Typeset with NplhesiS version 2.18 (2004/04/05)
on February 3, 2006
for
Joseph E. Lammersfeld
entitled

IMPLEMENTING FOUR-DIMENSIONAL TRIANGULATIONS IN CGAL

This class conforms to the University of Notre Dame style guidelines established
Spring 2004. However it is still possible to generate a non-conformant document
if the published instructions are not followed! Be sure to refer to the published
Graduate School guidelines as well.

THIS IS A TEMPORARY VERSION OF THIS CLASSFILE. IT IS ONLY IN-
TENDED TO BE USED FOR DISSERTATIONS IN THE SPRING OF 2004. A
new version of this classfile will be available after that, and should be used for all
future dissertations.

This summary page can be disabled by specifying the nosummary option to the class
invocation.(i.e., \documentclass[nosummary]{ndthesis})

THIS PAGE IS NOT PART OF THE THESIS, BUT
SHOULD BE TURNED IN TO THE PROOFREADER!

NplhesiS documentation can be found at these locations:
http://www.nd.edu/"afsunix/faq/tetexdoc/latex/ndthesis/
http://www.cse.nd.edu/~ jsquyres/ndthesis/
General ATEX documentation and info:

On-line docs:
ND installation http://www.nd.edu/~afsunix/faq/tetexdoc/
TEX User’s Group http://www.tug.org/

Books:
A Guide. .. for Beg. & Adv. Users by Kopka/Daly
BTEX User’s Guide . .. by Lamport

The BTEX Companion by Goossens/Mittelbach/Samarin

Packages: (check on-line docs)
rotating sideways tables and figures
longtable multi-page tables
graphicx using Postscript and other figures

IMPLEMENTING FOUR-DIMENSIONAL TRIANGULATIONS IN CGAL

A Thesis

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

by

Joseph E. Lammersfeld, B.S.

Danny Z. Chen, Ph.D., Director

Graduate Program in Computer Science and Engineering
Notre Dame, Indiana

February 2006

(© Copyright by
Joseph E. Lammersfeld
2006

All Rights Reserved

IMPLEMENTING FOUR-DIMENSIONAL TRIANGULATIONS IN CGAL

Abstract
by
Joseph E. Lammersfeld

This thesis presents the implementation of a four-dimensional triangulation pack-
age. Computation of both basic triangulations of point sets and regular triangula-
tions of weighted point sets using an incremental insertion algorithm is presented.
The regular triangulation is the dual of the power diagram, which is the Voronoi
diagram of weighted points under the power distance. The implementation follows
the Computational Geometry Algorithms Library (CGAL), and will be contributed.

A key part of the package lies with the data structure, which allows the user
to easily traverse the constructed triangulations using circulators, enumerators, and
iterators. Additionally, the geometric predicates are generalized from their lower-
dimensional counterparts. Arithmetic filtering is used to keep the predicates exact,
yet efficient. The result is a triangulation package that is easy to use, efficient, and

robust.

To everyone who patiently waited for me while I completed this thesis, although

the work will never feel complete.

ii

CONTENTS

FIGURES

TABLES

SYMBOLS e

ACKNOWLEDGMENTS o o e

CHAPTER 1: INTRODUCTION o ..
1.1 Voronoi diagrams and Delaunay triangulations
1.2 Motivation and applications
1.3 Problem description.o
1.4 Contributionso
1.5 Organization e

CHAPTER 2: PREVIOUS WORK
2.1 Triangulations
2.1.1 Propertieso

2.1.2 Algorithms

2.2 Power diagramso oL L e
2.2.1 Properties

2.2.2 Algorithms

23 CGAL
2.3.1 Triangulation packages

CHAPTER 3: BUILDING TRIANGULATIONS INCREMENTALLY
3.1 Introduction
3.2 Datastructure.
3.2.1 Traversingo
3.3 Geometric predicates
3.4 Algorithm o
3.4.1 Point location o oL

iii

3.4.2 Conflict region determination 38

3.4.3 Conflict region starring L. 40

3.4.4 Weighted points that become hidden 41

3.4.5 Inserting outside the affine hull 42
CHAPTER 4: CGAL TRIANGULATION IMPLEMENTATION 45
4.1 Introduction Lo 45
4.2 The Triangulation_data_structure 4<Vb,Cb>class 47
4.2.1 Circulators and enumerators 50

422 Tteratorso 58

4.3 Geometric traits and kernel classes L0000 63
4.3.1 Arithmetic filtering oL oL 65

4.4 The Triangulation_ 4<Gt,Tds>class 67
4.4.1 The Regular_triangulation 4<Gt,Tds>class 74

4.5 Correctness/verification (the is_valid methods) 78
4.6 Using thepackage oL 79
CHAPTER 5: CONCLUSION e 87
5.1 Summaryo e 87
5.2 Futurework 88
5.3 Finalthoughts. oo oo 90
APPENDIX A: PUBLIC INTERFACES AND CODE EXAMPLES 92
A.1 Public interface of Triangulation 4<Gt,Tds> 93
A.2 Public interface of Regular_triangulation 4<Gt,Tds> 100
A.3 Regular_triangulation traits_4<Kermel> 104
A.4 Regular _triangulation filtered traits_4<Kermel> 105
A.5 Public interface of Triangulation_data_structure_4<Vb,Cb> 108
A.6 Complete usage example 115
BIBLIOGRAPHY o 132

v

1.1
1.2

2.1
2.2

3.1

4.1

FIGURES

Geometric interpretation of the power distance function

Example diagrams and triangulations

An example of a topological singularity in two dimensions

A sphere contained in the union of other spheres (but not necessarily
contained in any one other sphere) may be proper or improper

Demonstration of inserting a point outside the affine hull of a one-
dimensional triangulation. o000 Lo L

An illustration of the triangulation package design

19

4.1
4.2
4.3
4.4

TABLES

CONTENTS OF THE MAP_TO_ACTUAL_FACE LOOKUP TABLE . . .

CONTENTS OF THE NEXT_AROUND_FACE LOOKUP TABLE

CONTENTS OF THE MAP_TO_ACTUAL_EDGE LOOKUP TABLE . . .

POSSIBLE RETURN VALUES OF THE LOCATE METHOD

vi

93
o4
99
69

SYMBOLS

R? Euclidean space of dimension d
p; Point
P; = {p;,w;} Weighted point
P Set of points or weighted points
dist Fuclidean distance function
pow Power distance function
Reg(p;) Voronoi region of point site p;
Reg(P;) Power region of weighted point site P;
VDp Voronoi diagram of point set P
PDp Power diagram of weighted point set P
Tp Triangulation of point set P
DTp Delaunay triangulation of point set P

RTp» Regular triangulation of weighted point set P

vii

ACKNOWLEDGMENTS

Everyone in the Computer Science and Engineering Department has been sup-
portive of my unusual advising situation. Danny Chen has been especially support-
ive as my advisor after Menelaos left, and I owe him much gratitude for his time and
good advice. I thank Menelaos Karavelas for introducing me to CGAL, answering
my questions from halfway around the world, and returning at the right time to
push me to the finish line. Finally, I must thank Kevin Bowyer for giving me the
opportunity to teach two courses at Notre Dame in 2005. I am confident that these
experiences will be useful in my future.

The Computer Science and Engineering Department and the Arthur J. Schmitt
Fellowship need to be acknowledged for providing financial support of my graduate
education.

The following software was used in some way. Most importantly, the Com-
putational Geometry Algorithms Library (CGAL) (including the Windows demo
programs). MWSnap was used for taking screen captures of the CGALdemos, and

Ipe was used to produce several figures.

viii

CHAPTER 1

INTRODUCTION

1.1 Voronoi diagrams and Delaunay triangulations

The Voronoi diagram is one of the most fundamental and well studied geomet-
ric data structures in the fields of computational geometry and computer science.
Suppose you are given a set of geometric objects (called input sites) in a space. As-
signing every point of the space to the closest site under a distance function results
in a partition of the space into regions where each region is associated with one
of the input sites. This is called the Voronoi assignment model, and the resulting
space partitioning is called the Voronoi diagram. Because of the Voronoi assignment
model, the points in the region of input site S; are closer to S; than to any other
input site.

The most well known and studied Voronoi diagram is for the case of point sites
in the plane under the usual Euclidean distance function (Ly-metric). This was
introduced to computer science and computational geometry by Shamos and Hoey
[37], along with a divide-and-conquer algorithm to compute it. Fortune [22, 23]
describes a sweepline algorithm to compute it. In this case, the Voronoi diagram
consists of convex regions bounded by segments, half-lines, or lines. Also, it is related
via graph duality to the Delaunay triangulation of the point sites. The Delaunay
triangulation has the property that the circumscribing circle of each triangle is empty

of any other site. Properties, data structures, algorithms, and geometric predicates

for the Voronoi diagram and Delaunay triangulation of point sites in R? have been
collected in computational geometry textbooks [12, 15, 33, 35].

It is quite natural to generalize the Voronoi diagrams and their duals by introduc-
ing new types of sites, changing the distance function, or increasing the dimension.
Properties for many such generalizations have appeared in the literature along with
data structures and algorithms for representing and constructing them. To enu-
merate this work is beyond the scope of this thesis. Fortune [24] summarizes the
work for the case of point sites in general dimensions. Aurenhammer [6] discusses
Voronoi diagrams and generalizations from both mathematical and computer science
perspectives, enumerates several applications, describes algorithms, and provides an
extensive bibliography (see also [7, 34]). Voronoi diagrams are intimately related to
triangulations of the sites via graph duality, and we will examine one such general-
ization of a Voronoi diagram and its dual in this thesis: the power diagram and the

regular triangulation in R%.

1.2 Motivation and applications

Power diagrams are known to be generalizations of several other types of Voronoi
diagrams. Therefore, constructing these other Voronoi diagrams can be reduced
to constructing a power diagram (perhaps in a higher dimension). For example,
power diagrams in R%*! are related to Voronoi diagrams of spheres’ in R¢ (cf.
[4]). Computing the Voronoi diagram of spheres has applications in biology and

chemistry, where atoms are represented as spheres?. Power diagrams in R¢*! are

!The Voronoi diagram of spheres is also known as the additively weighted Voronoi diagram or
the Apollonius diagram.

2 According to Will [39], biologists have used several different space partitioning techniques in
order to answer questions about proteins using a geometric approach. Using the point set Voronoi
diagram is not desirable because it does not take into consideration the relative differences in size
between atoms. Goede et al. [26] proposes the use of the Voronoi diagram of spheres as an accurate
model for space partitioning among atoms in order to compute the volume occupied by atoms and
to estimate the densities of proteins.

also related to Mobius diagrams in R? in which doubly weighted points are used as

3 is a special case of

sites (cf. [11]). As a final example, the skew Voronoi diagram
the Voronoi diagram of spheres [1, 2]. Therefore, skew Voronoi diagrams are related
indirectly to power diagrams via Voronoi diagrams of spheres.

The computation of the power diagram is a problem of interest for direct ap-
plication as well. Aurenhammer [4] describes applications for sphere packing and
illuminating balls. Aurenhammer [5] also uses power diagrams for computing the
union and intersection of spheres. Imai et al. [30] discuss applications to finding

connected components of circles, finding the contour of the union of circles, and

testing whether or not a query point is in the union of circles.

1.3 Problem description

In this thesis, we consider only Euclidean spaces, sometimes in a general sense
as in R? and other times in a specific dimension such as R?, R3, or R*. The type
of site of the power diagram is the weighted point, which consists of a point in R?
and an additional real value that is the weight of the point. Let P; = {p;, w;} be
a weighted point and let p be a point. When w; > 0, P; can be thought of in a
geometric sense as a sphere with center p; and radius \/w;. Let [be a line through p
and intersecting the sphere at points B and C, which may be the same point if p lies
outside the sphere. Then the power distance is defined as pow(p, P;) = pB-pC. The
power distance can be written algebraically as pow(p, P;) = dist?(p, p;) — w;, where
dist is the Euclidean distance between two points. Under this interpretation, the
power distance from a point p outside sphere P; is positive and equal to the square
of the distance from p to P; along a tangent line to P;. See Figure 1.1 for a geometric

illustration. If p lies on sphere P; then the power distance is zero, and if p lies inside

3 Also known as the Voronoi diagram for direction sensitive distances.

pow(p, P;)

dist(p,p;)

Figure 1.1. An illustration of the geometric interpretation of the power distance
function. The sphere on the left represents the weighted point P; = {p;, w;} with
positive weight w; and radius r; = /w;. By drawing a line from p intersecting P; at

B and C, pow(p, P;) can be computed as pB - pC. When the line becomes tangent

to the sphere, B is the same point as C and pow(p, P;) becomes dist*(p,p;) — r?

e

sphere P;, then the power distance is negative. The power product between two
weighted points P; and P; is defined as pow(P;, P;) = dist*(p;, p;) — w; — w;. Two
weighted points are said to be orthogonal if their power product equals zero.

Now we define the power diagram, whose definition can be generalized to other
types of Voronoi diagrams quite easily. Let P = {Py,..., P,} be a set of n weighted
point input sites. Given two sites P, P; € P, let H;; = {p € R¢|pow(p, P;) <
pow(p, Pj)} be the set of points closer to P; than to P;. Then the Voronoi region of
site P; is Reg(P;) =N ;i Hij. In other words, the Voronoi region of P; is formed as
the intersection of H;; for every other input site P;. The collection of regions forms
the Voronoi diagram of the sites: Vp = (J;_, Reg(P;). Weighted points belonging
to two regions lie on bisectors, which bound the regions. The bisector between
two weighted point sites P; and P; is the set of points equidistant to P; and P;,
and in the case of the power diagram it is a hyperplane. In this sense, the power
diagram of a set of weighted point sites generates a space partitioning into convex
regions similar to that generated under the point set Voronoi assignment model.

In addition, it is possible for an input site to have an empty power cell. In this

4

case, the site is termed hidden. If a site P; is hidden, then for every point p in
the space there exists another site P; such that pow(p, P;) < pow(p, P;). In other
words, there are no points that are closer to P; than to any other site. In this case,
the power diagram differs from the ordinary Voronoi diagram because sites of an
ordinary Voronoi diagram are never hidden. Sites that are not hidden are called
visible.

The dual of the power diagram is called the regular triangulation. The regions
of the power diagram are in one-to-one correspondence with the (visible) vertices
of the regular triangulation. When two regions are adjacent through a facet in the
power diagram, the corresponding weighted points are connected by an edge in the
regular triangulation. Also, the vertices of the power diagram (weighted points that
are equidistant to d + 1 sites under the power distance function) are in one-to-one
correspondence with the cells of the regular triangulation. This is conditioned on a
general position assumption on the set of input sites. However, the implementation
provided by this thesis will impose no such assumptions on the input sites, and
correctly handle degenerate situations when they arise. When degeneracies are
detected (for example when there is a weighted point that is equidistant to more
than d + 1 sites under the power distance), an implicit perturbation scheme is used
and the resulting triangulation depends on the order of insertion of the sites.

Dual structures of Voronoi diagrams have properties that often make them easier
to represent and manipulate from an implementation point of view. For example,
consider the planar Delaunay triangulation mentioned previously. It consists of
(constant size) triangles, whereas the Voronoi diagram consists of convex polygons.
The complexity of the entire Voronoi diagram can be concentrated in one Voronoi
region (in other words, one region can have O(n) edges, where n is the number

of input sites). Also, the Delaunay triangulation is always connected, whereas the

Voronoi diagram may consist of disconnected components for some sets of point
sites. In this thesis, implementation details for the power diagram will be based on
the dual regular triangulation, but theoretical results and properties may come out
of either the primary or the dual structure.

The Computational Geometry Algorithms Library (CcAL) is a C++ library
that provides generic algorithms and data structures (via C++ templates) for many
computational geometry problems. The goal of the CGAL project is to “make the
large body of geometric algorithms developed in the field of computational geometry
available for industrial application” (cf. [21]). CGAL has the sub-goals of providing
correct, flexible, easy-to-use, efficient, and robust packages, which will be discussed
further in Chapter 2. This library includes packages for Delaunay and regular tri-
angulations in R? and R®, convex hulls, line segment arrangements, and many more

packages that are too numerous to mention here.

1.4 Contributions

The main contributions of this thesis are as follows:

e Develop a data structure and an algorithm for the construction of basic tri-
angulations of point sites and regular triangulations of weighted point sites in
R?.

e Contribute a correct, flexible, easy-to-use, efficient, and robust implementation

to CGAL.

Constructing the CGAL package for regular triangulations in R* requires ab-
stracting the properties, data structure, geometric predicates, and algorithm from
the lower-dimensional cases that have already been implemented in CGAL. A goal
is to provide a similar interface as the triangulation packages in lower dimensions in

order to maintain a similar look and feel for users familiar with these other packages.

Because the structure of a triangulation in R* is naturally more complicated than

(b) Ordinary Voronoi diagram of points

(¢) Regular triangulation of weighted (d) Delaunay triangulation of points
points

Figure 1.2. A power diagram, an ordinary Voronoi diagram, a regular triangulation,
and a Delaunay triangulation are illustrated. In all four figures, the same point set
is used. For the power diagram and regular triangulation, weights were added to
each point. Notice that the power diagram has a weighted point that does not have
an associated region, and the same weighted point is not included in the regular
triangulation. We say that the weighted point is hidden. In contrast, points of
ordinary Voronoi diagrams and Delaunay triangulations are never hidden.

that in R®, new ideas (not used in the existing CGAL triangulation packages) for
traversing the resulting triangulations will be introduced, which are necessary for
the construction process.

When all points have equal weight, the power diagram is exactly the ordinary
point site Voronoi diagram, and therefore the regular triangulation of the weighted
points is equal to the Delaunay triangulation of the corresponding non-weighted
points. Therefore, the regular triangulation implementation yields a Delaunay tri-

angulation implementation as a special case.

1.5 Organization

Chapter 2 summarizes previous results on the power diagram and regular trian-
gulation problems. Also, more detailed descriptions of CGAL and the existing tri-
angulation packages will be discussed. Chapter 3 discusses the generalizations that
are necessary to engineer the data structure, geometric predicates, and algorithm to
construct triangulations in R*. Chapter 4 details CGAL specific implementation is-
sues, and discusses how filtering the geometric predicates is a practical technique to
improve efficiency. Finally, Chapter 5 concludes the thesis and suggests possibilities

for future work.

CHAPTER 2

PREVIOUS WORK

2.1 Triangulations

Triangulations (especially Delaunay triangulations) have been studied exten-
sively throughout the literature, and many results have been collected in the previ-
ously sited computational geometry textbooks. For example, Boissonnat and Yvinec
[12] devote several chapters to triangulations (both point set triangulations and poly-
gon triangulations). Properties of (Delaunay) triangulations have been studied by
Lawson [32] and Rajan [36], and regular triangulations have been studied directly
by Edelsbrunner and Shah [19, 20]. Triangulations (and more generally simplicial
complexes) also appear in the field of topology, where they are studied from a topo-
logical (instead of computational) point of view. A topology text such as Armstrong
[3] is a useful reference for the topological viewpoint of triangulations and simplicial
complexes. Providing an extensive survey of computational and topological trian-
gulation literature is beyond the scope of this thesis, but some of the important

properties and algorithms will be summarized in the following sections.

2.1.1 Properties

Boissonnat and Yvinec [12] state that, “To triangulate a region is to describe

it as the union of a collection of simplices whose interiors are pairwise disjoint.”

To be mathematically precise, definitions of simplices, simplicial complexes!, and
triangulations must be given. The following descriptions are consistent with both
Boissonnat and Yvinec [12] and Armstrong [3]. A k-simplex in R? for 0 < k < d
is the convex hull of k + 1 affinely independent points®. Intuitively, a k-simplex is
the simplest object that spans £ dimensions. For example, a 0-simplex is a point, a
1-simplex is a segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and
so on. In this thesis, a 4-simplex will be referred to as a pentahedron. An [-face of
a k-simplex is itself a simplex: it is the convex hull of [+ 1 points of the k-simplex,
where 0 <[< k. A (simplicial) complex is defined as a set of simplices such that:

1. Given a k-simplex in the complex, every [-face of the simplex is also in the
complex, and

2. Given two k-simplices, either they do not intersect or they intersect at a shared
[-face, for some [< k.

A d-complex is a complex that contains d-simplices, but no k-simplex for any
k > d. A triangulation is a complex but not every complex is a triangulation, so we
must strengthen these ideas before arriving at the definition of a triangulation.

First, triangulations must be connected complexes. The 1-skeleton of a complex
is a subset of the complex consisting of only 0- and 1-simplices. A 1-skeleton of
a complex is essentially an undirected graph where the vertices are the 0-simplices
(points) of the complex, and the edges are the 1-simplices (segments) of the complex.
A complex is connected if its 1-skeleton is a connected undirected graph.

Secondly, triangulations must be pure complexes. This means that any k-simplex
of a d-triangulation must be either a d-simplex itself (k = d) or a k-face of a d-simplex

of the triangulation (k < d).

! Referred to simply as complezes from now on.

2Let {p1, ..., Pk, Pr+1} be a set of k + 1 points in R?, where k < d. Take all linear combinations
Zfill Aipi, where Efill A; = 1 for each linear combination. The result is a set of points that is
a hyperplane of some dimension called the affine hull of the points. The k + 1 points are affinely
independent if their affine hull has dimension k.

10

Figure 2.1. An example of a topological singularity in two dimensions. Notice that
the two triangles intersect at a vertex but not at an edge. While this is a complex,
it is not a triangulation.

Finally, triangulations are complexes that are free of singularities. Defining a
singularity precisely requires too much topology machinery to be appropriate for
this thesis. Intuitively, consider a d-simplex in a d-complex. For the complex to be
a triangulation, we expect each (d — 1)-face of this simplex to be adjacent to one
d-simplex when the face is on the convex hull of the 0-faces of the triangulation,
or to two d-simplices otherwise. For example, consider a 2-complex consisting of
only two triangles that intersect at a point but not at a segment (see Figure 2.1),
or a 3-complex with two tetrahedra that share a common point or edge but not a
common triangle. Both examples have singularities.

Define a d-triangulation as pure connected d-complex that is free of singular-
ities. Triangulating a set of input points {pi,...,p,} in R? means constructing a
k-triangulation for some £ < d where each O-face is one of the input points p;.
Notice that this allows input site p; to not appear as a 0-face in the simplicial com-
plex. Also, although the input points have d coordinates, all may lie on a common

lower-dimensional hyperplane, which results in a k-triangulation for some £k < d.

11

Lawson [32] describes point site triangulations in arbitrary dimension and dis-
cusses the sphere test that is the basic geometric predicate of Delaunay triangula-
tions. The main result proved by Lawson is that given d + 2 (affinely independent)
points in R?, there exist at most two different ways to triangulate the points (in
some cases, there may only be one way). Given d + 2 points in R?, the sphere test
determines whether the last point lies inside or outside of the (d — 1)-sphere defined
by the first d + 1 points. If the points are not cospherical, then the sphere test can
be used to choose a unique preferred triangulation of the points that will result in
the Delaunay triangulation.

Regular triangulations are generalizations of Delaunay triangulations by general-
izing the sphere test of points to the power test of weighted points. Because of this,
many results about Delaunay triangulations also apply to regular triangulations.

Boissonnat and Yvinec [12] discusses the optimality of the Delaunay triangula-
tion: “Delaunay triangulations maximize two criteria, compactness and equiangu-
larity.” The compactness result is due to Rajan [36]. Define the min-containment
sphere of a triangle® as the smallest sphere containing the triangle. When the cen-
ter of the circumscribing sphere lies within the triangle, then the min-containment
sphere is exactly the circumscribing sphere. However, when the center of the cir-
cumscribing sphere lies outside the triangle, then the radius of the min-containment
sphere is less than the radius of the circumscribing sphere. One of the main results of
Rajan [36] is that “the maximum min-containment radius of the Delaunay triangu-
lation is less than the maximum min-containment radius of any other triangulation
of the point set.” Therefore, the Delaunay triangulation results in a compact trian-
gulation. The angle-optimal result only applies in R?, and it is discussed by de Berg

et al. [15]. Given a triangulation 7p of a set of n points P containing ¢ triangles,

3Rajan [36] uses the term triangle to mean a d-simplex in R?.

12

define its angle vector of 3¢ angles to contain the value of each angle of each triangle
in the triangulation sorted by increasing value. Among all possible triangulations of
the set of points, define the angle-optimal triangulation as the triangulation whose
minimum angle in the vector is maximized. 7Tp is an angle-optimal triangulation if

and only if 7p is a Delaunay triangulation.

2.1.2 Algorithms

Incremental algorithms have been commonly used for constructing triangulations
in practice. Incremental algorithms are typically easier to program than sweepline
or divide-and-conquer algorithms, and the input data need not be known in advance.
The price is that incremental algorithms typically have higher worst case running
times. The general idea is to start with some base case triangulation. The input
objects are then added one by one, and a wvalid triangulation is maintained after
each insertion. Validity in this sense depends on the type of triangulation. For
example, a Delaunay triangulation is valid if every simplex satisfies the sphere test,
and a regular triangulation is valid if every simplex satisfies the power test. After all
input sites have been added, the resulting triangulation is output by the algorithm.
In the R? case, the base case triangulation may consist of a single fictitious triangle
of points not in the input set such that all input points are contained inside this
triangle. Such a base case eliminates the issue of inserting a point outside the convex
hull of the triangulation. After all of the points are inserted, this fictitious triangle
is removed since its points are not input points. In other cases, a fictitious triangle
is not used as the base case, and inserting outside the convex hull is allowed.

Boissonnat and Yvinec [12] describes a sweepline algorithm for incrementally

constructing triangulations in R?. The points are sorted in lexicographic order?.

“In R?, a point (1,y1) is lexicographically smaller than (29,ys) if £; < 2, or if z; = x5 and
y1 < y2. This generalizes easily to arbitrary dimension.

13

From left-to-right, each point is inserted (outside the convex hull) and the new
triangulation is built from the existing triangulation by adding edges from the point
to be inserted to points along the convex hull that are visible to the new point. In
this case, visibility means that the added edges do not intersect existing edges of
the triangulation. This algorithm will produce a basic triangulation in that it does
not necessarily satisfy any kind of geometric constraint (such as the sphere test or
power test). Sorting the n input points requires O(nlogn) time, and building the
triangulation takes an additional O(n) time because the combinatorial complexity
of a triangulation in R? is well known to be O(n).

An important result in Lawson [32] that has become ubiquitous in the Delaunay
triangulation literature is that “if a triangulation 75 of a point set P has the prop-
erty that every pair of simplices sharing a common facet satisfies the local sphere
test, then 7p satisfies the global sphere test.” This theorem is the basis of incre-
mental insertion algorithms for Delaunay and regular triangulations, where sphere
and power tests are used to detect conflicting simplices during an insert operation.
One method of repairing the triangulation by removing conflicts is flipping, which
is based on another result in [32] described above that d + 2 affinely independent
points have at most two triangulations. A flip essentially changes the structure of a
triangulation locally at the d + 2 points from one configuration to the other, while
leaving the remaining triangulation unchanged.

Guibas and Stolfi [27] provides divide-and-conquer and incremental algorithms
for computing the Delaunay triangulation in R?>. We will focus on the incremental
algorithm because it is the approach taken in this thesis for solving the generalized
problem. When a new point p is inserted in a Delaunay triangulation 7, the triangle
t in which it is located is found in the point location phase. Then edges are added

from p to the points of ¢. In [27] the authors prove that these new edges are Delaunay:

14

they will remain as edges in the triangulation after repairing is completed. In the
flipping phase, the triangulation is transformed into the Delaunay triangulation by
performing the circle test and identifying suspect edges. The initial suspect edges
are the edges of t. If suspect edges pass the circle test, then they are Delaunay.
However, if a suspect edge fails the circle test, then the edge is flipped and two new
suspect edges from one of the neighboring triangles are identified. Then it is proved
that new edges created by the flip are Delaunay and are adjacent to p. Search
proceeds outward from ¢ until no suspect edges remain. At the end of this process,
the Delaunay property of the triangulation is restored.

Randomization is sometimes used to shuffle the order of the input objects before
insertion in order to improve the expected running time of the algorithm. Using
randomized analysis, Guibas et al. [28] prove that “for any collection of n sites (re-
gardless of their distribution), if we randomize over the sequence of their insertions
by the incremental algorithm, then the expected total number of structural changes
that happen to the diagram is only O(n), and the overall cost of the algorithm
is O(nlogn).” Another contribution of this paper is the data structure used for
point location. Instead of maintaining only the current triangulation, all versions
are maintained “on top of one another” with links between versions. More precisely,
whenever a triangle is replaced by new triangles, the old triangle is kept in the data
structure with pointers from it to the new triangles. Although this seems costly
from a space complexity point of view, the authors prove that the expected number
of structural changes is O(n), and so the expected space complexity remains O(n).
Point location is executed by starting at the original triangulation and tracing down
through all the old versions of the triangulation until a triangle of the current Delau-
nay triangulation that contains the query point is found. The original triangulation

is a single fictitious triangle that surrounds the input points as discussed previously.

15

By using this data structure for point location, the expected cost of locating all sites
as they are inserted incrementally is at most O(nlogn) (cf. [28]). Therefore, the
expected total running time of the algorithm is O(nlogn).

Rajan [36] provides an incremental insertion algorithm based on flipping to com-
pute the Delaunay triangulation in R¢. The same general idea is used: a list of
triangles® to be flipped is maintained. A flip operation obtains the next triangle to
be flipped out of the list, and then inserts additional suspect triangles into the list
as a result. The repairing step is complete when the list is empty. Edelsbrunner and
Shah [20] extend this algorithm to the case of regular triangulations in R?. The data
structure used is a minimalist data structure that stores an array of vertices, and
each simplex as an array of indices into the vertex array and an array of pointers
to neighboring simplices. Faces of intermediate dimension are not stored directly.
Given the d+2 points of two adjacent simplices, the common (d—1)-face is flipped to
an edge. The algorithm repeats this type of flip by maintaining a list of (d — 1)-faces
called link facets. When the list is empty of link facets, then the regular property
of the triangulation is restored, and the triangulation is ready for the next point to
be inserted.

An important result of that is summarized in Rajan [36] states, “when a point
is inserted into a Delaunay triangulation, then every new triangle or facet created
during the modification to satisfy the Delaunay criteria, has the new point as one

of its vertices.”

Although this paper uses a flipping based approach, this theorem
implies another way to restore the Delaunay property to a triangulation after a new
point is inserted. Since each new object in the triangulation will be adjacent to the

point to be inserted, it is possible to simply identify all triangles that are in conflict

with the new point. A triangle is in conflict with a point if its circumscribing circle

® Again, Rajan [36] refers to d-simplices in R? as triangles.

16

contains the point in its interior. The set of triangles that are in conflict forms the
conflict region, which is a connected set of triangles whose boundary is a polyhedron.
The conflict region can be discovered by searching outward (via depth first search for
example) from the starting triangle (found during point location), and performing
a sphere test on each triangle encountered. The conflict region is then destroyed,
and new triangles are formed to fill it with one vertex as the point to be inserted

and the other vertices belonging to facets on the boundary of the conflict region.

2.2 Power diagrams

The power diagram was introduced in the previous chapter as the Voronoi dia-
gram of weighted point sites under the power distance function. Recall that the
power distance from a point p to a weighted point P; = {p;,w;} is defined as
pow(p, P;) = dist®(p,p;) — w;. Power diagrams have been studied in many works

(e.g., [4, 5, 6, 30]).

2.2.1 Properties

Imai et al. [30] considers the problem of computing the planar Voronoi diagram
in the Laguerre geometry, where the distance function from a point to a circle is
defined as the length of the tangent line. This is similar, but slightly different
from the power distance as it is defined in this thesis. The square of the distance
function of [30] is equal to the power distance defined here. Therefore, both distance
functions result in the same bisector, and thus the Voronoi diagram in the Laguerre
geometry and the power diagram are equivalent. Many of the R? results described
in [30] easily generalize to R?.

The bisector between two sites is termed the radical axis, and Imai et al. [30]
points out that the radical axis is a straight line and is perpendicular to the line

joining the centers of the two sites. Since bisectors partition the plane into two half-

17

planes and Voronoi regions are formed by intersecting these halfplanes, the regions
are convex polygons. An interesting case arises when one circle is entirely contained
inside another: the bisector if it exists lies outside of the outer circle. A radical
center is a single point that is equidistant to three sites.

It is possible for a site to have empty intersection with its Voronoi region. Such
a site is termed improper. A necessary but not sufficient condition for a site to be
improper is that it is contained in the union of other sites. Because a hidden site
has an empty Voronoi region, the intersection of that region with the corresponding
circle site must be empty. Therefore, a hidden site is necessarily improper. We have
seen that if a circle is contained inside a larger circle, then the inner circle does not
intersect its halfspace and so it is improper. More interestingly, consider the case
where a circle is contained in the union of a collection of other circles (but is not
necessarily contained in any single circle in the collection). This does not necessarily
imply that the inner circle is improper. However, the converse is true: if a circle is
improper then it is contained in the union of proper circles. See Figure 2.2 for an
example in R2. These results generalize easily into higher dimensions.

A Voronoi region may be bounded, unbounded, or empty. If the center of a site is
on a corner of the convex hull, then its Voronoi region is non-empty and unbounded.
However, if the center a sphere is on the convex hull (but not on a corner), then
the corresponding region is either unbounded or empty. Finally, if the center of a
sphere is interior to the convex hull of the center points, then its Voronoi region is
either bounded or empty. The behavior of points on the convex hull is consistent
with the ordinary point site Voronoi diagram except when regions are empty (every
site of the ordinary point site diagram will have a non-empty Voronoi region).

Aurenhammer [4] discusses the power diagram problem in R¢, and defines the

18

(a) Proper (b) Improper

Figure 2.2. Demonstration that a sphere contained in the union of other spheres
(but not necessarily contained in any one other sphere) may be proper or improper.
In (a), the center sphere is proper because it intersects its power cell. In (b), the
three surrounding spheres are the same size as in (a), but the left and right spheres
have been repositioned to squeeze the region of the center sphere toward the bottom
of the diagram. The result is that the center sphere is improper because it does not
intersect its power cell.

19

power diagram as a cell complex® in R?. An important contribution of this paper is
the description of the relationship of power diagrams in R? to convex hulls in R4 !,

which will be discussed in the following section.

2.2.2 Algorithms

Imai et al. [30] gives an O(nlogn) time divide-and-conquer algorithm for com-
puting the power diagram in R?. The algorithm is similar in spirit to the algorithm
in Shamos and Hoey [37] for computing the point site Voronoi diagram in R?. The
input sites are sorted lexicographically by the z- and y-coordinates of their centers
and divided equally into left and right sets. The power diagrams of the left and
right sets are computed recursively, and then merged to form the power diagram of
the entire set. The merge step can be performed in O(n) time, which results in an
O(nlogn) time algorithm. The merge step essentially finds the dividing polygonal
line, which consists of parts of bisectors between pairs of sites with one site coming
from the left set and the other site coming from the right set. Therefore, it con-
sists of a ray extending to infinity above the points, followed by some number of
segments, and then a second ray that extends to infinity below the points.

Aurenhammer [4] addresses the power diagram problem in R¢ and exploits a
relationship to a convex hull in R™! in order to compute the diagram in arbitrary
dimension. Let the space R be spanned by coordinate axes 1, ..., %4, 411, and
let the centers of the sites of the power diagram in R? be located on the z4.; = 0
hyperplane. Consider the paraboloid Q : x4y = 2% + 22 + ... + 2. Map a weighted

point site P; on z4.1 = 0 to a hyperplane h in R¢*! so that the projection to

6A cell complex is a partition of R? into polyhedra. More precisely, define a j-flat as the
intersection of (d — j) hyperplanes. For example, in R® a 0-flat is a point, a 1-flat is a line, a 2-flat
is a plane, and a 3-flat is R®>. A polyhedron is the intersection of a finite number of halfspaces,
or the convex hull of its vertices. A j-polyhedron is contained in a j-flat, but not contained in a
(j — 1)-flat. Intuitively, a j-polyhedron uses exactly j dimensions. A cell complex is a collection
of j-polyhedra for (0 < j < d), so it is a partition of R? into polyhedra.

20

Z4+1 = 0 of the intersection of A and Q results in P;. Aurenhammer [4] proves that
bisectors in the power diagram in R¢ are projections of intersections of hyperplanes
in R to the 24,1 = 0 hyperplane under this mapping. Therefore, a power diagram
in R? corresponds to a polyhedron in R*!'. Working in the dual space, a regular
triangulation in R? corresponds to a convex hull of the lifted sites in R¢*!. This
algorithm relies on the fact that well known algorithms exist for constructing convex
hulls in arbitrary dimension. Chazelle [14] presents an optimal O (n log n+nl(@+1/2])
deterministic algorithm for computing the convex hull of n points in R¢*!. Therefore,
the R? power diagram algorithm in [4] has time complexity O(nlogn+nl@+1/2]) ag
well. To summarize, the algorithm lifts the points into R¢*!, computes the convex
hull of the lifted points, and projects the result to x4.1 = 0, which is the power

diagram.

2.3 CGAL

There may exist issues that prevent one from taking an algorithm described in
the computational geometry literature and translating it directly into an implemen-
tation that is free of errors. Two such issues that frequently arise are precision
and degenerate input. First, algorithms in the literature sometimes assume infinite
precision when dealing with real numbers, while implementations typically use im-
precise floating-point types built into programming languages (such as double in
C++). Secondly, problem specific assumptions are sometimes made about the set
of geometric objects input to the algorithm, and these are referred to as general
position assumptions. For example, when computing the Delaunay triangulation
of point sites in R¢, sometimes the assumption is made that no d + 2 input points
may be cospherical. Given d + 2 points, the sphere test normally distinguishes the

preferred of the (at most) two possible triangulations of the d + 2 points. However,

21

when d + 2 points are cospherical, it is not clear which of the two possible trian-
gulations to choose. One way to avoid the issue is to assume that the input points
will be in general position. This kind of assumption can be generalized to the case
of constructing the regular triangulation of weighted points in R by not allowing
d + 2 weighted points to be cospherical under the power distance.

The Computational Geometry Algorithms Library (CGAL) is a C++ software
library that makes common useful computational geometry algorithms available for
application (cf. [21]). All CGAL packages share the common goals of correctness,
flexibility, ease-of-use, efficiency, and robustness. Included within these goals are
properly dealing with degenerate inputs and handling potential precision problems.
One design strategy employed by CGAL packages is to use geometric traits classes to
separate numerics from combinatorics. This way, exact numeric computation can be
used on the geometry of the objects while the data structure simply represents the
combinatoric information. This also allows different implementations of the traits
classes to be plugged in without modifying the algorithm or data structure.

Correctness in software design involves code operation coinciding with code doc-
umentation. Therefore, verifying correctness involves ensuring that the code behaves
as documented. Under this definition, code that does not handle degenerate situa-
tions is still considered correct as long as the documentation of the code states such
issues. However, CGAL packages do appropriately handle degeneracies. Robustness
in CGAL means that a software package does not suffer from precision problems,
and CGAL solves this by using number types that support exact computation. How-
ever, the trade-off is that working with exact computation slows running time in
practice. Flexibility starts by dividing CGAL into smaller packages so that compo-
nents can be replaced or extended easily. For example, it may be convenient for the

user to define his or her own Vertex or Cell type that stores information additional

22

information such as a color. As long as the new class provides the required public
interface, it can be plugged in and used instead of the default Vertex and Cell types.
The ease-of-use goal involves how quickly a new user can learn to use the library.
Finally, CGAL has the goal of efficiently implementing geometric algorithms. While
time and space complexity results are known in the literature, implementing them
so that the algorithms run efficiently in practice on large input sets is a challenging

goal.

2.3.1 Triangulation packages

There are many packages available in CGAL, but we will only be concerned with
further describing the triangulation packages in this thesis. The implementations of
the R? and R?® packages use three levels of abstraction. At the bottom, simplices and
vertices are represented, and neighbor relationships are defined between simplices
by maintaining handles. Simplices are called faces in R?, and cells in R3. At the
next level, the triangulation data structure maintains the collection of simplices and
vertices and allows topological operations to be executed on the entire triangulation.
For example, new vertices and simplices can be created and linked together at the
data structure level. Finally, the geometric information appears at the triangulation
level. The triangulation uses geometric predicates and a data structure to main-
tain the triangulation. The important functionalities of the existing triangulation
packages are location of a query point within the triangulation, insertion/removal
of existing vertices, and the ability to traverse the structure.

The triangulation algorithm of each package maintains an infinite vertex to al-
low for convenience when dealing with edges and faces on the convex hull of the
input sites. The triangulation algorithm creates an infinite vertex when a new tri-

angulation is created and inserts it into the data structure, which treats it like any

23

other vertex because the data structure ignores the geometric aspect of a vertex.
Simplices are formed from the infinite vertex to the faces on the convex hull. This
means triangulations in Euclidean space are mapped to triangulations on a sphere,
which has several benefits. It provides uniformity of representation: all edges are
adjacent to two faces in R?, and all faces are adjacent to two cells in R, even when
these edges and faces are on the convex hull of the sites. The convex hull of the
sites can be extracted simply by visiting every infinite cell. Iterators over lower-
dimensional features such as edges and faces do not need to handle special cases for
edges and faces on the convex hull.

C++ templates are used to parametrize the triangulation class with a geometric
traits class and the data structure class. This type of organization provides a clear
distinction between the geometry of the triangulation and its structural represen-
tation. The traits class provides operations on geometric objects. For example, for
the basic triangulation in R?, the traits class provides an orientation test that takes
three points and determines if they have a clockwise or counterclockwise orienta-
tion”. The geometric traits of the Delaunay triangulation in R? provides in addition
to the predicates required for constructing a triangulation the circle test that deter-
mines whether or not a fourth point lies inside the circle defined by the first three
points. The corresponding sphere test is also implemented for Delaunay triangu-
lations in R®. Finally, the geometric traits for regular triangulations contain the
power test in addition to the predicates required for constructing a triangulation,
which is essentially a sphere test under the power distance instead of the normal

Euclidean distance®. For more information on CGAL triangulations, see [8, 10, 13].

"In degenerate situations, the three points may be collinear, which results in a return of zero
(COLLINEAR) from the orientation test.

81n degenerate situations, points may be cocircular, cospherical, or equidistant under the power
distance, which results in a return of zero (ON_ORIENTED BOUNDARY) from the circle, sphere, and
power tests.

24

CHAPTER 3

BUILDING TRIANGULATIONS INCREMENTALLY

3.1 Introduction

The triangulation algorithms of this thesis are implemented in R*, which means
that points consist of four real coordinate values. A weighted point in R? is a point
plus an additional real value called the weight. When the weight is non-negative,
weighted points can be viewed geometrically as spheres with radius equal to the
square root of the weight.

Given six points in R*, there are at most two different ways to triangulate these
points (cf. Lawson [32]). A geometric test (such as the sphere or power test) distin-
guishes a preferred triangulation between the two possibilities. When triangulating
input points that are in general position (non-degenerate), satisfying a geometric
constraint locally throughout the triangulation leads to a unique global triangula-
tion. With this in mind, the definition of a basic triangulation is a triangulation
of points that does not necessarily satisfy any geometric constraint. A basic tri-
angulation algorithm constructs an arbitrary triangulation (among all possible tri-
angulations). Because of the use of incremental construction in the algorithms of
this thesis, the resulting basic triangulation depends on the order of insertion of the
points.

We extend basic triangulations to incorporate the power test in order to con-

struct regular triangulations of weighted points. Given a pentahedron, define the

25

power sphere as the weighted point orthogonal to each of the weighted points of
the pentahedron. The regular property establishes that a pentahedron is a cell of
a regular triangulation if the power product of any other weighted point with the
cell’s power sphere is positive. In non-degenerate situations, the power test provides
a way to distinguish a preferred triangulation of six weighted points.

In this thesis, we implement data structures, geometric predicates, and algo-
rithms specifically in R* to be able to construct basic triangulations of points and
regular triangulations of weighted points.

As a prerequisite, we will make the distinction between vertices, points, and
weighted points. Points and weighted points are geometric objects that store geo-
metric data only, and serve as the sites of the triangulations that we discuss. Vertices
are objects that store sites as one of their components, and are involved in the topo-
logical structure of the triangulation. For example, an additional component of a
vertex is a reference to one of the cells adjacent to it. This allows the data structure
and other classes to use vertices without worrying about the geometric informa-
tion stored within them. This is important for situations in which only topological
connectivity information is important, but actual values of geometric coordinates is
not. The same distinction between geometry and combinatorics is made between
cells and pentahedra. A cell is a 4-simplex, and a pentahedron is the geometric
embedding of a cell.

The chapter is organized as follows. First, we present the data structure includ-
ing the traversal operations of circulation, enumeration, and iteration. Secondly, we
discuss how the geometric predicates are generalized from lower dimensions to R*.
Finally we discuss the incremental insertion algorithm including point location, con-
flict region determination, conflict region starring, and inserting outside the affine

hull. We save the CGAL implementation details for Chapter 4.

26

3.2 Data structure

The data structure used to represent triangulations in R?* is similar to the data
structure of Edelsbrunner and Shah [20] for representing triangulations in R¢, as
described in Section 2.1.2. Namely, the vertices of the triangulation are stored
along with the simplices (or cells). The j-faces for 1 < j < 3 are represented
implicitly in this data structure. Since a 4-simplex consists of five vertices, each cell
maintains five handles to vertices, and five handles to neighboring cells. Although
it is possible to traverse the list of cells and vertices of the entire triangulation at
a global level, the local neighbor relationships at each cell determine the adjacency
structure of the triangulation. Therefore, discussion of the entire data structure
amounts to discussing individual cells and their adjacency relationships.

Consider a single cell or 4-simplex as described above. Opposite each vertex is

5

1) = b 3-faces adjacent to each cell.

a 3-face (facet or tetrahedron), so there are (

Each 3-face is shared by exactly two neighboring cells. Similarly, opposite each pair

5

5) = 10 2-faces adjacent to

of vertices is a 2-face (face or triangle), so there are (
each cell. In this case, 2-faces may be shared by potentially many cells. Consider
the analogous case in R® where an edge is shared by potentially many tetrahedra.
Continuing, opposite each triple of vertices is a 1-face (edge or segment), so there are
(g) = 10 1-faces adjacent to each cell. Again, 1-faces may be shared by potentially
many cells, just as in the analogous case in R® where a vertex is shared by many
tetrahedra.

The input points may all lie on a common lower-dimensional hyperplane (not
necessarily axis aligned). This degenerate situation results in a lower-dimensional
triangulation. Since the data structure is maintained at the cell level by maintaining

five handles to vertices and five handles to neighboring cells, it is capable of rep-

resenting lower-dimensional triangulations by using a proper subset of these vertex

27

and cell handles. For example, if the input points lie on a two-dimensional plane,
then the highest-dimensional simplex in the triangulation is a 2-simplex, or a trian-
gle. In this case, each cell maintains three vertex handles and three neighboring cell
handles, and the remaining two vertex handles and two cell handles are not used.
This idea can be applied to other degenerate situations as well in which all input

points lie on a common line or a three-dimensional hyperplane.

3.2.1 Traversing

A facet is adjacent to exactly two neighboring cells, but faces, edges, and vertices
may be adjacent to possibly many cells. Using our data structure, it will be possible
to visit all cells adjacent to a face, edge, or vertex using circulators and enumerators.

Part of the conflict region detection algorithm described above relies on finding
all cells adjacent to a lower-dimensional face. Circulating will be used when there
is a geometric order among the cells that are adjacent to a lower-dimensional face.
A geometric order exists around a (d — 2)-face of a d-cell. For example, given a
triangulation in R2?, there is a circular order of triangles around a point. In R3,
there is a circular order of the tetrahedra around an edge, but there is no circular
order of cells adjacent to a vertex. In R*, there is a circular order of the pentahedra
adjacent to a triangle, but there is no circular geometric order of cells adjacent to an
edge or a vertex. Since an inserted point may lie on an edge in a four-dimensional
triangulation, there must be a way to enumerate all the cells that are adjacent to
this edge. Since there is no circular order, the term enumerator is used instead
of circulator. Enumerators are used for retrieving all d-simplices adjacent to a
lower-dimensional k-simplex when & < d — 2. The actual implementation details of

circulators and enumerators will be discussed in Section 4.2.1.

28

3.3 Geometric predicates

After the data structure has been implemented to represent triangulations in
R?*, the next step is to implement the geometric predicates. As the most important
predicates, we generalize the orientation test to operate on five points, and the power
test to operate on five weighted points.

Given four points in R* that determine an oriented hyperplane and a fifth query
point, the orientation test determines on which side of the oriented hyperplane the
fifth point lies. The evaluation of the orientation test in R* amounts to determining
the sign of the determinant of a certain five-by-five matrix. One twenty-fourth of the
determinant of this matrix is equal to the signed volume of the pentahedron formed
by the five points. The sign of the volume is positive (negative) if the fifth point lies
on the positive (negative) side of the oriented hyperplane determined by the first
four points. This is analogous to the R? case in which three (ordered) points make
either a left turn or a right turn. O’Rourke [35] develops matrices for determining
the signed areas of triangles and volumes of tetrahedra, which generalize easily to
R*. We will use a similar approach here.

Let h = (p,q,7, s) be an oriented hyperplane determined by four points in R*,
and let ¢ be the fifth point. Each point has four coordinates, so p = (p1, p2, P3,P4)
and similarly for ¢, 7, s, and t. The predicate returns positive (negative) if ¢ lies in
the positive (negative) halfspace of h. In degenerate situations, ¢t may lie on h and

so the orientation test returns zero. The orientation test in R* is as follows.

29

orientation (p,q,r, s,t) = sign

\

1

1

h
q1
(A
S1

t1

b2
g2
)
S2

to

b3
g3
T3
53

l3

yZ!
qs
T4
S4

121

)

(3.1)

One method of calculating the determinant of matrix A is to evaluate a series

of cofactors, which are essentially determinants of matrices with one less row and

column than A. We can take advantage of the fact that all entries in the first

column equal 1 by subtracting the first row from every other row besides the first.

The result is the following:

(1 Y41

0 ¢1—m
orientation (p,q,r,s,t) = sign | |0 r, — p;
0 s1—m

\0 1 —m

P2
q2 — P2
T2 — P2
S2 — P2
lo — P2

ps
43 — D3
s — D3
83 — P3
l3 — p3

Y2
44 — P4
T4 — P4
84— P4
ly — pa

/

The first column of the resulting matrix contains a 1 followed by all 0 entries.

Because of this, all of the cofactors except for one become 0 and can be ignored.

Therefore, the orientation test can be evaluated by determining the sign of the de-

terminant of a four-by-four matrix instead of a five-by-five matrix. At this point, we

may evaluate this determinant in the fastest way possible, not necessarily by eval-

uating cofactors. We use the CGAL provided methods for evaluating determinants,

which happen to be based on evaluating cofactors.

30

(Ch—pl Q2 — P2 43— D3 (J4—p4\

Tir—Pp1 T2—pP2 T3—P3 T4— P4
orientation (p,q,r, s,t) = sign (3.3)

S1 —P1 S2—P2 S3—P3 S4— P4

\ th—p1 to—p2 t3—p3 t4a—ps /

The power test has a similar matrix based implementation. We will essentially
map the weighted points in R* to points in R® and then perform an orientation
test. Let P = {p, w} be a weighted point in R*. Map P to (p, ||p||? — w), which is
a point in R®. If this transformation is performed for all the input sites, then we
have a collection of points in R®. By taking the convex hull and projecting those
facets that face downward to the R* hyperplane, we get the regular triangulation
of the original weighted point sites. This transformation helps us in evaluating the
predicates because the power test of five weighted points in R* essentially turns into
an orientation test of five points in R?, which we already know how to evaluate. For
convenience, we introduce the following new variables, which correspond to the last
coordinate in our mapping, and then present the six-by-six matrix for evaluating

the power test.

Mp = pi+p;+ps+pi—wp (34)
Mg = i+ ¢ +aq;+a —wg (3.5)
Mgr = ri+713+75+71]—wr (3.6)
Mg = 82+ s5+ 55+ 55— wg (3.7)
Mr = G+3+6+1t —wr (3.8)
My = ul+ul+ul+ui —wy (3.9)

31

power test (P,Q, R, S,T,U) = sign

\

P
¢
1
51
151

Uy

P2
a2
)
52
to

Ug

p3
as
T3
53
13

Us

Y2
a4
Ty
S4
121

Uy

My|)

(3.10)

Using a similar manipulation as in the orientation test, we can reduce the power

test in R? from evaluating a six-by-six determinant to evaluating the following five-

by-five determinant.

power _test (P,Q, R, S, T,U) =

(lh—pl o — P2 (3 — D3
rn—pP1 T2 —P2 T3 —DP3
sign | |s; —p1 S2— P2 S3— P3

t1—p1 ta—p2 t3—p3

KU1—p1 Ug — P2 U3 — P3

44 — P4
T4 — D4
84 — P4
ly — s
Ug — P4

MQ—MP\
My — Mp
Mg — Mp
My — Mp
MU—MP}

(3.11)

Notice that when the weights of all points are zero, the points are mapped onto

the paraboloid z5 = 2? + 23 + 235 + z3, where each z; represents a coordinate axis

in R®. For this reason, the power test turns into the circle test when all the weights

are zero, and Delaunay triangulations are a special case of regular triangulations.

Therefore, the regular triangulation package presented here can be used for com-

puting Delaunay triangulations as well.

In the last paragraph of Section 3.2, we discussed degenerate situations in which

all input points lie on a common lower-dimensional hyperplane. We wish to keep the

triangulation in its true dimension. From the point of view of the data structure,

32

dealing with such cases is easy: we just ignore some of the vertex and cell handles
in each cell. However, the points still have full dimensionality in these situations,
which means that the four coordinate values are all meaningful. For example, this
allows for a two-dimensional triangulation of four-dimensional points that all lie on a
common two-dimensional plane. But this plane is not necessarily axis aligned. This
situation leads to difficulties in the implementation of the predicates because it is
not as easy as just ignoring the last coordinate value of each point. This means that
it does not blend well with the matrices presented for evaluating the predicates. For
example, the orientation test takes five points as input. But if our triangulation lies
on a two-dimensional plane, then we wish to test the orientation of only three points
and cannot use the orientation test as defined. In addition to the fully-dimensional
orientation and power test predicates, we must provide lower-dimensional predicates
as well.

The solution is to systematically project the points (or weighted points) to lower-
dimensional axis aligned hyperplanes, and then perform orientation tests (or power
tests) on these hyperplanes. The four-dimensional Euclidean space R? has four axes
which we name x1, T, 3, and z4. For example, if we wish to determine the planar
orientation of three points, we project the points to the z;z5-plane and perform the
two-dimensional orientation test using a two-by-two matrix similar to the four-by-
four matrix given above. If this lower-dimensional orientation test returns positive
or negative, then that result is returned. If zero is returned, this means that the
projected points are collinear on the x;x5 plane. However, this does not necessarily
mean that the original points are collinear in R*. The three points are then projected
to the x;x3-plane and the process continues. After testing all possible projections
(z1z4-plane, xoxs-plane, xoxy4-plane, and x3z4-plane), some result for the orientation

is known. If all projections have collinear orientations on the lower-dimensional

33

planes, then the three points are collinear in R*. Otherwise, one of the lower-
dimensional orientation tests returns positive or negative, and that is returned as the
result of the orientation test of the three fully-dimensional points. A similar process
is followed for determining the orientation of four points when all points of the
triangulation lie on the same three-dimensional hyperplane in R*, for determining
the orientation of two points when all points of the triangulation lie on the same

line, and for performing the lower-dimensional power tests.

3.4 Algorithm

Incremental insertion will be used to construct the triangulations. First, an
empty data structure is created that represents a (-1)-dimensional triangulation.
As points are inserted, the dimension of the triangulation increases as necessary so
that the current dimension equals the dimension of the smallest affine space' that
contains the point set. This is allowed because the geometric predicates support the
lower-dimensional operations, and we can query the data structure for its dimension.
For example, when the first point is inserted, the dimension increases from -1 to 0.
When the second distinct point is inserted, the dimension increases from 0 to 1.
When the next point that is not collinear with the existing points is inserted, the
dimension increases to 2. This process continues until all points have been inserted.
At any intermediate step in the algorithm, a valid triangulation exists, and so the
structure may be traversed and output. Note that this triangulation may not be
fully-dimensional after all the points have been inserted.

An additional fictitious vertex called the infinite vertex is added to allow for
convenience when dealing with faces on the convex hull of the points, and any cell

containing the infinite vertex is called an infinite cell. Every cell is allowed to have

1Smallest refers to the dimension of the affine space.

34

at most one handle to the infinite vertex. Because of the use of the infinite vertex,
every cell has the full set of neighboring cells and lower-dimensional faces even if
the cell is on the convex hull of the triangulation. Additionally, a d-dimensional
triangulation as it is represented here with a vertex at infinity is homeomorphic? to
a d-sphere in R*!. For example, by starting with a triangulation of points on the
plane and connecting all points on the convex hull to the infinite vertex, the result
is a triangulation that is homeomorphic to a 2-sphere. We generalize this idea so
that a triangulation in R?* plus the infinite vertex is homeomorphic to a 4-sphere.

As discussed in Section 2.2.2, a regular triangulation in R? corresponds to a
polyhedron in R¢*!. The upper bound theorem for polyhedra states that any d-
polyhedron with n vertices has O(nl4/2) faces of all dimensions. Therefore, the
number of cells of a triangulation in R? is O(nl¢t1)/2]) where n is the number
of input sites. Specifically, the number of cells of a four-dimensional triangulation
is ©(n?), and any algorithm must take Q(n?) in the worst case. Since we use
incremental insertion the worst case running time of the algorithm presented here
is O(n?).

The pseudocode of the incremental insertion algorithm is presented in Algorithm
1. It applies to constructing both basic and regular triangulations. The main
difference lies in the determination of the conflict region. We will discuss how to
determine the conflict region in both cases in Section 3.4.2 and in implementation

detail in Section 4.4.

2Formally, a homeomorphism (or topological equivalence) is a function from one topological
space to another that is one-to-one, onto, continuous, and has continuous inverse. Intuitively, you
may imagine the triangulation (including the vertex at infinity) to be a rubber sheet that can
be stretched into a sphere. Although this intuitive approach is useful in many cases, it does not
represent all homeomorphisms between topological spaces. For example, a Mdbius strip with one
twist is indeed homeomorphic to a Mdbius strip with three twists, but cannot be stretched to add
additional twists. See a topology text such as Armstrong [3] for more information.

35

Algorithm 1 Constructing a triangulation using incremental insertion.
Input: P, a set of input sites.
Qutput: T, the computed triangulation of P.
Create the infinite vertex v and initialize a (-1)-dimensional triangulation 7 con-
taining v.
for all p € P do
Locate cell ¢ within 7 that contains p.
Determine the set of cells C of 7 that are in conflict with p.
Let OC be the set of facets on the boundary of C.
for all f € OC do
Create a new cell composed of f and p, and add it to 7.
end for
for all c€ C do
Remove ¢ from 7.
end for
end for

3.4.1 Point location

Point location is the first step of the incremental insertion algorithm when a new
point is inserted into an existing triangulation. Given a triangulation and a query
point, the point location problem is to find the cell of the triangulation that contains
the query point. When the query point lies on the boundary of cells, any cell will
suffice as the result of the point location. In the case where the point lies outside the
convex hull of the triangulation, any infinite cell whose non-infinite facet is visible
to the point suffices. Finally, it may be the case that the point lies outside the
affine hull of the current triangulation. This occurs when the current triangulation
is not fully-dimensional, and the point to be inserted will cause the dimension of
the triangulation to increase by one. Further details regarding how to handle all the
insertion cases just mentioned will be discussed in the next sections.

To accomplish point location, orientation tests are used along with the following
observation. Let ¢ be a cell consisting of points p, ¢, r, s, t and let u be a query

point. Assume that ¢ has positive orientation: orientation(p,q,r,s,t) > 0. If u is

36

inside ¢, then all of the following orientation tests will have non-negative values:

e orientation(u,q,r,s,t),

)
e orientation(p,u,r, s,t),

(

(

e orientation(p, q,u, s,t),

e orientation(p,q,r,u,t),
(

e orientation(p,q,r, s, u).

If all of the orientation tests have positive values, then the query point lies in
the interior c. If all of the orientation tests are non-negative and one or more equal
zero, then the query point lies on a lower-dimensional face of c.

Point location operates by walking on the current triangulation. A starting cell
may or may not be specified (when not specified it is chosen arbitrarily). The above
orientation tests are used to determine whether or not the query point is inside (or
on the boundary of) the current cell. If one or more of those orientation tests returns
a negative value, then the query point must lie outside the current cell. One of the
neighboring cells is chosen and the current cell is updated to be this neighboring
cell. The neighboring cell chosen always corresponds to an orientation test that
returned a negative result. This ensures that the location is moving in the correct
direction. For example, if orientation(u, q,r, s,t) is negative, then the neighboring
cell that shares ¢, r, s, t may be be chosen as the next cell. It may be the case
that several of the orientation tests return negative values, so any neighboring cell
corresponding to a negative orientation test may be chosen. In fact, the next cell is
chosen randomly among all the possible neighboring cells corresponding to negative
orientation tests. This prevents the algorithm from entering a deterministic infinite
loop where the same sequence of cells is visited repeatedly with no forward progress

being made.

37

The same point location algorithm is used by both the basic and regular trian-
gulation packages. For basic triangulations we locate the point to be inserted, and

for regular triangulations we locate the center of the weighted point to be inserted.

3.4.2 Conflict region determination

The next step in the algorithm is to identify cells that are in conflict with the
point u to be inserted. The cells that are in conflict form the conflict region, which
is star-shaped with respect to u® but not necessarily convex. The conflict region is
then filled with one new cell for each facet on the boundary of the conflict region,
and each new cell has u as one of its points. Identifying the conflict region is one
place where the basic and regular triangulation algorithms differ.

In the case of basic triangulations, if the point to be inserted lies in the interior
of some cell ¢, then only c is considered to be in conflict, and the boundary of the
conflict region consists of only five facets. If u lies on a lower-dimensional face, then
all cells adjacent to this lower-dimensional face must be discovered and marked as
in conflict with u. This can be accomplished by traversing the data structure using
the appropriate circulator or enumerator, and marking the cells as in conflict. The
data structure provides all necessary circulators and enumerators to accomplish this,
which has been described in Section 3.2.1.

Finding the conflict region in a regular triangulation is more interesting. First,
the initial cell ¢ that contains the weighted point to be inserted P is found by the
point location. There are two cases to consider, either P is hidden (has empty
Voronoi region in the power diagram) or ¢ is the first conflict cell.

1. If P is not hidden, then ¢ must be in conflict because P lies within (or on the

boundary of) ¢. If P were both visible and not in conflict with ¢, this would
contract our definition of a point set triangulation.

3«A simple polygon P is star-shaped if it contains a point g such that for any point p in P the
line segment pq is contained in P” (cf. [15]). This definition generalizes to polyhedra in higher
dimensions.

38

2. If ¢ is not in conflict with P, then P is hidden. It is impossible for cells outside
of ¢ to be in conflict with P because this would result in the same contradiction
stated above.

If P is hidden, then it is stored in a list maintained by ¢ because the sites of ¢
hide P. As an alternative, P could have been stored in a global list of all hidden
weighted points maintained by the data structure. The algorithm currently does not
support deletion of points, so this hidden point will never become visible. However,
when the package is modified to allow for deletions, hidden points stored in cells
may become visible when vertices of the cell in which they are hidden are deleted.

Because of the power test, a cell may be in conflict with P even when it does not
contain the weighted point inside or on the boundary of the cell. If a cell is found to
be in conflict with P, the cell is marked and search proceeds to each of its neighbors
via a recursive call. This results in depth first search of cells in order to discover the
conflict region. The conflict region is star-shaped with respect to the inserted point,
so the hole is filled by starring the region (as was done for basic triangulations).

Both basic and regular triangulations contain the convex hull of their points.
Because of this, when point to be inserted lies outside the convex hull of the current
triangulation, new cells outside the convex hull must be created. A collection of
infinite cells will be identified as being in conflict with the point to be inserted. An
infinite cell is in conflict if its non-infinite facet is visible to the point to be inserted.
This visibility test can be carried by using an orientation test. If the point is on the
positive side of the finite facet, then the infinite cell containing that finite facet is in
conflict. Again, depth first search is used to discover the conflict region by recursing

on neighboring infinite cells.

39

3.4.3 Conflict region starring

A recursive algorithm is used to fill, or star, the conflict region. Given a star-
shaped hole of conflicting cells, a new cell must be created for each facet on the
boundary of the hole. Importantly, neighboring relationships between the newly
created cells must be built so that traversal of the triangulation after the star oper-
ation works properly. In other words, part of reforming a valid triangulation is to
correctly set the neighbors of each new cell created. The fact that the conflict re-
gion is star-shaped means that the boundary of the conflict region is homeomorphic
to a sphere. Therefore, it is not necessary to examine geometry when starring the
conflict region. The starring algorithm is implemented at the data structure level.

A conflict cell on the boundary of the conflict region starts the process. A new
cell ¢ is created with the same vertices as the facet that is on the boundary of
the conflict region but with one vertex corresponding to the vertex to be inserted.
Next, search proceeds to the neighboring facets that are also on the boundary of
the conflict region. Since the conflict region is simply a collection of cells, the
neighboring facets on the boundary are not known immediately. A circulator is
used to visit cells until the next boundary facet is discovered. For example, in two
dimensions a segment or edge lies on the boundary of the conflict region. Triangles
adjacent to one of the vertices of this edge are circulated around until a triangle is
found that is on the boundary of the conflict region. In three dimensions a triangle
lies on the boundary of the conflict region, so tetrahedra adjacent to one of the
edges of this triangle are circulated around until a tetrahedron is found that is on
the boundary of the region. Finally, in four dimensions a tetrahedron lies on the
boundary of the conflict region, so pentahedra adjacent to one of the triangles of
this tetrahedron are circulated around until a pentahedron is found that is on the

boundary of the conflict region. At this point, the next boundary facet is known,

40

and a recursive call is made to create a neighboring cell ¢,. The recursive call returns
¢n, and the adjacency relationship between ¢ and ¢, is set. When a cell is visited
that has already been created by this process, this branch of recursion ends.

At the end of the starring process, all the new cells have been created and
neighboring relationships have been set. The old cells (that are still marked as in
conflict) are simply destroyed.

Conflict region determination and starring occurs when the point to be inserted

does not increase the dimension of the triangulation.

3.4.4 Weighted points that become hidden

We discussed in Section 3.4.2 what happens when a weighted point to be inserted
is hidden. The weighted point is simply stored in a list maintained by the cell in
which its center is located, and there is no conflict region to determine and star.
However, it is possible for one or more sites to become hidden after the insertion
of a weighted point site. As an output of the conflict region determination and
starring, a vector of vertices that were involved in the conflict region is produced.
At the beginning of the starring procedure, each vertex is marked. As the conflict
region is starred, vertices on the boundary of the region are unmarked. Such vertices
obviously do not become hidden. The marked vertices that remain at the end of
the starring procedure are interior to the conflict region, and will be stored in the
cell in which they located.

The cell in which these hidden vertices are stored is determined by locating the
center of the weighted point in the updated triangulation. The location returns
a cell, and the weighted point is then added to the cell’s list of hidden weighted
points. These locate operations will be fast because it is possible to specify that

the starting cell is one of the cells adjacent to the newly inserted weighted point.

41

Therefore, the entire triangulation does not have to be searched repeatedly to find
the cells in which the hidden weighted points are located. Instead, only the area
local to the conflict region (the cells adjacent to the newly inserted weighted point)
will be searched.

Since deletions are not yet supported, these hidden weighted points will not
become visible. But storing them within the cells that hide them is the first step

toward implementing a dynamic algorithm.

3.4.5 Inserting outside the affine hull

When the point to be inserted causes the dimension of the triangulation to
increase by one, the conflict region approach cannot be used. As discussed in Section
3.2, the data structure represents lower-dimensional triangulations by using a subset
of the vertices to represent lower-dimensional cells. When a new point is inserted
that causes the dimension of the triangulation to increase, each existing cell uses
the next available vertex to store the vertex of the point to be inserted. The first
step when inserting the new point is to loop though all the existing cells and add
the new vertex to each cell. This increases the dimension of each existing cell by
one.

Imagine the simplest case of a one-dimensional triangulation. Think of this as
a circular sequence of alternating edges and vertices, with one of the vertices being
the infinite vertex (therefore, there are two infinite edges). When a new vertex is
added outside the affine hull, each edge (including both infinite edges) is augmented
with the new vertex. Therefore, each finite edge becomes a finite face, and the two
infinite edges become infinite faces. However, each of these faces now has a adjacent
face across from the new vertex that is not yet defined. Each of the finite vertices

now lies on the convex hull, and so infinite faces need to be created for each of the

42

(a) A one-dimensional triangulation (b) The triangulation after its dimension is in-
creased

Figure 3.1. Demonstration of inserting a point outside the affine hull of a one-
dimensional triangulation.

original finite edges to be the corresponding neighbors of the finite faces across from
the new vertex. See Figure 3.1 for an illustration of increasing a one-dimensional
triangulation into two dimensions.

Now imagine the lower-dimensional case of a two-dimensional triangulation on
the plane. Each face uses three of five of its vertex handles, and each edge on the
convex hull is an edge of an infinite face. Then a new point is inserted that causes
the dimension to increase to three. Then each face is visited and its fourth vertex is
set to the vertex to be inserted (even infinite faces, which essentially connects the
vertex to be inserted to the infinite vertex). Each such cell must have a neighboring
cell across from the vertex to be inserted, and this will be discussed shortly. All
points are now on the convex hull of the three-dimensional triangulation, which
means that all of the the original faces now lie on the convex hull. The neighbor
of each cell opposite the new vertex is undefined, and it should be an infinite cell.

Therefore, new infinite cells are created for each of the original finite faces, and each

43

face in the original triangulation is now shared between a new infinite cell and a
finite cell that existed at the beginning of the insert.

This process is abstracted to allow for inserting a point outside the affine hull
of a three-dimensional triangulation. Originally, each cell uses four out of five of
its vertex handles, and each triangle on the convex hull of the triangulation is a
triangle of an infinite cell. Each existing cell is visited and has its fifth vertex set
to the vertex to be inserted. Then, new infinite cells are created to be neighbors of
the original finite cells because all of the finite points are now part of the convex
hull in four dimensions. Although it is much more difficult to imagine inserting
a point outside the affine hull of a three-dimensional triangulation, abstracting the
method described in the previous paragraphs to operate in four dimensions becomes

straightforward.

44

CHAPTER 4

CGAL TRIANGULATION IMPLEMENTATION

4.1 Introduction

CGAL packages typically use multiple levels of abstraction in order to separate
geometry from topological structure, and to allow advanced users to easily extend
certain components of the library without rewriting unrelated components. The
code design of the R* triangulation package follows the organization of the R? and
R? packages. Although a similar high-level breakdown is used, generalizations are
made to reflect the more complicated structure of R* triangulations. Descriptions
involving the data structure, geometric predicates, and algorithm were discussed in
Chapter 3, and implementation details will be discussed here. The triangulation
package employs a three-level design. At the lowest level, classes for individual
vertices and cells are written. One level higher, the data structure maintains a
collection of vertices and cells to represent the structure of the entire triangulation,
but it does not operate on the geometric data of the objects. At the highest level,
the triangulation class presents the interface of the package to the user. Advanced
users may explore into the lower layers and add code if their application demands
additional functionality. A high level view of the code organization can be found in
Figure 4.1.

We will first present the code design of the data structure (including circula-

tors/enumerators/iterators), followed by the geometric traits classes, and the trian-

45

Triangulation

User interface and algorithm

Vertex Cell
Geometric traits Triangulation data structure
Objects and predicates Container and combinatorics
Template parameter '
: Cell base
Y
Vertex base
v
Derivation ﬁ

Figure 4.1. An illustration of the triangulation package design. The geometric traits
and triangulation data structure are the two template parameters for the interface
classes. Additionally, vertex and cell classes are template parameters of the data
structure class. Because of this, users may inject their own vertex and/or cell classes
into the data structure, or their own geometric predicates or data structure into the
algorithm.

46

gulation and regular triangulation algorithm classes. Although these are discussed in
sequence, they are really individual components. At a high level, a geometric traits
class and a triangulation data structure class are plugged into the triangulation
class as template parameters. In this sense, the traits classes and the data struc-
ture class are really implementations of a concept. Other classes may be plugged in
as long as they export the public interface required by the triangulation. Finally,
we discuss verification methods used to determine whether or not the constructed

triangulations are correct.

4.2 The Triangulation data_structure_4<Vb,Cb> class

Perhaps the most important contribution of this thesis is the implementation
of a data structure that represents triangulations (both basic and regular) in R?,
including the operations on the data structure (such as starring a conflict region and
the implementation of all the circulators and enumerators that allow the structure
to be traversed and output). This implementation is provided by
Triangulation data_structure_4<Vb,Cb> and its helper classes. The data struc-
ture takes two template parameters. The first template parameter is named Vb,
which stands for vertex base. It is used to define the Vertex type, which is used in
turn to define the container of vertices stored by the data structure that maintains
all the vertices of the triangulation. A Vertex_handle is essentially a pointer to a
Vertex within the container. The second template parameter is named Cb, which
stands for cell base. The Cell handle type is essentially a pointer to a Cell stored
within the container of cells maintained by the data structure.

Although this code organization is seemingly complicated, it allows an advanced
user to inject his or her own vertex or cell class. For example, the user may wish to

augment the default vertex or cell with additional information such as the color of

47

the vertex or cell. However, beginners need not worry about specifying these classes
because they will be chosen automatically at compile time according to default
template parameters.

As mentioned in Section 3.2, only cells and vertices are stored directly by the
data structure, and faces of intermediate dimension are stored implicitly. A 3-face
(which we will call a facet or tetrahedron) is represented with a cell and a single
integer index (which indexes a vertex of the cell). This pair represents the facet
opposite this vertex within the cell. Notice that there are two possible ways to
represent the same facet since exactly two cells share a facet. Similarly, a 2-face
(face or triangle) is represented with a cell and two integer indices. This triple
represents the face opposite these two vertices within the cell, which is the common
face of two facets. Finally, a 1-face (edge or segment) is represented with a cell
and three indices, which is the common edge of three facets. Faces and edges may
be shared by possibly many cells, so there may be many ways to represent the
same face or edge. Indeed, the types Edge, Face, and Facet are public within
Triangulation_data_structure_4<Vb,Cb>, so the types are exported by the class.

The data structure presented here is similar to the data structure found in the
three-dimensional CGAL triangulation package. However, there is a difference in
how the intermediate-dimensional simplices are represented. In the four-dimensional
data structure, we always use indices into a cell to indicate the simplices that are
opposite the vertices indexed. This is not always the case in the three-dimensional
triangulation data structure. Specifically, edges in that data structure are repre-
sented by cells and two indices that index the actual vertices that comprise the
edge. The four-dimensional triangulation data structure implementation provides a
uniform way of representing the intermediate-dimensional simplices.

One of the most important functions of the data structure is insert_in_hole,

48

which is used for filling the conflict region that has already been identified. The
insert_in_hole function must create a new vertex v (which is added to the container
of vertices), then fill the hole by creating new cells with one vertex being the vertex
to be inserted, and the other vertices belonging to facets on the boundary of the
conflict region.

This starring operation is performed by the create_star_{1,2,3,4} functions,
which are private in the data structure class. The starring function is implemented in
the data structure because it does not need the geometric information of the cells.
The starring procedure simply assumes a star-shaped conflict region, which may
consist of either finite or infinite cells. In the fully-dimensional case, create_star_4
starts with an existing cell ¢ that is in conflict and on the boundary of the conflict
region. The function creates a new cell cnew using the vertices of ¢, and with one of
the vertices of cnew being replaced by v. The adjacency relationship is set so that
cnew and the original neighbor of ¢ across from v are now neighbors. But four of
the neighbors of cnew remain undefined. Using a Cell _around face _circulator, a
neighboring facet on the boundary of the conflict region is discovered and a recursive
call to create_star_4 is made, which creates and returns a new cell nnn with v as
one of the vertices. After the return, the adjacency between nnn and cnew is set.
However, as this recursion develops, it will be the case that create_star_4 finds a
cell that was already created by this process. When this happens, the adjacency
relationship is set, but no new recursive calls are made. Therefore, the process stops
after all facets on the boundary of the conflict region have had new cells created
with v as one of the vertices. At this point, control returns to the insert_in_hole
function, which deletes all cells that are no longer linked in the current triangulation.

The public interface of the data structure class can be found in Appendix A.5.

49

4.2.1 Circulators and enumerators

Circulators and enumerators are used for visiting the local neighborhood of a
lower-dimensional simplex within the triangulation. For example, given a 2-simplex
(face or triangle), visit all cells that contain this face as a lower-dimensional simplex.
This is analogous to the situation in R® where the user wishes to visit all 3-simplices
around an edge. As another example, consider visiting all cells adjacent to a given
vertex. In the first case, there is a natural order of cells around a face, and in the
second case there is no such natural circular order of cells around a vertex.

A cell and two integer indices are stored to represent a face. Let f = (c, i1, 12) be
the face where c is a cell of the triangulation and 4; and i, are indices. Let v; = ¢(i1)
and vy = ¢(iz) be two vertices of the cell. Within ¢, f is the face opposite v; and vs,
and so f contains neither v; nor vo. Now consider two adjacent cells of c. The cell
¢, opposite vy shares four vertices with c: the three vertices of f and vy. Similarly,
cell ¢y opposite vy shares four vertices with ¢: the three vertices of f and v;. Notice
that in both cases, the neighboring cell contains f as one of its lower-dimensional
faces. The key point is that given a cell ¢ and a face f of that cell, exactly two
neighboring cells of ¢ will also contain f as a face. This also implies that there
is both a forward and backward way to traverse to the next cell. It is possible to
repeatedly visit adjacent cells that all share f in order until the original cell ¢ is
reached. In the process, all cells adjacent to f are visited exactly once. This kind
of traversal of cells is similar to iterating over a circular doubly linked list of cells
in either the forward or backward directions. Hence, the name circulator is used.
Users increment and decrement by using the ++ and —- operators on a circulator
object.

Consider the approach of storing the previous cell every time the circulator is

incremented. Using the example from above, let the new current cell be ¢; and

20

let ¢ be stored as the previous node. When the next increment operation occurs,
both eligible neighbors of ¢; are compared to ¢, and the neighbor that is not c is
visited next and ¢; becomes the new previous node. This straightforward approach
involves storing a temporary variable and executing a comparison for each increment
operation, which in inefficient. Instead, an indexing scheme and lookup tables are
used so that no temporary variable is stored and no comparisons are made. Memory
is used to store the lookup tables. Given integer indices into a cell, a table lookup
is performed and an index is returned so that the next (or previous) neighbor can
be visited immediately.

Now that the general ideas for circulators are presented, we can discuss the
details of the indices and lookup tables. First, the order in which the indices are
applied to a cell determine the orientation of the lower-dimensional face it represents.
For example, the face f; = (c,i1,i2) has opposite orientation as fo = (c,12,11)-
Therefore, a forward circulator around f; traverses the same sequence of cells as a
reverse circulator around fs.

Enumerators are like circulators in that they collect simplices around some lower-
dimensional simplex. But they are different from circulators in that the simplices
in the collection have no circular geometric order. Because of this, enumerators are
like iterators in that they have a beginning and an end. In fact, the enumerator
classes export iterator types so that users of the these classes can call the begin and
end member functions, and use the ++ and -- operators to traverse the simplices
collected.

Enumeration is an idea introduced in the four-dimensional triangulation pack-
age, although it could be added to the three-dimensional triangulation package for
enumerating tetrahedra around a vertex. Since enumerating tetrahedra around a

vertex is not necessary for the insertion process, the functionality was not imple-

51

mented in the three-dimensional package. However, enumeration of cells adjacent
to an edge is necessary for the insertion of a point that lies on that edge, so there
must be some way to mark all the cells adjacent to an edge. Enumerators provide

an abstraction to encapsulate this functionality.

Visiting cells around a face

The Cell_around face _circulator class requires a fully-dimensional triangu-
lation. There are several constructors available, all of which take a face. Internally,
three Vertex_handles wvl, v2, v3 that comprise the face are stored, and do not
change after the circulator object has been constructed. This is necessary because
as the circulator moves from cell to cell, the indices of v1, v2, and v3 in the current
cell may change, but the actual vertices remain unchanged. In addition, there is a
private Cell _handle pos that references the current cell location in the circulation
process. The cell pos always contains v1, v2, and v3.

At construction time, the map_to_actual face table is used to map the two in-
dices that represent the opposite face to three indices that represent the actual face.
Given a pair of indices (i, j), a triple of indices (k, m, n) is returned, where i, j, k, m,
and n are all different and take values between 0 and 4 inclusive. Notice that shift-
ing the indices of the return triple as in (n,k, m) and (m,n, k) result in additional
valid returns. However, looking up (j,4) in the table will return (m,k,n) so that
the face returned has the opposite orientation, and the circulator increments in the
opposite direction. The contents of the map_to_actual _face table can be found in
Table 4.1, and the table is implemented in Triangulation_utils_4 from which both
Triangulation_4<Gt,Tds> and Triangulation_data_structure_4<Vb,Cb> inherit.

The next_around_face lookup table is used to map the actual indices of a face

f within the current cell to a single index whose neighbor is the next cell when

52

TABLE 4.1

CONTENTS OF THE MAP_TO_ACTUAL_FACE LOOKUP TABLE

Opposite indices | Actual indices || Opposite indices | Actual indices
(0, 1) (2, 3, 4) (2, 3) (0, 1, 4)
(0, 2) (3,1, 4) (2, 4) (1,0, 3)
(0, 3) (1,2, 4) (3, 0) (2, 1, 4)
(0, 4) (2,1, 3) (3, 1) (0, 2, 4)
(1, 0) (3,2, 4) (3, 2) (1,0, 4)
(1, 2) (0, 3, 4) (3, 4) (0, 1, 2)
(1, 3) (2,0, 4) (4, 0) (1, 2, 3)
(1, 4) (0, 2, 3) (4, 1) (2,0, 3)
(2, 0) (1, 3, 4) (4, 2) (0, 1, 3)
(2, 1) (3,0, 4) (4, 3) (1,0, 2)

circulating in the forward direction. By finding the indices of v1, v2, and v3 in
the current cell, performing a lookup in the next_around_face table, moving to the
adjacent cell, and repeating, all cells adjacent to f are visited exactly once before
returning to the starting cell. Notice that if the actual indices of f within the current
cell are (i, 7, k) then the next index m cannot equal i, 7, or k. Since each cell can be
indexed 0 to 4 inclusive, there are two choices for m. Since shifting the indices of a
face does not change its orientation, (i, 4, k), (k,4,7), and (j, k,7) all have the same
next index m. However, swapping two indices causes the circulator to move in the
opposite direction, so (4,1, k), (k,j,1), and (i, k, j) all have the same next index n,

but m # n. The contents of next_around face can be found in Table 4.2.

Other circulators

Lower-dimensional circulators have existed in the R? and R®* CGAL triangula-
tion packages, so details and the lookup tables will not be discussed here. The data

structure exports a type called Facet_around edge circulator for when the tri-

93

TABLE 4.2

CONTENTS OF THE NEXT_ARQUND_FACE LOOKUP TABLE

Index to next

— O MO F 14 AN ANFT O IO AN AN N ON N OANO -

Actual indices

P e e A e e e e

o o MmN T oo N Y oo R Y oo N AT AN M o A Mo A m o ™
NN oS S A AT AN NANYT I SIS A AN NN S
NN NN NN mommes o < <t < <t <f < <f < < <f < <t

N N N N N N N N S S S S N N N N N e N S e N N N e e e N N N

Index to next

N I AN FT = O AN F = N = AN FTANANMNMMNM IO IFTOANNNMOMN A O™

Actual indices

e e R e e R e e s T e e T e R o e i e e s e T e T R R R e

AN FT AN F AT AN FITH AN MANAN FTON T OANFTONN—HMNH O™ A
—_F N NN SO S oN NN NS S S~ —
S S i AT A A A A A A A NN
N S N N N N N N S N e N e e N N e S S S e N N S e N e N S

o4

angulation is three-dimensional, and Face_around_vertex_circulator for the two-
dimensional case. Each use a similar scheme as in the fully-dimensional case where
the actual vertices of the lower-dimensional face are stored, and then a lookup table is
accessed to transition to the correct neighboring cell when an increment or decrement
operation is performed on the circulator. The Vertex_around_vertex_circulator
is valid in two-dimensions only, and is useful for visiting neighboring sites in the

dual power diagram.

Visiting cells adjacent to an edge

The Cell_around_edge_enumerator class keeps a private member that is a con-
tainer of Cell_handles. Currently, an STL vector (std::vector<Cell_handle>) is
used as the container, but any container that implements a bidirectional iterator
type may be used (such as an STL list, for example). At construction time, an edge
is passed to the constructor, and the container of cells is filled immediately via a
call to the private build_cells member function of the class. First, build_cells
uses the map_to_actual_edge lookup table in order to store Vertex_handles v and
u of the edge.

The table essentially maps the internal representation of an edge (cell and three
indices) into indices that can be used to retrieve the actual vertices that make up
the edge. It may be possible to compute this where necessary instead of performing
the table lookup, but there are several advantages to using a lookup table. First,
it allows encapsulating the operation so that functions do not become cluttered
with this translation code. Second, it is implemented with a multi-dimensional ar-
ray, so lookups are fast. Finally, it allows the encoding of an orientation of the
lower-dimensional faces. For example, looking up (0, 1, 2) in the table results

in a return of (3, 4), but looking up (1, 0, 2) results in a return of (4, 3). In fact,

95

map-to_actual_edge and next_around_face are essentially the same table, yet they
are used for different purposes. Both take a triple of indices, and the first index re-
turned by map_to_actual_edge is the same as the return value of next_around face.
The contents of map_to_actual _edge are listed in Table 4.3, and the table is im-
plemented in Triangulation_utils_4 from which both Triangulation_4<Gt,Tds>
and Triangulation_data_structure_4<Vb,Cb> inherit.

Within build_cells, the recursive incident_cells function is called, which
performs a depth first search and marks cells that contain both v and u. Three
vertices of the starting cell ¢ are not equal to v or u, so there are three adjacent
cells that contain both v and u. Recursion stops when search reaches a cell that has
already been marked. At each step along the way, a cell is added to the container.
The in_conflict_flag of each cell is used as the marker, and after search completes
all in_conflict_flags are reset to 0. The result is that the STL vector is now full
of cells adjacent to the edge defined by v and u. The incident_cells function is
demonstrated in the following code snippet. Note that in this and all other code
snippets, we may eliminate parts of the code and present only those parts that are

essential for presenting the underlying ideas of the implementation.

void build_cells ()
{
// The edge is represented by cell c_ and three integer indices
// i1_, i2_, and i3_. Translate this representation into the
// actual vertices v and u that comprise the edge. Use the
// map_to_actual_edge lookup table to accomplish this.
Vertex_handle v =
c_—>vertex(Tds: :map_to_actual_edge(il_, i2_, i3_, 0));
Vertex_handle u =
c_->vertex(Tds::map_to_actual_edge(il_, i2_, i3_, 1));

// Fill the container with cells adjacent to the edge. Call
// recursive function incident_cells (see below).
Cell_container tmp_cells;

incident_cells(v, u, c_, std::back_inserter(tmp_cells));

o6

// Reset the conflict flags of the cells in question.
for (Cell_container_iterator cit = tmp_cells.begin();
cit != tmp_cells.end(); ++cit) {
(*cit)->set_in_conflict_flag(0);
cells.push_back(*cit);
}

// Sort the cells by their memory address. This is necessary so
// that the Edge_iterator (which uses a

// Cell_around_edge_enumerator) only reports each edge exactly
// once.

std::sort(cells.begin(), cells.end());

template <typename Outputlterator>
void incident_cells (const Vertex_handle & v,

{

const Vertex_handle & u,
const Cell_handle & c,
OQutputIterator tmp_cells) const
// v and u are the vertices of the edge.
// c¢ is the current cell containing both v and u.
// As cells are discovered, they are added to a container for
// which tmp_cells is an iterator into.

// Keep track that we have visited this cell so that we do not
// return.
c->set_in_conflict_flag(1);

// Add it to the container of cells.
*tmp_cells++ = c;

// Try to explore each adjacent cell.
for (int i = 0; i < 5; ++i) {

// Do not explore cells that do not contain both v and u.
if (c->vertex(i) == v || c->vertex(i) == u)
continue;

// Do not explore cells that have already been explored.
Cell_handle next = c->neighbor(i);
if (next->get_in_conflict_flag() != 0)

continue;

o7

// Otherwise, the unexplored neighbor contains both v and
// u. Perform a recursive call to add it to the container.
incident_cells(v, u, next, tmp_cells);
}
}

After construction, the enumerator operates as an iterator. The begin and end
member functions of the enumerator are called, which return iterators into the STL
vector. The increment ++ and decrement —-- operators can be used because the

iterator is simply std: :vector<Cell_handle>::iterator.

Other enumerators

The data structure also exports types for Cell_around vertex_enumerator,
Facet_around_vertex_enumerator, and Vertex_around vertex_enumerator. A
container of cells is built at construction time via a recursive depth first search
algorithm. Then the begin and end member functions of the enumerator are called
that return iterators into the container of cells, which can be incremented and decre-
mented with the ++ and -- operators.

The Vertex_around_vertex_enumerator is valid for both three-dimensional and
four-dimensional triangulations, and operates much like the cell and facet enumera-
tors, where the internal container stores Vertex_handles instead of Cell_handles.
This enumerator is convenient for accessing the neighboring sites in the dual power

diagram.

4.2.2 Tterators

The data structure exports types for iteration through the cells, facets, faces,
edges, and vertices stored. Specifically, it exports Cell_iterator, Facet_iterator,
Face_iterator, Edge_iterator, and Vertex_iterator. The implementations of

Cell _iterator and Vertex_iterator are provided by the cell and vertex contain-

o8

TABLE 4.3

CONTENTS OF THE MAP_TO_ACTUAL_EDGE LOOKUP TABLE

AN TN AN AN AN N N AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN N AN N N N

N N N N N N N N S S S N e N N N N e N S S N N N N e e N N N

TN TN AN TN AN AN AN N AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN N AN AN N N N

N N N N N N N N S S S N N N e N N e N S e N e N e e e N N N

AN AN SN AN AN AN AN AN AN AN I N AN N AN AN AN AN N AN AN AN AN AN AN AN AN N N N N

N N N N N N N N N e S N N N N e N e N e N N N N e e e N N N

Opposite indices | Actual indices || Opposite indices | Actual indices

P e e A A N s e e e O A

N N e e e e e e e e e e e e e e e e e e e N e e e e e N e

99

ers of the data structure. However, class implementations for the intermediate-
dimensional iterators were written since facets, faces, and edges are stored implicitly
in the data structure. CGAL iterators operate similarly as STL iterators. In order to
use them, the appropriate begin and end member functions must be called, which
exist in the data structure. Also, the dereference operator * must be used to access
the elements within the iterators.

In lower-dimensional cases, it is possible to create iterators over higher-dimensional
features, but such iterators will be empty. For example, when the triangulation is
two-dimensional, the Facet_iterator and Cell_iterator are empty, but the user
can iterate over faces using Face_iterator and over edges using Edge iterator.
More importantly, it is possible to create meaningful iterators over lower-dimensional
features. For example, it is possible to iterate over all edges in a four-dimensional
triangulation using Edge_iterator. Internally, the data structure has the ability to
loop over all cells, even in a lower-dimensional case where one or more vertices are
ignored.

The method used by the iterator classes is to loop over the cells and report the
lower-dimensional simplices within each cell. However, this poses some difficulty
because lower-dimensional simplices are shared by more than one cell. Let ¢ be the
current cell in the iteration process, and f the lower-dimensional simplex of ¢ that
may or may not be reported. We only wish to report f exactly once, so we choose
a convention of examining memory addresses of cells containing f to ensure this. If
¢ has the lowest memory address among all cells that contain f then f is reported,
otherwise f is skipped. This kind of scheme ensures that each lower-dimensional
simplex is reported exactly once, even though it may be shared by many cells. To
implement these operations, circulators or enumerators must be used in order to

examine the memory addresses of all cells adjacent to a lower-dimensional simplex.

60

Each of the following iterator classes stores three private data members. The
first is a pointer to the data structure object so that the cells stored in the data
structure may be accessed. Secondly, a Cell_handle pos is stored that keeps track of
the current position within the data structure’s container of cells. The final member
is of type Facet, Face, or Edge, depending on the iterator. These types provide the
necessary integer indices that are used within the iterator classes, and also serve as

the return values when the corresponding iterator is dereferenced.

Iterating over all facets

The Facet_iterator class is used to loop over objects that are geometrically
tetrahedra. While this iterator can be used in any dimension, it is non-empty
only when the dimension of the triangulation is greater than or equal to three. The
Facet member of the class is a pair consisting of a Cel1l_handle first and an integer
second.

In three dimensions the facet is the highest-dimensional simplex possible, and
so the facet iterator is simply a wrapper around the iterator of the cell container of
the data structure. The ++ and -- operators simply increment and decrement pos,
while second remains 4 throughout.

In four dimensions facets are lower-dimensional simplices, so memory addresses
must be examined. As discussed in Section 3.2, each facet of a four-dimensional tri-
angulation is shared by exactly two cells. When the triangulation is four-dimensional
and this iterator is created, pos starts at the beginning of the cell container and
second equals 0. When the ++ operator is called, if second equals 4 then second is
set to 0 and pos is incremented to the next cell, otherwise second increments. This
essentially increments to the next facet, which may be skipped depending on the

memory address of the cell of pos compared to the memory address of the adjacent

61

cell that shares the facet. Because of this, several facets may be skipped before the

++ operator returns. The opposite behavior occurs on a call to the —— operator.

Iterating over all faces

The Face_iterator class is used to loop over objects that are geometrically
triangles, and is non-empty when the dimension of the triangulation is greater than
or equal to two. The Face member of the class is a triple consisting of a Cel1_handle
first and two integers second and third.

In two dimensions the face is the highest-dimensional simplex, and so the face
iterator is a wrapper around the iterator of the cell container of the data structure.
The ++ and -- operators simply increment and decrement pos while (second, third)
remains (3, 4) throughout. When the triangulation is three-dimensional, the face
iterator operates much like the facet iterator in four dimensions. In this case, third
always equals 4, but second varies from 0 to 3 inclusive.

When the triangulation is four-dimensional, (second, third) is incremented as
follows: (0, 1), ..., (0, 4), (1, 2), ..., (1, 4), ..., (3, 4), (0, 1). At the last transition
from (3, 4) to (0, 1), the pos iterator is incremented to move to the next cell and
this process repeats. This visits all 10 faces of pos before incrementing pos to the
next cell. Again, each triple consisting of (pos, second, third) represents a face,
and faces are reported only when pos has the lowest memory address among all cells
that share the face. Otherwise, the face is skipped. In order to examine the memory

addresses of all adjacent cells, a Cell_around_face_circulator is used.

Iterating over all edges

The Edge_iterator class is used to loop over objects that are geometrically
segments, and is non-empty when the dimension of the triangulation is greater than

or equal to one. The Edge member of the class is a quadruple consisting of a

62

Cell handle first and three integers second, third, and fourth.

In one dimension the edge is the highest-dimensional simplex, and so the edge
iterator is a wrapper around the iterator of the data structure cell container. The
++ and -- operators simply increment and decrement pos while (second, third, and
fourth) remains (2, 3, 4) throughout. When the triangulation is two-dimensional,
the edge iterator operates much like the Face_iterator in three dimensions or
Facet_iterator in four dimensions. In this case, fourth always equals 4, third
always equals 3, and second varies from 0 to 2 inclusive. In three dimensions the edge
iterator operates much like the face iterator in four dimensions. In this case, fourth
always equals 4 while (second, third) varies from (0, 1) to (2, 3) to visit all 6 edges of
a facet before incrementing pos to the next cell. A Facet_around_edge_circulator
is used to examine memory addresses of all facets around the current edge.

In four dimensions, (second, third, fourth) is incremented as follows: (0, 1, 2),
.y (0,1, 4), (0, 2, 3), ..., (2, 3, 4), (0, 1, 2). The pos iterator is incremented when
the counter resets to (0, 1, 2). This visits all 10 edges of pos before incrementing pos
to the next cell. In this case, a Cell_around_edge_enumerator is used to retrieve
all the cells adjacent to the edge represented. Conveniently, the enumerator returns
cells sorted by their memory addresses, so only the memory address of the first cell
of the list returned by the enumerator needs to be compared against the memory

address of pos.

4.3 Geometric traits and kernel classes

A geometric kernel in CGAL is a class that contains a set of functors that are ei-
ther geometric objects or geometric predicates that may be common to many pack-
ages. “The term kernel refers to a collection of representations for constant-size

geometric objects and operations on these representations” (cf. [29]). For example,

63

the orientation test on points is a typical predicate provided by a CGAL kernel.
Since CGAL does not currently provide packages specifically in R*, a kernel was im-
plemented to meet the needs for basic triangulations. This kernel implementation is
provided by the Simple_cartesian 4<Nt> class, which has a single template param-
eter that is the number type (which may or may not be exact) used to store objects
and perform computations. This kernel does not use reference counting (hence sim-
ple), and represents points by their Cartesian coordinates (hence cartesian). Because
it is currently used only by the triangulation package, Simple_cartesian 4<Nt>
does not contain as many geometric objects and predicates when compared to
the two-dimensional and three-dimensional kernels. Specifically, it provides the
Point_4 geometric object and the Orientation_4 geometric predicate. Additionally,
lower-dimensional orientation tests are included: Cohyperplanar_orientation_4,
Coplanar orientation 4, and Compare x1x2x3x4 4. Each of the predicates is a
functor!. Cohyperplanar_orientation_4 takes four points and determines the ori-
entation of the tetrahedron they form. Similarly, Coplanar orientation takes
three points and determines the orientation of the triangle they form. The orienta-
tion tests are evaluated by projecting the points to a lower-dimensional hyperplane
and computing signs of determinants, as discussed in Section 3.3. CGAL provides
global functions for evaluating determinants. The orientation tests return values of
the enumeration type Orientation defined in CGAL, which may take the values
NEGATIVE, ZERO, or POSITIVE. Compare x1x2x3x4 4 performs lexicographical com-
parison of two points, and it is essentially a one-dimensional orientation test. This
is evaluated by comparing the coordinate values of the two points involved.

A traits class in CGAL is either a kernel, or a kernel augmented with additional

problem-specific objects and operations. Therefore, a traits class also provides ge-

LA functor is a class that defines operator().

64

ometric objects and predicates to the algorithms in the form of functors. An algo-
rithm class essentially ties together a traits class (geometry) with a data structure
class (combinatorial representation) in order to provide the interface and function-
ality of the package. For the case of basic triangulations, the traits class used is
simply the Simple _cartesian 4<Nt> kernel. However, a traits class customized for
regular triangulations was implemented to include the Weighted point_4 geometric
object and the Power_test_4 geometric predicate. The power tests return values of
the enumeration type Oriented_side defined in CGAL, which may take the values
ON_NEGATIVE_SIDE, ON_ORIENTED_BOUNDARY, or ON_BOUNDED_SIDE. The traits class
implemented is named Regular_triangulation_traits_4<Kernel>, which inherits
from whatever kernel is used (e.g., Simple cartesian 4<Nt>). The Power test 4
predicate also calls CGAL’s global functions for evaluating determinants. Note that
although Simple_cartesian_4<Nt> and Regular_triangulation_traits_4<Kernel>
were implemented, users are able to plug in their own class as long as they implement

the necessary interface, which is composed of the functors mentioned.

4.3.1 Arithmetic filtering

The use of a traits class allows a clean separation between geometry and combi-
natorics. Although traits classes export geometric objects and operations on those
objects, there is a representational issue that has not yet been addressed. Namely,
the geometric objects must use variables of some number type to store the under-
lying representation. The operations are evaluated by performing arithmetic on
the data of the underlying representation. For example, a Point_4 object needs to
store four coordinates, and a Weighted_point_4 object needs to store a weight in
addition to the four coordinates. The operations are implemented by computing

determinants using these values.

65

If double is used as the number type, predicates may be evaluated incorrectly
during the course of the algorithm. Not only may this cause an incorrect triangula-
tion to be constructed, but it may cause more disastrous results such as an infinite
loop. For example, during the locate phase of the insertion process it is possible
for the query point to lie on or very close to a lower-dimensional facet f that is the
boundary between two cells ¢; and cp. If the orientation test returns an incorrect
result then the algorithm may insert the new point inside one of the cells instead
of on f. This kind of error may be deemed acceptable. However, if the orientation
test returns that the query point is outside of both ¢; and ¢y, then an infinite loop
will result. This kind of situation is possible when using an inexact number type.

There are several approaches that have been developed. For example, the sim-
ulation of simplicity approach in Edelsbrunner and Miicke [18] essentially perturbs
the input objects slightly so that degenerate cases (like a point lying on a lower-
dimensional face) disappear. Using this approach, algorithms may be written under
general position assumptions on the input objects, yet operate correctly in degener-
ate situations because of the perturbation. See also Sugihara et al. [38] for a topology
based approach, Yap [40] for a theoretical framework for exact computation, and
Kettner et al. [31] for examples under which algorithms fail due to arithmetic errors.

The approach taken by CGAL is to develop algorithms using an exact number
type and exact computation of predicates. This adds additional computational over-
head, especially considering that operations on double can be performed in hard-
ware, while operations on exact number types must be implemented in software. To
address this, CGAL uses dynamic arithmetic filtering, where inexact computations
are performed, and the reliability of the results is checked. If floating point errors
have occurred, then the same computation is performed using an exact number type.

The decision as to whether or not floating point errors occurred is made at runtime,

66

hence the filtering is dynamic.

CGAL makes it easy to incorporate arithmetic filtering into the development
of packages by providing a Filtered predicate<...> class. A package developer
typically implements a package including a traits class by exclusively using exact
computation. Then the Filtered predicate<...> class is used almost mechani-
cally to provide a filtered version of the traits class. Indeed,
Triangulation filtered traits_4<Kernel> and
Regular_triangulation_filtered traits_4<Kernel> classes were written to pro-
vide filtered versions of the traits class. Note that both of these may be plugged
instead of the previously mentioned kernel and traits classes because they provide

the same interface. See Appendix A.4.

4.4 The Triangulation_4<Gt,Tds> class

This class provides the high level interface to the user of the basic triangulation
package. It uses a geometric traits class containing the objects and predicates, which
is plugged in as the first template parameter. Either Simple _cartesian 4<Nt>
or Triangulation filtered traits_4<Kernel> may be used, both of which are
provided. It also uses a data structure class, which is plugged in as the second
template parameter. The user builds a triangulation by first creating a
Triangulation 4<Gt,Tds> object with a constructor, and then using an insert
function to input the points into the triangulation.

There are a number of insert functions that are used internally within the
class to handle various cases, but there is one important insert function that is
part of the public interface. It takes a Point_4 object as its first parameter, and
has an optional second parameter that is a Cell handle. The Cell _handle is used

as the starting cell when the locate function is called, which is the first step within

67

insert. The locate function finds where the new point will fit into the current basic
triangulation. Depending on the result of the locate call and the dimension of the
triangulation, the new point will be inserted in an edge (geometrically a segment),
in a face (triangle), in a facet (tetrahedron), in a cell (pentahedron), outside the
convex hull, or outside the affine hull (the dimension increases).

There are two public locate member functions available to the user. The sim-
plest one takes a query Point_4 object and returns a Cell_handle that contains
the query point. While this locate function may be adequate for some purposes,
it does not indicate whether the query point lies interior to the cell or on a lower-
dimensional face. To extract this additional information, the second version of the
locate function must be used. It also returns a Cell_handle, but contains four
additional reference parameters that are set within the function so that the caller
can access the additional information. The first additional parameter is of the enu-
merated type Locate_type, which may hold the value VERTEX, EDGE, FACE, FACET,
CELL, OUTSIDE_CONVEX_HULL, or OUTSIDE_AFFINE_HULL. The next three reference
parameters are integer indices into the cell that is returned. If the query point is
located on a lower-dimensional face of the cell, then one to three of these indices are
set in order to indicate the lower-dimensional face on which the query point lies. If
the query point is located outside the convex hull, then an infinite cell is returned
whose finite facet is visible to the query point (there may be many cells that satisfy
this criteria, and any one of them may be returned). It is this version of the locate
method that is used as the first step when insert is called.

Table 4.4 summarizes what locate may return. In this table, ¢ is used for the
Cell_handle that is returned, the indices [, [j, and [k may take values between 0
and 4 inclusive, and an X character indicates that a field is not used. When a vertex

is returned, the /7 index is used to indicate the vertex within ¢ on which the query

68

TABLE 4.4

POSSIBLE RETURN VALUES OF THE LOCATE METHOD

D | Locate_type is Returns Represented By
4 | CELL finite cell (c, X, X, X)
4 | FACET finite facet (c, X, X, 1k)
4 | FACE finite face (c, X, 1j, 1k)
4 | EDGE finite edge (c, 1i, 1j, 1k)
4 | VERTEX finite vertex | (c, li, X, X)
4 | OUTSIDE_CONVEX HULL | infinite cell | (¢, X, X, 1k)
3 | FACET finite facet (c, X, X, 4)
3 | FACE finite face (c, X, 1j, 4)
3 | EDGE finite edge (c, 1i, 1j, 4)

3 | VERTEX finite vertex | (c, li, X, X)
3 | OUTSIDE_CONVEX HULL | infinite facet | (c, X, 1j, 4)
3 | OUTSIDE_AFFINE HULL | nothing else | (X, X, X, X)
2 | FACE finite face (c, X, 3, 4)
2 | EDGE finite edge (c, 1i, 3, 4)

2 | VERTEX finite vertex | (c, li, X, X)
2 | OUTSIDE.CONVEX_HULL | infinite face | (c, 1i, 3, 4)

2 | OUTSIDE_AFFINE HULL | nothing else | (X, X, X, X)
1 | EDGE finite edge (c, 2, 3, 4)

1 | VERTEX finite vertex | (c, li, X, X)
1 | OUTSIDE_.CONVEX_HULL | infinite edge | (c, 2, 3, 4)

1 | OUTSIDE_AFFINE HULL | nothing else | (X, X, X, X)
0 | VERTEX finite vertex | (c, 0, X, X)
0 | OUTSIDE_AFFINE HULL | nothing else | (X, X, X, X)
-1 | OUTSIDE_AFFINE HULL | nothing else | (X, X, X, X)

69

point lies. When an infinite cell, facet, or face is returned, one of the indices is used
to indicate which vertex is the infinite vertex. In the case of an infinite edge in one
dimension, no such index is provided because a fourth reference parameter would
have to be added to the locate function specifically for this case. In the case when
the Locate_type is OUTSIDE_AFFINE HULL, the Cell_handle and three indices are
not assigned and have no meaning.

We will discuss only the R* case of the operation of locate, but keep in mind
that essentially the same algorithm is implemented in the lower-dimensional cases as
well. The 1locate implementation walks from cell to cell until a cell that contains the
query point is found. The original starting cell may be provided by the user as the
last parameter to the function. If no starting cell is specified, then the neighbor of an
infinite cell (in other words, a finite cell) is chosen. At each step, a random integer i
between 0 and 4 inclusive is chosen, and five Point_4 objects pO0, ..., p4 are retrieved
by indexing the cell with ¢, (i4+1)%5, ..., and (i+4)%5. Regardless of the value of i,
the orientation of the simplex (p0, p1, p2, p3, p4) will be positive. In other words, the
orientation test returns POSITIVEZ. Then a sequence of at most five orientation tests
are performed as described in Section 3.4.1. If all the orientation tests return non-
negative values, then the query point lies inside or on the boundary of the current
cell. Otherwise, at least one of the orientation tests returned a negative value, so

the new current cell is set to the neighboring cell corresponding to the first negative

2This occurs because the dimension is even. Consider an analogous case of determining the
orientation of a triangle using the right-hand rule. In this case, the orientation of (p0,pl,p2) is
the same as the orientations of both (pl,p2,p0) and (p2,p0,pl). However, in odd dimensions the
value of i that is chosen determines the orientation of the resulting simplex. For example, in three
dimensions the orientation of (p0,pl,p2,p3) is the same as the orientation of (p2,p3, p0,pl), but
not the same as the orientations of (pl,p2, p3,p0) and (p3,p0,pl,p2). This is also related to the
size of the matrix whose determinant is evaluated. In even dimensions a square matrix of odd
size is evaluated, and in odd dimensions a square matrix of even size is evaluated. The sign of
the determinant of an odd sized matrix does not change when the rows are shifted, while the sign
of the determinant of an even sized matrix does change when the rows are shifted. The locate
method correctly deals with both situations.

70

orientation test encountered. Choosing 7 randomly is important because it leads to
a random choice among all possible neighboring cells that correspond to negative
orientation tests. Otherwise, it is possible for the 1locate method to enter an infinite
loop by visiting a sequence of cells in a cycle. In this way, it uses randomness to get
out of local minima in its search to find a cell in which the query point lies. A code
snippet from the locate method is provided next.

template <class Gt, class Tds>
typename Triangulation_4<Gt,Tds>::Cell_handle
Triangulation_4<Gt,Tds>::locate
(const Point_4 & p,
Locate_type & 1t, int & 1li, int & 1j, int & 1k,
Cell_handle start) const
{
// Some code omitted.
//

// Store orientations of the new point with respect to facets.
// This allows testing if a point is inside or on boundary of a
// cell.

Orientation o[5];

// When the cell is located, then we will break out of this loop
// and return the proper Cell_handle. Until it is found, walk

// from cell to cell by using the neighbor(index) function.
while (1) {

// If the current cell has the infinite vertex, then p is
// outside the convex hull of the triangulation.
if (c->has_vertex(infinite, 1k)) {

1t = OUTSIDE_CONVEX_HULL;

// 1k is set with the has_vertex function.

return c;

}
// There are 5 possible vertices to choose from in the
// cell. Choose a random index as the starting point.

i = rand_5Q0);

// Get the five points of the vertices.
Point_4 p0 = c->vertex(i)—->point();

71

Point_4 pl = c->vertex((i+1)%5)->point();
Point_4 p2 = c->vertex((i+2)%5)->point();
Point_4 p3 = c->vertex((i+3)%5)->point();
Point_4 p4 = c->vertex((i+4)%5)->point();

// This is what the orientation should NOT be. Replace each of
// p0,...,p4 by p and compute the orientation. If all are not

// NEGATIVE then p is inside or on the boundary of the current
// cell.

Orientation test_or = NEGATIVE;

// Look at the neighboring cell to make sure we do not go

// backward to a cell that we already know does not contain p.
Cell_handle next = c->neighbor(i);

if (previous != next) {

// Compute the orientation of p with the first facet.
o[0] = orientation(p, pl, p2, p3, p4);

// Since the dimension is 4, test_or is always NEGATIVE. If
// the orientation just computed is negative, we know p lies
// on the other side of the facet and p cannot be in c. Go to
// the adjacent cell across from i and continue.
if (o[0] == test_or) {

previous = c;

C = next;

// Jump immediately to the top of the while(1) loop.
continue;
}
}

// Since we just came from the neighbor, we know that this
// orientation must be correct. Because the dimension is 4,
// this orientation is positive.
else

o[0] = POSITIVE;

// Repeat this four more times for the remaining facets.

/] ...
// If we make it here without continuing to the top of the

// loop, then we have found a cell c that contains p. Break the
// loop and determine the exact location.

72

break;
} // end while (1) loop

// Now p is in c or on its boundary. We have the o0[0...4] matrix
// filled with values that are either POSITIVE or ZERO. Use this
// to determine the exact location (p may be interior to ¢ or on
// a facet, face, edge, or vertex of c.

// Some code omitted.
//

After the locate method returns, the next step is to identify the conflict region.
Since the Triangulation 4<Gt,Tds> class constructs basic triangulations, deter-
mining the conflict region is straightforward. If the new point lies in the interior of
some cell, only that cell comprises the conflict region. Otherwise, the new point lies
on a lower-dimensional face. In this case, all cells adjacent to that lower-dimensional
face comprise the conflict region. The conflict region is marked (possibly by using
circulators or enumerators to visit all cells adjacent to a lower-dimensional face) by
setting each cell’s in_conflict_flag to 1, and then the conflict region is filled using
the insert_in_hole function of the data structure described in Section 4.2.

The Triangulation 4<Gt,Tds> class also exports types for all iterators, cir-
culators, and enumerators from the data structure so that users of the class can
traverse and output the resulting structure. Whereas the data structure imple-
ments iterators for all (finite and infinite) cells, facets, faces, edges, and vertices,
the Triangulation 4<Gt,Tds> class uses checks in order to filter out infinite com-
ponents. Hence, Triangulation_4<Gt,Tds> also provides iterators for finite cells,
facets, faces, edges, and vertices. An example of using some of these features will
be provided in Section 4.6.

The public interface of the basic triangulation package can be found in Appendix

73

Al

4.4.1 The Regular_triangulation_4<Gt,Tds> class

The Regular_triangulation 4<Gt,Tds> class inherits from the
Triangulation 4<Gt,Tds> class, so much of the functionality is provided by the
base class. For example, the locate methods are inherited from the base class.
However, some functions need to be overridden, and the most important of these
are the insert functions. First, insert now operates on Weighted point 4 ob-
jects instead of Point_4 objects. Second, insert must now deal with hidden sites
properly, both when a weighted point to be inserted is hidden and also when other
weighted points become hidden in the insertion process.

A conflict region is again determined, but the Power_test_4 is now used to find
cells that conflict with the new point. Recall from Section 3.1 that the power test
determines if a query weighted point is inside, outside, or on the boundary of a power
sphere, which is defined by the weighted points of a cell of a regular triangulation. If
a cell is determined to be in conflict, then it is saved in a list, and all of its vertices
are marked because some of them may become hidden. After the entire conflict
region is determined, the starring function (insert_in hole) of the data structure
is called, which unmarks vertices that lie on the boundary of the conflict region.
Some vertices may still be marked, and their geometric data will be hidden in the
proper cell. An additional locate call is performed to determine the cell in which to
hide the site, and then it is simply added to a container within that cell. A snippet

of the code that discovers the conflict region is presented in the following.

// in_conflict_flag value :

// 0 => unknown

// 1 => in conflict

// 2 -> not in conflict (== on boundary)
template <int D,

74

class Conflict_test,
class OutputlteratorBoundaryFacets,
class OutputlteratorCells,
class OutputIteratorInternalFacets>
Triple <OutputIteratorBoundaryFacets,
OutputIteratorCells,
OutputIteratorInternalFacets>
// The return is a triple of items.
// The first item is an iterator into a container that stores
// facets lying on the boundary of the conflict region.
// The second item is an iterator into a container that stores
// cells in the conflict region.
// The third item is an iterator into an container that stores
// facets inside the conflict region (but not on the boundary).
find_conflicts (const Cell_handle & c,
const Conflict_test & tester,
Triple<OutputIteratorBoundaryFacets,

OutputlteratorCells,
OutputIteratorInternalFacets> it) const
// ¢ : The current cell, which must be in conflict.
// tester: A functor that tests if a cell is in conflict with the
// point to be inserted, which is stored inside tester.

{
// Make sure c is in conflict. Useful in the first call to this
// recursive function.
CGAL_triangulation_precondition(tester(c));

// Set the in_conflict_flag and add c to the conflict region cell
// container.

c->set_in_conflict_flag(1);

*it.second++ = c;

// Examine every neighbor of c.
for (int i = 0; i < D+1; ++i) {
Cell_handle test = c->neighbor(i);

// 1f this neighbor already has in_conflict_flag set, then do
// not explore it. Keep track of internal facets by adding it
// to the internal facet container. Compare memory addresses of
// c and test to ensure adding the facet once into this
// container.
if (test->get_in_conflict_flag() == 1) {

if (¢ < test)

*it.third++ = Facet(c, 1i);

75

// Go to the next adjacent cell.
continue;

3

// If the neighbor does not have its in_conflict_flag set, then
// we use tester to see if it is in conflict. If so, we explore
// it by making a recursive call to find_conflicts. Also, we
// compare memory addresses of ¢ and test and add a facet to
// the internal facet container if appropriate.
if (test->get_in_conflict_flag() == 0) {
if (tester(test)) {
if (c < test)
*it.third++ = Facet(c, i); // Internal facet.
it = find_conflicts<D>(test, tester, it);

// Go to the next adjacent cell.
continue;

}

// We know c is in conflict and test is not in

// conflict. Therefore, we add a facet to the container of
// facets on the boundary of the conflict region. We reset
// the in_conflict_flag within the insert_in_hole_ function
// of the data structure.

test->set_in_conflict_flag(2);

}

xit.first++ = Facet(c, i);
}
return it;

}

template <int D, typename Conflict_test>
Vertex_handle
insert_conflict (const Cell_handle & c,

const Conflict_test & tester)
{

CGAL_triangulation_precondition(tester(c));

// A container of cells that will be filled with conflict cells.
std: :vector<Cell_handle> cells;

76

// Will store a facet on the boundary of the conflict region.
Facet facet;

// Oneset_iterator means that only one item will be stored (only

// one facet on the boundary of the conflict region is

// necessary).

// std::back_inserter allows operations like #*cells++ = c¢ (all

// the conflict cells will be added to the cells vector).

// Emptyset_iterator means that any attempts to add objects via

// this iterator will be ignored (we do not need internal

// facets here).

find_conflicts<D>(c, tester,

make_triple(Oneset_iterator<Facet>(facet),

std: :back_inserter(cells),
Emptyset_iterator()));

// Call the data structure function. It will star the region and

// then delete the old cells from the triangulation.

return tds_.insert_in_hole_(cells.begin(), cells.end(),
facet.first, facet.second);

In addition to the vertex iterator provided by the Triangulation_4<Gt,Tds>
class, the Regular_triangulation_4<Gt,Tds> class also provides classes named
Visible points_iterator, Hidden points_iterator, and Points_iterator. The
last iterator simply concatenates visible and hidden weighted points. These are it-
erators over weighted points (not vertices). Whereas visible sites are stored within
vertices, hidden sites are stored within the cells that hide them, so there is no vertex
associated with a hidden site. Also, providing an iterator over all hidden weighted
points becomes tricky because they are stored throughout the cells of the triangula-
tion. We essentially need to loop over all cells, and then within each cell loop over all
hidden weighted points. CGAL’s Nested_iterator<...> class is used to encapsu-
late this behavior, which results in the appearance that the hidden weighted points
are all stored in a single flat container.

The public interface of the regular triangulation class can be found in Appendix

7

A2.

4.5 Correctness/verification (the is_valid methods)

Inevitably, there were errors encountered during the development process. Test-
ing the code was performed throughout by inserting points or weighted points ran-
domly distributed on the grid, traversing the resulting triangulation using all avail-
able circulators, enumerators, and iterators, and then using the is_valid methods.
In some cases, the program would crash during insertion or traversal. In other cases,
all points would be inserted successfully, but errors were still present in the code so
that an incorrect triangulation was formed. In both cases, errors were identified and
corrected. The is_valid methods were written to provide checks locally through-
out the structure in order to ensure that the global triangulation constructed is
correct. In addition to debugging, users may use is_valid to verify correctness of
the constructed triangulation.

At the lowest level, each cell and vertex has is_valid methods. First, each
vertex stores a Cell_handle to an adjacent cell. The is_valid method checks that
a valid cell is stored. Additionally, the vertices of this adjacent cell are examined
to ensure that it contains the vertex in question. The is_valid method for cells
checks that exactly the correct number of Vertex_handles are used, depending on
the dimension of the triangulation. Also, adjacency relationships are examined to
check that a neighbor cell n of cell ¢ has ¢ as a neighbor and that the correct
Vertex_handles are shared. These are simple sanity checks to make sure that the
data structure is operating correctly on the lowest level.

At the level of the data structure, the is_valid method counts vertices, edges,
faces, facets, and cells to make sure that the triangulation satisfies the Euler relation.

Depending on the dimension, the following formulas need to be satisfied.

78

e d=4:cells — facets + faces — edges + vertices = 2
e d=3: facets — faces + edges — vertices = (

e d=2: faces — edges + vertices = 2

e d=1:edges — vertices =0

e d=0:wvertices =2

Note that infinite simplices are included in these counts. For example, when the
dimension is zero, an infinite vertex and one finite vertex compose the triangulation.
A one-dimensional triangulation can be thought of as a ring of alternating edges and
vertices, so the edge count must equal the vertex count. Also note the alternating
value of the Euler relation between 0 and 2 as the dimension increases.

The Triangulation_4::is_valid method checks for badly oriented cells. For
each (finite) cell in the triangulation, an orientation test is performed, and each result
is expected to be POSITIVE. The Regular_triangulation 4::is_valid method
checks that the power test is satisfied locally throughout the triangulation. For
each cell ¢, each neighbor n is examined to ensure that the opposite point in n is not
contained in the power sphere determined by ¢ (as long as the point is not infinite).

A call to the is_valid method of Regular triangulation 4<Gt,Tds> generates
acall to is_valid of Triangulation_4<Gt,Tds>, which generates a call to is_valid
of the data structure, and so on until all is_valid methods mentioned have been
verified. If at any point an error in the triangulation is found, the program exits

and provides the condition that was violated.

4.6 Using the package

Before we can declare triangulation objects and start inserting points or weighted
points into them, we must define a triangulation type, which we will simply call

Triangulation. Recall from Sections 4.4 and 4.4.1 that triangulations take two

79

template parameters. The first is the geometric traits class, which we will need
to define. The second is the data structure class, which has a default type that
will be sufficient for demonstration purposes here. Therefore, we must plug a traits
class into Gt of Triangulation 4<Gt,Tds> to get the Triangulation type that we
desire.

We must parameterize our traits and kernels with a number type, and we will use
an exact number type so as to avoid floating point errors. CGAL provides Gmpq for
performing addition, subtraction, multiplication and division exactly and a multi-
precision floating-point type called MP_Float. We choose one of them declare the
Nt type:

// Choose one:
#include <CGAL/Gmpq.h>
typedef CGAL::Gmpq Nt;

#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float Nt;

The first thing we will do is take this number type Nt and plug it into
Simple_cartesian 4<Nt> to define a kernel type. We will use this kernel somehow
in the type definitions that follow, so it is convenient to do this here.

#include <CGAL/Simple_cartesian_4.h>
typedef CGAL::Simple_cartesian_4<Nt> Kernel;

For basic triangulation, we will use either Simple_cartesian_4<Nt> directly or
Triangulation filtered traits_4<Kernel> as our geometric traits class. The
second option will perform arithmetic filtering, so it is recommended from an effi-
ciency point of view.

// Choose one (basic triangulations):
typedef Kernel Traits;

#include <CGAL/Triangulation_filtered_traits_4.h>
typedef CGAL::Triangulation_filtered_traits_4<Kernel> Traits;

80

For regular triangulations, we cannot use the Kernel type directly because it does
not contain the necessary power tests. There are two traits classes available, one
that performs exact computation exclusively, and another that performs arithmetic

filtering. Again, the filtered traits class is recommended for efficiency reasons.

// Choose one (regular triangulations):
#include <CGAL/Regular_triangulation_traits_4.h>
typedef CGAL::Regular_triangulation_traits_4<Kernel> Traits;

#include <CGAL/Regular_triangulation_filtered_traits_4.h>
typedef CGAL::Regular_triangulation_filtered_traits_4<Kernel>
Traits;

For working with points and weighted points later on in the program, we would
like to define a type that allows us to do this easily, so we define the Point type in

one of two ways (depending on whether the triangulation is basic or regular).

// Choose this for basic triangulations:
typedef Traits::Point_4 Point;

// Choose this for regular triangulations:
typedef Traits::Weighted_point_4 Point;

Finally, we define our Triangulation type by plugging Traits into the first

template parameter of the interface class.

// Choose this for basic triangulations:
#include <CGAL/Triangulation_4.h>
typedef CGAL::Triangulation_4<Traits> Triangulation;

// Choose this for regular triangulations:
#include <CGAL/Regular_triangulation_4.h>
typedef CGAL::Regular_triangulation_4<Traits> Triangulation;

This organization seems complicated, but it allows the user to easily change
number types, the type of traits (filtered versus non-filtered), or even the type of

the triangulation between regular and basic. From now on, we will assume that

81

we have the Point and Triangulation types defined. First, we need points or
weighted points to insert into the basic or regular triangulations. Assume that we
have a text file of points (where each has either four coordinates or four coordinates
plus a weight). We can build the triangulation simply by reading the points from

this file and inserting them into the tri object.

int main (int argc, charx argv[])

{
// Error checking arguments to main omitted.
ifstream ifs(argv[1]);

Triangulation tri;
Point p;

while (ifs >> p) {
tri.insert(p);

}

//

At this point, all the points have been inserted into the triangulation. We can
verify correctness of the triangulation by calling the is_valid method. As discussed
in Section 4.5, this will cause a chain of is_valid calls into the data structure, cells,

and vertices.

// We pass true into the verbose parameter so that the method

// prints that the triangulation is valid (or prints an error

// message). The method returns a bool, so the program will stop
// immediately if the triangulation is invalid because of the
//assert.

assert(tri.is_valid(true));

At this point, we have a valid Triangulation object tri, and we would like to
extract information about the resulting structure. Describing all such functionality

(including what happens when tri is less than four-dimensional) would be excessive,

82

so we work with the four-dimensional cases and try to keep the descriptions and code
snippets brief.

We can output the number of cells, number of finite cells, and the number of
vertices, using the corresponding member functions. We can also print counts of

the intermediate-dimensional facets, faces, and edges.

cout << "number_of_cells() = " << tri.number_of_cells() << endl;
cout << "number_of_finite_cells() = "
<< tri.number_of_finite_cells() << endl;

cout << "number_of_facets() = " << tri.number_of_facets() << endl;
cout << "number_of_finite_facets() ="
<< tri.number_of_finite_facets() << endl;

cout << "number_of_vertices() = " << tri.number_of_vertices()
<< endl;

cout << "number_of_finite_vertices() = "
<< tri.number_of_finite_vertices() << std::endl;

If we have a regular triangulation object, we can also print counts of the number

of visible and hidden points.

cout << "number_of_visible_points() ="

<< tri.number_of_visible_points() << endl;
cout << "number_of_hidden_points() = "

<< tri.number_of_hidden_points() << endl;

But we are probably more interested in the cells of the triangulation, so we use an
iterator to traverse and print each cell. In this case, we use the A11_cells_iterator
that includes infinite cells. Since the infinite vertex does not have a geometric point
or weighted point associated with it, we must be careful to distinguish it from the

finite vertices by calling the is_infinite member function.

int all_cells_count = 0;
Triangulation::All_cells_iterator acells_it;
for (acells_it = tri.all_cells_begin();

acells_it != tri.all_cells_end(); ++acells_it) {

83

cout << "Cell " << ++all_cells_count << ": ';
for (int i = 0; i <= tri.dimension(); ++i) {
cout << "P" << i << "M,
if (tri.is_infinite(acells_it->vertex(i)))
cout << "INF ";
else
cout << acells_it->vertex(i)->point() << " ";

}

cout << endl;

The following iterators are also provided and can be used in a similar manner.
The corresponding examples are omitted.

e Finite cells_iterator
e A1l facets_iterator

e Finite facets_iterator
e All faces_iterator

e Finite faces_iterator
e All_edges_iterator

e Finite edges_iterator
e Al]l vertices_iterator

e Finite_vertices_iterator

The final examples we provide involve circulating cells around a face, and enu-
merating cells around an edge. We would retrieve a face or edge of interest using the
iterators described above. Then, we construct circulator and enumerator objects,

and use them to visit all the adjacent cells.

// Assume we grab a face from the fface_it Finite_faces_iterator.

Triangulation: :Cell_around_face_circulator cc;

cc = tri.incident_cells(fface_it->first, fface_it->second,
fface_it->third);

Triangulation::Cell_handle start(cc);

int k = 0;

84

do {

// Print the current cell.
cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(cc);
for (int i = 0; i <= tri.dimension(); ++i) {
Cout << "PH << i << “:“;
if (tri.is_infinite(cur->vertex(i)))
cout << "INF ";
else
cout << cur->vertex(i)->point() << " ";
}

cout << endl;

// Move to the next cell
++CC;

// Stop when we return to the starting cell.
} while (Triangulation::Cell_handle(cc) != start);

// Assume we grab an edge from the fedge_it Finite_edges_iterator.
Triangulation: :Cell_around_edge_enumerator ce(*fedge_it);
Triangulation: :Cell_around_edge_enumerator::Cell_container_iterator
cit;

int k = 0;
for (cit = ce.begin(); cit != ce.end(); ++cit) {

// Print the current cell.
cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(*cit);
for (int i = 0; i <= tri.dimension(); ++i) {
Cout << HPH << i << “:";
if (tri.is_infinite(cur->vertex(i)))
cout << "INF ";
else
cout << cur->vertex(i)->point() << " ";
}

cout << endl;

// Move to the next cell.

In addition, the triangulation interface also provides the following circulators

85

and enumerators, which operate similarly to those described above. The examples
are again omitted.
e Cell around vertex enumerator (4D only)

e Facet_around edge_circulator (3D only)

Facet_around_vertex_enumerator (3D only)

Face_around_vertex_circulator (2D only)

e Vertex_around_vertex_circulator (2D only)

Vertex_around vertex_enumerator (3D and 4D)

86

CHAPTER 5

CONCLUSION

5.1 Summary

A four-dimensional triangulation package was designed and implemented. To
represent this, a data structure was designed and implemented. The data structure
stores cells and vertices directly, and represents intermediate-dimensional simplices
implicitly. This data structure may be viewed as a container of cells where each
cell has five neighbors. In essence, the data structure is an abstraction of a circular
doubly linked list. A circular doubly linked list can be used to represent a one-
dimensional triangulation that includes an infinite vertex. Each node in the linked
list represents a cell, and each cell has exactly two neighbors. The four-dimensional
triangulation data structure is a generalization of this where each node has five
neighbors instead of the usual two. Additionally, circulators, enumerators, and it-
erators were implemented to allow for convenient traversal of the structure after
the triangulation has been built. The second component of the design involved ab-
stracting the geometric predicates in order for them to operate on four-dimensional
points and weighted points. Finally, the two components were tied together via the
basic and regular triangulation algorithms, which also provided the interfaces to the
user.

The implementation will be contributed to CGAL, the Computational Geometry

Algorithms Library. After that, it may be used in the design of other packages, such

87

as the three-dimensional Apollonius diagram or Mobius diagram packages. It may

also be used for direct application as well.

5.2 Future work

Because the Delaunay triangulation is a special case of the regular triangulation,
the regular triangulation package can be used to construct Delaunay triangulations
simply by setting the weights of all the input points equal to each other. However,
creating a specific Delaunay triangulation interface would be desirable from the
point of view of the users and efficiency. This could be accomplished in one of two
ways:

1. Create a wrapper around the regular triangulation package, or

2. Create a package that makes use of the same data structure, but has separate

implementations (using the sphere test instead of the power test).

Both approaches can be used to create the same interface for constructing and
traversing Delaunay triangulations. Creating a wrapper around the regular trian-
gulation package would be the easiest approach from the implementation point of
view. In this case, no new data structures, algorithms, or geometric predicates
would need to be written. The power test would simply operate on weighted points
whose weight is always zero. However, creating a customized Delaunay triangulation
package would lead to a more efficient implementation. First, memory would not be
wasted storing the weight coordinate of each point when this is not necessary for the
Delaunay triangulation. Secondly, a direct implementation of the sphere test would
execute faster than the more general power test. This is because fewer operations
would be evaluated due to the fact that the weight would no longer be stored. The
data structure and many details of the algorithm could be reused, but the sphere

test geometric predicate would need to be written.

88

Currently, the packages are not dynamic in that they do not support deletion of
sites. Storage of hidden weighted points within cells of the regular triangulation is
already implemented, which is the first step toward unhiding points after a visible
weighted point has been deleted. Devillers [16] and Devillers and Teillaud [17] dis-
cuss vertex removal in three-dimensional Delaunay triangulations. Perhaps a similar
approach will be applicable to four-dimensional basic and regular triangulations.

A practical optimization for point location that has been implemented in the
two-dimensional CGAL triangulation package is called the triangulation hierarchy.
The full triangulation is stored at the bottom of several levels of triangulations. A
subset of sites are kept from one level to the next higher level. Point location is
executed in a top down fashion, and uses the result of location at one level as the
starting cell in the next lower level. Point location finishes when the query point
has been located in the full triangulation. Because of the overhead involved, the
triangulation hierarchy typically works best for large input sets. This hierarchy idea
may be generalized to operate in the four-dimensional triangulations presented here
in order to speed up point location queries on triangulations with many input sites.

Generalizing the code to operate in R? is an obvious direction for future work.
One way to do this would be to make the dimension a template parameter, which
means that the value would need to be known at compile time. Some components
would extend straightforwardly (but not necessarily easily) into general dimensions.
For example, using an array to represent points or evaluating determinants of ar-
bitrary size by introducing a Matrix type. However, data structure issues may be
difficult to resolve. Currently, the dimension is fixed at four, which allows the types
Facet, Face, and Edge to be hardcoded, along with code for circulation and enu-
meration of cells around these lower-dimensional simplices. While fully-dimensional

cells and vertices may still be stored, types for intermediate-dimensional simplices

89

can no longer be hardcoded. Furthermore, circulation currently depends on integer
values stored in lookup tables. These values were determined at implementation
time and programmed into the lookup tables. A scheme not involving hardcoded
types and programmed lookup tables would need to be devised if circulation and
enumeration of simplices around lower-dimensional faces is desired.

As mentioned in the introduction, power diagrams (and their dual regular tri-
angulations) are general structures that are related to other diagrams such as the
Voronoi diagram of spheres and the Mobius diagram. The four-dimensional regu-
lar triangulation package may be used in the development of these other packages.
Boissonnat and Delage [9] compute each region of the three-dimensional Voronoi
diagram of spheres individually using a reduction to a three-dimensional power dia-
gram, and then link the regions together appropriately. Will [39] computes a single
region of the Voronoi diagram of spheres, and Gavrilova and Rokne [25] discuss the
Voronoi diagram of spheres in general dimension for moving spheres. However, these
works do not compute the entire diagram via a reduction to a power diagram in one

dimension higher.

5.3 Final thoughts

Recall the problem of inserting a point outside the affine hull of a three-dimensional
triangulation to increase the dimension to four, which was discussed in Section 3.4.5.
Attempting to solve this problem directly would be difficult because of the difficulty
in visualizing and thinking in four dimensions. The key is to first solve the re-
lated lower-dimensional problems, and then abstract the solutions to work for the
four-dimensional case. Although this approach allows one to more easily think in
four dimensions in many cases, it does not take away the complexity and diffi-

culty of solving problems in higher dimensions. Solving these problems are not

90

always straightforward extensions of lower-dimensional cases, and new techniques
needed to be developed accordingly. Most notably, the data structure and the
type of traversal operations supported needed to be developed to represent four-
dimensional triangulations correctly. Enumeration was introduced not only as a
convenience, but because it is used in the algorithm for inserting a point on an edge
in a four-dimensional triangulation. For the same reason, circulation of cells around
a face was implemented, which was not a straightforward extension of the three-
dimensional situation of circulation of facets around an edge. In three dimensions,
the edge has a direction depending on the order of its vertices, and the right-hand
rule can be used to determine which adjacent cell to visit on an increment opera-
tion. In four dimensions, the face being circulated around has an orientation, and
the spirit of moving to the correct adjacent cell on an increment operation remains,
but the right hand rule can no longer be used to determine the correct adjacent cell.
Instead, something more complicated involving encoding orientations into lookup
tables was devised to accomplish this.

The point is that complexity usually increases when increasing the dimension
of the problem, and partly this has to do with the difficulty in visualizing higher-
dimensional space. Sometimes solutions are easily generalized from lower-dimensional

cases, and in other situations a generalization is not intuitively obvious.

91

APPENDIX A

PUBLIC INTERFACES AND CODE EXAMPLES

The Appendix provides more extensive code examples compared to those pre-
sented in the text. Specifically, we present the public interfaces of the basic and
regular triangulation packages. This is followed by an example of the regular trian-
gulation traits class, and how we use CGAL’s Filtered predicate<...> to build
a traits class that performs arithmetic filtering. Finally, we present an extended
code example corresponding to the snippets presented in Section 4.6. This example
demonstrates usage of most of the types and functions in the public interfaces of

the triangulation and regular triangulation classes.

92

A.1 Public interface of Triangulation 4<Gt,Tds>

template <class Gt,

class Tds = Triangulation_data_structure_4<

class Triangulation_4
: public Triangulation_utils_4

{

public:
typedef
typedef

typedef
typedef
typedef
typedef
typedef

typedef
typedef
typedef
typedef
typedef

typedef
typedef
typedef
typedef
typedef

typedef
typedef

typedef

Triangulation_vertex_base_4<Gt>,
Triangulation_cell_base_4<Gt> > >

Gt Geom_traits;
Tds Triangulation_data_structure;

typename
typename
typename
typename
typename

typename
typename
typename
typename
typename

Vertex
Edge
Face
Facet
Cell

typename
typename

typename

Tds:
Tds:
Tds:
Tds:
Tds:

Tds:
Tds:

Tds:
typedef typename Tds:

::Point_4 Point_4;
::Segment_4 Segment_4;
::Triangle_4 Triangle_4;

::Tetrahedron_4 Tetrahedron_4;
::Pentahedron_4 Pentahedron_4;

:Vertex Vertex;
:Edge Edge;
:Face Face;
:Facet Facet;
:Cell Cell;
Simplex_0;
Simplex_1;
Simplex_2;
Simplex_3;
Simplex_4;

:size_type size_type;
:difference_type difference_type;

:Vertex_handle Vertex_handle;
:Cell_handle Cell_handle;

// CIRCULATOR AND ENUMERATOR TYPES.
typedef typename Tds::Cell_around_edge_enumerator
Cell_around_edge_enumerator;

typedef typename Tds::Cell_around_vertex_enumerator
Cell_around_vertex_enumerator;

93

typedef typename Tds::Cell_around_face_circulator
Cell_around_face_circulator;

typedef typename Tds::Facet_around_vertex_enumerator
Facet_around_vertex_enumerator;

typedef typename Tds::Facet_around_edge_circulator
Facet_around_edge_circulator;

typedef typename Tds::Vertex_around_vertex_enumerator
Vertex_around_vertex_enumerator;

typedef typename Tds::Face_around_vertex_circulator
Face_around_vertex_circulator;

typedef typename Tds::Vertex_around_vertex_circulator
Vertex_around_vertex_circulator;

// ITERATOR TYPES.

typedef typename Tds::Cell_iterator All_cells_iterator;
typedef typename Tds::Facet_iterator All_facets_iterator;
typedef typename Tds::Face_iterator All_faces_iterator;
typedef typename Tds::Edge_iterator All_edges_iterator;
typedef typename Tds::Vertex_iterator All_vertices_iterator;

class Finite_cells_iterator {/* ... x/};
class Finite_vertices_iterator {/* ... */};

// Filter_iterator is a standard CGAL class template used to

// transform one iterator into another. In this case, it causes
// infinite features to be skipped.

typedef Filter_iterator<All_edges_iterator, Infinite_tester>
Finite_edges_iterator;

typedef Filter_iterator<All_faces_iterator, Infinite_tester>
Finite_faces_iterator;

typedef Filter_iterator<All_facets_iterator, Infinite_tester>
Finite_facets_iterator;

// Iterator_project is a standard CGAL class template used to
// transform one iterator into another. In this case, we are
// transforming a vertex iterator into a point iterator.
typedef Iterator_project<Finite_vertices_iterator,

94

Proj_point,

const Point_4 &,

const Point_4 x*,

std: :ptrdiff_t,

std: :bidirectional_iterator_tag>
Point_4_iterator;

typedef Point_4 value_type;
typedef const value_type & const_reference;

enum Locate_type {
VERTEX = 0,
EDGE,
FACE,
FACET,
CELL,
OUTSIDE_CONVEX_HULL,
OUTSIDE_AFFINE_HULL
3

// CONSTRUCTORS.
Triangulation_4 (const Gt & gt = Gt());
Triangulation_4 (const Triangulation_4 & tr);

template <typename Inputlterator>
Triangulation_4 (Inputlterator first, InputIterator last,
const Gt & gt = Gt());

// ASSIGNMENT.

Triangulation_4 & operator= (const Triangulation_4 & tr);
void clear ();

void swap (Triangulation_4 & tr);

// ACCESS.

const Gt & geom_traits () const;
const Tds & tds () const;

Tds & tds (); // Advanced.

// QUERIES that return numbers.

size_type number_of_finite_cells () const;
size_type number_of_cells () const;
size_type number_of_finite_facets () const;
size_type number_of_facets () const;
size_type number_of_finite_faces () const;

95

size_type number_of_faces

size_type

size_type number_of_edges

size_type

size_type number_of_vertices

int

dimension

() const;

number_of_finite_edges () const;

() const;

number_of_finite_vertices () const;

() const;

() const;

unsigned int degree (const Vertex_handle & v)

// ACCESS.

Vertex_handle

infinite_vertex () const;

const;

Vertex_handle finite_vertex () const;
Cell_handle infinite_cell () const;
Pentahedron_4 pentahedron_4 (const Cell_handle & c)
Tetrahedron_4 tetrahedron_4 (const Cell_handle & c,
int i)
Tetrahedron_4 tetrahedron_4 (const Facet & f)
Triangle_4 triangle_4 (const Cell_handle & c,
int i, int j)
Triangle_4 triangle_4 (const Face & f)
Segment_4 segment_4 (const Cell_handle & c,
int i, int j, int k)
Segment_4 segment_4 (const Edge & e)
// QUERIES that return bool.
bool is_infinite (const Vertex_handle & v) const;
bool is_infinite (const Cell_handle & c) const;
bool is_infinite (const Cell_handle & c,
int i) const;
bool is_infinite (const Facet & f) const;
bool is_infinite (const Cell_handle & c,
int i, int j) const;
bool is_infinite (const Face & f) const;
bool is_infinite (const Cell_handle & c,
int i, int j, int k) const;
bool is_infinite (const Edge & e) const;
bool is_vertex (const Point_4 & p,
Vertex_handle & v) const;
bool is_vertex (const Vertex_handle & v) const;
bool is_edge (const Vertex_handle & u,

const Vertex_handle & v,

96

const;

const;
const;

const;
const;

const;
const;

bool

bool

bool
bool

bool

bool

bool

bool

bool

bool

is_face

is_facet

is_cell
is_cell

is_cell

has_vertex

has_vertex

has_vertex

has_vertex

are_equal

Cell_handle & c,
int & i, int & j) const;
(const Vertex_handle & u,
const Vertex_handle & v,
const Vertex_handle & w,
Cell_handle & c,
int & i, int & j, int & k)
(const Vertex_handle
const Vertex_handle
const Vertex_handle
const Vertex_handle
Cell_handle & c,
int & i, int & j, int & k,
int & 1)
(const Cell_handle & c)
(const Vertex_handle
const Vertex_handle
const Vertex_handle
const Vertex_handle
const Vertex_handle
Cell_handle & c,
int & i, int & j, int & k,
int & 1, int & m) const;
(const Vertex_handle & u,

rreee
<

Frreee
< M g 9 6

-

const Vertex_handle & v,
const Vertex_handle & w,
const Vertex_handle & x,
const Vertex_handle & y,

Cell_handle & c)

(const Facet & f,
Vertex_handle v, int & j)
(const Cell_handle & c,
int i,

const Vertex_handle & v,
int & j)

(const Facet & f,

const Vertex_handle & v)
(const Cell_handle & c,
int i,

const Vertex_handle & v)
(const Cell_handle & c,
int i,

const Cell_handle & n,
int j)

97

const;
const;

const;

const;

const;

const;

const;

const;

bool are_equal (const Facet & f,

const Facet & g) const;
bool are_equal (const Facet & f,

const Cell_handle & n,

int j) const;

// POINT LOCATION.
Cell_handle locate (const Point_4 & p,
Locate_type & 1t,
int & 1i, int & 1j, int & 1k,
Cell_handle start = Cell_handle()) const;
Cell_handle
locate (const Point_4 & p,
const Cell_handle & start

Cell_handle()) const;

// INSERTION.
Vertex_handle
insert (const Point_4 & p,
const Cell_handle & start

Cell_handle());

Vertex_handle

insert (const Point_4 & p, const Locate_type & 1t,
const Cell_handle & c,
int 1i, int 1j, int 1k);

template <class Inputlterator>
int insert (Inputlterator first, Inputlterator last);

template <class CelllIt>

Vertex_handle insert_in_hole (const Point_4 & p,
Celllt cell_begin, CellIlt cell_end,
Cell_handle begin, int i);

// ITERATORS.

Finite_cells_iterator finite_cells_begin () const;
Finite_cells_iterator finite_cells_end () const;
A1l _cells_iterator all_cells_begin () const;
All_cells_iterator all_cells_end () const;
Finite_facets_iterator finite_facets_begin () const;
Finite_facets_iterator finite_facets_end () const;
Al11l_facets_iterator all_facets_begin () const;
Al1l_facets_iterator all_facets_end () const;
Finite_faces_iterator finite_faces_begin () const;
Finite_faces_iterator finite_faces_end () const;

98

Al11_faces_iterator all_faces_begin () const;

A11_faces_iterator all_faces_end () const;
Finite_edges_iterator finite_edges_begin () const;
Finite_edges_iterator finite_edges_end () const;
All_edges_iterator all_edges_begin () const;
All_edges_iterator all_edges_end () const;

Finite_vertices_iterator finite_vertices_begin () const;
Finite_vertices_iterator finite_vertices_end () const;

All_vertices_iterator all_vertices_begin () const;
All_vertices_iterator all_vertices_end () const;
Point_4_iterator points_begin () const;
Point_4_iterator points_end () const;

// CIRCULATORS.
Cell_around_face_circulator
incident_cells (const Cell_handle & c,

int i, int j) const;
Cell_around_face_circulator
incident_cells (const Face & f) const;

Facet_around_edge_circulator
incident_facets (const Cell_handle & c,

int i, int j) const;
Facet_around_edge_circulator
incident_facets (const Edge & e) const;

Face_around_vertex_circulator
incident_faces (const Vertex_handle & v) const;

Vertex_around_vertex_circulator
incident_vertices (const Vertex_handle & v) const;

// VALIDITY CHECKING.
bool is_valid (bool verbose = false, int level = 0) const;

99

A.2 Public interface of Regular_triangulation_4<Gt,Tds>

template <typename Gt,
typename Tds = Triangulation_data_structure_4 <
Triangulation_vertex_base_4<Gt>,
Regular_triangulation_cell_base_4<Gt> > >
class Regular_triangulation_4
: public Triangulation_4<Gt, Tds>
{
public:
typedef Tds Triangulation_data_structure;
typedef Gt Geom_traits;

typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Cell_handle Cell_handle;

typedef typename Base::Vertex Vertex;
typedef typename Base::Edge Edge;
typedef typename Base::Face Face;
typedef typename Base::Facet Facet;
typedef typename Base::Cell Cell;

typedef typename Base::Locate_type Locate_type;

typedef typename Base::size_type size_type;
typedef typename Gt::Bare_point_4 Bare_point_4;
typedef typename Gt::Weighted_point_4 Weighted_point_4;
typedef typename Gt::Weight Weight;

// ITERATOR TYPES.

typedef typename Base::All_cells_iterator
All_cells_iterator;

typedef typename Base::All_facets_iterator
All_facets_iterator;

typedef typename Base::All_faces_iterator
All_faces_iterator;

typedef typename Base::All_edges_iterator
All_edges_iterator;

typedef typename Base::Finite_cells_iterator
Finite_cells_iterator;

typedef typename Base::Finite_facets_iterator
Finite_facets_iterator;

typedef typename Base::Finite_faces_iterator
Finite_faces_iterator;

100

typedef typename Base::Finite_edges_iterator
Finite_edges_iterator;

typedef typename Base::Finite_vertices_iterator
Finite_vertices_iterator;

// Iterator_project is a standard CGAL class template used to

// transform one iterator into another. In this case, we are

// transforming a vertex iterator into a weighted point iterator.
typedef CGALi::Project_point_4<Vertex> Proj_point;

typedef Iterator_project<Finite_vertices_iterator, Proj_point>
Visible_points_iterator;

// Nested_iterator is a standard CGAL class template used to

// provide a flat view when containers are nested inside of

// containers. In this case, instead of looping over all cells

// and then looping over all hidden weighted points within each

// cell, we simply loop over all hidden weighted points.

typedef

Regular_triangulation_cell_base_nested_iterator_traits_4

<Finite_cells_iterator>

Hidden_points_nested_iterator_traits_4;

typedef Nested_iterator<Finite_cells_iterator,
Hidden_points_nested_iterator_traits_4>

Hidden_points_iterator;

// Concatenate_iterator is a standard CGAL class template used to

// provide an iterator that ties together two separate

// containers. In this case we loop over all weighted points by

// concatenating the visible and hidden points.

typedef Concatenate_iterator<Visible_points_iterator,
Hidden_points_iterator>

Points_iterator;

// CONSTRUCTION.
Regular_triangulation_4 (const Gt & gt = Gt());
Regular_triangulation_4 (const Regular_triangulation_4 & rt);

template <typename Inputlterator>
Regular_triangulation_4 (InputlIterator first, InputIterator last,
const Gt & gt = Gt());

// ITERATORS.

using Base::all_cells_begin;
using Base::all_cells_end;

101

using Base::all_facets_begin;
using Base::all_facets_end;
using Base::all_faces_begin;
using Base::all_faces_end;
using Base::all_edges_begin;
using Base::all_edges_end;
using Base::finite_cells_begin;
using Base::finite_cells_end;
using Base::finite_facets_begin;
using Base::finite_facets_end;
using Base::finite_faces_begin;
using Base::finite_faces_end;
using Base::finite_edges_begin;
using Base::finite_edges_end;
using Base::finite_vertices_begin;
using Base::finite_vertices_end;

Visible_points_iterator visible_points_begin () const;
Visible_points_iterator visible_points_end () const;
Hidden_points_iterator hidden_points_begin () const;
Hidden_points_iterator hidden_points_end () const;
Points_iterator points_begin () const;

Points_iterator points_end () const;

// ACCESS.
using Base::tds;

// QUERIES that return numbers.

size_type number_of_vertices () const;
size_type number_of_visible_points () const;
size_type number_of_hidden_points () const;

// INSERTION.
Vertex_handle insert (const Weighted_point_4 & p,
Cell_handle start = Cell_handle());

template <class Inputlterator>
size_type insert (InputIterator first, InputIterator last);
Vertex_handle insert (const Weighted_point_4 & p, Locate_type
const Cell_handle & c,
int 1i, int 1j, int 1k);

// VALIDITY CHECKING.
bool is_valid (bool verbose = false, int level = 0) const;

102

103

A.3 Regular_triangulation_traits_4<Kernel>

template <typename K>
class Regular_triangulation_traits_4

: public K
{
public:
// OBJECTS.
typedef typename K::Point_4 Bare_point_4;
typedef typename K::RT Weight;

// External Weighted_point class provided in CGAL.
typedef CGAL::Weighted_point<Bare_point_4, Weight>
Weighted_point_4;

typedef Weighted_point_4 Point_4;

// PREDICATES.
// External Power_test_4 class provided.
typedef CGAL::Power_test_4<Weighted_point_4> Power_test_4;

Power_test_4 power_test_4_object() const

{

return Power_test_4(Q);
}
};

104

A4 Regular_triangulation_filtered_traits_4<Kernel>

template <typename CK_t,
typename CK_MTag = Ring_tag,
typename EK_t = Simple_cartesian_4<MP_Float>,

typename EK_MTag = CK_MTag,
typename FK_t = Simple_cartesian_4<Interval_nt<false>
typename FK_MTag = CK_MTag,

typename C2E_t
typename C2F_t
Cartesian_converter<CK_t, FK_t,
To_interval<typename CK_t::RT> > >
class Regular_triangulation_filtered_traits_4

: public Triangulation_filtered_traits_4<CK_t, CK_MTag,
EK_t, EK_MTag,

FK_t, FK_MTag,

C2E_t, C2F_t>

Cartesian_converter<CK_t, EK_t>,

{

private:
typedef Regular_triangulation_traits_4<CK_t> CK_traits;
typedef Regular_triangulation_traits_4<EK_t> EK_traits;
typedef Regular_triangulation_traits_4<FK_t> FK_traits;

typedef Regular_triangulation_cartesian_converter_4
<CK_traits, EK_traits, C2E_t> C2E;
typedef Regular_triangulation_cartesian_converter_4
<CK_traits, FK_traits, C2F_t> C2F;

// Types for the construction kernel.
typedef typename CK_traits::Bare_point_4
CK_traits_Bare_point_4;

typedef typename CK_traits::Weight
CK_traits_Weight;

typedef typename CK_traits::Weighted_point_4
CK_traits_Weighted_point_4;

typedef typename CK_traits::Point_4
CK_traits_Point_4;

// Types for the exact kermel.

typedef typename EK_traits::Bare_point_4
EK_traits_Bare_point_4;

typedef typename EK_traits::Weight
EK_traits_Weight;

typedef typename EK_traits::Weighted_point_4

105

EK_traits_Weighted_point_4;
typedef typename EK_traits::Point_4
EK_traits_Point_4;

// Types for the filtering kermel.

typedef typename FK_traits::Bare_point_4
FK_traits_Bare_point_4;

typedef typename FK_traits::Weight
FK_traits_Weight;

typedef typename FK_traits::Weighted_point_4
FK_traits_Weighted_point_4;

typedef typename FK_traits::Point_4
FK_traits_Point_4;

public:
typedef CK_t R;
typedef CK_MTag Method_tag;

typedef CK_traits Construction_traits;
typedef EK_traits Exact_traits;
typedef FK_traits Filtering_traits;

typedef CK_MTag Construction_traits_method_tag;
typedef EK_MTag Exact_traits_method_tag;
typedef FK_MTag Filtering_traits_method_tag;

typedef typename CK_traits::Bare_point_4
Bare_point_4;

typedef typename CK_traits::Weight

Weight;

typedef typename CK_traits::Weighted_point_4
Weighted_point_4;

typedef typename CK_traits::Point_4

Point_4;

private:
// No predicates for the construction kernel.

// Predicates for the exact kernel.
typedef typename EK_traits::Power_test_4

EK_traits_Power_test_4;

// Predicates for the filtering kernel.
typedef typename FK_traits::Power_test_4

106

FK_traits_Power_test_4;

public:
// External Filtered_predicate class provided by CGAL.
typedef Filtered_predicate
<EK_traits_Power_test_4, FK_traits_Power_test_4, C2E, C2F>
Power_test_4;

public:
Power_test_4
power_test_4_object () const
{
return Power_test_4();
}
};

107

A.5 Public interface of Triangulation_data_structure_4<Vb,Cb>

template <class Vb = Triangulation_ds_vertex_base_4<>,
class Cb = Triangulation_ds_cell_base_4<> >
class Triangulation_data_structure_4
: public Triangulation_utils_4
{
typedef Triangulation_data_structure_4<Vb,Cb> Self;
typedef typename Vb::template Rebind_Tds<Self>::0ther
Vertex_base;
typedef typename Cb::template Rebind_Tds<Self>::0ther Cell_base;

// These classes are provided in this implementation.
typedef Triangulation_ds_vertex_4<Vertex_base> Vertex;
typedef Triangulation_ds_cell_4<Cell_base> Cell;

typedef typename Cell_container::size_type size_type;
typedef typename Cell_container::difference_type difference_type;

typedef typename Cell_container::iterator Cell_iterator;
typedef typename Vertex_container::iterator Vertex_iterator;

// These classes are provided in this implementation.

typedef Triangulation_ds_facet_iterator_4<Self> Facet_iterator;
typedef Triangulation_ds_face_iterator_4<Self> Face_iterator;
typedef Triangulation_ds_edge_iterator_4<Self> Edge_iterator;

// Represent handles with iterators
typedef Vertex_iterator Vertex_handle;
typedef Cell_iterator Cell_handle;

// CGAL provides Quadruple and Triple.

typedef Quadruple<Cell_handle, int, int, int> Edge;
typedef Triple<Cell_handle, int, int> Face;
typedef std::pair<Cell_handle, int> Facet;

// ENUMERATOR TYPES.
// A class for each circulator and enumerator is provided by this
// implementation.

// 4D only.

typedef Triangulation_ds_cell_around_edge_enumerator_4<Self>
Cell_around_edge_enumerator;

108

// 4D only.
typedef Triangulation_ds_cell_around_vertex_enumerator_4<Self>
Cell_around_vertex_enumerator;

// 3D only.
typedef Triangulation_ds_facet_around_vertex_enumerator_4<Self>
Facet_around_vertex_enumerator;

// 3D or 4D. Need to pass the dimension when constructing the

// class.

typedef Triangulation_ds_vertex_around_vertex_enumerator_4<Self>
Vertex_around_vertex_enumerator;

// CIRCULATOR TYPES.

// 4D only.
typedef Triangulation_ds_cell_around_face_circulator_4<Self>
Cell_around_face_circulator;

// 3D only.
typedef Triangulation_ds_facet_around_edge_circulator_4<Self>
Facet_around_edge_circulator;

// 2D only.
typedef Triangulation_ds_face_around_vertex_circulator_4<Self>
Face_around_vertex_circulator;

// 2D only.
typedef Triangulation_ds_vertex_around_vertex_circulator_4<Self>
Vertex_around_vertex_circulator;

// CONSTRUCTION/ASSIGNMENT.

// Initially, the data structure has dimension -2. When the
// infinite vertex is inserted, the dimension increases to -1.
// When the first finite vertex is inserted, the dimension

// increases to 0, and so on.

Triangulation_data_structure_4 ();
Triangulation_data_structure_4 (const Self & tds);

Self & operator= (const Self & tds);

// QUERIES that return numbers.

// These include infinite cells, facets, faces, edges, vertices.
size_type number_of_cells () const;

size_type number_of_facets () const;

109

size_type number_of_faces () const;
size_type number_of_edges () const;
size_type number_of_vertices () const;
int dimension () const; // Current dimension.

int degree (const Vertex_handle & v) const;

// ADVANCED. May invalidate the data structure.
void set_dimension (int n);

// QUERIES that return bool.

bool is_vertex (const Vertex_handle & v) const;
bool is_edge (const Cell_handle & c,
int i, int j, int k) const;

bool is_edge (const Vertex_handle & u,
const Vertex_handle & v,
Cell_handle & c,

int & i, int & j) const;
bool is_edge (const Vertex_handle & u,

const Vertex_handle & v) const;
bool is_face (const Cell_handle & c,

int i, int j) const;

bool is_face (const Vertex_handle & u,

const Vertex_handle & v,

const Vertex_handle & w,

const Cell_handle & c,

int & i, int & j, int & k) const;
bool is_face (const Vertex_handle & u,

const Vertex_handle & v,

const Vertex_handle & w) const;
bool is_facet (const Cell_handle & c,
int i) const;

bool is_facet (const Vertex_handle & u,

const Vertex_handle & v,

const Vertex_handle & w,

const Vertex_handle & x,

const Cell_handle & c,

int & i, int & j, int & k,

int & 1) const;

bool is_facet (const Vertex_handle & u,

const Vertex_handle & v,

const Vertex_handle & w,

const Vertex_handle & x) const;

110

Cell_handle &
Vertex_handle
Vertex_handle
Vertex_handle
Vertex_handle
Vertex_handle & x,
Cell_handle & c,
i, int & j, int & k,
int & 1, int & m)
Vertex_handle & u,
Vertex_handle & v,
Vertex_handle & w,
Vertex_handle & t,
Vertex_handle & x)
Cell_handle & ¢, int i,
Cell_handle & n, int j) const;
Facet & f, const Facet & g) const;

c)

& u,
& v,
& w,
& t,

(const
(const
const
const
const
const
const
int &

bool is_cell
bool is_cell

const;

const;
(const
const
const
const
const
bool are_equal (const

const
bool are_equal (const

bool is_cell

const;

// INSERTION.

Vertex_handle insert_in_cell (const Cell_handle & c);
Vertex_handle insert_in_facet (const Facet & f);
Vertex_handle insert_in_facet (const Cell_handle & c,
int i);
Vertex_handle insert_in_face (const Face & f);
Vertex_handle insert_in_face (const Cell_handle & c,
int i, int j);
Vertex_handle insert_in_edge (const Edge & e);
Vertex_handle insert_in_edge (const Cell_handle & c,
int i, int j, int k);

insert_increase_dimension
Vertex_handle());

Vertex_handle
(const Vertex_handle & star =

// This one assumes in_conflict_flags are set, it stars region
// immediately.
template <class CellIt>
Vertex_handle insert_in_hole_ (CellIt cell_begin,
CellIt cell_end,
const Cell_handle & begin, int i);

// This one first marks in_conflict_flags, then stars region.

template <class CellIt>

Vertex_handle insert_in_hole (CellIt cell_begin, CellIt cell_end,
const Cell_handle & begin, int i);

111

the data structure.
(const Vertex & v);

// ADVANCED. May invalidate
Vertex_handle create_vertex

Vertex_handle create_vertex ();

Vertex_handle create_vertex (const Vertex_handle & v);

Cell_handle create_cell (const Cell & c);

Cell_handle create_cell O;

Cell_handle create_cell (const Cell_handle & c);

Cell_handle create_cell (const Vertex_handle & vO,
const Vertex_handle & vi,
const Vertex_handle & v2,
const Vertex_handle & v3,
const Vertex_handle & v4);

Cell_handle create_cell (const Vertex_handle & vO,
const Vertex_handle & vi,
const Vertex_handle & v2,
const Vertex_handle & v3,
const Vertex_handle & v4,
const Cell_handle & nO,
const Cell_handle & ni,
const Cell_handle & n2,
const Cell_handle & n3,
const Cell_handle & n4);

Cell_handle create_facet OR

Cell_handle create_facet (const Vertex_handle & vO,
const Vertex_handle & vi,
const Vertex_handle & v2,
const Vertex_handle & v3);

Cell_handle create_face O

Cell_handle create_face (const Vertex_handle & vO,
const Vertex_handle & vi,
const Vertex_handle & v2);

Cell_handle create_edge O

Cell_handle create_edge (const Vertex_handle & vO,
const Vertex_handle & v1);

void delete_vertex (const Vertex_handle & v);

void delete_

cell

template <class InputIterator>

void delete_vertices (Inputlterator begin, InputIterator end);

template <class Inputlterator>

void delete_cells (InputIterator begin, InputIterator end);

112

(const Cell_handle & c);

// ITERATORS. Infinite features included.

Cell_iterator cells_begin () const;
Cell_iterator cells_end () const;
Facet_iterator facets_begin () const;
Facet_iterator facets_end () const;
Face_iterator faces_begin () const;
Face_iterator faces_end () const;
Edge_iterator edges_begin () const;
Edge_iterator edges_end () const;

Vertex_iterator vertices_begin () const;
Vertex_iterator vertices_end () const;

// CIRCULATORS. Infinite features included.
Face_around_vertex_circulator
incident_faces (const Vertex_handle & v) const;

Vertex_around_vertex_circulator
incident_vertices (const Vertex_handle & v) const;

Facet_around_edge_circulator
incident_facets (const Cell_handle & c,
int i, int j) const;

Facet_around_edge_circulator
incident_facets (const Edge & e) const;

Cell_around_face_circulator
incident_cells (const Cell_handle & ce,
int i, int j) const;

Cell_around_face_circulator
incident_cells (const Face & f) const;

template <typename Outputlterator>

OutputIterator

incident_cells (const Vertex_handle & v,
OutputIterator cells) const;

template <class Outputlterator>

OutputIterator

incident_vertices (const Vertex_handle & v,
OutputIterator vertices) const;

113

// VALIDITY CHECKING.
bool is_valid (bool verbose = false, int level = 0) const;

};

114

A.6 Complete usage example

#include <CGAL/basic.h>

#include <iostream>
#include <fstream>
#include <cassert>

#if 1
#include <CGAL/Gmpq.h>
typedef CGAL::Gmpq Nt;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float Nt;
#endif

#include <CGAL/Simple_cartesian_4.h>
typedef CGAL::Simple_cartesian_4<Nt> Kernel;

#if 0
#include <CGAL/Triangulation_4.h>
typedef Kernel Traits;
typedef Kernel::Point_4 Point;
typedef CGAL::Triangulation_4<Traits> Triangulation;
#define BASIC_TRIANGULATION

#elif O
#include <CGAL/Triangulation_traits_4.h>
#include <CGAL/Triangulation_4.h>
typedef CGAL::Triangulation_traits_4<Kernel> Traits;
typedef Traits::Point_4 Point;
typedef CGAL::Triangulation_4<Traits> Triangulation;
#define BASIC_TRIANGULATION

#elif O
#include <CGAL/Triangulation_filtered_traits_4.h>
#include <CGAL/Triangulation_4.h>
typedef CGAL::Triangulation_filtered_traits_4<Kernel> Traits;
typedef Traits::Point_4 Point;
typedef CGAL::Triangulation_4<Traits> Triangulation;
#define BASIC_TRIANGULATION

#elif 1
#include <CGAL/Regular_triangulation_traits_4.h>
#include <CGAL/Regular_triangulation_4.h>
typedef CGAL::Regular_triangulation_traits_4<Kernel> Traits;
typedef Traits::Weighted_point_4 Point;

115

typedef CGAL::Regular_triangulation_4<Traits> Triangulation;
#define REGULAR_TRIANGULATION

#elif O
#include <CGAL/Regular_triangulation_filtered_traits_4.h>
#include <CGAL/Regular_triangulation_4.h>
typedef CGAL::Regular_triangulation_filtered_traits_4<Kernel>

Traits;

typedef Traits::Weighted_point_4 Point;
typedef CGAL::Regular_triangulation_4<Traits> Triangulation;
#define REGULAR_TRIANGULATION

#endif

// Need only Point and Triangulation defined past this comment.

int main(int argc, char* argv[])
{
if (arge < 2) {
std::cout << '"pass the name of an input file" << std::endl;
return 1;

}

std::ifstream ifs(argv[1]);
assert (ifs);

Triangulation tri;
Point p;

while (ifs >> p) {
tri.insert(p);

3

if (tri.dimension() >= 4) {
std::cout << "number_of_cells() = "
<< tri.number_of_cells() << std::endl;
std::cout << "number_of_finite_cells() ="
<< tri.number_of_finite_cells() << std::endl;

if (tri.dimension() >= 3) {
std::cout << "number_of_facets() = "
<< tri.number_of_facets() << std::endl;

116

std::cout << "number_of_finite_facets() ="
<< tri.number_of_finite_facets() << std::endl;

if (tri.dimension() >= 2) {
std::cout << "number_of_faces() = "
<< tri.number_of_faces() << std::endl;
std::cout << "number_of_finite_faces() ="
<< tri.number_of_finite_faces() << std::endl;

if (tri.dimension() >= 1) {
std::cout << "number_of_edges() = "
<< tri.number_of_edges() << std::endl;
std::cout << "number_of_finite_edges() = "
<< tri.number_of_finite_edges() << std::endl;

if (tri.dimension() >= 0) {
std::cout << "number_of_vertices() ="
<< tri.number_of_vertices() << std::endl;
std::cout << "number_of_finite_vertices() = "
<< tri.number_of_finite_vertices() << std::endl;
#ifdef REGULAR_TRIANGULATION
std::cout << "number_of_visible_points() ="
<< tri.number_of_visible_points() << std::endl;
std::cout << "number_of_hidden_points() = "
<< tri.number_of_hidden_points() << std::endl;
#endif
}

std::cout << std::endl;

if (tri.dimension() >= 0) {
std: :cout
<< "Printing the points using finite_vertices_iterator"
<< std::endl;
Triangulation::Finite_vertices_iterator fvertex_it;
for (fvertex_it = tri.finite_vertices_begin();
fvertex_it != tri.finite_vertices_end();
fvertex_it++) {
Triangulation::Vertex_handle v(fvertex_it);
std::cout << v->point() << std::endl;

117

}
std::cout << std::endl;
}

#ifdef BASIC_TRIANGULATION
if (tri.dimension() >= 0) {
std::cout
<< "Printing the points using Point_4_iterator"
<< std::endl;
Triangulation::Point_4_iterator point_it;
for (point_it = tri.points_begin();
point_it != tri.points_end();
point_it++) {
std::cout << (*point_it) << std::endl;
}
std::cout << std::endl;
b
#endif

#ifdef REGULAR_TRIANGULATION
if (tri.dimension() >= 0) {
std: :cout
<< "Printing the visible points using Visible_points_iterator"
<< std::endl;
Triangulation::Visible_points_iterator visible_points_it;
for (visible_points_it = tri.visible_points_begin();
visible_points_it != tri.visible_points_end();
++visible_points_it) {
std::cout << *visible_points_it << std::endl;
}
std::cout << std::endl;

if (tri.dimension() >= 0) {
std::cout
<< "Printing the hidden points using Hidden_points_iterator"
<< std::endl;
Triangulation::Hidden_points_iterator hidden_points_it;
for (hidden_points_it = tri.hidden_points_begin();
hidden_points_it != tri.hidden_points_end();
++hidden_points_it) {
std::cout << xhidden_points_it << std::endl;
b

118

std::cout << std::endl;

}

if (tri.dimension() >= 0) {
std::cout
<< "Printing all points using Points_iterator"
<< std::endl;
Triangulation::Points_iterator points_it;
for (points_it = tri.points_begin();

points_it != tri.points_end(); ++points_it) {
std::cout << *points_it << std::endl;
}
std::cout << std::endl;
}
#endif

if (tri.dimension() >= 4) {
std: :cout
<< "Printing the points for each cell using All_cells_iterator"
<< std::endl;
int all_cells_count = O0;
Triangulation::All_cells_iterator acells_it;
for (acells_it = tri.all_cells_begin();
acells_it != tri.all_cells_end();
++acells_it) {
std::cout << "Cell " << ++all_cells_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << """,
if (tri.is_infinite(acells_it->vertex(i)))
std::cout << "INF ";
else
std::cout << acells_it->vertex(i)->point() << " ";
}
std::cout << std::endl;
}
std::cout << std::endl;

std::cout
<< "Printing the points for each cell using Finite_cells_iterator"
<< std::endl;
int finite_cells_count = O;
Triangulation::Finite_cells_iterator fcells_it;
for (fcells_it = tri.finite_cells_begin();
fcells_it != tri.finite_cells_end();

119

++fcells_it) {
std::cout << "Cell " << ++finite_cells_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(fcells_it->vertex(i)))
std::cout << "INF ";
else
std::cout << fcells_it->vertex(i)->point() << " ";
}
std::cout << std::endl;
}
std::cout << std::endl;
}

if (tri.dimension() >= 3) {
std::cout
<< "Printing the points for each facet using All_facets_iterator"
<< std::endl;
int all_facets_count = 0;
Triangulation::All_facets_iterator afacet_it;
for (afacet_it = tri.all_facets_begin();
afacet_it != tri.all_facets_end();
++afacet_it) {
std::cout << "Facet " << ++all_facets_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i !'= afacet_it->second) {
std::cout << "P" << i << ":";
if (tri.is_infinite(afacet_it->first->vertex(i)))
std::cout << "INF ";

else
std::cout << afacet_it->first->vertex(i)->point()
<< n ll;
}
}
std::cout << std::endl;

}
std::cout << std::endl;

std::cout

<< "Printing the points for each facet using Finite_facets_iterator"
<< std::endl;

int finite_facets_count = 0;

120

Triangulation: :Finite_facets_iterator ffacet_it;
for (ffacet_it = tri.finite_facets_begin();
ffacet_it != tri.finite_facets_end();
++ffacet_it) {
std::cout << "Facet " << ++finite_facets_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i !'= ffacet_it->second) {
std::cout << "P" << i << ":";
if (tri.is_infinite(ffacet_it->first->vertex(i)))
std::cout << "INF ";
else
std::cout << ffacet_it->first->vertex(i)->point()
<< "n n ;
}
}
std::cout << std::endl;
}
std::cout << std::endl;

std: :cout
<< "Printing the points around each vertex using "
<< "Vertex_around_vertex_enumerator" << std::endl;
Triangulation::All_vertices_iterator avertices_it;
for (avertices_it = tri.all_vertices_begin();
avertices_it != tri.all_vertices_end();
++avertices_it) {

Triangulation::Vertex_around_vertex_enumerator
vave (avertices_it, tri.dimension());

Triangulation::Vertex_around_vertex_enumerator
::Vertex_container_iterator vit;

std::cout << "Vertices adjacent to " << avertices_it->point()
<< " are:" << std::endl;

for (vit = vave.begin(); vit != vave.end(); ++vit) {
Triangulation::Vertex_handle v(*vit);
if (tri.is_infinite(v)) {
std::cout << " INF" << std::endl;
}
else {
std::cout << " " << v->point() << std::endl;

}

121

3

std::cout << std::endl;

3

if (tri.dimension() >= 2) {
std::cout
<< "Printing the points for each face using All_faces_iterator"
<< std::endl;
int all_faces_count = 0;
Triangulation::All_faces_iterator aface_it;
for (aface_it = tri.all_faces_begin();
aface_it != tri.all_faces_end();
++aface_it) {
std::cout << "Face " << ++all_faces_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i !'= aface_it->second && i !'= aface_it->third) {
std::cout << "P" << i << ":";
if (tri.is_infinite(aface_it->first->vertex(i)))
std::cout << "INF ";

else
std::cout << aface_it->first->vertex(i)->point()
<< 1] II;
}
}
std::cout << std::endl;

3

std::cout << std::endl;

std::cout
<< "Printing the points for each face using Finite_faces_iterator"
<< std::endl;
int finite_faces_count = 0;
Triangulation: :Finite_faces_iterator fface_it;
for (fface_it = tri.finite_faces_begin();
fface_it != tri.finite_faces_end();
++fface_it) {
std::cout << "Face " << ++finite_faces_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i)
if (i !'= fface_it->second && i !'= fface_it->third) {
std::cout << "P" << i << ":";

122

if (tri.is_infinite(fface_it->first->vertex(i)))
std::cout << "INF ";

else
std::cout << fface_it->first->vertex(i)->point()
<< L1l " ;
}
std::cout << std::endl;
}
std::cout << std::endl;
}

if (tri.dimension() >= 1) {
std::cout
<< "Printing the points for each edge using All_edges_iterator"
<< std::endl;
Triangulation::All_edges_iterator aedge_it;
int all_edges_count = O;
for (aedge_it = tri.all_edges_begin();
aedge_it != tri.all_edges_end();
++aedge_it) {
std::cout << "Edge " << ++all_edges_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i != aedge_it->second &% i != aedge_it->third &&
i !'= aedge_it->fourth) {
std::cout << "P" << i << ":";
if (tri.is_infinite(aedge_it->first->vertex(i)))
std::cout << "INF ";
else
std::cout << aedge_it->first->vertex(i)->point()
<« "oy
}
}
std::cout << std::endl;
}
std::cout << std::endl;

std: :cout

<< "Printing the points for each edge using Finite_edges_iterator"
<< std::endl;

Triangulation::Finite_edges_iterator fedge_it;

int finite_edges_count = O;

for (fedge_it = tri.finite_edges_begin();

123

fedge_it != tri.finite_edges_end();
++fedge_it) A
std::cout << "Edge " << ++finite_edges_count << ": ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i != fedge_it->second &% i != fedge_it->third &&
i != fedge_it->fourth) {
std::cout << "P" << i << ":";
if (tri.is_infinite(fedge_it->first->vertex(i)))
std::cout << "INF ";
else
std::cout << fedge_it->first->vertex(i)->point()
<< oy
b
b
std::cout << std::endl;
}
std::cout << sgtd::endl;

}

if (tri.dimemnsion() == 4) {
std: :cout
<< "Printing the cells adjacent to each face"
<< std::endl;
Triangulation: :Finite_faces_iterator fface_it;
for (fface_it = tri.finite_faces_begin();
fface_it != tri.finite_faces_end();
++fface_it) {
std::cout << "Face: ";
for (int i = 0; i <= tri.dimemnsion(); ++i) {
if (i !'= fface_it->second && i !'= fface_it->third) {
std::cout << "P" << i << ":";
if (tri.is_infinite(fface_it->first->vertex(i)))
std::cout << "INF ";
else
std::cout << fface_it->first->vertex(i)->point()
LK
}
}

std::cout << std::endl;

Triangulation::Cell_around_face_circulator cc;
cc = tri.incident_cells(fface_it->first,

124

fface_it->second, fface_it->third);
Triangulation::Cell_handle start(cc);

int k = 0;
do {
std::cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(cc);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";
}
std::cout << std::endl;
++cC;
} while (Triangulation::Cell_handle(cc) != start);

std::cout << "Going around the other way..." << std::endl;
start = cc = tri.incident_cells(fface_it->first,
fface_it->third,
fface_it—->second);
k = 0;
do {
std::cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(cc);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur—->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";

}
std::cout << std::endl;
++CC;
} while (Triangulation::Cell_handle(cc) != start);

}
std::cout << std::endl;

std::cout
<< "Printing the cells adjacent to each edge"
<< std::endl;
Triangulation::Finite_edges_iterator fedge_it;
for (fedge_it = tri.finite_edges_begin();

125

fedge_it != tri.finite_edges_end();
++fedge_it) A
std::cout << "Edge: ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i != fedge_it->second &% i != fedge_it->third &&
i != fedge_it->fourth) {
std::cout << "P" << i << ":";
if (tri.is_infinite(fedge_it->first->vertex(i)))
std::cout << "INF ";
else
std::cout << fedge_it->first->vertex(i)->point()
<< n .

J

b
b

std::cout << std::endl;

Triangulation::Cell_around_edge_enumerator ce(*fedge_it);
Triangulation::Cell_around_edge_enumerator
::Cell_container_iterator cit;

int k = 0;

for (cit = ce.begin();
cit != ce.end();
++cit) {

std::cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(*cit);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";
}

std::cout << std::endl;

std::cout << std::endl;

std: :cout

<< "Printing the cells adjacent to each vertex"
<< std::endl;
Triangulation::All_vertices_iterator avertices_it;
for (avertices_it = tri.all_vertices_begin();
avertices_it != tri.all_vertices_end();

126

++avertices_it) {

std::cout << "Cells adjacent to ertex: "
<< avertices_it->point() << " are" << std::endl;

Triangulation::Cell_around_vertex_enumerator
cave(avertices_it);

Triangulation::Cell_around_vertex_enumerator
::Cell_container_iterator cave_it;

int k = 0;
for (cave_it = cave.begin(); cave_it != cave.end();
++cave_it) {
std::cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(*cave_it);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << "M,
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";
}
std::cout << std::endl;
}
}
std::cout << std::endl;

}

else if (tri.dimemnsion() == 3) {
std: :cout
<< "Printing the facets adjacent to each edge"
<< std::endl;
Triangulation::Finite_edges_iterator fedge_it;
for (fedge_it = tri.finite_edges_begin();
fedge_it != tri.finite_edges_end();
++fedge_it) {
std::cout << "Edge: ";
for (int i = 0; i <= tri.dimension(); ++i) {
if (i != fedge_it->second &% i != fedge_it->third &&
i != fedge_it->fourth) {
std::cout << "P" << i << ":";

127

if (tri.is_infinite(fedge_it->first->vertex(i)))
std::cout << "INF ";
else
std::cout << fedge_it->first->vertex(i)->point()
<< Moy
}
}

std::cout << std::endl;

Triangulation::Facet_around_edge_circulator fc;
fc = tri.incident_facets(fedge_it->first,

fedge_it->second, fedge_it->third);
Triangulation::Cell_handle start(fc);

int k = 0;
do {
std::cout << "Facet " << ++k << ": ",
Triangulation::Cell_handle cur(fc);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";

b

std::cout << std::endl;

++fc;
} while (Triangulation::Cell_handle(fc) != start);
std::cout << "Going around the other way..." << std::endl;

start = fc = tri.incident_facets(fedge_it->first,
fedge_it->third,
fedge_it->second) ;
k =0;
do {
std::cout << "Facet " << ++k << ": ";
Triangulation::Cell_handle cur(fc);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";

128

std::cout << std::endl;
++fc;
} while (Triangulation::Cell_handle(fc) != start);
+

std::cout << std::endl;

std::cout
<< "Printing the facets adjacent to each vertex"
<< std::endl;
Triangulation::All_vertices_iterator avertices_it;
for (avertices_it = tri.all_vertices_begin();
avertices_it != tri.all_vertices_end();
++avertices_it) {

std::cout << "Facets adjacent to vertex: "
<< avertices_it->point() << " are" << std::endl;

Triangulation::Facet_around_vertex_enumerator
fave(avertices_it);

Triangulation::Facet_around_vertex_enumerator
::Cell_container_iterator fave_it;

int k = 0;
for (fave_it = fave.begin(); fave_it != fave.end();
++fave_it) {
std::cout << "Cell " << ++k << ": ",
Triangulation::Cell_handle cur(*fave_it);
for (int i = 0; i <= tri.dimemnsion(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";
}
std::cout << std::endl;
}
}
std::cout << std::endl;

}

else if (tri.dimension() == 2) {

129

std::cout
<< "Printing the faces adjacent to each vertex"
<< std::endl;
Triangulation::Finite_vertices_iterator fvertex_it;
for (fvertex_it = tri.finite_vertices_begin();
fvertex_it != tri.finite_vertices_end();
++fvertex_it) {
Triangulation::Vertex_handle v(fvertex_it);

std::cout << "Point: " << v->point() << std::endl;

Triangulation::Face_around_vertex_circulator vc;
vc = tri.incident_faces(v);
Triangulation::Cell_handle start(vc);

int k = 0;
do {
std::cout << "Face " << ++k << ": ",
Triangulation::Cell_handle cur(vc);
for (int i = 0; i <= tri.dimension(); ++i) {
std::cout << "P" << i << ":";
if (tri.is_infinite(cur->vertex(i)))
std::cout << "INF ";
else
std::cout << cur->vertex(i)->point() << " ";

}
std::cout << std::endl;
++vC;
} while (Triangulation::Cell_handle(vc) != start);

3

std::cout << std::endl;

std: :cout
<< "Printing the vertices adjacent to each vertex"
<< std::endl;
for (fvertex_it = tri.finite_vertices_begin();
fvertex_it != tri.finite_vertices_end();
++fvertex_it) {
Triangulation::Vertex_handle v(fvertex_it);

std::cout << "Point: " << v->point() << std::endl;

Triangulation::Vertex_around_vertex_circulator vavc(v);
Triangulation::Vertex_handle start(vavc);

130

int k = 0;
do {

std::cout << "Vertex " << ++k << ": ",

Triangulation::Vertex_handle v(vavc);
if (tri.is_infinite(v))

std::cout << "INF";
else

std: :cout << v->point();

std::cout << std::endl;

++vavc;
} while (Triangulation::Vertex_handle(vavc) != start);

}
std::cout << std::endl;

3

assert(tri.is_valid(true));

return O;

131

BIBLIOGRAPHY

[1] O. Aichholzer, F. Aurenhammer, D. Z. Chen, D. T. Lee, and E. Papadopoulou.
Skew Voronoi diagrams. International Journal of Computational Geometry and
Applications, 9(3):235-247, June 1999.

[2] O. Aichholzer, D. Z. Chen, D. T. Lee, A. Mukhopadhyay, E. Papadopoulou,
and F. Aurenhammer. Voronoi diagrams for direction-sensitive distances. In
Proceedings of the Thirteenth Annual Symposium on Computational Geometry,
pages 418-420. ACM Press, 1997.

[3] M. A. Armstrong. Basic Topology. Springer-Verlag, first edition, 1983.

[4] F. Aurenhammer. Power diagrams: properties, algorithms and applications.
SIAM Journal on Computing, 16(1):78-96, 1987.

[6] F. Aurenhammer. Improved algorithms for discs and balls using power dia-
grams. Journal of Algorithms, 9(2):151-161, 1988.

[6] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric
data structure. ACM Computing Surveys, 23(3):345-405, 1991.

[7] F. Aurenhammer and R. Klein. Voronoi diagrams. In J. Sack and G. Urru-
tia, editors, Handbook of Computational Geometry, Chapter V, pages 201-290.
Elsevier Science Publishing, 2000. [SFB Report F003-092, TU Graz, Austria,
1996].

[8] J.-D. Boissonnat, F. Cazals, F. Da, O. Devillers, S. Pion, F. Rebufat, M. Teil-
laud, and M. Yvinec. Programming with CGAL: the example of triangulations.

In Proceedings of the Fifteenth Annual Symposium on Computational Geome-
try, pages 421-422. ACM Press, 1999.

[9] J.-D. Boissonnat and C. Delage. Convex hull and Voronoi diagram of additively
weighted points. In Proceedings of the Thirteenth Annual European Symposium
on Algorithms, pages 367-378, 2005.

[10] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec. Triangulations in
CGAL (extended abstract). In Proceedings of the Sizteenth Annual Symposium
on Computational Geometry, pages 11-18. ACM Press, 2000.

[11] J.-D. Boissonnat and M. I. Karavelas. On the combinatorial complexity of
Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 305-312. Society for Industrial and Applied Mathematics, 2003.

132

[12] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University
Press, first edition, 1998.

[13] The CGAL homepage. http://www.cgal.org/.

[14] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete
and Computational Geometry, 10:377-409, 1993.

[15] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.

[16] O. Devillers. On deletion in Delaunay triangulations. In Proceedings of the Fif-
teenth Annual Symposium on Computational Geometry, pages 181-188. ACM
Press, 1999.

[17] O. Devillers and M. Teillaud. Perturbations and vertex removal in a 3D De-
launay triangulation. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 313-319. Society for Industrial and
Applied Mathematics, 2003.

[18] H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics, 9(1):66-104, 1990.

[19] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for
regular triangulations. In Proceedings of the FEighth Annual Symposium on
Computational Geometry, pages 43-52. ACM Press, 1992.

[20] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for
regular triangulations. Algorithmica, 15(3):223-241, March 1996.

[21] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schénherr. On the de-
sign of CGAL a computational geometry algorithms library. Software-Practice
and Ezperience, 30(11):1167-1202, 2000.

[22] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. In Proceedings
of the Second Annual Symposium on Computational Geometry, pages 313-322.
ACM Press, 1986.

[23] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,
2:153-174, 1987.

[24] S. J. Fortune. Voronoi diagrams and Delaunay triangulations. Fuclidean Ge-
ometry and Computers, pages 193-233, 1992. World Scientific Publishing Co.,
D.A. Du, F.K. Hwang, eds.

[25] M. L. Gavrilova and J. G. Rokne. Updating the topology of the dynamic
Voronoi diagram for spheres in Euclidean d-dimensional space. Computer Aided
Geometric Design, 20(4):231-242, 2003.

133

[26] A. Goede, R. Preissner, and C. Frommel. Voronoi cell: New method for allo-
cation of space among atoms: elimination of avoidable erros in calculation of

atomic volume and density. Journal of Computational Chemistry, 18(9):1113—
1123, 1997.

[27] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74-123, 1985.

[28] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construc-
tion of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381-413, 1992.

[29] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and
extensible geometry kernel. In Proceedings of the Fifth International Workshop
on Algorithm Engineering, pages 79-90, London, UK, 2001. Springer-Verlag.

[30] H. Imai, M. Iri, and K. Murota. Voronoi diagram in the Laguerre geometry and
its applications. STAM Journal on Computing, 14(1):93-105, February 1985.

[31] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom examples
of robustness problems in geometric computations. In Proceedings of the Twelfth
Annual European Symposium on Algorithms, pages 702-713, 2004.

[32] C. L. Lawson. Properties of n-dimensional triangulations. Computer Aided
Geometric Design, 3(4):231-246, December 1986.

[33] K. Mulmuley. Computational Geometry: An Introduction Through Randomized
Algorithms. Prentice Hall, first edition, 1998.

[34] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations :
Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, second
edition, 2000.

[35] J. O’'Rourke. Computational Geometry in C. Cambridge University Press,
second edition, 1998.

[36] V. T. Rajan. Optimality of the Delaunay triangulation in R%. In Proceedings of
the Seventh Annual Symposium on Computational Geometry, pages 357-363.
ACM Press, 1991.

[37] M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the
Sizteenth IEEE Symposium on Foundations of Computer Science, pages 151—
162, 1975.

[38] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented implementation
- an approach to robust geometric algorithms. Algorithmica, 27(1):5-20, May
2000.

[39] H.-M. Will. Computation of Additively Weighted Voronoi Cells for Applications
in Molecular Biology. PhD thesis, Swiss Federal Institute of Technology, 1999.

[40] C.-K. Yap. Towards exact geometric computation. Computational Geometry:
Theory and Applications, 7(1-2):3-23, 1997.

134

