= 0 and Tf(ai, bi) > 0,

i = 1, . . . , m. All real roots of f(x) greater than the current time tc are contained in

one of these intervals (initially the list consists of a single interval containing all the

real roots of f(x)). Suppose now that we want to determine, among two polynomials

p(x) and q(x), which is the one that corresponds to the earliest event time, i.e., which

is the one that has the smallest real root (greater than tc). We can also think of

these event times as the priorities of p(x) and q(x) in the event queue; the question,

therefore, is which, among p(x) and q(x), has the greater priority. Let (a, b) and (c, d)

be the leftmost intervals in the lists of p(x) and q(x), respectively. We can assume

that the roots of these polynomials are simple, since otherwise we can replace the

polynomials, as described in the previous section, with others that have only simple

roots. Without loss of generality we can also assume that a ≤ c (otherwise we can

interchange the roles of p(x) and q(x)). The procedure that we follow to determine

the relative priority of p(x) and q(x) is described below. Note that we test a condition

only if all the previous ones have failed. The black dots in the figures below depict

the real roots of p(x), whereas the white dots depict the real roots of q(x).

1. if b ≤ c then the smallest root of p(x) will be smaller than the smallest root of

q(x), and thus p(x)’s priority will be greater than that of q(x).

( ) ( )

PSfrag replacements

a b c d

2. if p(x) has any roots in (a, c] then priority(p(x)) > priority(q(x)).

( ))(

PSfrag replacements

a bc d
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3. if b ≤ d and q(x) has all its roots in [b, d), then the priority of p(x) is greater

than that of q(x).

( ))(

PSfrag replacements

a bc d

4. if b > d and all the roots of p(x) are in the interval [d, b), then priority(p(x))

< priority(q(x)).

( ( ) )

PSfrag replacements

a bc d

5. if both polynomials have some of their roots in the interval (c, k), where k =

min{b, d}, then we need to employ a subdivision-like approach: we split (c, k)

in the middle and check if the real roots of p(x) and q(x) are distributed in

such a way in the two resulting intervals that we can directly determine their

relative priority. For example, if p(x) has roots in (c, c+k
2

) and q(x) does not

then priority(p(x)) > priority(q(x)).

)( )(

PSfrag replacements

c c+k
2

k

If p(x) does not have any roots in (c, c+k
2

) and q(x) does then priority(p(x))

< priority(q(x)).

)( )(

PSfrag replacements

c c+k
2

k

We recursively continue this subdivision process until we can determine which

of the two polynomials has higher priority.

If the smallest roots of the two polynomials are not the same then the subdivision

procedure terminates; on the other hand if they share that root then something else

has to be done. What we do is the following test: if the two polynomials have only
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one root in the interval of interest we check to see if that root is a common one. To

do so we compute their g.c.d. and check if it has a root in the interval of interest.

The natural question that arises is how we can be sure that the polynomials will have

only one root in that interval.

At various points during the algorithm an interval (α, γ), associated with a poly-

nomial f(x), needs to be split in two parts (α, β) and (β, γ). If f(β) 6= 0, and f(x)

has roots in both intervals then we replace (α, γ) with (α, β) and (β, γ). If only one

of the two intervals contains roots of f(x) then we simply update the corresponding

endpoint. If f(β) = 0, then find a point β ′ to the left or to the right of β, such that

f(β ′) 6= 0 and do the splitting using that point. Since we have to do these interval

splits anyway in order to determine the relative priority of the two polynomials we

basically get for free better bounds on the roots of both polynomials. However, these

better approximations of the roots are only computed when the information obtained

so far is not sufficient to determine which polynomial is of higher priority. Moreover,

splitting the intervals results in interval lists that will eventually contain only a single

real root of the polynomial in question, which is important for determining if two

polynomials have a common real root.

So far we did not properly take into account that we have a current time tc and

that we are interested only in real roots larger than that time. In addition, the current

time is a critical event of the kinetic simulation, and thus it is represented as a root

of some polynomial c(x). Therefore we do not know it exactly, but rather we have an

interval (αc, βc) in which it lies. This interval is the first interval in the interval list

associated with c(x). We can actually assume that the current time is the only root

of the associated polynomial in that interval, since otherwise we can use the midpoint

of the interval to split it; we can continue this recursively until we get a list in which

the first interval contains only one root, which is going to be tc. To take account of

this fact, the interval list of a polynomial p(x) needs some preprocessing which has

to do with discarding the roots that are smaller than tc. This procedure is as follows:

1. discard all of the intervals (ai, bi) such that bi ≤ αc (if any) and then renumber

the remaining ones.

2. if βc ≤ a1 there is nothing more to be done: we have already kept all those roots

that are greater than tc.
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3. if βc > a1, we check if tc is in (αc, a1]; in that case we simply update our bounds

for tc.

4. if b1 ≤ βc then

(a) if tc is in [b1, βc), then delete (a1, b1), update αc, and proceed in the same

manner with the new (a1, b1).

(b) if tc is not in [b1, βc), then it has to be in (r, b1), where r = max{a1, αc},
in which case we update the bounds for tc and employ the subdivision

approach in (r, b1).

5. if b1 > βc and p(t) has at least one root in (r, βc], where r is defined as above,

then we employ the subdivision approach in (r, βc].

A similar pruning approach can be applied when we want to run the simulation up to

a time Tmax, where Tmax is assumed not to be an event time. In that case we discard

of all the intervals (ak, bk) such that Tmax ≤ ak. Let (a`, b`) be the last interval in the

list; clearly, a` < Tmax. If b` ≤ Tmax then we do nothing; otherwise, we just replace

(a`, b`) with (a`, Tmax), if (a`, Tmax) contains any roots of the associated polynomial,

or discard it altogether.

On several occasions we have talked about determining whether a polynomial f(x)

has real roots in a certain interval (ai, bi) or about how many roots there are. The

primitive that we can use in these cases is Tf (ai, bi), the most generic one among the

two we introduced in the previous section. There are instances, however, where we

can do better. If we store the number ni of real roots of the interval (ai, bi), then we

can use the primitive Sf,ni
(c, d), whenever ai ≤ c ≤ d ≤ bi, which is always the case

when we split intervals. This way we can take advantage of the very simple test that

the primitive S incorporates if ni = 1 and f(x) has simple roots in (ai, bi).

6.4 A Theoretical Justification

In this section we present a very simple model for the distribution of the event times

and perform a worst-case analysis for two methods: our interval-based approach and
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a method which computes all roots of the certificate polynomials by computing the

eigenvalues of the corresponding companion matrix.

In particular, let s be the number of active polynomials and let us assume that

each polynomial has d real roots which are random i.i.d. variables in [0, Tmax], where

Tmax is the time until when we run our kinetic simulation. Let also m be the total

number of KDS events occurring during the simulation, and assume that at each event

k old certificates (polynomials) leave the event queue and k new certificates enter the

queue. Then the expected separation between the event times, i.e., the roots of

the polynomials is Tmax

ds
, whereas the expected separation between roots of the same

polynomial is Tmax

d
. We will also assume that the event queue is implemented using

a heap-like structure, so that insertions and deletions in the queue take logarithmic

time in the queue size.

The cost of the eigenvalue method is O(d2K) where K is the number of iterations

performed [51]. In particular, if we want to compute the eigenvalues with accuracy

equal to ε, then

K = O(
log ε

log max1≤i≤d−1
|λi+1|
|λi|

) (6.8)

where λi are the roots of the polynomial satisfying |λi+1| ≤ |λi|, 1 ≤ i ≤ d − 1. In

our case we can assume that λi ≥ 0, ∀i (the roots represent time values). In view of

our assumption that the roots are evenly distributed and that their distance is Tmax

d

in expectation, we get that

max
1≤i≤d−1

|λi+1|
|λi|

≤ d− 1

d
≤ d

d + 1
(6.9)

which implies that

K = O(
log ε

log d
d+1

) = O(d log
1

ε
) (6.10)

Since the roots are expected to be Tmax

ds
apart from each other, we only need an

accuracy ε = Θ(Tmax

ds
) which implies that

K = O(d(log d + log s))

Hence, the total cost per event using the eigenvalue method is O(kd3(log d + log s)).
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Consider now the interval-based method. This method needs O(log ds) steps

to resolve the comparison between two polynomials (because of the subdivision-like

approach that we employ) and at each step the cost is O(d2) (this is the cost to

compute the predicates Tf(a, b) or Sf,N(a, b)). Therefore the total cost per event

is O(kd2(log d + log s)), which is a factor of d better than that of the eigenvalue

method. As we will see in the next section the numerical experiments support the

above theoretical calculation.

6.5 Numerical Experiments

We implemented the algorithm that was described in Section 6.3 for two KDSs: one

for maintaining the Delaunay triangulation (DT) and one maintaining the closest pair

(CP) of a set of points moving on the plane. The points are moving on trajectories of

the form (x(t), y(t)) where both x(t) and y(t) are polynomials of degree d. The coef-

ficients of these polynomials are chosen uniformly from [−1, 1], except their constant

term which is chosen uniformly from [0, 1]. In the case of the DT the certificates cor-

respond to InCircle tests of quadruples of points, hence the degree of the certificates

is at most 4d. In the case of the CP the certificates are polynomials of degree 2d or d,

that corresponding to comparisons of squared distances for points in the plane or to

comparisons of the projections of points along certain (fixed) directions. The details

for the certificates for both simulations can be found in [7].

In our examples the number n of moving points is between 10 and 20, whereas

the degree d of their motion varies from 2 to 40 in the DT simulation, and from 2 to

80 in the CP simulation. For every pair (n, d) we computed the running times using

three different approaches:

(a) the “naive” method, in which we compute all the roots of a polynomial, throw

away those that are complex, and use the real ones to resolve the event time

comparisons; the roots of a polynomial are computed by constructing the com-

panion matrix and computing its eigenvalues [45, 51],

(b) the interval-based approach that we have already described, and

(c) a hybrid method, in which we isolate the real roots of the polynomial using the
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predicates Tf(a, b) and Sf,N(a, b) and then use a standard root finding technique,

like the bisection method [45], to compute the root of the polynomial in each

interval.

For each pair (n, d) we started with 10 different initial configurations of points.

The experiments were performed on an SGI workstation using an R10000/195 MHz

processor.

What we can see from the results, as shown in Figures 6.1 and 6.2, is that the

eigenvalue method in the DT case, is superior for motion degrees up to 6, whereas for

the CP case it is superior for motion degrees up to 13. This should be attributed to

the overhead of the interval method due to the evaluation of the standard sequence for

each polynomial. However for certificates of higher degree the interval-based method

is superior to the eigenvalue method. In fact the data shows that we gain a speed-

up factor of order d, where d is the degree of the motion, independently of n. The

same can be observed when comparing the eigenvalue and the hybrid methods. The

hybrid method, however seems to be a constant factor worse that the interval-based

method; this can be attributed to two facts: first of all, the hybrid method computes

all the real roots of each certificate and not only those that are after the current time;

secondly, the roots are computed to greater accuracy than needed in order to resolve

the comparisons in the priority queue.

6.6 Degree vs. Events

The cost of a kinetic simulation is an increasing function of the algebraic degree of

the motions — more complex motions imply more time-consuming event-time calcu-

lations. At the same time, this cost is also an increasing function of the number of

events that have to be processed. In this section we consider a trade-off between these

two costs. By approximating a high-degree motion by a sequence of lower-degree mo-

tions, we can reduce the cost of event-time calculations, while at the same time adding

the cost of processing the flight plan updates that must happen at motion segment

boundaries. We can actually view this issue backwards as well: if we approximate

splined polynomial motions with single polynomials of high degree, then we eliminate

events that have to do with flight plan updates, but at the same time we increase the



CHAPTER 6. INTERVAL METHODS FOR KINETIC SIMULATIONS 101

cost of processing the simulation events. Of course kinetic simulations are chaotic

systems and there is absolutely no guarantee that the approximated system will have

the same sequence of events as the original. Nevertheless, according to our experience,

approximations such as the above do preserve the overall character of the simulation

as well as various global statistics, and thus are meaningful and useful under certain

circumstances.

To examine this trade-off, consider n points moving each along a single parametric

polynomial trajectory of degree dH . We approximate the motion of the points, with

motions of lower degree dL, dL < dH in the following manner: we densely sample

each higher order trajectory and then perform a constrained least squares fit to the

sampled data. The number of time samples is equal to m and these are uniformly

distributed in the time interval of interest; we will discuss the choice of m in the

sequel. We impose the constraint that the original and the approximating motions

must coincide at the endpoints of each of the time intervals of the approximation

(we need to maintain at least C0 continuity for the splined motion). The interval of

approximation is initially the entire time interval for which we run our simulation. We

obtain a measure of closeness between the original and approximating trajectories by

combining the distances between corresponding points on the two trajectories at each

of the sampled times using the L∞-norm. If this closeness measure fails to be below

some prespecified threshold value, then we split the interval of approximation at the

sample time of maximum error and recursively repeat the approximation procedure

for the two subintervals. The cost of each approximation step is Θ(md2
L), dominated

by the constrained least squares calculation. The number of times we need to repeat

the process will be analyzed below.

In our setting, we want to compute a polynomial segment of degree dL that ap-

proximates a segment of degree dH to within an error ε in the L∞-norm (or split the

interval if that is not possible). We accept a single segment only when we can estab-

lish that it meets this criterion. Peetre [42] shows that the error introduced by doing

a discrete instead of a uniform polynomial approximation is O(1/m2), where m is the

number of points used to perform the discrete approximation. Since we calculate the

L∞-norm over a discrete set of m sampled time values, we choose3 m = 10/
√

ε so as

3The constant 10 here was chosen arbitrarily. The correct constant can be estimated if we have
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to guarantee via Peetre a maximum error of ε/2 between the discrete and uniform

norms. We also make the threshold discussed in the previous paragraph to be ε/2.

In this way a low degree segment is accepted only when it is known to be within ε of

the original in the L∞-norm.

When we approximate a polynomial of degree dH with one of degree dL < dH , over

the interval [0, t], the error of the approximation is of order O(tr), where r = dL + 1.

Since we want this error to be at most ε, we require that t = O(1/ε1/r). From this

estimate for t we see that the number of low degree polynomial pieces required to

approximate the original curve in our simulation will roughly be O(Tmax/ε
1/r), where

Tmax is the stop time of the simulation.

The cost of the kinetic simulation, in the model above, is of two types:

1. the cost of resolving comparisons between certificates that have to do with the

maintenance of the geometric attribute of interest, and

2. the cost of approximating and updating the trajectories of the moving points.

The first part of the cost is assumed to be equal to the product of the number of

events nev scheduled and descheduled in the priority queue due to the changes in

the geometric attribute of interest, times the mean cost of resolving a comparison

between event-times. We saw in Section 6.4 that this cost is O(d2 log(ds)), where

d is the degree of the certificates and s is the size of the priority queue. Since the

degree of the certificates is typically a constant multiple of the degree of the motion,

the total cost due to the maintenance of the geometric attribute is O(nevd
2
L log(dLs)).

The second part of the cost has to do with the scheduling and descheduling of events

that correspond to changes in the motion, as well as the cost to approximate the

original motion with one of lower degree. The cost for these priority queue updates is

O(log s), yielding a total cost of O(nmc[log s+d2
L/
√

ε ]) for this second part, where nmc

is the number of events associated with the motion changes. Following the analysis

in the previous paragraph, nmc = Θ(n Tmax/ε
1/r), where r = dL + 1; thus, the total

cost for our simulation is O(nevd
2
L log(dLs) + n Tmax [log s + d2

L/
√

ε ]/ε1/r). In many

KDSs the size of the proof to be maintained is linear with respect to the number of

objects in the simulation, therefore s is taken to be equal to the number of points n.

a priori knowledge of the maximum acceleration of the particles.
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The expression for the total cost of the simulation then becomes O(nevd
2
L log(dLn) +

n Tmax [log n + d2
L/
√

ε ]/ε1/r).

Assuming that the approximation is accurate enough, the number of events nev

is only a function of dH . Under this assumption, and for fixed ε, it is clear that as

dL decreases, we expect the cost of updating the geometric attribute to decrease and

the remaining cost to increase. However, the remaining cost consists of two different

parts which behave differently as dL changes. In particular, for small dL, since we

have a lot of low degree polynomials, the cost of updating the event queue is large;

for large dL, the cost of the approximation dominates. Moreover, we can expect a

monotone increase in the cost of the simulation as the error ε decreases.

In order to examine the validity of the above analysis we considered n = 5 mov-

ing points at 10 initial random positions. The geometric attribute that we want to

maintain in this experiment is the Delaunay triangulation of the points. The degree

of their original trajectory is dH = 32 and the degrees dL of the approximate trajec-

tories vary from 30 to 2. The stop time for the simulations is Tmax = 1. Our earlier

assumptions hold true, namely that the degree of the certificates d is a constant mul-

tiple of the degree of the motion dH or dL and that the size of the priority queue s is

linear in the number of points n. Figure 6.3 depicts the average running times as a

function of the degree of the motion dL for several errors ε. The square corresponds

to the simulation where the original trajectory is used. The interval-based approach

described in this paper was used to do the simulations.

The main observations are the following :

1. The cost of the simulation increases monotonically as we increase the accuracy.

This is in agreement with our model.

2. For fixed accuracy and for decreasing dL, the cost of the simulation at first

decreases, reaches a minimum and then increases. Initially the cost of the

simulation is dominated by the cost of computing the approximating motions

(due to their large degree); as the degree dL decreases further, the number of

curve pieces needed for the approximation starts to go up and the cost now is

dominated by the updates of the motion in the event queue. This, again, is a

behavior consistent with the model presented above. The bumps appearing in

the graphs should be attributed to the changes in the combinatorial structure
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of the simulation and the fact that the point where we perform the split in our

recursive subdivision of the approximation intervals may not be exactly optimal.

3. The degree of minimal total cost, when we do the approximation, increases

as the accuracy increases. Furthermore, for low accuracy, this minimal cost is

smaller than the cost when we do not approximate at all, while for high accuracy

this optimal cost is higher than the original. This can also be explained by

our model since the cost of the approximation increases, both in terms of the

number of polynomial pieces required to approximate the original trajectory

and the cost of the least squares fit, which, as we saw, depends on the imposed

accuracy.

The lesson from these experiments is that, if we require very accurate approx-

imate trajectories, then we are better off performing the simulation without doing

the approximation and taking advantage of the speed-up provided by our interval

approach. If accuracy is not an issue, then a smaller degree will be advantageous and

the above analysis and experimental data offer some guidance on the choice of the

optimal degree.

6.7 Conclusion

In this chapter we have presented an interval-based method for maintaining kinetic

simulations of objects that move on polynomial trajectories. The major idea of the

method is to use intervals that contain the event times of the simulation in order to

resolve the comparisons between events times in the event queue, thus avoiding wast-

ing time on computing event times for events that may never occur, or computing

them more accurately than needed. Experimental results, as well as a simple theo-

retical analysis, show that by using the interval-based method we gain a speed-up of

d, where d is the degree of motion, over the naive approach.

Although polynomial motions constitute a common class of motions, we would

like to extend our approach to more general motions. In particular, we would like

to explore the possibility of applying our algorithm to motions that are solutions

of ordinary differential equations either by exploiting existing theoretical results (see
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[33]) or by approximating the solution of the o.d.e. by a polynomial function and then

adding additional certificates in the kinetic simulation corresponding to the times

that the particular approximations are no longer valid. Another possible direction of

research is to use interval arithmetic techniques to obtain bounds on function values

(see [46]) for non-polynomial functions, and use these bounds as the basis for our

approach.
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(a) DT: running times for 10 points
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(b) DT: running times for 20 points
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points

Figure 6.1: Mean running times in seconds and ratios of running times for maintaining
the Delaunay triangulation of 10 and 20 points on a plane using the three different
methods for handling the events times: the interval-based, the eigenvalue one and a
hybrid one; 10 initial configurations were used for each point set.
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(a) CP: running times for 10 points
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(b) CP: running times for 20 points
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(c) CP: ratios of running times for 10
points
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points

Figure 6.2: Mean running times in seconds and ratios of running times for maintaining
the closest pair of 10 and 20 points on a plane using the three different methods for
handling the events times: the interval-based, the eigenvalue one and a hybrid one;
10 initial configurations were used for each point set.
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Figure 6.3: Mean running times in seconds for maintaining the Delaunay triangulation
of 5 moving points as a function of the degree dL of the approximate splined motions.
The points are moving originally on polynomial trajectories of degree dH = 32; the
running time for the simulation using the original trajectory is shown by a square.
Four different values for ε are considered: 10−i, i = 2, 3, 4, 5. The stop time is
Tmax = 1. 10 initial configurations are used for each point set. The interval-based
method is applied.



Chapter 7

Conclusion

In this thesis we presented several results in the theory of sparse spanner graphs and

kinetic Voronoi diagrams. In particular, we showed that two classes of triangulations,

namely bounded aspect ratio triangulations and the Constrained Delaunay triangu-

lation, are spanner graphs. We also presented algorithms for efficiently maintaining

near neighbors of points in unconstrained or constrained environments. I used the

Kinetic Data Structures (KDS) framework for maintaining the geometric structures of

interest as the points move. Using the same framework we described how to maintain

the Euclidean Voronoi diagram for possibly intersecting disks moving on the plane.

Given the Voronoi diagram of the set of disks, we can also maintain other proximity

structures such the closest pair of the disks or near neighbors of disks. Finally, we

showed an algorithm for speeding up kinetic simulations when the representations of

the motions of the geometric objects are polynomials of high degree. The algorithm

is based on representing the roots of the certificates of the kinetic simulation, which

are high degree polynomials in this case, using intervals.

7.1 Approximate Shortest Path Maintenance

In many applications we are interested in knowning shortest paths between geometric

objects. However, the objects in many cases are moving, in which case we would like

to be able to maintain these shortest paths. This problem seems to be very difficult,

so alternatively what we would like to do is maintain approximate shortest paths, i.e.,

109
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paths that are within a constant factor of the optimal ones. In this context sparse

spanner graphs are of great importance. Sparse spanner graphs guarrantee that they

contain such a path and since they are of small size they should be much more

easily maintainable that denser graphs. Although, we know how to maintain some

spanner graphs, such as the Delaunay triangulation, we do not know how maintain

approximate shortest paths on them.

In the same context, small stretch factors are important if we want to have good

approximations to the actual shortest paths. Hence it would be of interest to find

the optimal stretch factor for the Delaunay triangulation, or close the gap between

the upper and lower bounds for the optimal stretch factor for bounded aspect ratio

triangulations presented in Chapter 3.

7.2 Kinetic Bounded Aspect Ratio Triangulations

Although bounded aspect ratio triangulations are important as spanner graphs, they

are of great interest independently due to the fact that they are heavily used in mesh-

ing applications. In fact, in many of these applications the meshes are moving, which

gives rise to the problem of maintaining, in a kinetic setting, bounded aspect ratio

triangulations. Another issue in meshing applications in the existence of boundaries,

which suggests that we need to look at ways of maintaining constrained or (most

probably) conforming bounded aspect ratio triangulations.

There are several questions that one could pose. For example, one issue is the

number of Steiner points that we are allowed to use. Another issue is whether exist-

ing algorithms for producing bounded aspect ratio triangulations, such as Delaunay

refinement, are easily kinetizable. Another problem is the size of the output triangu-

lation as a function of the bound on the aspect ratio and the motion of the points.

7.3 Euclidean Voronoi Diagram for Spheres in 3D

In Chapter 5 we dealt with the problem of maintaining the Euclidean Voronoi diagram

for a set of possibly intersecting disks. In would be of great interest to extend the

results and algorithms to three dimensions. One would expect that once we know
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how to maintain the Euclidean Voronoi diagram for three-dimensional spheres, we

would also be able to maintain their closest pair, connectivity and near neighbors, in

exactly the same manner as in two dimensions.

The extension does not seem at all straightforward. The Voronoi diagram in 3D

consists of conic surfaces and Voronoi cells may not even contain Voronoi vertices

(0-dimensional simplices). It would be very helpful, both from the kinetic perspec-

tive, but also from the viewpoint of understanding the Voronoi diagram itself, to first

establish local conditions that guarrantee the global correctness of the structure. It

would be really nice to verify that the dual of the Voronoi diagram is indeed a (gen-

eralized) tetrahedrization and to associate all the possible combinatorially different

types of Voronoi cells with tetrahedra. Insight in this direction could also possibly

yield an optimal algorithm for the construction of the Voronoi diagram using only

local operations, just like the (non-optimal) flip-edge algorithm on the plane.
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