
Voronoi Diagrams for Moving Disks and Applications

Menelaos I. Karavelas ?

Graphics Laboratory, Computer Science Department, Stanford University,
Stanford, CA 94305-9035, USA,

karavelas@cs.stanford.edu

Abstract. In this paper we discuss the kinetic maintenance of the Euclidean
Voronoi diagram and its dual, the Delaunay triangulation, for a set of moving
disks. The most important aspect in our approach is that we can maintain the
Voronoi diagram even in the case of intersecting disks. We achieve that by aug-
menting the Delaunay triangulation with some edges associated with the disks
that do not contribute to the Voronoi diagram. Using the augmented Delaunay
triangulation of the set of disks as the underlying structure, we discuss how to
maintain, as the disks move, (1) the closest pair, (2) the connectivity of the set of
disks and (3) in the case of non-intersecting disks, the near neighbors of a disk.

1 Introduction

Geometric objects that move with time appear in many problems in motion planning,
geometric modeling, computer simulations of physical systems and virtual environ-
ments, robotics, computer graphics and animation, mobile communications, ad hoc
networks or group communication in military operations. The aim is to answer ques-
tions concerning proximity information among the geometric objects, such as find the
closest/farthest pair, report all near neighbors, predict collisions or report reachability
between a pair of geometric objects. In many cases we can approximate the geometric
objects by disks. The problem then reduces to answering proximity questions for a set
of disks.

The Voronoi diagram is a data structure that can be used to produce answers to many
of these questions. Voronoi diagrams have been successful in robotics applications such
as collision detection [11] and retraction motion planning [10]. Dynamic or kinetic
Voronoi diagrams for moving objects in the plane have also appeared in the literature.
There are papers discussing the maintenance of the Voronoi diagram for a set of points
[4], the maintenance of the Voronoi diagram for a set of moving convex polygons [5],
as well as for the maintenance of near neighbors of points in sets of moving points [9].

Algorithms for maintaining the Voronoi diagram for sets of non-intersecting mov-
ing disks have also appeared. In [2] the Voronoi diagram for disks with respect to the
Euclidean metric is considered. The maintenance of the Voronoi diagram with respect
to the power distance, also called the Power diagram, is discussed in [6]. The most ap-
pealing feature of the Power diagram is that it consists of straight arcs, in contrast to
the Euclidean Voronoi diagram that consists of straight or hyperbolic arcs. The main

? Supported by NSF grant CCR-9910633.

PSfrag replacements

B1

B2

D1

D2
PSfrag replacements

B1

B2

D1

D2

Fig. 1. Left: the edge connecting B1 and B2 is locally Delaunay because the exterior tangent ball
of B1, B2 and D1 does not intersect D2. Right: the edge connecting B1 and B2 is locally Delaunay
because the interior tangent ball of B1, B2 and D1 is not contained in D2. The exterior/interior
tangent ball of B1, B2 and D1 is shown in light gray.

drawback of the Power diagram is that the intersection between a disk and its Voronoi
cell may be empty, even if the Voronoi cell is not empty [8]. In the Euclidean Voronoi
diagram, however, a disk with non-empty Voronoi cell always intersects its cell [12].

In this paper we tackle the problem of maintaining the Voronoi diagram, or its dual
the Delaunay Triangulation (DT) for a set of disks moving in the plane. The major
contribution of this paper is that the disks are allowed to intersect. This enables us to
not only report collisions between disks, but also to report when the penetration depth
between two disks achieves a certain value, or when a disk is wholly contained inside
another disk. Moreover, our data structure can be used for maintaining the connectivity
of the set of disks as the disks move.

The Voronoi diagram is maintained using the Kinetic Data Structure (KDS) frame-
work introduced in [1]. In the KDS setting one maintains a geometric structure under
continuous motion through a set of certificates proving its correctness. An event queue
is maintained for the failure times of these certificates and at each event the structure of
interest and its kinetic proof are appropriately updated.

The kinetization process relies heavily on the fact that the local Delaunay property
for the edges in the DT ensures that the triangulation is globally Delaunay. Let e be an
edge connecting the disks B1, B2 and having the disks D1, D2 as its neighbors in the
triangulation. The local Delaunay property states that the edge e is an edge of the DT
if the exterior tangent ball of B1, B2 and D1 does not intersect the disk D2, or if the
interior tangent ball of B1, B2 and D1 is not contained in D2 (see Fig. 1). The global
Delaunay property states that there exists an edge in the DT between two disks B1 and
B2 if there exists an exterior tangent ball to B1 and B2 that does not intersect any other
disk or if there exists an interior tangent ball to B1 and B2 that is not contained in any
other disk. In this work we prove the relationship between the global and local Delaunay
properties.

Using the local Delaunay property, we can maintain the Voronoi diagram for the set
of disks using two types of events, one of which appears only in the case of intersecting
disks. The data structure that we use is called the Augmented Delaunay Triangulation
(ADT) of the set of disks. It consists of the Delaunay triangulation of the disks aug-

Fig. 2. The Voronoi diagram for a set of disks (left) and the corresponding Augmented Delaunay
Triangulation (right). The disks in dark gray are trivial.

mented with some additional linear size data structure associated with the disks that do
not contribute to the Voronoi diagram (see Fig. 2). We call these disks trivial. Since
trivial disks exist only when we allow disk intersections, the ADT differs from the DT
only when we have disk intersections.

An interesting property of the ADT is that the closest pair of the set of disks is real-
ized between two disks that share an edge in the ADT. Thus, knowing how to maintain
the ADT enables us to maintain the closest pair of the set of disks using a tournament
tree on the edges of the ADT. The distance between two disks B1 and B2 is defined as :

δ(B1,B2) =

{

d(b1,b2)− r1 − r2, B1 6⊆ B2 and B2 6⊆ B1

−2min{r1,r2}, B1 ⊆ B2 or B2 ⊆ B1
, (1)

where bi are the centers of the disks, ri their radii and d(·, ·) denotes the Euclidean
metric. If the set of disks does not have any intersecting disks the distance function (1)
gives us the closest pair in the usual sense. If there are intersecting disks, then the closet
pair with respect to (1) is either the pair of non-trivial disks with maximum penetration
depth among all intersecting pairs of disks, or the largest trivial disk and its container.

Another important property of the ADT is that a subgraph of the ADT is a spanning
subgraph of the connectivity graph of the set of disks. Knowing how to maintain the
ADT enables us to maintain the connectivity of the set of disks by maintaining the
afore-mentioned spanning subgraph.

Finally, the DT of a set of non-intersecting disks has the property that if we want to
find the near neighbors of a disk we only need to look at its neighborhood in the DT.
Therefore, in order to maintain the near neighbors of a disk we simply need to look at
its neighborhood in the DT and update this neighborhood as the DT changes. We make
this statement more precise in Section 7.

The rest of the paper is structured as follows. In Section 2 we introduce the Voronoi
diagram for disks, and discuss some of its properties. Section 3 is devoted to proving
the relationship between the global and local Delaunay properties. In Section 4 we
show how to kinetize the Voronoi diagram. In Section 5 we describe how to maintain
the closest pair. In Section 6 we show how to maintain a spanning subgraph of the

connectivity graph of the set of disks. In Section 7 we discuss the maintenance of near
neighbors of disks. Finally, Section 8 is devoted to conclusions and further work.

2 The Voronoi Diagram for Disks and its Properties

Let S be a set of n disks B j, with centers b j and radii r j. Let d(·, ·) be the Euclidean
distance. We define the distance δ(p,B) between a point p ∈ E

2 and a disk B = {b,r},
as δ(p,B) = d(p,b)− r. We define the Voronoi diagram for the set S as follows. For
each i 6= j, let Hi j = {y ∈ E

2 : δ(y,Bi) ≤ δ(y,B j)}. Then we define the (closed) Voronoi
cell of Bi to be the cell Vi =

�
j 6=i Hi j. The Voronoi diagram VD(S) of S is defined to

be the set of points which belong to more that one Voronoi cell. The Voronoi diagram
just defined is a subdivision of the plane. It consists of straight or hyperbolic arcs and
each Voronoi cell is star-shaped with respect to the center of the corresponding disk.
In contrast to the Voronoi diagram for points, there may be disks whose corresponding
Voronoi cell is empty. In particular, the Voronoi cell Vi of a disk Bi is empty if and only
if Bi is wholly contained in another disk (see [12, Property 2]). A disk whose Voronoi
cell has empty interior is called trivial, otherwise is called non-trivial.

We define the dual of VD(S) as follows. The vertices are the centers of the non-
trivial disks. If Vi ∩Vj 6= /0, we add an edge [bi,b j] for every open arc α of Vi ∩Vj. It
turns out that the dual graph is a planar graph and the size of both the Voronoi diagram
and its dual graph is O(n) [12, Properties 6 and 7]. If the Voronoi diagram consists
of a single connected component and the disks are in general position, the dual graph
is a generalized triangulation of the plane. By generalized we mean that the edges of
the triangles may be curved arcs or polygonal lines instead of straight line segments.
We assume throughout the rest of the paper that the Voronoi diagram consists of only
one connected component. We shall refer to the dual graph of VD(S) as the Delaunay
Graph DG(S) of S. If the disks are in general position we refer to the dual graph as the
Delaunay Triangulation DT(S) of S.

Let Bi and B j be two disks such that no disk is contained inside the other. A ball
tangent to Bi and B j that does not contain either of the two is an exterior tangent ball.
A ball tangent to Bi and B j that lies in Bi ∩B j is an interior tangent ball. The following
theorem couples the existence of edges in DG(S) with exterior and interior tangent balls
of disks in S.

Theorem 1 (Global Property). There exists an edge [bi,b j] in DG(S) between Bi and
B j if and only if one of the following holds: (1) there exists an exterior tangent ball to
Bi and B j which does not intersect any disk Bk ∈ S, k 6= i, j; (2) there exists an interior
tangent ball to Bi and B j, which is not contained in any disk Bk ∈ S, k 6= i, j.

Proof. (Sketch) Let [bi,b j] be an edge of DG(S). Then Vi∩Vj consists of at least one arc
α with non-empty interior. Let y be an interior point of α. Consider the ball C centered
at y with radius |δ(y,Bi)| = |δ(y,B j)|. Then C is tangent to both Bi, B j and does not
intersect any disk Bk, k 6= i, j, if y 6∈ Bi∩B j, and is not contained in any disk Bk, k 6= i, j,
if y ∈ Bi ∩B j. Conversely, let C be a common tangent ball of Bi, B j, and let y be its
center. If either assumption (1) or assumption (2) of the theorem holds, we have that
δ(y,Bi) = δ(y,B j) < δ(y,Bk), for all k 6= i, j. Hence y is an interior point of some arc α
of Vi ∩Vj, and thus there exists at least one edge [bi,b j] in DG(S). �

In order to account for the trivial disks, we augment the Delaunay triangulation
with some additional edges. For a trivial disk D we add an edge between D and its
container disk. If D has more than one container we need to add an edge to only one
of its containers, chosen arbitrarily. We call this structure the Augmented Delaunay
Triangulation ADT(S) of S. The set of additional edges forms a forest, and the root of
each tree in the forest is a non-trivial disk. Clearly, the forest has linear size. Hence the
size of ADT(S) is still O(n).

3 The Local Property of the Delaunay Triangulation

In this section we present the local Delaunay property for a set of possibly intersect-
ing disks and we show that the local Delaunay property is a sufficient and necessary
condition for a (generalized) triangulation of the set of disks to be globally Delaunay.
We only consider non-trivial disks, since trivial disks do not contribute to the Voronoi
diagram.

Let πi j be the bisector of Bi and B j. The bisectors are lines or hyperbolas which can
be oriented. We define the orientation to be such that bi is to the left of πi j. Let ≺ be
the linear ordering on the points of πi j. Let oi j be the midpoint of the subsegment of
bib j that lies either in free space or in Bi ∩B j. We can parameterize πi j as follows: if
p ≺ oi j then ζi j(p) = −(δ(p,Bi)− δ(oi j,Bi)); otherwise ζi j(p) = δ(p,Bi)− δ(oi j,Bi).
The function ζi j is a 1–1 and onto mapping from πi j to R.

Let Bi, B j and Bk be three disks such that no disk is contained inside another. The
three disks may have up to eight common tangent balls. Among those we are interested
in only two kinds: those balls that do not contain any of the three disks, which we call
exterior tangent balls and those that are contained entirely in the intersection of the
three disks, which we call interior tangent balls. Let Pi, Pj, Pk be the points of tangency
of the disks Bi, B j, Bk with their common tangent ball. If CCW(Pi,Pj,Pk) > 0 we call the
common tangent ball the left tangent ball of the triple Bi, B j, Bk. If CCW(Pi,Pj,Pk) < 0,
we call the common tangent ball the right tangent ball of the triple Bi, B j, Bk. Note that
three disks have at most one left/right exterior/interior tangent ball. Finally, we define
ζL

i j(Bk) to be the parameter value of the center c ∈ πi j of the left tangent ball of Bi,
B j and Bk. Correspondingly, ζR

i j(Bk) is the parameter value of the center of the right
tangent ball of Bi, B j and Bk.

Let T (S) be a (generalized) triangulation of S that is constructed as follows. The
vertices of T (S) are the centers of the disks in S. An oriented edge ekl

i j in T (S) is an
edge that connects the disks Bi and B j and has as neighbors the disks Bk and Bl to its left
and right, respectively. It is possible that the disks Bk and Bl are the same. The disk Bk

is called the left neighbor of ekl
i j and the disk Bl is called the right neighbor of ekl

i j . Note
that the quadruple (i, j,k, l) uniquely defines edges in T (S), i.e., there can be at most
one oriented edge in the triangulation starting from Bi, ending at B j and having Bk and
Bl to its left and right, respectively. The left tangent ball of the triple Bi, B j, Bk is called
the left (tangent) ball of ekl

i j , and similarly, the right tangent ball of the triple Bi, B j, Bl is

called the right (tangent) ball of ekl
i j . We assume that for every edge in T (S) its left and

right tangent balls exist. Then we can embed ekl
i j with a two-leg polygonal line bixb j,

where x is a point on πi j with parameter value ζi j(x) in between ζL
i j(Bk) and ζR

i j(Bl). For

every triangle ∆i jk ∈ T (S) that connects the disks Bi, B j and Bk, in counterclockwise
order, we associate the left tangent ball ∆̃i jk of the triple Bi, B j, Bk. This is called the
Delaunay ball of ∆i jk. Note that there is an 1–1 correspondance between triangles ∆ in
T (S) and their Delaunay balls ∆̃.

An edge ekl
i j in T (S) is called locally Delaunay if the predicate InCircle(Bi,B j,

Bk,Bl) is false. A triangle ∆ in T (S) is called locally Delaunay if all its edges are
locally Delaunay. The InCircle predicate is defined below.

Definition 1. Let Bi, B j, Bk, Bl be four disks. The predicate InCircle(Bi,B j, Bk,Bl) is
true if k 6= l and either Bl intersects the exterior left tangent ball of Bi, B j and Bk, or Bl

contains the interior left tangent ball of Bi, B j and Bk.

Note that if an edge ekl
i j is locally Delaunay then ζL

i j(Bk) > ζR
i j(Bl). This imples that

if a triangle ∆ is locally Delaunay, then the center c∆̃ of its Delaunay ball ∆̃ lies in the
interior of ∆. We are now ready to prove the main result of this section.

Theorem 2 (Local Property). A (generalized) triangulation T (S) is the Delaunay tri-
angulation of S if and only if all the triangles in T (S) are locally Delaunay.

Proof. It is straightforward to verify that if a triangulation is globally Delaunay then it
is locally Delaunay as well.

Suppose now that we have a triangulation T (S) that is locally Delaunay but not
globally. We assume without loss of generality that for all triangles the corresponding
Delaunay balls are interior. If this is not the case we can increase the radii of all the disks
by a sufficiently large quantity. The triangulation T (S) is not affected by this change,
other than that all the Delaunay balls become interior.

Since T (S) is not globally Delaunay there exists a triangle ∆ that is locally Delaunay
but its Delaunay ball ∆̃ is contained inside some disk B = {b,r}. Consider the distance

PSfrag replacements

B1

B2

B3

B4

B

∆̃

∆̃′

b1 b2

b

e

L

Q

H

Fig. 3. Proof of the local property.

between the disk B and the Delaunay ball ∆̃. This distance is δ(∆̃,B) = d(b,c∆̃)+r∆̃−r,
where c∆̃ and −r∆̃ are the center and radius of ∆̃ (interior Delaunay balls are considered
to have negative radius). Among all triangles ∆ for which ∆̃ ⊂ B, choose ∆ to be the one
for which δ(∆̃,B) is minimized.

Let e = [b1,b2] be the (oriented) edge of ∆ that the segment c∆̃b intersects (see Fig.
3). Let L be the two-leg polygonal line b1c∆̃b2. Since c∆̃b intersects e, b must lie in
the half-plane H bounded by L that contains e. Let ∆′ be the left neighboring triangle
of e. Since both ∆ and ∆′ are locally Delaunay the quad Q = b1c∆̃b2c∆̃′ is contained
inside ∆∪∆′, and clearly b cannot lie inside Q. But then we have ∆̃′ ⊂ B, and moreover
δ(∆̃′,B) < δ(∆̃,B), which contradicts the fact that δ(∆̃,B) is minimal. �

4 Kinetizing the Delaunay Triangulation

The framework that we use for maintaining the Voronoi diagram or equivalently the
Augmented Delaunay triangulation is the Kinetic Data Structure (KDS) framework.
The geometric attribute that we want to maintain as the objects move is called the con-
figuration function, e.g., the Voronoi diagram of the set of disks. In the KDS setting
we maintain a set of certificates that are conditions which ensure the correctness of the
configuration function, e.g., that an edge in DT(S) passes the InCircle test. As the ob-
jects move the certificates fail. These are the critical events for the KDS and moreover
the corresponding times are the only times that the configuration function can possi-
bly change. When a critical event happens we need to change the set of certificates and
possibly the configuration function itself. In order to efficiently update the configuration
function we maintain an event queue of the certificates w.r.t. their failure times. When
a critical event takes place we remove some certificates from the queue and add some
new ones. For more details on KDSs see [1].

Maintaining the Voronoi diagram or its dual, the Delaunay triangulation, for a set
of points moving on the plane is straightforward [4]. This is due to the local property
of the Delaunay triangulation, which states that if the triangles of the Delaunay triangu-
lation are locally Delaunay, then the triangulation is the Delaunay triangulation. When
one of the conditions fails we simply have to do an edge-flip operation to restore the
correctness of the Delaunay triangulation. The same principle is exploited to maintain
the power diagram of non-intersecting moving disks [6] and the Voronoi diagram for
rigidly moving polygons [5].

In the case of non-intersecting disks the very same ideas can be used. The local
Delaunay property is also true for the Delaunay triangulation of disks, as we showed in
the preceding section, and thus the critical events happen at times when four disks are
cocircular or when three disks lying on the convex hull of S have a common tangent
line. In fact if we add a disk at infinity and connect every disk lying on the convex hull
of S with the disk at infinity, the compactified version of the Delaunay triangulation of S
consists of triangles only, and every triangle has exactly three neighboring triangles. In
this setting, the case of three disks having a common tangent reduces to a cocircularity
event with one of the disks being a disk at infinity. When such a cocircularity event
happens we only need to perform an edge-flip operation to restore the correctness of
the Delaunay triangulation, and its dual the Voronoi diagram.

However, when we allow disk intersections the situation changes considerably. Un-
like the points’ case, there are disks that are not associated with a particular Voronoi
cell, namely the trivial disks. We need to account for these disks, since as the disks
move some of the trivial disks may become non-trivial and vice versa. This is done by
considering the Augmented Delaunay triangulation instead of the Delaunay triangula-
tion. There are two types of events that change the combinatorial structure of ADT(S) :
the cocircularity and the appearance/disappearance event. Both events are associated
with edges of the ADT(S). In particular, an edge in DT(S) is associated with a cocir-
cularity and a disappearance event. An edge in ADT(S) \DT(S) is associated with an
appearance event. We now discuss each type of event separately.

The cocircularity event happens when four distinct disks have a common exterior
or interior tangent ball. Let Bi, i = 1,2,3,4 be the four disks associated with the cocir-
cularity event and let [b1,b3] be the edge to be flipped. We need to delete that edge and
add the edge [b2,b4] (see Fig. 4(left)).

An appearance event occurs when a disk B1 contained inside a disk B2 is no longer
wholly contained inside B2. There are two possibilities when this happens: (1) B2 is a
trivial disk and (2) B2 is a non-trivial disk. If B2 is a trivial disk we delete the edge
[b1,b2] and add the edge [b1,b3], where B3 is the container disk of B2. If B2 is a non-
trivial disk we need to first check its neighbors in the DT to see if B1 is contained in
any one of them. If such a neighbor B3 exists we delete the edge [b1,b2] and add the
edge [b1,b3]. If B1 is not contained in any of the neighbors of B2, we need to identify
the edge [b2,b3] that corresponds to the edge of the Voronoi cell of B2 that the half-line
b2b1 intersects. Then duplicate this edge and add the edge [b1,b3], thus creating two
new triangles in DT(S) (see Fig. 4(right), from right to left).

A disappearance event takes place between two disks B1 and B2 when, e.g., B1

becomes wholly contained in B2. The edge [b1,b2] belongs to two triangles with a com-
mon third point b3 corresponding to a disk B3. When the disappearance event happens

PSfrag replacements B1

B1

B1

B1

B2

B2
B2

B2

B3

B3

B3

B3

B4

B4B4

B4
PSfrag replacements

B1

B1

B1

B1

B2

B2 B2

B2

B3 B3

B3 B3

B4

Fig. 4. The cocircularity (left) and appearance/disappearance events (right). Top row: the Voronoi
diagram. Bottom row: the Augmented Delaunay triangulation.

we need to delete the edge [b1,b3], and identify the two edges [b2,b3], thus deleting two
triangles from DT(S) (see Fig. 4(right), from left to right).

In any case, when an edge disappears we deschedule all the events associated with
that edge. When an edge appears we schedule all the events corresponding to that edge
and reschedule all the cocircularity events, if any, in which the new edge participates.

The number of certificates that we maintain is O(n), since we have a constant num-
ber of certificates per edge in ADT(S), and the number of edges in ADT(S) is O(n).
The time to process the cocircularity and disappearance events is O(logn). The time to
process the appearance event is O(n). If the disks move along pseudo-algebraic trajecto-
ries, the total number of cocircularity events that our KDS has to process is O(n3β(n)),
where β(n) = λs(n)/n and λs(n) is the maximum length of a (n,s) Davenport-Schinzel
sequence for some constant s. The total number of appearance/disappearance events
that our KDS processes is obviously O(n2). Hence the total number of events that have
to be processed is O(n3β(n)). A lower bound of Ω(n2) on the number of events can also
be shown.

5 Closest Pair Maintenance

In this section we discuss how to maintain the closest pair of a set S of disks. The dis-
tance function that we use is given by relation (1). The trivial way to do the maintenance
is to consider all

(n
2

)

pairs of disks and maintain the one of minimum distance with re-
spect to the distance function (1). However, the Augmented Delaunay triangulation of S
has the following property, the proof of which is omitted from this version of the paper.

Theorem 3. Let B1, B2 be the closest pair in S. Then there exists an edge [b1,b2] in
ADT(S).

The theorem above suggests that we only need to look at O(n) edges in order to
determine the closest pair, namely the edges of ADT(S). In particular, we need to main-
tain a tournament tree T on the edges of ADT(S). Before describing how to actually
maintain T we need some definitions. Let t1 and t2 be two nodes of T . We say that
t1 ≺ t2 if the depth of t1 is smaller than the depth of t2 in T , or if t1 and t2 are of the same
depth and t1 is to the left of t2 in T . A node t1 is adjacent to a node t2 in T if they have
the same parent. A node t is a loser if its parent is its adjacent node. Finally, a node t is
a winner if its parent is itself.

The certificates associated with T are the winner-loser relationships. The tree T
changes due to changes in the winner-loser relationships or due to changes of the
ADT(S), because of cocircularity and appearance/disappearance events. When a win-
ner-loser relationship changes we simply propagate the new winner up the tree, de-
schedule the old winner-loser relationships and schedule the new ones. During this
propagation we visit O(logn) nodes of the tree and schedule/deschedule O(logn) cer-
tificates in total. Hence the cost per winner-loser relationship change is O(log2 n). When
an edge disappears we replace the corresponding leaf node with the last loser leaf node
and delete the last winner and loser leaf nodes. Then we propagate the last loser leaf
node up the tree as in the case of a winner-loser relationship change. Again this takes
O(log2 n) time. Finally, when an edge appears we create two new leaf nodes in the tree:

one for the new edge and one for the first leaf node. We attach the two new nodes under
the current first leaf node and propagate the winner between these two nodes up the
tree. Once again this takes O(log2 n) time.

The number of changes in a single winner-loser relationship is constant for disks
moving along pseudo-algebraic trajectories of constant degree. Hence the number of
events that we have to process is dominated by the number of combinatorial changes of
ADT(S), which is O(n3β(n)). All, but the appearance event, are processed in O(log2 n)
time; the appearance event is processed in O(n) time.

6 Kinetic Connectivity of Disks

In this section we discuss how to kinetically maintain the connectivity for a set of disks
of different radii. The problem for unit disks has already been studied in [3].

The connectivity graph K of a set of disks S is defined as follows. The vertices of K
are the centers of the disks in S. Two disks share an edge in K if they intersect. Let G
be the subgraph of ADT(S) defined as follows. An edge e in ADT(S) belongs to G if
and only if it is an edge between two non-trivial intersecting disks or between a trivial
disk and its container disk. Clearly, G is a subgraph of the connectivity graph K of S
(modulo multiple edges between two disks in DT(S)). The important property of G is
captured by the following theorem, the proof of which is omitted from this version of
the paper.

Theorem 4. If B1,B2 ∈ S belong to the same connected component in K, then there
exists a path in G that connects B1 and B2.

In other words G is a spanning subgraph of K. This is really important since the
size of K is Ω(n2) in the worst case, whereas the size of G is O(n). We can now main-
tain the connectivity of the disks using the dynamic graph data structure of Holm, de
Lichtenberg and Thorup [7]. This data structure supports edge insertions and deletions
in O(log2 n) amortized time, and connectivity queries in O(logn/ loglogn) time. The
graph that we maintain is the graph G defined above. Once we have ADT(S), maintain-
ing G is really simple. First we color the edges of ADT(S) as follows: edges between
non-intersecting non-trivial disks are green, edges between intersecting non-trivial disks
are orange and edges between trivial disks and their containers are red. Clearly, G is
the union of orange and red edges. The color of an edge changes if the corresponding
disks become tangent. In particular, whenever a green edge becomes an orange edge or
whenever an orange or a red edge appears we simply add it to G. Whenever an orange
edge becomes a green edge or whenever an orange or a red edge disappears we simply
delete it from G. Since the cost per insertion/deletion of edge in G is O(log2 n), in the
amortized sense, the cost per update of G is O(log2 n) (amortized), except when we have
an appearance event, in which case the update cost is O(n). The number of times that
two disks, moving along pseudo-algebraic trajectories of constant degree, can become
tangent is constant. This implies that the number of events due to disk tangencies is
O(n2). The total number of events for maintaining G is thus dominated by O(n3β(n)),
which is the number of times that the Delaunay triangulation of the set of disks can
change combinatorially.

7 Near Neighbor Maintenance

Suppose that we have a set S of non-intersecting moving disks. Let P be a disk in S for
which we want to know the disks in S that are within a certain, possibly time varying,
distance RP from P. Let CP be the disk centered at P with radius RP. The obvious
approach is to maintain the distance from P to every other disk in S and keep those
that intersect CP. In fact, we can do better than that. If we are maintaining the DT of
S, the only disks that can enter or exit CP are those that are end points of edges of the
DT crossing CP exactly once. This is the essence of the following theorem, the proof of
which we omit from this paper.

Theorem 5. Let T (S) be the DT(S) and let P ∈ S. If a disk Q ∈ S enters/exists the disk
CP at some time t0, then there exists an edge in T (S) between Q and some disk that
intersects CP.

Maintaining the near neighbors of P then reduces to maintaining the DT of S and
updating the set EP of DT edges, one end disk of which intersects CP and the other does
not. The set EP changes when disks enter or exit CP. Edge flips due to the maintenance
of DT(S) may also change EP. In case we want to maintain the k-nearest neighbors of
P the same idea applies with two slight modifications: (1) the distance RP is defined to
be the distance of the center of P from Pk, where Pk is the k-th nearest neighbor of P
and (2) the edges of DT(S) adjacent to Pk are all included in EP.

We omit the details of the algorithms since they are essentially the same as the
corresponding algorithms for points in [9].

8 Conclusion

In this paper we presented how to kinetically maintain the Voronoi diagram for a set of
disks moving in the plane. The key steps in the kinetization process were the introduc-
tion of the Augmented Delaunay triangulation and the establishment of the relationship
between the local and global Delaunay properties. We showed how to maintain the clos-
est pair of the set of disks and how to maintain a spanning subgraph of the connectivity
graph of the set of disks using the Augmented Delaunay triangulation as the underly-
ing structure. Finally, if the disks do not intersect, we discussed how to maintain the
disks that are within a prescribed distance from a reference disk or how to maintain the
k-nearest neighbors of a reference disk.

We strongly believe that the results presented in this paper can be generalized to
more general additively weighted Voronoi diagrams, in which the weights can be pos-
itive as well as non-positive. We would also like to extend the results presented here
to general smooth convex objects or to environments where obstacles are present. Fi-
nally, the best known lower bound on the number of combinatorial changes of the DT is
Ω(n2), whereas our upper bound is O(n3β(n)). Given this upper bound, the algorithms
presented here for maintaining the DT, the closest pair and disk connectivity are not
efficient; it would be of interest to find kinetic data structures that solve these problems
efficiently, or prove a tighter lower or upper bound on the number of combinatorial
changes of the DT.

Acknowledgments

The author wishes to thank Leonidas J. Guibas, Olaf Hall-Holt, Aristides Gionis and
Natasha Gelfand for useful discussions.

References

1. J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. J. Algorithms,
1:1–28, 1999.

2. M. Gavrilova and J. Rokne. Swap conditions for dynamic Voronoi diagrams for circles and
line segments. CAGD, 16:89–106, 1999.

3. L. J. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic connectivity for unit disks. In
Proc. 16th ACM Symp. on Computat. Geom., pages 331–339, 2000.

4. L. J. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi diagrams of moving points in the plane.
In G. Schmidt and R. Berghammer, editors, Proc. 17th International Workshop on Graph-
Theoretic Concepts in Computer Science, volume 570 of LNCS, pages 113–125. Springer,
1991.

5. L. J. Guibas, J. Snoeyink, and L. Zhang. Compact Voronoi diagrams for moving convex
polygons. In Magnús M. Halldórsson, editor, Proc. 7th SWAT, volume 1851 of LNCS, pages
339–352. Springer, 2000.

6. L. J. Guibas and L. Zhang. Euclidean proximity and power diagram. In Proc. 10th CCCG,
1998.

7. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In Proc.
30th ACM STOC, pages 79–89, 1998.

8. H. Imai, M. Iri, and K. Murota. Voronoi diagram in the Laguerre geometry and its applica-
tions. SIAM J. Comput., 14(1):93–105, 1985.

9. M. I. Karavelas and L. J. Guibas. Static and kinetic geometric spanners with applications. In
Proc. 12th ACM-SIAM SODA, pages 168–176, 2001.

10. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.
11. M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance computation. In

Proc. IEEE Intern. Conf. Robot. Autom., volume 2, pages 1008–1014, 1991.
12. M. Sharir. Intersection and closest-pair problems for a set of planar discs. SIAM J. of

Comput., 14(2):448–468, May 1985.

