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Abstract. This paper presents a dynamic algorithm for the construction
of the Euclidean Voronoi diagram of a set of convex objects in the plane.
We consider first the Voronoi diagram of smooth convex objects forming
pseudo-circles set. A pseudo-circles set is a set of bounded objects such
that the boundaries of any two objects intersect at most twice. Our algo-
rithm is a randomized dynamic algorithm. It does not use a conflict graph
or any sophisticated data structure to perform conflict detection. This
feature allows us to handle deletions in a relatively easy way. In the case
where objects do not intersect, the randomized complexity of an insertion
or deletion can be shown to be respectively O(log2 n) and O(log3 n). Our
algorithm can easily be adapted to the case of pseudo-circles sets formed
by piecewise smooth convex objects. Finally, given any set of convex ob-
jects in the plane, we show how to compute the restriction of the Voronoi
diagram in the complement of the objects’ union.

1 Introduction

Given a set of sites and a distance function from a point to a site, a Voronoi
diagram can be roughly described as the partition of the space into cells that
are the locus of points closer to a given site than to any other site. Voronoi
diagrams have proven to be useful structures in various fields such as astronomy,
crystallography, biology etc. Voronoi diagrams have been extensively studied. See
for example the survey by Aurenhammer and Klein [1] or the book by Okabe,
Boots, Sugihara and Chiu [2]. The early studies were mainly concerned with
point sites and the Euclidean distance. Subsequent studies considered extended
sites such has segments, lines, convex polytopes and various distances such as
L1 or L∞ or any distance defined by a convex polytope as unit ball. While the
complexity and the related algorithmic issues of Voronoi diagrams for extended
sites in higher dimensions is still not completely understood, as witnessed in the
recent works by Koltun and Sharir [3, 4], the planar cases are now rather well
masterized, at least for linear objects.
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The rising need for handling curved objects triggered further works for the
planar cases. Klein et al. [5, 6] set up a general framework of abstract Voronoi
diagrams which covers a large class of planar Voronoi diagrams. They provided
a randomized incremental algorithm to construct diagrams of this class. Alt
and Schwarzkopf [7] handled the case of generic planar curves and described
a randomized algorithm for this case. Since they handle curves, they cannot
handle objects with non-empty interior, which is our focus. Their algorithm is
incremental but does not work in-line (it requires the construction of a Delaunay
triangulation with one point on each curve before the curve segments are really
treated). Another closely related work is that by McAllister, Krikpatrick and
Snoeyink [8], which deals with the Voronoi diagrams of disjoint convex polygons.
The algorithm presented treats the convex polygons as objects, rather than as
collections of segments; it follows the sweep-line paradigm, thus it is not dynamic.
Moreover, the case of intersecting convex polygons is not considered. The present
paper deals with the Euclidean Voronoi diagram of planar smooth or piecewise
smooth convex objects, and generalizes a previous work of the same authors on
the Voronoi diagram of circles [9].

Let p be a point and A be a bounded convex object in the Euclidean plane
E2. We define the distance δ(p, A) from p to A to be:

δ(p, A) =

{
minx∈∂A ‖p− x‖, p 6∈ A

−minx∈∂A ‖p− x‖, p ∈ A

where ∂A denotes the boundary of A and ‖·‖ denotes the Euclidean norm. Given
the distance δ(·, ·) and a set of convex objects A = {A1, . . . , An}, the Voronoi
diagram V(A) is the planar partition into cells, edges and vertices defined as
follows. The Voronoi cell of an object Ai is the set of points which are closer to
Ai than to any other object in A. Voronoi edges are maximal connected sets of
points equidistant to two objects in A and closer to these objects than to any
other in A. Voronoi vertices are points equidistant to at least three objects of A
and closer to these objects than to any other object in A.

We first consider Voronoi diagrams for special collections of smooth convex
objects called pseudo-circles sets. A pseudo-circles set is a set of bounded ob-
jects such that the boundaries of any two objects in the set have at most two
intersection points. In the sequel, unless specified otherwise, we consider pseudo-
circles sets formed by smooth convex objects, and we call them smooth convex
pseudo-circles sets, or sc-pseudo-circles sets for short.

Let A be a convex object. A line L is a supporting line of A iff A is included
in one of the closed half-planes bounded by L, and ∂A ∩ L is not empty. Given
two convex objects Ai and Aj , a line L is a (common) supporting line of Ai

and Aj iff L is a supporting line of Ai and Aj , such that Ai and Aj are both
included in the same half-plane bounded by L. In this paper, we first deal with
smooth bounded convex objects forming pseudo-circles sets. Any two objects
in such a set have at most two common supporting lines. Two convex objects
have no common supporting line if one is included in the other. They have two
common supporting lines if they are either disjoint or properly intersecting at
two points (a proper intersection point is a point where the boundaries are not



only touching but also crossing each other) or externally tangent (which means
that their interiors are disjoint and their boundaries share a common tangent
point). Two objects forming a pseudo-circles set may also be internally tangent,
meaning that one is included in the other and their boundaries share one or two
common points. Then they have, respectively, one or two common supporting
lines. A pseudo-circles set is said to be in general position if there is no pair of
tangent objects. In fact, tangent objects which are properly intersecting at their
common tangent point or externally tangent objects do not harm our algorithm
and we shall say that a pseudo-circles set is in general position when there is no
pair of internally tangent objects.

The algorithm that we propose for the construction of the Voronoi diagram
of sc-pseudo-circles sets in general position is a dynamic one. It is a variant of
the incremental randomized algorithm proposed by Klein et al. [6]. The data
structures used are simple, which allows us to perform not only insertions but
also deletions of sites in a relatively easy way. When input sites are allowed to
intersect each other, it is possible for a site to have an empty Voronoi cell. Such
a site is called hidden, otherwise visible. Our algorithm handles hidden sites.
The detection of the first conflict or the detection of a hidden site is performed
through closest site queries. Such a query can be done by either a simple walk
in the Voronoi diagram or using a hierarchy of Voronoi diagrams, i.e., a data
structure inspired from the Delaunay hierarchy of Devillers [10].

To analyze the complexity of the algorithm, we assume that each object
has constant complexity, which implies that each operation involving a constant
number of objects is performed in constant time. We show that if sites do not
intersect, the randomized complexity of updating a Voronoi diagram with n sites
is O(log2 n) for an insertion and O(log3 n) for a deletion. The complexities of
insertions and deletions are more involved when sites intersect.

We then extend our results by firstly dropping the hypothesis of general po-
sition and secondly by dealing with pseudo-circles sets formed by convex objects
whose boundaries are only piecewise smooth. Using this extension, we can then
build the Voronoi diagram of any set A of convex objects in the complement of
the objects’ union (i.e., in free space). This is done by constructing a new set of
objects A′, which is a pseudo-circles set of piecewise smooth convex objects and
such that the Voronoi diagrams V(A) and V(A′) coincide in free space.

The rest of the paper is structured as follows. In Section 2 we study the
properties of the Voronoi diagram of sc-pseudo-circles sets in general position,
and show that such a diagram belongs to the class of abstract Voronoi diagrams.
In Section 3 we present our dynamic algorithm. Section 4 describes closest site
queries, whereas Section 5 deals with the complexity analysis of insertions and
deletions. Finally, in Section 6 we discuss the extensions of our approach.

2 The Voronoi diagram of sc-pseudo-circles sets

In this section we present the main properties of the Voronoi diagram of sc-
pseudo-circles sets in general position. We first provide a few definitions and



notations. Henceforth, we consider any bounded convex object Ai as closed and
we note ∂Ai and A◦

i , respectively, the boundary and the interior of Ai.
Let A = {A1, . . . , An} be an sc-pseudo-circles set. The Voronoi cell of an

object A is denoted as V (A) and is considered a closed set. The interior and
boundary of V (A) are denoted by V ◦(A) and ∂V (A), respectively. We are going
to consider maximal disks either included in a given object Ai or disjoint from
A◦

i , where the term maximal refers to the inclusion relation. For any point x, we
denote by Ci(x) the closed disk centered at x with radius |δ(x, Ai)|. If x 6∈ Ai,
Ci(x) is the maximal disk centered at x and disjoint from A◦

i . If x ∈ Ai, Ci(x)
is the maximal disk centered at x and included in Ai. In the latter case there is
a unique maximal disk inside Ai containing Ci(x), which we denote by Mi(x).
Finally, the medial axis S(Ai) of a bounded convex object Ai is defined as the
locus of points that are centers of maximal disks included in Ai.

Let Ai and Aj be two smooth bounded convex objects. The set of points
p ∈ E2 that are at equal distance from Ai and Aj is called the bisector πij

of Ai and Aj . Theorem 1 ensures that πij is an one-dimensional set if the two
objects Ai and Aj form an sc-pseudo-circles set in general position and justifies
the definition of Voronoi edges given above. Theorem 2 ensures that each cell in
the Euclidean Voronoi diagram of an sc-pseudo-circles set in general position is
simply connected. The proofs of Theorems 1 and 2 below are omitted for lack of
space.

Theorem 1 Let {Ai, Aj} be an sc-pseudo-circles set in general position and let
πij be the bisector of Ai and Aj with respect to the Euclidean distance δ(·, ·).
Then: (1) if Ai and Aj have no common supporting line, πij = ∅; (2) if Ai and
Aj have two common supporting lines, πij is a single curve homeomorphic to
the open interval (0, 1).

Theorem 2 Let A = {A1, . . . , An} be an sc-pseudo-circles set in general posi-
tion. For each object Ai, we denote by N(Ai) the locus of the centers of maximal
disks included in Ai that are not included in the interior of any object in A\{Ai},
and by N◦(Ai) the locus of the centers of maximal disks included in Ai that are
not included in any object in A \ {Ai}. Then: (1) N(Ai) = S(Ai) ∩ V (Ai) and
N◦(Ai) = S(Ai) ∩ V ◦(Ai); (2) N(Ai) and N◦(Ai) are simply connected sets;
(3) the Voronoi cell V (Ai) is weakly star-shaped with respect to N(Ai), which
means that any point of V (Ai) can be connected to a point in N(Ai) by a seg-
ment included in V (Ai). Analogously, V ◦(Ai) is weakly star-shaped with respect
to N◦(Ai); (4) V (Ai) = ∅ iff N(Ai) = ∅ and V ◦(Ai) = ∅ iff N◦(Ai) = ∅.

In the sequel we say that an object A is hidden if N◦(A) = ∅.
In the framework of abstract Voronoi diagrams introduced by Klein [5], the

diagram is defined by a set of bisecting curves Bi,j . In this framework, a set
of bisectors is said to be admissible if: (1) each bisector is homeomorphic to a
line; (2) the closures of the Voronoi regions covers the entire plane; (3) regions
are path connected. (4) two bisectors intersect in at most a finite number of
connected components. Let us show that Euclidean Voronoi diagrams of sc-
pseudo-circles, such that any pair of objects has exactly two supporting lines,



fit into the framework of abstract Voronoi diagrams. Theorems 1 and 2 ensure,
respectively, that Conditions 1 and 3 are fulfilled. Condition 2 is granted for any
diagram induced by a distance. Condition 4 is a technical condition that we have
not explicitly proved. In our case this results indeed from the assumption that
the objects have constant complexity. The converse is also true: if we have a set
of convex objects in general position, then their bisectors form an admissible
system only if every pair of objects has exactly two supporting lines. Indeed, if
this is not the case, one of the following holds : (1) the bisector is empty; (2) the
bisector is homeomorphic to a ray; (3) there exist Voronoi cells that consist of
more than one connected components.

Theorem 3 Let A = {A1, . . . , An} be a set of smooth convex objects of constant
complexity and in general position. The set of bisectors πij is an admissible
system of bisectors iff every pair of objects has exactly two supporting lines.

3 The dynamic algorithm

The algorithm that we propose is a variant of the randomized incremental algo-
rithm for abstract Voronoi diagrams proposed by Klein and al. [6]. Our algorithm
is fully dynamic and maintains the Voronoi diagram when a site is either added
to the current set or deleted from it. To facilitate the presentation of the algo-
rithm we first define the compactified version of the diagram and introduce the
notion of conflict region.

The compactified diagram. We call 1-skeleton of the Voronoi diagram, the
union of the Voronoi vertices and Voronoi edges. The 1-skeleton of the Voronoi
diagram of an sc-pseudo-circles set A may consist of more than one connected
components. However, we can define a compactified version of the diagram by
adding to A a spurious site, A∞ called the infinite site. The bisector of A∞
and Ai ∈ A is a closed curve at infinity, intersecting any unbounded edge of
the original diagram (see for example [5]). In the sequel we consider such a
compactified version of the diagram, in which case the 1-skeleton is connected.

The conflict region. Each point x on a Voronoi edge incident to V (Ai) and
V (Aj) is the center of a disk Cij(x) tangent to the boundaries ∂Ai and ∂Aj . This
disk is called a Voronoi bitangent disk, and more precisely an interior Voronoi
bitangent disk if it is included in Ai∩Aj , or an exterior Voronoi bitangent disk if
it is lies in the complement of A◦

i ∪A◦
j . Similarly, a Voronoi vertex that belongs

to the cells V (Ai), V (Aj) and V (Ak) is the center of a disk Cijk(x) tangent
to the boundaries of Ai, Aj and Ak. Such a disk is called a Voronoi tritangent
disk, and more precisely an interior Voronoi tritangent disk if it is included in
Ai∩Aj∩Ak, or an external Voronoi tritangent disk if it is lies in the complement
of A◦

i ∪A◦
j ∪A◦

k.
Suppose we want to add a new object A /∈ A and update the Voronoi diagram

from V(A) to V(A+) where A+ = A ∪ {A}. We assume that A+ is also an sc-
pseudo-circles set. The object A is said to be in conflict with a point x on the
1-skeleton of the current diagram if the Voronoi disk centered at x is either an



internal Voronoi disk included in A◦ or an exterior Voronoi disk intersecting A◦.
We call conflict region the subset of the 1-skeleton of V(A) that is in conflict
with the new object A. A Voronoi edge of V(A) is said to be in conflict with A
if some part of this edge is in conflict with A.

Our dynamic algorithm relies on the two following theorems, which can be
proved as in [6].

Theorem 4 Let A+ = A∪{A} be an sc-pseudo-circles set such that A /∈ A. The
conflict region of A with respect to V(A) is a connected subset of the 1-skeleton
of V(A).

Theorem 5 Let {Ai, Aj , Ak} be an sc-pseudo-circles set in general position.
Then the Voronoi diagram of Ai, Aj and Ak has at most two Voronoi vertices.

Theorem 5 is equivalent to saying that two bisecting curves πij and πik relative
to the same object Ai have at most two points of intersection. In particular, it
implies that the conflict region of a new object A contains at most two connected
subsets of each edge of V(A).

The data structures. The Voronoi diagram V(A) of the current set of objects
is maintained through its dual graph D(A).

When a deletion is performed, a hidden site can reappear as visible. There-
fore, we have to keep track of hidden sites. This is done through an additional
data structure that we call the covering graph K(A). For each hidden object Ai,
we call covering set of Ai a set K(Ai) of objects such that any maximal disk
included in Ai is included in the interior of at least one object of K(Ai). In other
words, in the Voronoi diagram V(K(Ai) ∪ {Ai}) the Voronoi cell V (Ai) of Ai

is empty. The covering graph is a directed acyclic graph with a node for each
object. A node associated to a visible object is a root. The parents of a hidden
object Ai are objects that form a covering set of Ai. The parents of a hidden
object may be hidden or visible objects.

Note that if we perform only insertions or if it is known in advance that all
sites will have non-empty Voronoi cells (e.g., this is the case for disjoint objects),
it is not necessary to maintain a covering graph.

The algorithm needs to perform nearest neighbor queries. Optionally, the
algorithm maintains a location data structure to perform efficiently those queries.
The location data structure that we prone here is called a Voronoi hierarchy and
described below in subsection 4.

3.1 The insertion procedure

The insertion of a new object A in the current Voronoi diagram V(A) involves
the following steps: (1) find a first conflict between an edge of V(A) and A or
detect that A is hidden in A+; (2) find the whole conflict region of A; (3) repair
the dual graph; (4) update the covering graph; (5) update the location data
structure if any. Steps 1 and 4 are discussed below. Steps 2 and 3 are performed
exactly as in [9] for the case of disks. Briefly, Step 2 corresponds to finding the



boundary of the star of A in D(A+). This boundary represents a hole in D(A),
i.e., a sequence of edges of D(A) forming a topological circle. Step 3 simply
amounts to “staring” this hole from Ai (which means to connect Ai to every
vertex on the hole boundary).

Finding the first conflict or detecting a hidden object. The first crucial
operation to perform when inserting a new object is to determine if the inserted
object is hidden or not. If the object is hidden we need to find a covering set of
this object. If the object is not hidden we need to find an edge of the current
diagram in conflict with the inserted object.

The detection of the first conflict is based on closest site queries. Such a
query takes a point x as input and asks for the object in the current set A that
is closest to x. If we didn’t have any location data structure, then we perform the
following simple walk on the Voronoi diagram to find the object in A closest to
x. The walk starts from any object Ai ∈ A and compares the distance δ(x,Ai)
with the distances δ(x, A) to the neighbors A of Ai in the Voronoi diagram V(A).
If some neighbor Aj of Ai is found closer to x than Ai, the walk proceeds to Aj .
If there is no neighbor of Ai that is closer to x than Ai, then Ai is the object
closest to x among all objects in A. It is easy to see that this walk can take
linear time. We postpone until the next section the description of the location
data structure and the way these queries can be answered more efficiently.

Let us consider first the case of disjoint objects. In this case there are no
hidden objects and each object is included in its own cell. We perform a closest
site query for any point p of the object A to be inserted. Let Ai be the object
of A closest to p. The cell of Ai will shrink in the Voronoi diagram V(A+) and
at least one edge of ∂V (Ai) is in conflict with A. Hence, we only have to look at
the edges of ∂V (Ai) until we find one in conflict with A.

When objects do intersect, we perform an operation called location of the
medial axis, which either provides an edge of V(A) that is in conflict with A,
or returns a covering set of A. There is a simple way to perform this operation.
Indeed, the medial axis S(A) of A is a tree embedded in the plane, and for each
object Ai, the part of S(A) that is not covered by Ai (that is the part of S(A)
made up by the centers of maximal disks in A, not included in Ai) is connected.
We start by choosing a leaf vertex p of the medial axis S(A) and locate the
object Ai that is closest to p. Then we prune the part of the medial axis covered
by Ai and continue with the remainder of the medial axis in exactly the same
way. If, at some point, there is no part of S(A) left, we know that A is hidden,
and the set of objects Ai, which pruned a part of S(A), forms a covering of A.
Otherwise we perform a nearest neighbor query for any point of S(A) which has
not been pruned. A first conflict can be found from the answer to this query in
exactly the same way as in the case of disjoint objects, discussed above.

It remains to explain how we choose the objects Ai that are candidates for
covering parts of S(A). As described above, we determine the first object Ai by
performing a nearest neighbor query for a leaf vertex p of S(A). Once we have
pruned the medial axis, we consider one of the leaf vertices p′ created after the
pruning. This corresponds to a maximal circle M(p′) of A centered at p′, which is



also internally tangent to Ai. To find a new candidate object for covering S(A),
we simply need to find a neighbor of Ai in the Voronoi diagram that contains
M(p′); if M(p′) is actually covered by some object in A, then it is guaranteed
that we will find one among the neighbors of Ai. We then continue, as above,
with the new leaf node of the pruned medial axis and the new candidate covering
object, as above.

Updating the covering graph. We now describe how Step 4 of the insertion
procedure is performed. We start by creating a node for A in the covering graph.

If A is hidden, the location of its medial axis yields a covering set K(A) of
A. In the covering graph we simply assign the objects in K(A) as parents of A.

If the inserted object A is visible, some objects in A can become hidden due
to the insertion of A. The set of objects that become hidden because of A are
provided by Step 2 of the insertion procedure. They correspond to cycles in the
conflict region of A. The main idea for updating the covering graph is to look at
the neighbors of A in the new Voronoi diagram.

Lemma 6 Let A be an sc-pseudo-circles set. Let A /∈ A be an object such that
A+ = A ∪ {A} is also an sc-pseudo-circles set and A is visible in V(A+). If an
object Ai ∈ A becomes hidden upon the insertion of A, then the neighbors of A
in V(A+) along with A is a covering set of Ai.

Let Ai be an object that becomes hidden upon the insertion of A. By Lemma
6 the set of neighbors of A in V(A+) along with A is a covering set K(Ai) of
Ai. The only modification we have to do in the covering graph is to assign all
objects in K(Ai) as parents of Ai.

Updating the location data structure. The update of the location data
structure is really simple. Let A be the object inserted. If A is hidden we do
nothing. If A is not hidden, we insert A in the location data structure, and
delete from it all objects than become hidden because of the insertion of A.

3.2 The deletion procedure

Let Ai be the object to be deleted and let Kp(Ai) be the set of all objects in
the covering graph K(A) that have Ai as parent. The deletion of Ai involves
the following steps: (1) remove Ai from the dual graph; (2) remove Ai from
the covering graph; (3) remove Ai from location data structure; (4) reinsert the
objects in Kp(Ai).

Step 1 requires no action if Ai is hidden. If Ai is visible, we first build an
annex Voronoi diagram for the neighbors of Ai in V(A) and use this annex
Voronoi diagram to fill in the cell of Ai (see [9]). In Step 2, we simply delete
all edges of K(A) to and from Ai, as well as the node corresponding to Ai. In
Step 3, we simply delete Ai from the location data structure. Finally, in Step
4 we apply the insertion procedure to all objects in Kp(Ai). Note, that if Ai is
hidden, this last step simply amounts to finding a new covering set for all objects
in Kp(Ai).



4 Closest site queries

The location data structure is used to answer closest site queries. A closest site
query takes as input a point x and asks for the object in the current set A
that is closest to x. Such queries can be answered through a simple walk in the
Voronoi diagram (as described in the previous section) or using a hierarchical
data structure called the Voronoi hierarchy.

The Voronoi hierarchy. The hierarchical data structure used here, denoted
by H(A), is inspired from the Delaunay hierarchy proposed by Devillers [10].
The method consists of building the Voronoi diagrams V(A`), ` = 0, . . . , L, of a
hierarchy A = A0 ⊇ A1 ⊇ . . . ⊇ AL of subsets of A. Our location data structure
conceptually consists of all subsets A`, 1 ≤ ` ≤ L.

The hierarchy H(A) is built together with the Voronoi diagram V(A) accord-
ing to the following rules. Any object of A is inserted in V(A0) = V(A). If A has
been inserted in V(A`) and is visible, it is inserted in V(A`+1) with probability
β. If, upon the insertion of A in V(A), an object becomes hidden it is deleted
from all diagrams V(A`′), `′ > 0, in which it has been inserted. Finally, when
an object Ai is deleted from the Voronoi diagram V(A), we delete Ai from all
diagrams V(A`), ` ≥ 0, in which it has been inserted. Note that all diagrams
V(A`), ` > 0, do not contain any hidden objects.

The closest site query for a point x is performed as follows. The query is
first performed in the top-most diagram V(AL) using the simple walk. Then, for
` = L − 1, . . . , 0 a simple walk is performed in V(A`) from A`+1 to A` where
A`+1 (resp. A`) is the object of A`+1 (resp. of A`) closest to x.

It easy to show that the expected size of H(A) is O( 1
1−β n), and that the

expected number of levels in H(A) is O(log1/β n). Moreover, it can be proved
that the expected number of steps performed by the walk at each level is constant
(O(1/β)).

We still have to bound the time spend in each visited cells. Let Ai be the
site of a visited cell in V(A`). Because the complexity of any cell in a Voronoi
diagram is only bounded by O(n`) if n` is the number of sites, it is not efficient
to compare the distances δ(x,Ai) and δ(x,A) for each neighbor A of Ai in
V(A`). Therefore we attach an additional balanced binary tree to each cell of
each Voronoi diagram in the hierarchy. The tree attached to the cell V`(Ai) of
Ai in the diagram V(A`) includes, for each Voronoi vertex v of V`(Ai), the ray
ρi(pv) where pv is the point on ∂Ai closest to v, and ρi(pv) is defined as the ray
starting from the center of the maximal disk Mi(pv) and passing through pv.
The rays are sorted according to the (counter-clockwise) order of the points pv

on ∂Ai. When V`(Ai) is visited, the ray ρi(px) corresponding to the query point
x is localized using the tree. Suppose that it is found to be between the rays of
two vertices v1 and v2. Then it suffice to compare δ(x,Ai) and δ(x,Aj) where
Aj is the neighbor of Ai in V(A`) sharing the vertices v1 and v2. Thus the time
spend in each visited cell of V(A`) is O(log n`) = O(log n), which (together with
with the expected number of visited nodes) yields the following lemma



Lemma 7 Using a hierarchy of Voronoi diagrams with additional binary trees
for each cell, a closest site query can be answered in time O( 1

β log(1/β) log2 n).

5 Complexity analysis

In this section we deal with the cost of the basic operations of our dynamic
algorithm. We consider three scenarios. The first one assumes objects do not
intersect. In the second scenario objects intersect but there are no hidden objects.
The third scenario differs from the second one in that we allow the existence of
hidden objects.

In each of the above three cases, we consider the expected cost of the basic
operations, namely insertion and deletion. The expectation refers to the insertion
order, that is, all possible insertion orders are considered to be equally likely
and each deletion is considered to deal equally likely with any object in the
current set. In all cases we assume that the Voronoi diagram hierarchy is used as
the location data structure. Note that the hierarchy introduces another source
of randomization. In the first two scenarios, i.e., when no hidden object exist,
there is no covering graph to be maintained. Note the the randomized analysis
obviously does not apply to the reinsertion of objects covered by a deleted object
Ai, which explains why the randomization fails to improve the complexity of
deletion in the presence of hidden objects.

Our results are summarized in the table below. The corresponding proofs are
omitted due to lack of space; in any case they follow directly from a careful step
by step analysis of the insertion and deletion procedures described above.

Disjoint No hidden Hidden
Insertion O(log2 n) O(n) O(n)

Deletion O(log3 n) O(n) O(n2)

6 Extensions

In this section we consider several extensions of the problem discussed in the
preceding sections.

Degenerate configurations. Degenerate configurations occur when the set
contains pairs of internally tangent objects. Let {Ai, Aj} be an sc-pseudo-circles
set with Ai and Aj internally tangent and Ai ⊆ Aj . The bisector πij is homeo-
morphic to a ray, if Ai and Aj have a single tangent point, or to two disconnected
rays, if Ai and Aj have two tangent points. In any case, the interior V ◦(Ai) of
the Voronoi region of Ai in V({Ai, Aj}) is empty and we consider the object Ai

as hidden. This point of view is consistent with the definition we gave for hidden
sites, which is that an object A is hidden if N◦(A) = ∅.

Let us discuss the algorithmic consequences of allowing degenerate config-
urations. When the object A is inserted in the diagram, the case where A is
internally tangent to a visible object Ai ∈ A is detected at Step 1, during the



location the medial axis of A. The case of an object Aj ∈ A is internally tangent
to A is detected during Step 2, when the entire conflict region is searched. In the
first case A is hidden and its covering set is {Ai}. In the second case Ai becomes
hidden and its covering set is {A}.

Pseudo-circles sets of piecewise smooth convex objects. In the sections
above we assumed that all convex objects have smooth boundaries, i.e., their
boundaries are at least C1-continuous. In fact we can handle quite easily the
case of objects whose boundaries are only piecewise C1-continuous. Let us call
vertices the points on the boundary of an object where there is no C1-continuity.
The main problem of piecewise C1-continuous objects is that they can yield two-
dimensional bisectors when two objects share the same vertex. The remedy is
similar to the commonly used approach for the Voronoi diagram of segments
(e.g., cf. [11]): we consider the vertices on the boundary of the objects as objects
by themselves and slightly change the distance so that a point whose closest
point on object Ai is a vertex of Ai is considered to be closer to that vertex. All
two-dimensional bisectors then become the Voronoi cells of these vertices.

As far as our basic operations are concerned, we proceed as follows. Let A be
the object to be inserted or deleted. We note Av the set of vertices of A and Â
the object A minus the points in Av. When we want to insert A in the current
Voronoi diagram we at first insert all points in Av and then Â. When we want
to delete A we at first delete Â and then all points in Av. During the latter step
we have to make sure that points in Av are not vertices of other objects as well.
This can be done easily by looking at the neighbors in the Voronoi diagram of
each point in Av.

Generic convex objects. In the case of smooth convex objects which do not
form pseudo-circles sets we can compute the Voronoi diagram in the complement
of their union (free space). The basic idea is that the Voronoi diagram in free
space depends only on the arcs appearing on the boundary of the union of the
objects.

More precisely, let A be a set of convex objects and let C be a connected
component of the union of the objects in A. Along the boundary ∂C of C,
there exists a sequence of points {p1, . . . , pm}, which are points of intersection
of objects in A. An arc αi on ∂C joining pi to pi+1 belongs to a single object
A ∈ A. We form the piecewise smooth convex object Aαi , whose boundary is
αi∪pipi+1, where pipi+1 is the segment joining the points pi and pi+1. Consider
the set A′ consisting of all such objects Aαi

. A′ is a pseudo-circles set (consisting
of disjoint piecewise smooth convex objects) and the Voronoi diagrams V(A) and
V(A′) coincide in free space.

The set A′ can be computed by performing a line-sweep on the set A and
keeping track of the boundary of the connected components of the union of the
objects in A. This can be done in time O(n log n + k), where k = O(n2) is the
complexity of the boundary of the afore-mentioned union. Since the objects in
A′ are disjoint, we can then compute the Voronoi diagram in free space in total
expected time O(k log2 n).



7 Conclusion

We presented a dynamic algorithm for the construction of the euclidean Voronoi
diagram in the plane for various classes of convex objects. In particular, we con-
sidered pseudo-circles sets of piecewise smooth convex objects, as well as generic
smooth convex objects, in which case we can compute the Voronoi diagram in
free space. Our algorithm uses fairly simple data structures and enables us to
perform deletions easily.

We are currently working on extending the above results to non-convex ob-
jects, as well as understanding the relationship between the euclidean Voronoi
diagram of such objects and abstract Voronoi diagrams. We conjecture that,
given a pseudo-circles set in general position, such that any pair of objects has
exactly two supporting lines, the corresponding set of bisectors is an admissible
system of bisectors.
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