
Voronoi diagrams in Cgal

Menelaos I. Karavelas∗

Abstract

In this paper we describe a generic C++ adaptor1, that
adapts a 2-dimensional triangulated Delaunay graph
and to the corresponding a Voronoi diagram, repre-
sented as a doubly connected edge list (DCEL) data
structure. Our adaptor has the ability to automat-
ically eliminate, in a consistent manner, degenerate
features of the Voronoi diagram, that are artifacts
of the requirement that Delaunay graphs should be
triangulated even in degenerate configurations. De-
pending on the type of operations that the underlying
Delaunay graph supports, our adaptor allows for the
incremental or dynamic construction of Voronoi dia-
grams and can support point location queries. Our
code will appear in the next public release of Cgal.

1 Introduction

A Voronoi diagram on the plane is typically defined
for a set of planar objects, also called sites in the
sequel, and a distance function that measures the dis-
tance of a point x in R

2 from an object in the object
set. Let S = {S1, S2, . . . , Sn} be our set of sites and
let δ(x, Si) denote the distance of a point x ∈ R

2

from the site Si. Given two sites Si and Sj , the set
Vij of points that are closer to Si than to Sj with re-
spect to the distance function δ(x, ·) is simply the set:
Vij = {x ∈ R

2 : δ(x, Si) < δ(x, Sj)}. We can then de-
fine the set Vi of points on the plane that are closer to
Si than to any other object in S as Vi =

⋂
i6=j Vij . The

set Vi is said to be the Voronoi cell or Voronoi face of
the site Si. The locus of points on the plane that are
equidistant from exactly two sites Si and Sj is called a
Voronoi bisector. A point that is equidistant to three
or more objects in S is called a Voronoi vertex. A sim-
ply connected subset of a Voronoi bisector is called a
Voronoi edge. The collection of Voronoi faces, edges
and vertices is called the Voronoi diagram of the set
S with respect to the distance function δ(x, ·), and it
is a subdivision of the plane.

We typically think of faces as 2-dimensional ob-
jects, edges as 1-dimensional objects and vertices as
0-dimensional objects. However, this may not be the

∗Applied Mathematics Department, University of Crete;

mkaravel@tem.uoc.gr and Institute of Applied and Computa-

tional Mathematics, Foundation for Research and Technology

- Hellas.
1An adaptor is a class or a function that transforms one

interface into a different one.

case for several combinations of sites and distance
functions (for example points in R

2 under the L1 or
the L∞ distance can produce 2-dimensional Voronoi
edges). Moreover, the cell of a site can in general
consist of several disconnected components (e.g., in
the multiplicatively weighted Euclidean Voronoi dia-
gram). In this paper we are going to restrict ourselves
to Voronoi diagrams that have the property that the
Voronoi cell of each site is a simply connected region
of the plane. We are going to call such Voronoi dia-
grams simple Voronoi diagrams. Examples of simple
Voronoi diagrams include the usual Euclidean Voronoi
diagram of points, the Euclidean Voronoi diagram of
a set of disks on the plane, the Euclidean Voronoi di-
agram of a set of disjoint convex objects on the plane,
or the power (Laguerre) diagram for a set of circles
on the plane. In fact every instance of an abstract

Voronoi diagram in the sense of Klein [2] is a simple
Voronoi diagram in our setting. In the sequel when we
refer to Voronoi diagrams we refer to simple Voronoi
diagrams.

2 Adapting triangulated Delaunay graphs

In many applications we are not really interested in
computing the Voronoi diagram itself, but rather its
dual graph, called the Delaunay graph. In general
the Delaunay graph is a planar graph, each face of
which consists of at least three edges. Under the non-
degeneracy assumption that no point in the plane
is equidistant to more than three sites, the Delau-
nay graph is a planar graph with triangular faces.
In certain cases this graph can actually be embed-
ded with straight line segments in which case we talk
about a triangulation (e.g., the Euclidean Voronoi di-
agram/Delaunay triangulation of points, or the power
diagram/regular triangulation of a set of circles).
Graphs of non-constant non-uniform face complexity
can be undesirable in many applications, so we typi-
cally end up triangulating the non-triangular faces of
the Delaunay graph.

Choosing between computing the Voronoi diagram
or the (triangulated) Delaunay graph is a major de-
cision while implementing an algorithm. It heavily
affects the design and choice of the different data
structures involved. Although in theory the two ap-
proaches are entirely equivalent, it is not so straight-
forward to go from one representation to the other.
The objective for our adaptor is to provide a generic

1



way of going from triangulated Delaunay graphs to
planar subdivisions represented through a DCEL data
structure. Although the look and feel is that of a
DCEL data structure, internally we keep the graph
data structure representing triangular graphs.

The adaptation might seem straightforward at a
first glance, and this is true if our data do not contain
degenerate configurations. The situation becomes
complicated whenever we want to treat the artifacts
introduced in our representation due to these degen-
erate configurations. Suppose for example that we
have a set of sites that contains subsets of sites in
degenerate positions. The dual of the computed tri-
angulated Delaunay graph is a Voronoi diagram that
has all its vertices of degree 3, and for that purpose
we are going to call it a degree-3 Voronoi diagram

in order to distinguish it from the true Voronoi dia-
gram of the input sites. A degree-3 Voronoi diagram
can have degenerate features, namely Voronoi edges
of zero length, and/or Voronoi faces of zero area, and
do not correspond to the true geometry of the Voronoi
diagram.

The manner that we treat such issues is by defining
an adaptation policy. The adaptation policy is respon-
sible for determining which features in the degree-3
Voronoi diagram are to be rejected and which not.
The policy to be used can vary depending on the
application or the intended usage of the resulting
Voronoi diagram. What we care about is that firstly
the policy itself is consistent and, secondly, that the
adaptation is also done in a consistent manner. The
latter is the responsibility of the adaptor we provide,
whereas the former is the responsibility of the imple-
mentor of a policy. We currently provide two types of
adaptation policies, which are discussed in Section 5.

Delaunay graphs can be mutable or non-mutable.
By mutable we mean that sites can be inserted or re-
moved at any time, in an entirely on-line fashion. By
non-mutable we mean that once the Delaunay graph
has been created, no changes, with respect to the set
of sites defining it, are allowed. If the Delaunay graph
is a non-mutable one, then the Voronoi diagram adap-
tor is a non-mutable adaptor as well. If the Delaunay
graph is mutable then the question of whether the
Voronoi diagram adaptor is also mutable is slightly
more complex to answer. In Section 6 we discuss the
issue in detail.

3 Software design

The class Voronoi_diagram_2<DG,AT,AP> imple-
ments our generic adaptor. It is parametrized by
three template parameters which are required to be
models of corresponding concepts (see Fig. 1). The
first template parameter must be a model of the
DelaunayGraph_2 concept, which corresponds to the
interface required from a class representing a De-

launay graph. Currently, all classes of Cgal that
represent Delaunay graphs are models of this con-
cept, namely, Delaunay triangulations, regular trian-
gulations, Apollonius graphs and segment Delaunay
graphs [1]. The second template parameter must be
a model of the AdaptationTraits_2 concept, which
is responsible for accessing the geometric information
needed from the specific Delaunay graph in order to
perform the adaptation. We discuss this concept in
detail in Section 4. Finally, the third template pa-
rameter must be model of the AdaptationPolicy_2

concept, which refers to the policy used to perform
the adaptation. This concept is discussed in detail in
Section 5.

The Voronoi_diagram_2<DG,AT,AP> class has
been intentionally designed to provide an interface
similar to Cgal’s arrangements: Voronoi diagrams
are special cases of arrangements after all. The inter-
faces of the two classes, however, could not be identi-
cal. The reason is that arrangements in Cgal do not
yet support more than one unbounded faces, or equiv-
alently, cannot handle unbounded curves. On the con-
trary, a Voronoi diagram defined over at least two
generating sites, has at least two unbounded faces.

On a more technical level, the
Voronoi_diagram_2<DG,AT,AP> class imitates
the representation of the Voronoi diagram (seen as a
planar subdivision) by a DCEL (Doubly Connected
Edge List) data structure. We have vertices (the
Voronoi vertices), halfedges (oriented versions of
the Voronoi edges) and faces (the Voronoi cells).
We can perform all standard operations of the
DCEL data structure: go from a halfedge to its
next and previous in the face; go from one face to
an adjacent one through a halfedge and its twin
(opposite) halfedge; walk around the boundary of a
face; enumerate/traverse the halfedges incident to a
vertex from a halfedge, access the adjacent face; from
a face, access an adjacent halfedge; from a halfedge,
access its source and target vertices; from a vertex,
access an incident halfedge.

In addition to the above possibilities for traversal,
we can also traverse the following features through
iterators: the vertices of the Voronoi diagram; the
edges or halfedges of the Voronoi diagram; the faces of
the Voronoi diagram; the bounded/unbounded faces
of the Voronoi diagram; the bounded/unbounded
halfedges of the Voronoi diagram; the sites defining
the Voronoi diagram.

Finally, depending on the adaptation traits passed
to the Voronoi diagram adaptor, we can perform point
location queries, namely given a point p we can de-
termine the feature of the Voronoi diagram (vertex,
edge, face) on which p lies.

2



Vertex_handle incident_vertices(Vertex_handle)

Is template parameter of adaptor

model

conceptIs model of

bool is_infinite(Face_handle)
bool is_infinite(Vertex_handle)
int dimension()

DelaunayGraph_2

...

Finite_faces_iterator finite_faces_end()
Finite_faces_iterator finite_faces_begin()

Types:

Geom_traits
size_type

Edge
Vertex_handle
Face_handle

Vertex_circulator
Face_circulator
Edge_circulator

All_edges_iterator
All_vertices_iterator
All_faces_iterator

...

Access methods:
size_type number_of_vertices()
size_type number_of_faces()
Face_handle infinite_face()
Vertex_handle infinite_vertex()
Vertex_handle finite_vertex()

All_faces_iterator all_faces_begin()
All_faces_iterator all_faces_end()

C
ac

hi
ng

de
ge

ne
ra

cy
re

m
ov

al

Finite_edges_iterator
Finite_faces_iterator
Finite_edges_iterator

...

po
li

ci
es

D
eg

en
er

ac
y

re
m

ov
al

po
li

ci
es

Identity policy

Halfedge_around_vertex_circulator

Segment_Delaunay_graph_degeneracy_removal_policy_2<SDG2>

Apollonius_graph_degeneracy_removal_policy_2<AG2>

Delaunay_triangulation_degeneracy_removal_policy_2<DT2>

Regular_triangulation_degeneracy_removal_2<RT2>

Segment_Delaunay_graph_caching_degeneracy_removal_policy_2<SDG2>

Apollonius_graph_caching_degeneracy_removal_policy_2<AG2>

Delaunay_triangulation_caching_degeneracy_removal_policy_2<DT2>

Regular_triangulation_caching_degeneracy_removal_2<RT2>

Segment_Delaunay_graph_2<Gt,DS>

Apollonius_graph_2<Gt,Agds>

Delaunay_triangulation_2<Gt,TDS>

Regular_triangulation_2<Gt,TDS>

Types:
Site_2
Delaunay_graph
Delaunay_vertex_handle
Delaunay_face_handle
Delaunay_edge
Edge_rejector
Face_rejector
Has_inserter
Site_inserter

Access methods:
Edge_rejector edge_rejector_object()
...

AdaptationPolicy_2

Point_2

Types:

Site_2
Locate_result
size_type
Site_iterator Vertex_iterator

Face_iterator

Halfedge_iterator

Vertex_handle
Halfedge_handle

Face_handle

Unbounded_hafledges_iterator
Bounded_halfedges_iterator
Unbounded_faces_iterator
Bounded_faces_iterator

Access methods:
Delaunay_graph dual()
size_type number_of_vertices()
size_type number_of_faces()
size_type number_of_halfedges()
size_type number_of_connected_components()
Face_handle unbounded_face()
Face_handle bounded_face()
Halfedge_handle unbounded_halfedge()
Halfedge_handle bounded_halfedge()
Halfedge_iterator halfedges_begin()
Halfedge_iterator halfedges_end()
Face_iterator faces_begin()
Face_iterator faces_end()
Ccb_halfedge_circulator ccb_halfedges(Face_handle)
...

Insertion:
Face_handle insert(Site_2)
size_type insert(Iterator, Iterator)

Queries:
Locate_result locate(Point_2)

Ccb_halfedge_circulator

...

Voronoi_diagram_2<DG,AT,AP>

...

Delaunay_graph
Site_2

Delaunay_face_handle
Delaunay_vertex_handle
Delaunay_edge
Access_site_2
Construct_Voronoi_point_2
Has_nearest_site_2
Nearest_site_2

Access_site_2 access_site_2_object()
Access methods:

...

Identity_policy_2<DG,VT>

AdaptationTraits_2

Point_2

Regular_triangulation_adaptation_traits_2<RT2>

Delaunay_triangulation_adaptation_traits_2<DT2>

Apollonius_graph_adaptation_traits_2<AG2>

Segment_Delaunay_graph_adaptation_traits_2<SDG2>

Types:

Figure 1: The design of the Voronoi diagram adaptor, and the relations between the various concepts, their
models and the adaptor.

4 The adaptation traits

The AdaptationTraits_2 concept defines the types
and functors required by our adaptor in order to ac-
cess geometric information from the Delaunay graph.
In particular, it defines the type of the generating
sites, and provides functors for accessing these sites
in the Delaunay graph as well as constructing Voronoi
vertices given their dual triangular faces in the Delau-
nay graph.

Finally, it defines a tag that indicates whether near-
est site queries are to be supported by the Voronoi di-
agram adaptor. If such queries are to be supported, a
corresponding functor is also required. Given a query
point, the nearest site functor should return infor-
mation related to how many and which sites of the
Voronoi diagram are at equal and minimal distance
from the query point. This way of abstracting the
point location mechanism allows for multiple differ-
ent point location strategies, which are passed to the
Voronoi diagram adaptor through different models of
the AdaptationTraits_2 concept. The point loca-
tion queries of the Voronoi_diagram_2<DG,AT,AP>

class uses internally this nearest site query functor.

Along with our adaptor we provide four adapta-
tion traits classes, all of which support nearest site
queries. These four classes serve as adaptation traits
for Cgal’s Apollonius graphs, Delaunay and regular
triangulations and segment Delaunay graphs, respec-
tively.

5 The adaptation policy

When we perform the adaptation of a triangulated
Delaunay graph to a Voronoi diagram, a question that
arises is whether we want to eliminate certain features
of the Delaunay graph when we construct its Voronoi
diagram representation. We resolve such issues, in
a generic way, via the introduction of an adaptation
policy. The adaptation policy is responsible for de-
termining which features in the degree-3 Voronoi dia-
gram are to be rejected and which not. The policy to
be used can vary depending on the application or the
intended usage of the resulting Voronoi diagram.

The concept AdaptationPolicy_2 defines the re-
quirements on the predicate functors that determine
whether a feature of the triangulated Delaunay graph
should be rejected or not. More specifically it defines
an Edge_rejector and a Face_rejector functor that
answer the question: “should this edge (face) of the
Voronoi diagram be rejected?”.

We have implemented two types of policies that
provide two different ways for answering the ques-
tion of which features of the Voronoi diagram to
keep and which to discard. The first one is
called the identity policy and corresponds to the
Identity_policy_2<DG,VT> class. This policy is in
some sense the simplest possible one, since it does
not reject any feature of the Delaunay graph. The
Voronoi diagram provided by the adaptor is the true
dual (from the graph-theoretical point of view) of the
triangulated Delaunay graph adapted.

3



The second type of policy we provide is called de-

generacy removal policy. If the set of sites defin-
ing the triangulated Delaunay graph contains sub-
sets of sites in degenerate configurations, the graph-
theoretical dual of the triangulated Delaunay graph
has edges and potentially faces that are geometrically
degenerate. By that we mean that the dual of the tri-
angulated Delaunay graph can have Voronoi edges of
zero length or Voronoi faces/cells of zero area. Such
features may not be desirable, in which case we would
like to eliminate them. The degeneracy removal poli-
cies eliminate exactly these features. Along with our
Voronoi diagram adaptor we provide four degeneracy
removal policies, namely for Apollonius graphs, De-
launay triangulations, regular triangulations and seg-
ment Delaunay graphs.

A variation of the degeneracy removal policies are
the caching degeneracy removal policies. In these poli-
cies we cache the results of the edge and face rejectors.
Such policies really pay off when we have a lot of de-
generate data in our input set of sites. This is due
to the fact that detecting whether a Voronoi edge or
a Voronoi face is degenerate implies computing the
outcome of a predicate in a possibly degenerate or
near degenerate configuration, which is typically very
costly (compared to computing the same predicate in
a generic configuration). We provide four caching de-
generacy removal policies, one per degeneracy removal
policy mentioned above.

6 Mutable vs. non-mutable policies

In addition to the edge and face rejectors the adapta-
tion policy defines a boolean tag, the Has_inserter

tag. Semantically, this tag determines if the adaptor is
allowed to insert sites in an on-line fashion (on-line re-
movals are not yet supported). In the former case, i.e.,
when on-line site insertions are allowed, an additional
functor is required, the Site_inserter functor. This
functor takes as arguments a reference to a Delaunay
graph and a site, and inserts the site in the Delau-
nay graph. Upon successful insertion, a handle to the
vertex representing the site in the Delaunay graph is
returned. In our discussion of the adaptation policies,
we did not indicate the value of the Has_inserter

tag for the degeneracy removal and caching degener-
acy removal policies. The issue is discussed in detail
in the sequel.

In Section 2 we raised the question whether the
adaptor is a mutable or non-mutable one, in the sense
of whether we can add/remove sites in an on-line fash-
ion. The answer to this question depends on: (1)
whether the Delaunay graph adapted allows for on-
line insertions/removals and (2) whether the associ-
ated adaptation policy maintains a state and whether
this state is easily maintainable when we want to al-
low for on-line modifications.

As we mentioned above, the way we indicate
if we allow on-line insertions of sites is via the
Has_inserter tag. A true value indicates that
our adaptation policy allows for on-line insertions,
whereas a false value indicates the opposite. Note
that these values do not indicate if the Delaunay
graph supports on-line insertions, but rather whether
the Voronoi diagram adaptor should be able to per-
form on-line insertions or not. This delicate point will
be become clearer below.

If the Delaunay graph is non-mutable, the Voronoi
diagram adaptor cannot perform on-line insertions of
sites anyway. In this case not only degeneracy removal
policies, but rather every single adaptation policy for
adapting the Delaunay graph in question should have
the Has_inserter tag set to true.

If the Delaunay graph is mutable we can choose
between two types of adaptation policies, those that
allow these on-line insertions and those that do not.
At a first glance it may seem excessive to restrict ex-
isting functionality. There are situations, however,
where such a choice is necessary. Consider a caching
degeneracy removal policy. If we do not allow for on-
line insertions then the cached quantities are always
valid since the Voronoi diagram never changes. If we
allow for on-line insertions the Voronoi diagram can
change, which implies that the results of the edge and
face degeneracy testers that we have been cached are
no longer valid or relevant. In these cases, we need to
update the cached values, and ideally we would like
to do this in an efficient manner.

For our caching degeneracy removal policies, our
choice was made on the grounds of whether we can
update the cached results efficiently when insertions
are performed. For Cgal’s Apollonius graphs, De-
launay triangulation and regular triangulations it is
possible to ask what are the edges and faces of the De-
launay graph that are to be destroyed when a query
site is inserted. This is done via the get_conflicts

method provided by these classes. Using the outcome
of the get_conflicts method the site inserter can
first update the cached results (i.e., indicate which
are invalidated) and then perform the actual inser-
tion. Such a method does not yet exist for segment
Delaunay graphs. We have thus chosen to support on-
line insertions for all non-caching degeneracy removal
policies, i.e., the caching degeneracy removal policy
for segment Delaunay graphs does not support on-line
insertions, whereas the remaining three caching de-
generacy removal policies support on-line insertions.

References

[1] The Cgal homepage. http://www.cgal.org/.

[2] R. Klein. Concrete and Abstract Voronoi Diagrams,
volume 400 of Lecture Notes Comput. Sci. Springer-
Verlag, 1989.

4


