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A circular array of optical waveguides collectively coupled with a central core is investigated.
Nonlinear losses, both linear and nonlinear coupling as well as energy transfer between neigh-
boring array elements and between the array and the core are allowed. The concept is ideal
for the design of high power stable amplifiers as well as of all-optical data processing devices
in optical communications. The existence of stable steady-state continuous wave modes as well
as of localized solitary and breathing type modes is demonstrated. These properties render the
proposed system functionally rich, far more controllable than a planar one and easier to stabilize.

Keywords : Breathers; solitons; optical waveguide arrays.

1. Introduction

The continuous complex Ginzburg–Landau (cCGL)
equation is well known as the dominant underlying
model in superconductivity, superfluidity, nonequi-
librium fluid dynamics, physical chemistry, non-
linear optics, Bose–Einstein condensates, quantum
field theories [Cross & Hohenberg, 1993; Kuramoto,
1984; Aranson & Kramer, 2002; Akhemediev
& Ankiewitz, 1977; Manneville, 1990]. On the
other hand, the discrete complex Ginzburg–Landau
(dCGL) have also been considered in lattices
for modeling vortices in hydrodynamics [Willaime
et al., 1991] as well as the dynamics of an open
Bose–Einstein condensate (where dissipation is nat-
urally expected) with a lattice potential created
by the interference of two standing optical waves
[Anderson & Kasevich, 1998] and a gain resulting
from the interaction among condensed and uncon-
densed atoms [Kneer et al., 1998; Arecchi et al.,
2002]. As far as the applied optics is concerned

the discrete Nonlinear Schrödinger equation (dNLS)
was first introduced as a working model in semi-
conductor laser arrays in optics [Wang & Winful,
1988; Christodoulides & Joseph, 1988; Otsuka,
1999; Schmidt-Hattenberger et al., 1991; Eisenberg
et al., 1998]. More recently, the dCGL takes the
lead in several works [Efremidis & Hizanidis, 2002;
Efremidis et al., 2002; Efremidis & Christodoulides,
2003; Maruno et al., 2003]: It is worth mentioning
that while in cCGL equation-based systems, self-
localized (solitary) solutions as well as dissipative
solitons have been found [Pereira & Stenflo, 1977;
Nozaki & Bekki, 1984; Hocking & Stewartson, 1992]
(among an extraordinary universe of pattern forma-
tion and chaotic behavior), no coherent structures
have been found in dCGL equation-based systems
until very recently [Efremidis & Christodoulides,
2003; Maruno et al., 2003].

Although the underlying physics in a dCGL
equation-based system is complex and not easily
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amenable to analytical considerations, the applica-
tions are potentially far reaching. In this paper the
main focus is on the design of high power stable
amplifiers as well as of all-optical data process-
ing devices in optical communications where study-
ing the stability, phase-locking capabilities and rich
controllable behavior of the nonlinear modes dur-
ing evolution is of great importance. The concept is
based on an array of optical waveguides, where both
linear and nonlinear coupling and energy trans-
fer may enrich the functionality of such a device.
It is expected that the analysis of such devices
will become quite expansive especially in geome-
tries beyond planar, such as circular [Schmidt-
Hattenberger et al., 1991] which is the subject of
this work. In addition to the circular geometry, the
waveguide array is linearly and nonlinearly cou-
pled to a central core allowing energy transfer and
exchange not only among the various array ele-
ments but also collectively with the central core. It
is envisioned that this collective coupling will ren-
der the whole system far more controllable than a
planar one and easier to stabilize. There are numer-
ous indications in the literature (concerning cCGL,
however) which are in support of this conjecture
[Efremidis & Hizanidis, 2002; Malomed & Winful,
1984].

The paper is organized as follows: Section 2
discusses the model equations and conditions for
linear stability. In Sec. 3 the existence of stable non-
linear CW solutions is investigated, while in Sec. 4,
the generation mechanism of breathing and solitary-
type solutions is presented. The main conclusions
are summarized in Sec. 5.

2. The Model and Conditions for
Linear Stability

The system under investigation consists of a circular
array of N identical linearly and nonlinearly cou-
pled (with the nearest neighbors) optical wave-
guides (active and/or lossy optical fibers, for
instance). The array is also linearly as well as non-
linearly coupled (cubic nonlinearity) with a cylin-
drical substrate (central core). The whole system is
embedded in a cladding of infinite extent. We allow
for complex linear coupling coefficients between
each node of the array and its neighbors as well as
for lossy and/or amplifying behavior in each node
of the array separately and in the central core. The
reference signs of the imaginary parts of all the lin-
ear coupling coefficients involved are chosen in such

a way that if they all were positive the model would
then represent a circular array of optical ampli-
fiers coupled with a lossy central core. The model
can equally well describe a modification of a planar
semiconductor laser array [Otsuka, 1999] to a circu-
lar one (away from the saturation limit of the lasing
medium) lying on a dielectric cylindrical substrate.

By using the formalism of coupled-mode theory
(or the tight binding approximation) [Otsuka, 1999;
Kittel, 1986] one obtains the following equations in
the framework of slowly-varying envelope approx-
imation for the discrete complex mode amplitude
{un(z), n = 1, . . . , N ;u0(z)} with z being the prop-
agation distance and “0” referring to the central
core,

i
dun

dz
− iεg(In)un + µun|un|2 + κα(un+1 + un−1)

− iεαg(In)(un+1 + un−1)
+ κXu0 − iεXG(I0)u0 = 0, (1)

i
du0

dz
− iEG(I0)u0 + M |u0|2u0

+ κX

N∑
n=1

un − iεX

N∑
n=1

g(In)un = 0 (2)

where ε and E are the respective amplification rates
for the array elements and the core while εα is the
gain due to coupling with the nearest neighbors
(note that ε < 0, E < 0 and εα < 0 represent
lossy nodes, lossy central core and lossy coupling,
respectively). The factors g(I), G(I) are the respec-
tive normalized gains expressed as functions of the
normalized intensity I = |u|2, while µ and M are
the respective self-phase modulation coefficients.
Furthermore a and A are the respective nonlinear
loss coefficients and κα the linear coupling constant
with the nearest neighbors. Finally, κX is the lin-
ear coupling between the central core and the array
elements and εX models the gain due to linear cou-
pling between the central core and the array ele-
ments. For intensity values below the saturation
limit, these gain functions acquire values below but
not far from unity and can be linearly approximated
by [Desurvire, 1994],

g(In) ≈ 1 − αIn, G(I0) ≈ 1 − AI0. (3)

The system of Eqs. (1) and (2) can be further sim-
plified since the energy tunneling, expressed by the
constants εα and εX is a small effect compared with
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the effects modeled by ε and E. Thus, the respective
intensity-dependent contributions associated with
the energy tunneling are dropped (α and A are
small) yielding,

i
dun

dz
− iεun + (µ + iα)un|un|2

+ (κα − iεα)(un+1 + un−1)
+ (κX − iεX)u0 = 0, (4)

i
du0

dz
− iEu0 + (M + iA)|u0|2u0

+ (κX − iεX )
N∑

n=1

un = 0 (5)

The simplified system has the form of a cubic dCGL
coupled with a discrete nonlinear Schrödinger
(dNLS) equation.

In order to investigate the stability of the zero
solution, one may choose to investigate the linear
approximation of Eqs. (4) and (5). The stability of
the zero solution is of great importance in the inves-
tigation of the existence of stable localized modes in
open systems, since then the optical power is con-
centrated in a subset of nodes leading to solitary
and/or breather type of structures. The reason is
that localized structures residing on a linear array
have their intensity dropping to zero at their tails,
that is, at the open ends of the array. For the circu-
lar system in hand this is not the case since the tails
coincide. This will become evident shortly when the
comparison of regions of linear and nonlinear sta-
bility will be made. However, in the following, we
proceed in briefly investigating the linear stability
for comparison.

The centrally uncoupled version of the linear
approximation of the model (κχ − iεχ = µ + iα =
M + iA = 0) is a Toeplitz type of a problem with
known eigenmode structure [Schmidt-Hattenberger
et al., 1991]. In the coupled case of the same approx-
imation the resulting eigenvalue problem is mod-
ified. By straightforward algebraic manipulations
it can be shown that the first N − 1 eigenvalues
coincide with those in the uncoupled case (Toeplitz
problem), that is,

λk = −iε + 2(κα − iεα) cos
(

2πk

N

)
, k = 1, . . . , N

(6)

while the remaining two additional eigenvalues are
given by the following expression

λN,N+1 = κα − i(εT + E)
2

±
√

N(κχ − ι̇εχ)2 +
[
κα − i(εT − E0)

2

]2

(7)

where “+” and “−” stand for the Nth and (N+1)th
eigenvalue respectively and εT ≡ ε + 2εα. The gen-
eral linear solution for the array and the central core
can easily be expressed as a superposition of normal
modes,

un = aNu(N)eiλN z + aN+1u
(N+1)eiλN+1z

+
N−1∑
k=1

ake
i2πkn

N+iλkz

√
N

,

u0 = bNU (N)eiλN z + bN+1U
(N+1)eiλN+1z (8)

and am, bm are free (specified by the launching
conditions) complex coefficients, where the two
new pairs of Nth and (N + 1)th eigenfunctions are
given by,

u(j) =
λj + iE0√

N2(κχ − iεχ)2 + N |λj + iE0|2
,

U (j) =

√
N(κχ − iεχ)2

N(κχ − iεχ)2 + |λj + iE0|2 ,

j = N, N + 1

(9)

Stability of the zero solution requires all N+1 eigen-
values to possess positive imaginary parts simulta-
neously. By separating the real and imaginary parts
of the N + 1 eigenvalues the condition for linear
stability becomes,

max(εT )

=




2εα

[
1 − cos

(
2π
N

)]
for εα ≥ 0

2εα

{
1 − cos

[(
2π
N

)∥∥∥∥N

2

∥∥∥∥
]}

for εα < 0
,

(10)

−
ε + E

2
+ εα

2
≥

√√
M2 + D2 − D

2

where M ≡ 2[−Nεχκχ − κα((ε − E)/2 + εa)],
D ≡ N(κ2

χ − ε2
χ) + κ2

α − [(ε−E)/2 + εa]2 and “‖ ‖”
symbolizes the integer part. The first condition in
Eq. (10) assures the stability of the first N − 1
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modes existing in the uncoupled case as well, while
the second one assures the stability of both the
remaining modes.

3. Nonlinear Analysis: Existence
and Stability of Continuous-Wave
Solutions

Looking for continuous-wave nonlinear modes
(CW), that is, for modes of the same amplitude in
every node of the circular array, one may set

un = Ueiλz, n = 1, . . . , N,

u0 = V eiλz (11)

in the fully nonlinear model of Eqs. (4) and (5).
Since we are seeking for stable CW solutions, the
wavenumber λ is supposed to be real. The substitu-
tion above leads to a system of equations in terms
of λ, |V |2, Rr, Ri (where R = Rr + iRi = U/V ){
−N

(
κX +

M

A
εX

)
Rr − N

(
εX − M

A
κX

)
Ri

− M

A
E +

µ

α
εT + 2κα

}
|R|2 +

(
µ

α
κX − εX

)
Ri

+
(

µ

α
εX + κX

)
Rr = 0 (12a)

εT |R|2 − α

A
{E − N (κXRi − εXRr)} |R|4

+ κXRi + εXRr = 0 (12b)

λ = N (κXRr + εXRi)

+
M

A
{E − N (κXRi − εXRr)} (12c)

|V |2 =
E − N (κXRi − εXRr)

A
(12d)

R2 = R2
r + R2

i (12e)

Solving (12a), (12b) in terms of Rr, Ri and com-
bining the results according to (12e), one obtains
a sixth order polynomial equation with constant
coefficients in terms of |R|2 of the form f(|R|2; ε0,
E0, µ0, M0, a, A, κα, εα, κX , εX) = 0. With the
solutions of this equation known, the rest of the
unknowns are calculated thus providing the solu-
tions for U , V and λ, i.e. the CW solutions. Fixing
the parameters µ, M , a, A, κα, εα, (or ε), κX , εX

and leaving εT and E to vary, domains of stability
for the CW solutions can be obtained.

The character of the stability of these steady
state CW solutions is an important issue. For these

nonlinear modes to be stable the zero solution does
not necessarily need to be stable: One can look
for stable steady state CW solutions even in the
regimes where the zero solution is unstable (several
or all N + 1 linear modes discussed in the previous
section). Since the existence of localized solutions
is the aim of this work, we focus on the unsta-
ble CW modes under amplitude modulation. One
may distinguish between two kinds of localized solu-
tions associated with the existence of such unstable
CW modes: breather-type, i.e. localized modes peri-
odic in z (and, possibly azimuthally, in n, where
n is the node number) and solitary-type, i.e. local-
ized modes without any amplitude modulation in z.
The unstable CW which has the potential to sup-
port such a localized nonlinear mode must, at the
same time, exhibit stability under periodic (in z)
perturbations since the localized structures are, in
general periodic in z. The stability (under ampli-
tude modulation and, also, under periodic pertur-
bations) of the CW solutions of Eqs. (4) and (5)
cannot be analytically addressed. Therefore, one
may linearize these equations around a particular
choice for |U | and |V | taken from the respective
bifurcation diagram. For each one of the aforemen-
tioned two kinds of perturbation, this procedure
renders a respective solvable linear system of 2N +2
equations for the N + 1 (randomly chosen) small
perturbations of the respective CWs, δun (n =
1, . . . , N) and δu0 and their complex conjugates,
expressed as a (2N +2)×1 column vector δu(z(n)).
In each case, the solution can straightforwardly cast
in the form, δu(z) = exp(zA) ◦ δu(z = 0), where
A is a (2N + 2)× (2N + 2) block matrix. The con-
stituents of the matrix A depend upon the choice of
steady state CW, the kind of stability we are look-
ing for and the coupling coefficients. The stability
is then obviously related directly to the asymptotic
behavior (annihilation as z → ∞) of the respective
exponential matrix exp(zA).

In the following, we adopt the following nota-
tion: (a) SCW for modulationally stable CWs exist
in this region among others; as we already men-
tioned, these CWs cannot support localized modes;
(b) UCWSPS for modulationally unstable CWs
which are stable to periodic perturbations, thus,
capable of supporting periodic solutions (PS) in z
and/or n; (c) UPS for unstable CWs to periodic per-
turbations, thus incapable of supporting stable peri-
odic solutions. As an example, in Figs. 1(a)–1(d) the
domains of stability are depicted for the case εα = 1,
εX = 0.1, µ = α = M = A = 0.1, κα = κX = 0.1
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 1. Domains of stability, (a)–(d): εα = 1, εX = 0.1, µ = α = M = A = 0.1, κα = κX = 0.1 and N = 39; (e)–(g): εα = 1,
εX = 0.3, µ = α = 1, M = 2.42, A = 1.56, κα = 0.5, κX = 0.4 and N = 22; (b) is a detail of (a). There are no CW
solutions in this domain except from a very narrow layer at the edge (in gray). Notation: SCW: modulationally stable CW
exists; UCWSPS: modulationally unstable CW which is stable to periodic perturbations exists; UPS: unstable CW to periodic
perturbations exists.

and N = 39. Figure 1(b) provides details of the
low left corner of Fig. 1(a) where the linear stabil-
ity domain resides. There are no CW solutions in
this domain except from a very narrow layer at the
edge (in gray). In Figs. 1(f)–1(g) a second exam-
ple is provided for the case εα = 1, εX = 0.3,
µ = α = 1, M = 2.42, A = 1.56, κα = 0.5, κX = 0.4
and N = 22. In conclusion, the parameter space is,

by far, dominated and populated by nonlinear CW
modes the character of which is illustrated in the
two characteristic examples provided in Fig. 1.

Upon a particular choice of the amplification
(or, loss) rate E for the central node, bifurca-
tion diagrams can be drawn. In Fig. 2 the respec-
tive bifurcation diagrams for the cases of Fig. 1
(Figs. 1(a)–1(c) and Figs. 1(d)–1(e), respectively)
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(a) (b) (c)

(d) (e)

Fig. 2. Bifurcation diagrams for the CW modes in the array [(a), (b) and (d)] and the central node [(c) and (e)]. (a)–(c):
εα = 1, εX = 0.1, µ = α = M = A = 0.1, κα = κX = 0.1 and N = 39; (d)–(e): εα = 1, εX = 0.3, µ = α = 1, M = 2.42,
A = 1.56, κα = 0.5, κX = 0.4 and N = 22; (b) is a detail of (a).

Fig. 3. Comparison of the bifurcations without (thick black
lines) and with (thin gray lines) the central node for the case
with N = 15, εα = 0.5, µ = 8, α = 1, κα = 0.7 (if the central
node is present, then, εX = 0.8, M = 8, A = 1, κX = 4 and
E = −1).

are shown with respective choices E = 0.1 and
E = 2. Figure 2(b) is a magnification (near zero
amplitude) of Fig. 2(a). In Figs. 2(c) and 2(e) the
respective bifurcation diagrams from the perspec-
tive of the central node are shown. Finally, in Fig. 3
the comparison of the bifurcations without (thick
black lines) and with (thin gray lines) the cen-
tral node is illustrated for the case with N = 15,
εα = 0.5, µ = 8, α = 1, κα = 0.7 (if the cen-
tral node is present, then, εX = 0.8, M = 8, A = 1,
κX = 4 and E = −1). It is evident that the presence
of the central node introduces multiple UCW modes
for the same value of εT and an early appearance
of SCW modes.

4. In Search of Periodic
Nonlinear Modes

In this section, the generation of periodic nonlinear
modes is investigated and discussed. As we already
mentioned, from the respective bifurcation diagram
and domain of stability we choose a UCWSPS mode.
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The zero background is obviously linearly unstable
as we have already seen.

We first set all nodes of the circular array at
z = 0 to the respective CW value, while the central
node is also set to its respective CW value. Then,
in order to ensure localization (in the node sense),
we multiply the array CW value by an exponential
exp(−|n−n0|) or a gaussian exp[−(n−n0)2] filtering
factor (n0 is the node which the filtering discrimi-
nates from the rest) which is easily realizable in
practical situations. In either case, a periodic mode
of breathing type is established after a transition

period. In Fig. 4 two cases are shown for both fil-
tering mechanisms. In Figs. 4(a)–4(d) the choice is
εα = 1, εX = 0.3, µ = M = 2.42, A = α = 1.56,
κα = 0.5, κX = 0.4, E = 2, εT = 2.5 and N = 83,
while in Figs. 4(e)–4(h) the parameters that differ
are εT = 2 and N = 22. The first column in Fig. 4
provides a three-dimensional view of the amplitude
variations axially and azimuthally, while the sec-
ond column the gray scale equivalent. Figures 4(a),
4(b), 4(e) and 4(f) refer to the exponential filtering
factor, while Figs. 4(c), 4(d), 4(g) and 4(h) refer to
the gaussian one.

(a) (b)

(c) (d)

Fig. 4. UCWSPS mode (all nodes are set at z = 0 to their respective CW values). (a)–(d): εα = 1, εX = 0.3, µ = M = 2.42,
A = α = 1.56, κα = 0.5, κX = 0.4, E = 2, εT = 2.5 and N = 83; (e)–(h) εα = 1, εX = 0.3, µ = M = 2.42, A = α = 1.56,
κα = 0.5, κX = 0.4, E = 2, εT = 2 and N = 22. The first column provides a three-dimensional view of the amplitude
variations axially and azimuthally, while the second column the gray scale equivalent. (a), (b), (e) and (f): exponential filtering
factor; (c), (d), (g) and (h): gaussian filtering factor.
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(e) (f)

(g) (h)

Fig. 4. (Continued )

An important issue is the behavior of the non-
linear CW nodes under random perturbations. If
the parameters are chosen such as to ensure stabil-
ity the CW is stable. In such a case one does not
expect any periodic nonlinear mode to arise. How-
ever, if the parameters are chosen such as to ensure
existence of a UCWSPS mode, then such a mode is
expected to arise. The zero background is, of course,
linearly unstable in such a case. Setting all nodes
of the circular array and the central one at z = 0
to the respective CW values and perturbing them
randomly (both in amplitude and phase) a peri-
odic mode is indeed established after a transition
period. In Fig. 5 an example is shown. The param-
eter values in this example are εα = 1, εX = 0.1,
µ = M = 0.1, α = A = 0.1, κα = 0.1, κX = 0.1,

E = 0.1, εT = 0.3 and N = 39. Figure 5(a) depicts
the behavior during the short transition region. Fig-
ures 5(b) and 5(c) refer to the asymptotic behavior
in a three-dimensional and a gray scale plot, respec-
tively. The asymptotic behavior is reproducible irre-
spectively of the (random) initial data. Therefore,
the unstable CW nonlinear mode settles to a spe-
cific robust and periodic nonlinear mode with both
axial and azimuthal variations.

Equally important for practical applications,
where control over the light pulse at the launching
point is the issue, is the excitation of periodic non-
linear modes by coherent phase modulation of an
unstable CW nonlinear mode. In such a case one
chooses the parameters such as a UCWSPS mode
to exist. The zero background is again linearly
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(a) (b)

(c)

Fig. 5. UCWSPS mode (all nodes are set at z = 0 to their respective CW values) under random amplitude and phase
perturbation with εα = 1, εX = 0.1, µ = M = 0.1, α = A = 0.1, κα = 0.1, κX = 0.1, E = 0.1, εT = 0.3 and N = 39.
(a) Behavior during the short transition region; (b) three-dimensional plot of the asymptotic behavior; (c) gray scale equivalent
of (b).

unstable. Setting all nodes of the circular array and
the central one at z = 0 to the respective CW values
and modulating each node (n) through a phase fac-
tor exp(j2πnm/N), m being an integer, a periodic
mode is established after a short transition period.
In the example shown in Fig. 6, the parameters used
are εα = 1, εX = 0.1, µ = M = 0.1, α = A = 0.1,
κα = 0.1, κX = 0.1, E = 0.1, εT = 0.3 and N = 39.
In Figs. 6(a)–6(c) (short z-behavior, asymptotic
behavior in three-dimensional and gray scale plot)
the azimuthal number m is m = 1, while in Figs.
6(d)–6(f), m = 3. It is evident that the azimuthal
number controls the number of nodes where the
intensity peaks while the overall light pattern, as
it propagates along z, rotates azimuthally at the
same time.

One may further exploit the bifurcation dia-
grams in order to access the asymptotic behavior of

a nonlinear mode which is excited as a UPS one. We
may distinguish between two possible situations:
(a) the chosen CW is a UPS mode while a SCW

of different amplitude exists for the same value of
εT , (b) the chosen CW is a UPS mode while a
UCWSPS of different amplitude exists for the same
value of εT . In the example illustrated in Fig. 7 the
parameters are εα = 1, εX = 0.1, µ = M = 0.1,
α = A = 0.1, κα = 0.1, κX = 0.1, E = 0.1 and
N = 39. For εT = 15 and εT = 5 there exist CW
nonlinear modes that fall respectively in these two
cases as shown in the bifurcation diagram, Fig. 7(a).
In Fig. 7(b) the asymptotic behavior of the cho-
sen CW mode shows that there is a sharp tran-
sition to a stable CW mode on the SCW branch.
Sharp transition towards the respective value on the
UCWSPS branch also occurs for the second choice of
εT as shown in Fig. 7(c). However, the asymptotic
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. UCWSPS mode (all nodes are set at z = 0 to their respective CW values) phase modulated through a phase factor
exp(j2πnm/N) with εα = 1, εX = 0.1, µ = M = 0.1, α = A = 0.1, κα = 0.1, κX = 0.1, E = 0.1, εT = 0.3 and N = 39.
(a)–(c): short z-behavior, asymptotic behavior in three-dimensional and gray scale plot with m = 1, (d)–(f): short z-behavior,
asymptotic behavior in three-dimensional and gray scale plot with m = 3.
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(a) (b)

(c) (d)

(e)

Fig. 7. (a) Bifurcation diagram for εα = 1, εX = 0.1, µ = M = 0.1, α = A = 0.1, κα = 0.1, κX = 0.1, E = 0.1 and
N = 39; (b) UPS mode at εT = 15 exhibiting fast transition to a SCW of different amplitude (all nodes are set at z = 0 to
their respective CW values); (c)–(e) short z-behavior, asymptotic behavior in three-dimensional and gray scale plot for UPS

mode at εT = 5 with a UCWSPS of different amplitude existing for the same value of εT (all nodes are set at z = 0 to their
respective CW values).
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(a)

(b) (c)

(d) (e)

Fig. 8. (a) Bifurcation diagram for εα = 1, εX = 0.3, µ = α = 1, M = 1.98, A = 1.64, κα = 0.5, κX = 0.4, E = 2, εT = 3
and N = 22. A UPS mode with a UCWSPS of different amplitude existing for the same value of εT (all nodes are set at
z = 0 to their respective CW values) is chosen. (b)–(c) a localized (gaussian or exponential) amplitude perturbation of 10%
is applied on top of the unstable CW mode; (d)–(e) a localized (gaussian or exponential) amplitude perturbation of 100% is
applied on top of the unstable CW mode. (b) and (d) transitional behavior; (c) and (e) asymptotic behavior.
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behavior of this mode is more or less chaotic as
one may easily see in both the three-dimensional
and the gray scale plots of Figs. 7(d) and 7(e). The
amplitude fluctuates erratically around the respec-
tive value on the UCWSPS branch.

The aforementioned behavior of a UPS CW
nonlinear mode underneath a UCWSPS of different
amplitude at the same value of εT can be drasti-
cally altered if one tailors in a controllable way the
input: Setting all nodes of the circular array and
the central one at z = 0 to the respective unsta-
ble mode values and imposing on top a localized
(irrespectively gaussian or exponential) amplitude
perturbation the system locks at a higher localized
(in n) and stationary (not varying with z) mode
that is, a solitary type nonlinear mode. In Fig. 8
the parameters are εα = 1, εX = 0.3, µ = α = 1,
M = 1.98, A = 1.64, κα = 0.5, κX = 0.4, E = 2,
εT = 3 and N = 22. In Fig. 8(a) the respective
bifurcation diagram and the transition is shown. In
Figs. 8(b) and 8(c) the localized (gaussian or expo-
nential) amplitude perturbation is 10% on top of the
unstable CW mode, while in Figs. 8(d)–8(e) the per-
turbation is 100%. Both the transitional [Figs. 8(b)
and 8(d)] and the asymptotic [Figs. 8(c) and 8(e)]
behavior are shown. It is, therefore, evident that
perturbing controllably and locally an unstable to
periodic perturbations CW nonlinear mode leads to
the appearance of solitary type structures, although
the localization is rather weak.

5. Conclusions

The investigation focused on the existence of stable
localized solutions and pattern formation in cen-
trally coupled circular arrays. In the model under
investigation all the nonlinear coupling coefficients
were complex, that is nonlinear losses were taken
into account. In such a case, at least when the cen-
tral coupling is absent, confined discrete solitary-
type structures may exist. This expectation is
further strengthened because there is evidence in
the literature that breathing solutions for the dis-
crete Ginzburg–Landau equation (which is the
planar-periodic no-central element limit of the
models considered in this work) do exist. Our inves-
tigation thus focused on the existence of breathing
pattern solutions, that is, solutions whose intensity
exhibit azimuthally periodic behavior as the light
propagates along z. While the stability of the zero
solution is of great importance for the investiga-
tion of the existence of stable localized modes in

open systems (in the unstable situation the optical
power may concentrate on a subset of nodes lead-
ing to solitary and/or breather type of structure),
this is not the case in the circular system in hand.
The reason is that localized structures residing on
an open (linear) array have their intensity dropping
to zero at their tails, while in a circular system the
tails coincide.

The investigation concentrated on the existence
and stability (to amplitude modulations and/or
periodic perturbations) of nonlinear CW modes.
The regions and character of stability of these non-
linear modes span a wide region in the parame-
ter space which extends beyond the linear stability
region. Respective bifurcation diagrams reveal a
multitude of branches of various kinds of stabil-
ity/instability situations. Exploiting these stability
and bifurcation diagrams proves a quite effective
tool in our investigation whose results may briefly
be summarized as follows:

• Setting all nodes of the circular array and the cen-
tral one at z = 0 to the respective UCWSPS mode
values multiplied by an exponential or gaussian
[exp(−|n − n0|ν) (ν = 1, 2)] and the central one
set at its respective UCWSPS value, a periodic
mode is established after a transition period.

• Setting all nodes of the circular array and the cen-
tral one at z = 0 to the respective UCWSPS mode
values and perturbing them randomly (amplitude
and phase) the same (irrespectively of the initial
perturbation) periodic mode is established after
a transition period.

• Setting all nodes of the circular array and the
central one at z = 0 to the respective UCWSPS

mode values and modulating each node through
a phase factor a fully controllable periodic mode
is established after a very short transition period.

• Setting all nodes of the circular array and the
central one at z = 0 to the respective values of a
UPS mode lying under a SCW mode and perturb-
ing them randomly (amplitude and phase) the
system locks at the higher SCW mode.

• Setting all nodes of the circular array and the
central one at z = 0 to the respective values
of a UPS mode located under a UCWSPS mode
and perturbing them randomly (amplitude and
phase) the UCWSPS mode is excited, though with
a chaotic modulation that persists. If, instead of
randomly perturbing it, one imposes on top of
the chosen CW a localized (gaussian or exponen-
tial) amplitude perturbation the system locks at
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a higher adequately localized (in n) and station-
ary (in z) mode of solitary type.

These properties render the concept ideal for the
design of high power stable amplifiers as well as
of all-optical data processing devices in optical
communications since it is functionally rich, far
more controllable than a planar one and easier to
stabilize.
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