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Ergodic Methods in Additive Combinatorics

Bryna Kra

Abstract. Shortly after Szemerédi’s proof that a set of positive upper density
contains arbitrarily long arithmetic progressions, Furstenberg gave a new proof
of this theorem using ergodic theory. This gave rise to the field of combinato-
rial ergodic theory, in which problems motivated by additive combinatorics are
addressed kwith ergodic theory. Combinatorial ergodic theory has since pro-
duced combinatorial results, some of which have yet to be obtained by other
means, and has also given a deeper understanding of the structure of measure
preserving systems. We outline the ergodic theory background needed to un-
derstand these results, with an emphasis on recent developments in ergodic
theory and the relation to recent developments in additive combinatorics.

These notes are based on four lectures given during the School on Additive
Combinatorics at the Centre de recherches mathématiques, Montreal in April,
2006. The talks were aimed at an audience without background in ergodic
theory. No attempt is made to include complete proofs of all statements and
often the reader is referred to the original sources. Many of the proofs included
are classic, included as an indication of which ingredients play a role in the
developments of the past ten years.

1. Combinatorics to ergodic theory

1.1. Szemerédi’s theorem. Answering a long standing conjecture of Erdős
and Turán [11], Szemerédi [54] showed that a set E ⊂ Z with positive upper density1

contains arbitrarily long arithmetic progressions. Soon thereafter, Furstenberg [16]
gave a new proof of Szemerédi’s Theorem using ergodic theory, and this has lead to
the rich field of combinatorial ergodic theory. Before describing some of the results
in this subject, we motivate the use of ergodic theory for studying combinatorial
problems.

We start with the finite formulation of Szemerédi’s theorem:

Theorem 1.1 (Szemerédi [54]). Given δ > 0 and k ∈ N, there is a function
N(δ, k) such that if N > N(δ, k) and E ⊂ {1, . . . , N} is a subset with |E| ≥ δN ,
then E contains an arithmetic progression of length k.
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1Given a set E ⊂ Z, its upper density d∗(E) is defined by d∗(E) = lim supN→∞ |E ∩

{1, . . . , N}|/N .
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It is clear that this statement immediately implies the first formulation of Sze-
merédi’s theorem, and a compactness argument gives the converse implication.

1.2. Translation to a probability system. Starting with Szemerédi’s the-
orem, one gains insight into the intersection of sufficiently many sets with positive
measure in an arbitrary probability system.2 Note that N(δ, k) denotes the quantity
in Theorem 1.1.

Corollary 1.2. Let δ > 0, k ∈ N, (X,X , µ) be a probability space and A1, . . . ,
AN ∈ X with µ(Ai) ≥ δ for i = 1, . . . , N . If N > N(δ, k), then there exist a, d ∈ N
such that

Aa ∩Aa+d ∩Aa+2d ∩ · · · ∩Aa+kd 6= ∅.

Proof. For A ∈ X , let 1A(x) denote the characteristic function of A (meaning
that 1A(x) is 1 for x ∈ A and is 0 otherwise). Let N > N(δ, k). Then

∫

X

1
N

N−1∑
n=0

1An dµ ≥ δ.

Thus there exists x ∈ X such that

1
N

N−1∑
n=0

1An(x) ≥ δ.

Then E = {n : x ∈ An} satisfies |E| ≥ δN , and so Szemerédi’s theorem implies
that E contains an arithmetic progression of length k. By the definition of E, we
have a sequence of sets with the desired property. ¤

1.3. Measure preserving systems. A probability measure preserving system
is a quadruple (X,X , µ, T ), where (X,X , µ) is a probability space and T : X → X
is a bijective, measurable, measure preserving transformation. This means that for
all A ∈ X , T−1A ∈ X and

µ(T−1A) = µ(A).

In general, we refer to a probability measure preserving system as a system.
Without loss of generality, we can place several simplifying assumptions on

our systems. We assume that X is countably generated; thus for 1 ≤ p < ∞,
Lp(µ) is separable. We implicitly assume that all sets and functions are measurable
with respect to the appropriate σ-algebra, even when this is not explicitly stated.
Equality between sets or functions is always meant up to sets of measure 0.

2A σ-algebra is a collection X of subsets of X satisfying: (i) X ∈ X (ii) for any A ∈ X we
also have X \ A ∈ X (iii) for any countable collection An ∈ X , we also have

S∞
n=1 An ∈ X . A

σ-algebra is endowed with operations
W

,
V

, and c, which correspond to union, intersection, and
taking complements. By a probability system, we mean a triple (X,X , µ) where X is a measure
space, X is a σ-algebra of measurable subsets of X, and µ is a probability measure. In general,
we use the convention of denoting the σ-algebra X by the associated calligraphic version of the
measure space X.
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1.4. Furstenberg multiple recurrence. In a system, one can use Szeme-
rédi’s theorem to derive a bit more information about intersections of sets. If
(X,X , µ, T ) is a system and A ∈ X with µ(A) ≥ δ > 0, then

A, T−1A, T−2A, . . . , T−nA, . . .

are all sets of the same measure, and so all have measure ≥ δ. Applying Corol-
lary 1.2 to this sequence of sets, we have the existence of a, d ∈ N with

T−aA ∩ T−(a+d)A ∩ T−(a+2d) ∩ · · · ∩ T−(a+kd)A 6= ∅.

Furthermore, the measure of this intersection must be positive. If not, we could
remove from A a subset of measure zero containing all the intersections and obtain
a subset of measure at least δ without this property. In this way, starting with
Szemerédi’s Theorem, we have derived Furstenberg’s multiple recurrence theorem:

Theorem 1.3 (Furstenberg [16]). Let (X,X , µ, T ) be a system and let A ∈ X
with µ(A) > 0. Then for any k ≥ 1, there exists n ∈ N such that

(1.1) µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0.

2. Ergodic theory to combinatorics

2.1. Strong form of multiple recurrence. We have seen that Fursten-
berg multiple recurrence can be easily derived from Szemerédi’s theorem. More
interesting is the converse implication, showing that one can use ergodic theory
to prove regularity properties of subsets of the integers, and in particular derive
Szemerédi’s theorem. This is what Furstenberg did in his landmark paper [16],
and the techniques introduced in this paper have been used subsequently to deduce
other patterns in subsets of integers with positive upper density. (See Section 9.)
Moreover, Furstenberg’s proof lead to new questions within ergodic theory, about
the structure of measure preserving systems. In turn, this finer analysis of measure
preserving systems has had implications in additive combinatorics. We return to
these questions in Section 3.

Furstenberg’s approach to Szemerédi’s theorem has two major components.
The first is proving a certain recurrence statement in ergodic theory, like that of
Theorem 1.3. The second is showing that this statement implies a corresponding
statement about subsets of the integers. We now make this more precise.

To use ergodic theory to show that some intersection of sets has positive mea-
sure, it is natural to average the expression under consideration. This leads us to
the strong form of Furstenberg’s multiple recurrence:

Theorem 2.1 (Furstenberg [16]). Let (X,X , µ, T ) be a system and let A ∈ X
with µ(A) > 0. Then for any k ≥ 1,

(2.1) lim inf
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA)

is positive.

In particular, this implies the existence of infinitely many n ∈ N such that the
intersection in (1.1) is positive and Theorem 1.3 follows. In Section 3, we discuss
how to prove Theorem 2.1.
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2.2. The correspondence principle. The second major component in
Furstenberg’s proof is using this multiple recurrence statement to derive a statement
about integers, such as Szemerédi’s theorem. This is the content of Furstenberg’s
correspondence principle:

Theorem 2.2 (Furstenberg [16,17]). Let E ⊂ Z have positive upper density.
There exist a system (X,X , µ, T ) and a set A ∈ X with µ(A) = d∗(E) such that

µ(T−m1A ∩ · · · ∩ T−mkA) ≤ d∗
(
(E + m1) ∩ · · · ∩ (E + mk)

)

for all k ∈ N and all m1, . . . , mk ∈ Z.

Proof. Let X = {0, 1}Z be endowed with the product topology and the shift
map T given by Tx(n) = x(n + 1) for all n ∈ Z. A point of X is thus a sequence
x = {x(n)}n∈Z, and the distance between two points x = {x(n)}n∈Z, y = {y(n)}n∈Z
is defined to be 0 if x = y and to be 2−k if x 6= y and k = min{|n| : x(n) 6= y(n)}.
Define a = {a(n)}n∈Z ∈ {0, 1}Z by

a(n) =

{
1 if n ∈ E

0 otherwise

and let A = {x ∈ X : x(0) = 1}. Thus A is a clopen (closed and open) set.
The set A ∈ X plays the same role as the set E ⊂ Z: for all n ∈ Z,

Tna ∈ A if and only if n ∈ E.

By definition of d∗(E), there exist sequences {Mi} and {Ni} of integers with
Ni →∞ such that

lim
i→∞

1
Ni

∣∣E ∩ [Mi,Mi + Ni − 1]
∣∣→ d∗(E).

It follows that

lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1A(Tna) = lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1E(n) = d∗(E).

Let C be the countable algebra generated by cylinder sets, meaning sets that
are defined by specifying finitely many coordinates of each element and leaving the
others free. We can define an additive measure µ on C by

µ(B) = lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1B(Tna),

where we pass, if necessary, to subsequences {Ni}, {Mi} such that this limit exists
for all B ∈ C. (Note that C is countable and so by diagonalization we can arrange
it such that this limit exists for all elements of C.)

We can extend the additive measure to a σ-additive measure µ on all Borel
sets X in X, which is exactly the σ-algebra generated by C. Then µ is an invariant
measure, meaning that for all B ∈ C,

µ(T−1B) = lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1B(Tn−1a) = µ(B).



ERGODIC METHODS IN ADDITIVE COMBINATORICS 5

Furthermore,

µ(A) = lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1A(Tna) = d∗(E).

If m1, . . . ,mk ∈ Z, then the set T−m1A∩ · · · ∩ T−mkA is a clopen set, its indicator
function is continuous, and

µ(T−m1A ∩ · · · ∩ T−mkA) = lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1T−m1A∩···∩T−mk A(Tna)

= lim
i→∞

1
Ni

Mi+Ni−1∑

n=Mi

1(E+m1)∩···∩(E+mk)(n)

≤ d∗
(
(E + m1) ∩ · · · ∩ (E + mk)

)
. ¤

We use this to deduce Szemerédi’s theorem from Theorem 1.3. As in the proof
of the correspondence principle, define a ∈ {0, 1}Z by

a(n) =

{
1 if n ∈ E

0 otherwise,

and set A = {x ∈ {0, 1}Z x(0) = 1}. Thus Tna ∈ A if and only if n ∈ E.
By Theorem 1.3, there exists n ∈ N such that

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0.

Therefore for some m ∈ N, Tma enters this multiple intersection and so

a(m) = a(m + n) = a(m + 2n) = · · · = a(m + kn) = 1.

But this means that

m,m + n,m + 2n, . . . , m + kn ∈ E

and so we have found an arithmetic progression of length k + 1 in E.

3. Convergence of multiple ergodic averages

3.1. Convergence along arithmetic progressions. Furstenberg’s multiple
recurrence theorem left open the question of the existence of the limit in (2.1). More
generally, one can ask if given a system (X,X , µ, T ) and f1, f2, . . . , fk ∈ L∞(µ),
does

(3.1) lim
N→∞

1
N

N−1∑
n=0

f1(Tnx) · f2(T 2nx) · · · · · fk(T knx)

exist? Moreover, we can ask in what sense (in L2(µ) or pointwise) does this limit
exist, and if it does exist, what can be said about the limit? Setting each function
fi to be the indicator function of a measurable set A, we are back in the context of
Furstenberg’s theorem.

For k = 1, existence of the limit in L2(µ) is the mean ergodic theorem of von
Neumann. In Section 4.2, we give a proof of this statement. For k = 2, existence of
the limit in L2(µ) was proven by Furstenberg [16] as part of his proof of Szemerédi’s
theorem. Furthermore, in the same paper he showed the existence of the limit in
L2(µ) in a weak mixing system for arbitrary k; we define weak mixing in Section 5.5
and outline the proof for this case.
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For k ≥ 3, the proof of existence of the limit in 3.1 requires a more subtle
understanding of measure preserving systems, and we begin discussing this case in
Section 5.8. Under some technical hypotheses, the existence of the limit in L2(µ)
for k = 3 was first proven by Conze and Lesigne (see [8, 9]), then by Furstenberg
and Weiss [22], and in the general case by Host and Kra [32]. More generally, we
showed the existence of the limit for all k ∈ N:

Theorem 3.1 (Host and Kra [34]). Let (X,X , µ, T ) be a system, let k ∈ N,
and let f1, f2, . . . , fk ∈ L∞(µ). Then the averages

1
N

N−1∑
n=0

f1(Tnx) · f2(T 2nx) · · · · · fk(T knx)

converge in L2(µ) as N →∞.

Such a convergence result for a finite system is trivial. For example, if X =
Z/NZ, then X consists of all partitions of X and µ is the uniform probability
measure, meaning that the measure of a set is proportional to the cardinality of
the set. The transformation T is given by Tx = x + 1 mod N . It is then trivial
to check the convergence of the average in (3.1). However, although the ergodic
theory is trivial in this case, there are common themes to be explored. Throughout
these notes, an effort is made to highlight the connection with recent advances in
additive combinatorics (see [39] for more on this connection). Of particular interest
is the role played by nilpotent groups, and homogeneous spaces of nilpotent groups,
in the proof of the ergodic statement.

Much of the present notes is devoted to understanding the ingredients in the
proof of Theorem 3.1, and the role of nilpotent groups in this proof. Other exposi-
tory accounts of this proof can be found in [31,40]. In this context, 2-step nilpotent
groups first appeared in the work of Conze-Lesigne in their proof of convergence
for k = 3, and a (k − 1)-step nilpotent group plays a similar role in convergence
for the average in (3.1). Nilpotent groups also play some role in the combinatorial
setup, and this has been recently verified by Green and Tao (see [26–28]) for pro-
gressions of length 4 (which corresponds to the case k = 3 in (3.1)). For more on
this connection, see the lecture notes of Ben Green in this volume.

3.2. Other results. Using ergodic theory, other patterns have been shown to
exist in sets of positive upper density and we discuss these results in Section 9. We
briefly summarize these results. A striking example is the theorem of Bergelson and
Leibman [6] showing the existence of polynomial patterns in such sets. Analogous
to the linear average corresponding to arithmetic progressions, existence of the
associated polynomial averages was shown in [35, 45]. One can also average along
“cubes”; existence of these averages and a corresponding combinatorial statement
was shown in [34]. For commuting transformations, little is known and these partial
results are summarized in Section 9.1. An explicit formula for the limit in (3.1) was
given by Ziegler [56], who also has recently given a second proof [57] of Theorem 3.1.

4. Single convergence (the case k = 1)

4.1. Poincaré recurrence. The case k = 1 in Furstenberg’s multiple recur-
rence (Theorem 1.3) is Poincaré recurrence:
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Theorem 4.1 (Poincaré [49]). If (X,X , µ, T ) is a system and A ∈ X with
µ(A) > 0, then there exist infinitely many n ∈ N such that µ(A ∩ T−nA) > 0.

Proof. Let F = {x ∈ A : T−nx /∈ A for all n ≥ 1}. Thus F ∩ T−nF = ∅ for
all n ≥ 1, and so for all integers n 6= m,

T−mA ∩ T−nA = ∅.

In particular, F, T−1F, T−2F, . . . are all pairwise disjoint sets and each set in this
sequence has measure equal to µ(F ). If µ(F ) > 0, then

µ

( ⋃

n≥0

T−nF

)
=

∑

n≥0

µ(F ) =∞,

a contradiction of µ being a probability measure.
Therefore µ(F ) = 0 and the statement is proven. ¤

In fact the same proof shows a bit more: by a simple modification of the
definition of F , we have that µ-almost every x ∈ A returns to A infinitely often.

4.2. The von Neumann ergodic theorem. Although the proof of Poincaré
recurrence is simple, unfortunately there seems to be no way to generalize it to
show multiple recurrence. In order to find a method that generalizes for multiple
recurrence, we prove a stronger statement than Poincaré recurrence, taking the
average of the expression under consideration and showing that the lim inf of this
average is positive. It is not any harder (for k = 1 only!) to show that the limit of
this average exists (and is positive). This is the content of the von Neumann mean
ergodic theorem. We first give the statement in a general Hilbert space:

Theorem 4.2 (von Neumann [55]). If U is an isometry of a Hilbert space H
and P is orthogonal projection onto the U -invariant subspace I = {f ∈ H : Uf =
f}, then for all f ∈ H,

(4.1) lim
N→∞

1
N

N−1∑
n=0

Unf = Pf.

Thus the case k = 1 in Theorem 3.1 is an immediate corollary of the von
Neumann ergodic theorem.

Proof. If f ∈ I, then

1
N

N−1∑
n=0

Unf = f

for all N ∈ N and so obviously the average converges to f . On the other hand, if
f = g − Ug for some g ∈ H, then

N−1∑
n=0

Unf = g − UNg
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and so the average converges to 0 as N →∞. Set J = {g−Ug : g ∈ H}. If fk ∈ J
and fk → f ∈ J , then

∥∥∥∥
1
N

N−1∑
n=0

Unf

∥∥∥∥ ≤
∥∥∥∥

1
N

N−1∑
n=0

Un(f − fk)
∥∥∥∥ +

∥∥∥∥
1
N

N−1∑
n=0

Un(fk)
∥∥∥∥

≤
∥∥∥∥

1
N

N−1∑
n=0

Un

∥∥∥∥ · ‖f − fk‖+
∥∥∥∥

1
N

N−1∑
n=0

Un(fk)
∥∥∥∥.

Thus for f ∈ J , the average (1/N)
∑N−1

n=0 Unf also converges to 0 as N →∞.
We now show that an arbitrary f ∈ H can be written as a combination of

functions which exhibit these behaviors, meaning that any f ∈ H can be written
as f = f1 + f2 for some f1 ∈ I and f2 ∈ J . If h ∈ J⊥, then for all g ∈ H,

0 = 〈h, g − Ug〉 = 〈h, g〉 − 〈h,Ug〉 = 〈h, g〉 − 〈U∗h, g〉 = 〈h− U∗h, g〉
and so h = U∗h and h = Uh. Conversely, reversing the steps we have that if h ∈ I,
then h ∈ J⊥.

Since J⊥ = J⊥, we have that

H = I ⊕ J .

Thus writing f = f1 + f2 with f1 ∈ I and f2 ∈ J , we have

1
N

N−1∑
n=0

Unf =
1
N

N−1∑
n=0

Unf1 +
1
N

N−1∑
n=0

Unf2.

As N →∞, the first sum converges to the identity and the second sum to 0. ¤

The idea behind the proof of von Neumann’s Theorem is simple: decompose
an arbitrary function into two pieces and then show that the limit exists for each
of these pieces. This sort of decomposition is used (in some sense) in Furstenberg’s
proof of Theorem 2.1, the original proof of Szemerédi’s theorem, the convergence
result of Theorem 3.1, and in the recent results of Green and Tao on patterns in
the prime numbers.

Under a mild hypothesis on the system, we have an explicit formula for the
limit (4.1). Let (X,X , µ, T ) be a system. A subset A ⊂ X is said to be invari-
ant if T−1A = A. The invariant sets form a sub-σ-algebra I of X . The system
(X,X , µ, T ) is said to be ergodic if I is trivial, meaning that every invariant set has
either measure 0 or measure 1.

A measure preserving transformation T : X → X defines a linear operator
UT : L2(µ)→ L2(µ) by

(UT f)(x) = f(Tx).

It is easy to check that the operator UT is a unitary operator (meaning its adjoint
is equal to its inverse). In a standard abuse of notation, we use the same letter to
denote the operator and the transformation, writing Tf(x) = f(Tx) instead of the
more cumbersome UT f(x) = f(Tx).

Applying von Neumann’s ergodic theorem in a measure preserving system, we
have:
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Corollary 4.3. If (X,X , µ, T ) is a system and f ∈ L2(µ), then

1
N

N−1∑
n=0

f(Tnx)

converges in L2(µ), as N → ∞, to a T -invariant function f̃ . If the system is
ergodic, then the limit is the constant function

∫
f dµ.

Let (X,X , µ, T ) be an ergodic system and let A,B ∈ X . Taking f = 1A in
Corollary 4.3 and integrating with respect to µ over a set B, we have that

lim
N→∞

1
N

N−1∑
n=0

∫

B

1A(Tnx) dµ(x) =
∫

B

(∫
1A(y) dµ(y)

)
dµ(x).

Rewriting this, we have

lim
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−nB) = µ(A)µ(B).

In fact, one can check that this condition holds for all A,B ∈ X if and only if
the system is ergodic.

As already discussed, convergence in the case of the finite system Z/NZ with
the transformation of adding 1 mod N is trivial. Furthermore this system is er-
godic. More generally, any permutation on Z/NZ can be expressed as a product
of disjoint cyclic permutations. These permutations are the “indecomposable” in-
variant subsets of an arbitrary transformation on Z/NZ and the restriction of the
transformation to one of these subsets is ergodic.

This idea of dividing a space into indecomposable components generalizes: an
arbitrary measure preserving system can be decomposed into, perhaps continuously
many, indecomposable components, and these are exactly the ergodic ones. Using
this ergodic decomposition (see, for example, [10]), instead of working with an ar-
bitrary system, we reduce most of the recurrence and convergence questions we
consider here to the same problem in an ergodic system.

5. Double convergence (the case k = 2)

5.1. A model for double convergence. We now turn to the case of k = 2
in Theorem 3.1, and study convergence of the double average

(5.1)
1
N

N−1∑
n=0

f1(Tnx) · f2(T 2nx)

for bounded functions f1 and f2. Our goal is to explain how a simple class of
systems, the rotations, suffice to understand convergence for the double average.

First we explicitly define what is meant by a rotation. Let G be a compact
abelian group, with Borel σ-algebra B, Haar measure m, and fix some α ∈ G.
Define T : G→ G by

Tx = x + α.

The system (G,B, m, T ) is called a group rotation. It is ergodic if and only if Zα
is dense in G. For example, when X is the circle T = R/Z and α /∈ Q, the rotation
by α is ergodic.

The double average is the simplest example of a nonconventional ergodic aver-
age: even for an ergodic system, the limit is not necessarily constant. This sort of
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behavior does not occur for the single average of von Neumann’s theorem, where
we have seen that the limit is constant in an ergodic system. Even for the simple
example of an an ergodic rotation, the limit of the double average is not constant:

Example 5.1. Let X = T, with Borel σ-algebra and Haar measure, and let
T : X → X be the rotation Tx = x + α mod 1. Setting f1(x) = exp(4πix) and
f2(x) = exp(−2πix), then for all n ∈ N,

f1(Tnx) · f2(T 2nx) = f2(x).

In particular, the double average (5.1) for these functions converges to a noncon-
stant function.

More generally, if α /∈ Q and f1, f2 ∈ L∞(µ), the double average converges to
∫

T
f1(x + t) · f2(x + 2t) dt.

We shall see that Fourier analysis suffices to understand this average. By taking
both functions to be the indicator function of a set with positive measure and
integrating over this set, we then have that Fourier analysis suffices for the study of
arithmetic progressions of length 3. This gives a complete proof of Roth’s Theorem
via ergodic theory. Later we shall see that more powerful methods are needed to
understand the average along longer progressions. In a similar vein, rotations are
the model for an ergodic average with 3 terms, but are not sufficient for more terms.
We introduce some terminology to make these notions more precise.

5.2. Factors. For the remainder of this section, we assume that (X,X , µ, T )
is an ergodic system.

A factor of a system (X,X , µ, T ) can be defined in one of several equivalent
ways. It is a T -invariant sub-σ-algebra Y of X . A second characterization is that
a factor is a system (Y,Y, ν, S) and a measurable map π : X → Y , the factor map,
such that µ ◦ π−1 = ν and S ◦ π = π ◦ T for µ-almost every x ∈ X. A third
characterization is that a factor is a T -invariant subalgebra F of L∞(µ). One can
check that the first two definitions agree by identifying Y with π−1(Y), and that the
first and third agree by identifying F with L∞(Y). When any of these conditions
holds, we say that Y , or the appropriate sub-σ-algebra, is a factor of X and write
π : X → Y for the factor map. We usually make use of a slight (and standard)
abuse of notation, using the same letter T to denote both the transformation in
the original system and the transformation in the factor system. If the factor map
π : X → Y is also injective, we say that the two systems (X,X , µ, T ) and (Y,Y, ν, S)
are isomorphic.

For example, if (X,X , µ, T ) and (Y,Y, ν, S) are systems, then each is a factor
of the product system (X × Y,X × Y, µ× ν, T × S) and the associated factor map
for each is projection onto the appropriate coordinate.

A more interesting example can be given in the system X = T×T, with Borel
σ-algebra and Haar measure, and transformation T : X → X given by

T (x, y) = (x + α, y + x).

Then T with the rotation x 7→ x + α is a factor of X.
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5.3. Conditional expectation. If Y is a T -invariant sub-σ-algebra of X and
f ∈ L2(µ), the conditional expectation E(f | Y) of f with respect to Y is the function
on Y defined by E(f | Y ) ◦ π = E(f | Y). It is characterized as the Y-measurable
function on X such that∫

X

f(x) · g(π(x)) dµ(x) =
∫

Y

E(f | Y)(y) · g(y) dν(y)

for all g ∈ L∞(ν) and it satisfies the identities∫
E(f | Y) dµ =

∫
f dµ

and
TE(f | Y) = E(Tf | Y).

As an example, take X = T × T endowed with the transformation (x, y) 7→
(x + α, y + x). We have a factor Z = T endowed with the map x 7→ x + α.
Considering f(x, y) = exp(x)+exp(y), we have that E(f | Z) = exp(x). The factor
σ-algebra Z is the σ-algebra of sets that depend only on the x coordinate.

5.4. Characteristic factors. For f1, . . . , fk ∈ L∞(µ), we are interested in
convergence in L2(µ) of:

(5.2)
1
N

N−1∑
n=0

Tnf1 · T 2nf2 · · · · · T knfk.

Instead of working with the whole system (X,X , µ, T ), it turns out that it is easier
to find some factor of the system that characterizes this average, meaning find some
well chosen factor such that we can prove convergence of the average in this factor
and this convergence suffices to understand convergence of the same average in the
original system. This motivates the following definition.

A factor Y of X is characteristic for the average (5.2) if the difference be-
tween (5.2) and

1
N

N−1∑
n=0

TnE(f1 | Y) · T 2nE(f2 | Y) · · · · · T knE(fk | Y)

(the same average with E(fi | Y) substituted for fi for i = 1, 2, . . . , k) converges to
0 in L2(µ) as N → ∞. Rewriting the average (5.2) in terms of fi − E(fi | Y) for
i = 1, 2, . . . , k, it follows that the factor Y is characteristic for the average (5.2) if
and only if the average in (5.2) converges to 0 as N → ∞ when E(fi | Y) = 0 for
some i ∈ {1, 2, . . . , k}.

The idea of a characteristic factor is that the limiting behavior of the average
under study can be reduced to that of a factor of the system. We have already
seen an example of a characteristic factor in the von Neumann ergodic theorem:
the trivial factor, consisting only of the constants, is characteristic. (Recall that we
have assumed that the system is ergodic.)

By definition, the whole system is always a characteristic factor. Of course
nothing is gained by using such a characteristic factor, and the notion only be-
comes useful when we can find a characteristic factor that has useful geometric
and/or algebraic properties. A very short outline of the proof of convergence of the
average (5.2) is as follows: find a characteristic factor that has sufficient structure
so as to allow one to prove convergence. We return to this idea later.
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The definition of a characteristic factor can be extended for any other average
under consideration, with the obvious changes: the limit remains unchanged when
each function is replaced by its conditional expectation on this factor. This notion
has been implicit in the literature since Furstenberg’s proof of Szemerédi’s theorem,
but the terminology we now use was only introduced more recently in [22].

5.5. Weak mixing systems. The system (X,X , µ, T ) is weak mixing if for
all A,B ∈ X ,

lim
N→∞

1
N

N−1∑
n=0

∣∣µ(T−nA ∩B)− µ(A)µ(B)
∣∣ = 0.

Any weak mixing system is ergodic, and the example of an irrational circle rotation
shows that converse does not hold. There are many equivalent formulations of weak
mixing, and we give a few (see, for example [10]):

Proposition 5.2. Let (X,X , µ, T ) be a system. The following are equivalent :

(1) (X,X , µ, T ) is weak mixing.
(2) There exists J ⊂ N of density zero such that for all A,B ∈ X

µ(T−nA ∩B)→ µ(A)µ(B) as n→∞ and n /∈ J .

(3) For all A,B, C ∈ X with µ(A)µ(B)µ(C) > 0, there exists n ∈ N such that

µ(A ∩ T−nB)µ(A ∩ T−nC) > 0.

(4) The system (X ×X,X × X , µ× µ, T × T ) is ergodic.

Any system exhibiting rotational behavior (for example a rotation on a circle,
or a system with a nontrivial circle rotation as a factor) is not weak mixing. We
have already seen in Example 5.1 that weak mixing, or lack thereof, has an effect
on multiple averages. We give a second example to highlight this effect:

Example 5.3. Suppose that X = X1∪X2∪X3 with T (X1) = X2, T (X2) = X3

and T (X3) = X1, and further suppose that T 3 restricted to Xi, for i = 1, 2, 3, is
weak mixing. For the double average

1
N

N−1∑
n=0

f1(Tnx) · f2(T 2nx),

where f1, f2 ∈ L∞(µ), if x ∈ X1, this average converges to

1
3

(∫

X1

f1 dµ

∫

X1

f2 dµ +
∫

X2

f1 dµ

∫

X3

f2 dµ +
∫

X3

f1 dµ

∫

X2

f2 dµ

)
.

A similar expression with obvious changes holds for x ∈ X2 or x ∈ X3.

The main point is that in both Example 5.1 and in Example 5.3 (for the double
average) the limit depends on the rotational behavior of the system. Example 5.3
lacks weak mixing and so has a nontrivial rotation factor. We now formalize this
notion.
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5.6. Kronecker factor. The Kronecker factor (Z1,Z1, m, T ) of (X,X , µ, T )
is the sub-σ-algebra of X spanned by the eigenfunctions. (Recall that there is a
unitary operator UT associated to the measure preserving transformation T . By
eigenfunctions, we refer to the eigenfunctions of this unitary operator.) A classical
result is that the Kronecker factor can be given the structure of a group rotation:

Theorem 5.4 (Halmos and von Neumann [30]). The Kronecker factor of
a system is isomorphic to a system (Z1,Z1,m, T ), where Z1 is a compact abelian
group, Z1 is its Borel σ-algebra, m is the Haar measure, and Tx = x + α for some
fixed α ∈ Z1.

We use π1 : X → Z1 to denote the factor map from the system (X,X , µ, T ) to
its Kronecker factor (Z1,Z1,m, T ). Then any eigenfunction f of X takes the form

f(x) = cγ
(
π1(x)

)
,

where c is a constant and γ ∈ Ẑ1 is a character of Z1.
We give two examples of Kronecker factors:

Example 5.5. If X = T× T, α ∈ T, and T : X → X is the map

T (x, y) = (x + α, y + x),

then the rotation x 7→ x + α on T is the Kronecker factor of X. It corresponds
to the pure point spectrum. (The spectrum in the orthogonal complement of the
Kronecker factor is countable Lebesgue.)

Example 5.6. If X = T3, α ∈ T, and T : X → X is the map

T (x, y, z) = (x + α, y + x, z + y),

then again the rotation x 7→ x+α on T is the Kronecker factor of X. This example
has the same pure point spectrum as the first example, but the system in the first
example is a factor of the system in the second example.

The Kronecker factor can be used to give another characterization of weak
mixing:

Theorem 5.7 (Koopman and von Neumann [38]). A system is not weak
mixing if and only if it has a nontrivial factor which is a rotation on a compact
abelian group.

The largest of these factors is exactly the Kronecker factor.

5.7. Convergence for k = 2. If we take into account the rotational behavior
in a system, meaning the existence of a nontrivial Kronecker factor, then we can
understand the limit of the double average

(5.3)
1
N

N−1∑
n=0

Tnf1 · T 2nf2.

An obvious constraint is that for µ-almost every x, the triple (x, Tnx, T 2nx)
projects to an arithmetic progression in the Kronecker factor Z1. Assuming that
the Kronecker factor is a circle with rotation by some α, we can think of each point
in the progression (x, Tnx, T 2nx) as located on the fiber above the corresponding
point in the progression (z, z + α, z + 2α):
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x

z z+n

x

z+2nαα

T

2nT

nx

Furstenberg proved that this obvious restriction is the only restriction, showing
that to prove convergence of the double average, one can assume that the system
is an ergodic rotation on a compact abelian group:

Theorem 5.8 (Furstenberg [16]). If (X,X , µ, T ) is an ergodic system,
(Z1,Z1,m, T ) is its Kronecker factor, and f1, f2,∈ L∞(µ), then the limit

∥∥∥∥
1
N

N−1∑
n=0

Tnf1 · T 2nf2 − 1
N

N−1∑
n=0

TnE(f1 | Z1) · T 2nE(f2 | Z1)
∥∥∥∥

L2(µ)

tends to 0 as N →∞.

In our terminology, this theorem can be quickly summarized: the Kronecker
factor is characteristic for the double average. To prove the theorem, we use a
standard trick for averaging, which is an iterated use of a variation of the van der
Corput lemma on differences. (See [41] for uses of the van der Corput Lemma in
number theory and [2] for its introduction to uses in ergodic theory.)

Lemma 5.9 (van der Corput). Let {un} be a sequence in a Hilbert space
with ‖un‖ ≤ 1 for all n ∈ N. For h ∈ N, set

γh = lim sup
N→∞

∣∣∣∣
1
N

N−1∑
n=0

〈un+h, un〉
∣∣∣∣.

Then

lim sup
N→∞

∥∥∥∥
1
N

N−1∑
n=0

un

∥∥∥∥
2

≤ lim sup
H→∞

1
H

H−1∑

h=0

γh.

Proof. Given ε > 0 and H ∈ N, for N sufficiently large we have that
∣∣∣∣
1
N

N−1∑
n=0

un − 1
N

1
H

N−1∑
n=0

H−1∑

h=0

un+h

∣∣∣∣ < ε.

By convexity,
∥∥∥∥

1
N

N−1∑
n=0

1
H

H−1∑

h=0

un+h

∥∥∥∥
2

≤ 1
N

N−1∑
n=0

∥∥∥∥
1
H

H−1∑

h=0

un+h

∥∥∥∥
2

=
1
N

1
H2

N−1∑
n=0

H−1∑

h1,h2=0

〈un+h1 , un+h2〉
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and this approaches

1
H2

H−1∑

h1,h2

γh1−h2

as N →∞. But the assumption implies that this approaches 0 as H →∞. ¤

We now use this in the proof of Furstenberg’s theorem:

Proof of Theorem 5.8. By replacing f1 by f1 − E(f1 | Z1) and f2 by f2 −
E(f2 | Z1), it suffices to show that if some fi, for i = 1, 2 satisfies E(fi | Z1) = 0,
then the doubule average converges to 0. Without loss, we assume that
E(f | Z1) = 0.

Set un = Tnf1 · T 2nf2. Then

〈un, un+h〉 =
∫

Tnf1 · T 2nf2 · Tn+hf1 · T 2n+2hf2 dµ

=
∫

(f1 · Thf1) · Tn(f2 · T 2hf2) dµ.

Thus

1
N

N−1∑
n=0

〈un, un+h〉 =
(∫

f1 · Thf1 dµ

)
1
N

N−1∑
n=0

Tn(f2 · T 2hf2) dµ.

By the von Neumann ergodic theorem (Theorem 4.2) applied to the second term,
the limit

γh = lim
N→∞

1
N

N−1∑
n=0

〈un, un+h〉

exists. Moreover, it is equal to

(5.4) γh =
∫

f1 · Thf1 · P(f2 · T 2hf2) dµ,

where P is projection onto the T -invariant functions of L2(µ). Since T is ergodic, P
is projection onto the constant functions. But since E(f1 | Z1) = 0, f1 is orthogonal
to the constant functions and so by averaging over h, we have that

lim
H→∞

1
H

H−1∑

h=0

γh = 0.

By the van der Corput lemma, it follows that the double average also converges
to 0. ¤

Furstenberg used a similar argument combined with induction to show that
in a weak mixing system, the average (5.2) converges to the product of the inte-
grals in L2(µ) for all k ≥ 1. This is one of the (simpler) steps in the proof of
the Furstenberg’s multiple recurrence theorem (Theorem 1.3) and gives a proof of
multiple recurrence for weakly mixing systems. However, much more is needed to
prove Theorem 1.3 in an arbitrary system; this is carried out by showing that for
any function, the average along arithmetic progressions can be decomposed into
two pieces, one of which has a generalized weak mixing property and the other of
which is rigid in some sense. We have already seen a simple example of such a
decomposition, in the proof of the von Neumann ergodic theorem. Some sort of
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decomposition is behind all of the multiple recurrence and convergence results we
discuss.

We now return to showing that a set of integers with positive upper density
contains arithmetic progressions of length three (Roth’s theorem). By Furstenberg’s
correspondence principle it suffices to show double recurrence:

Theorem 5.10 (Theorem 1.3 for k = 2). Let (X,X , µ, T ) be an ergodic
system, and let A ∈ X with µ(A) > 0. There exists n ∈ N with

µ(A ∩ T−nA ∩ T−2nA) > 0.

Proof. Let f = 1A. Then

µ(A ∩ T−nA ∩ T−2nA) =
∫

f · Tnf · T 2nf dµ.

It suffices to show that

lim sup
N→∞

1
N

N−1∑
n=0

∫
f · Tnf · T 2nf dµ

is positive. However, we will show the stronger statement that the limit exists and
is positive, rather than just the lim sup is positive.3

By Theorem 5.8, the limiting behavior of the double average (1/N)
∑N−1

n=0 Tnf ·
T 2nf is unchanged if f is replaced by E(f | Z1). Multiplying by f and integrating,
it thus suffices to show that

(5.5) lim
N→∞

1
N

N−1∑
n=0

∫
f · TnE(f | Z1) · T 2nE(f | Z1) dµ

exists and is positive. Since Z1 is T -invariant, TnE(f | Z1) · T 2nE(f | Z1) is mea-
surable with respect to Z1 and so we can replace (5.5) by

lim
N→∞

1
N

N−1∑
n=0

∫
E(f | Z1) · TnE(f | Z1) · T 2nE(f | Z1) dµ.

This means that we can assume that the first term is also measurable with respect
to the Kronecker factor, and so we can assume that f is a nonnegative function that
is measurable with respect to the Kronecker. Thus the system X can be assumed
to be Z1 and the transformation T is rotation by some irrational α. Thus it suffices
to show that

lim
N→∞

1
N

N−1∑
n=0

∫

Z1

f(s) · f(s + nα) · f(s + 2nα) dm(s)

exists and is positive. But the convergence of this last expression is immediate
using Fourier analysis. Since {nα} is equidistributed in Z1, this limit approaches

(5.6)
∫∫

Z1×Z1

f(s) · f(s + t) · f(s + 2t) dm(s) dm(t).

3In Furstenberg’s proof of Szemerédi’s theorem via Theorem 1.3, he showed that the analogous
lim sup for k ≥ 2 is positive and only showed the existence of the associated limit for k = 2. The
positivity of the lim sup suffices for proving Szemerédi’s theorem. As we are interested in the
existence of the limit for k > 2 and the finer combinatorial information that can be gleaned from
this, we prove the deeper statement here.
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But

lim
t→0

∫

Z1

f(s) · f(s + t) · f(s + 2t) dm(s) =
∫

Z1

f(s)3 dm(s),

which is clearly positive. In particular, the double integral in (5.6) is positive. ¤

In the proof we have actually proven a stronger statement than needed to obtain
Roth’s theorem: we have shown the existence of the limit of the double average
in L2(µ). Letting f̃ = E(f | Z1) for f ∈ L∞(µ), we have show that the double
average (5.3) converges to∫

Z1

f̃1(π1(x) + s) · f̃2(π1(x) + 2s) dm(s).

More generally, the same sort of argument can be used to show that in a weak
mixing system, the Kronecker factor is characteristic for the averages (3.1) for all
k ≥ 1, meaning that to prove convergence of these averages in a weak mixing system
it suffices to assume that the system is a Kronecker system. Using Fourier analysis,
one then gets convergence of the averages (3.1) for weak mixing systems.

5.8. Multiple averages. We want to carry out similar analysis for the mul-
tiple averages

1
N

N−1∑
n=0

Tnf1 · T 2nf2 · · · · · T knfk

and show the existence of the limit in L2(µ) as N →∞. In his proof of Szemerédi’s
theorem in [16] and subsequent proofs of Szemerédi’s theorem via ergodic theory
such as [21], the approach of Section 5.7 is not the one used for k ≥ 3. Namely,
they do not show the existence of the limit and then analyze the limit itself to show
it is positive. A weaker statement is proved, only giving that the lim inf of (2.1) is
positive. We will not discuss the intricate structure theorem and induction needed
to prove this.

Already to prove convergence for k = 3, one needs to consider more than just
rotational behavior.

Example 5.11. Given a system (X,X , µ, T ), let F (Tx) = f(x)F (x), where

f(Tx) = λf(x) and |λ| = 1.

Then

F (Tnx) = f(x)f(Tx) · · · f(Tn−1x)F (x) = λn(n−1)/2
(
f(x)

)n
F (x)

and so
F (x) =

(
F (Tnx)

)3(
F (T 2nx)

)−3
F (T 3nx).

This means that there is some relation among

(x, Tnx, T 2nx, T 3nx)

that does not arise from the Kronecker factor.

One can construct more complicated examples (see Furstenberg [18]) that show
that even such generalized eigenfunctions do not suffice for determining the lim-
iting behavior for k = 3. More precisely, the factor corresponding to generalized
eigenfunctions (the Abramov factor) is not characteristic for the average (3.1) with
k = 3.
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To understand the triple average, one needs to take into account systems more
complicated than Kronecker and Abramov systems. The simplest such example is
a 2-step nilsystem (the use of this terminology will be clarified later):

Example 5.12. Let X = T×T, with Borel σ-algebra, and Haar measure. Fix
α ∈ T and define T : X → X by

T (x, y) = (x + α, y + x)

The system is ergodic if and only if α /∈ Q.

The system is not isomorphic to a group rotation, as can be seen by defining
f(x, y) = e(y) = exp(2πiy). Then for all n ∈ Z,

Tn(x, y) =
(

x + nα, y + nx +
n(n− 1)

2
α

)

and so

f(Tn(x, y)) = e(y)e(nx)e
(

n(n− 1)
2

α

)
.

Quadratic expressions like these do not arise from a rotation on a group.

6. The structure theorem

6.1. Major steps in the proof of Theorem 3.1. In broad terms, there are
four major steps in the proof of Theorem 3.1.

For each k ∈ N, we inductively define a seminorm |‖·‖|k that controls the asymp-
totic behavior of the average. More precisely, we show that if |f1| ≤ 1, . . . , |fk| ≤ 1,
then

(6.1) lim sup
N→∞

∥∥∥∥
1
N

N−1∑
n=o

Tnf1 · T 2nf2 · · · · · T knfk

∥∥∥∥
L2(µ)

≤ min
1≤j≤k

|‖fj‖|k.

Using these seminorms, we define factors Zk of X such that for f ∈ L∞(µ),

E(f | Zk−1) = 0 if and only if |‖f‖|k = 0.

It follows from (6.1) that the factor Zk−1 is characteristic for the average (3.1).
The bulk of the work is then to give a “geometric” description of these factors.

This description is in terms of nilpotent groups, and more precisely we show that
the dynamics of translations on homogeneous spaces of a nilpotent Lie group deter-
mines the limiting behavior of these averages. This is the content of the Structure
Theorem, explained in Section 6.2. (A more detailed expository version of this is
given in Host [31]; for full details, see [34].)

Finally, we show convergence for these particular types of systems.
Roughly speaking, this same outline applies to other convergence results we

consider in the sequel, such as averages along polynomial times, averages along
cubes, or averages for commuting transformations. For each average, we find a
characteristic factor that can be described in geometric terms, allowing us to prove
convergence in the characteristic factor.
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6.2. The role of nilsystems. We have already seen that the limit behavior of
the double average is controlled by group rotations, meaning the Kronecker factor
is characteristic for this average. Furthermore, we have seen that something more
is needed to control the limit behavior of the triple average. Our goal here is to
explain how the multiple averages of (3.1), and some more general averages, are
controlled by nilsystems. We start with some terminology.

Let G be a group. If g, h ∈ G, let [g, h] = g−1h−1gh denote the commutator
of g and h. If A,B ⊂ G, we write [A,B] for the subgroup of G spanned by
{[a, b] : a ∈ A, b ∈ B}. The lower central series

G = G1 ⊃ G2 ⊃ · · · ⊃ Gj ⊃ Gj+1 ⊃ · · ·
of G is defined inductively, by setting G1 = G and Gj+1 = [G,Gj ] for j ≥ 1. We
say that G is k-step nilpotent if Gk+1 = {1}.

If G is a k-step nilpotent Lie group and Γ is a discrete cocompact subgroup,
the compact manifold X = G/Γ is a k-step nilmanifold.

The group G acts naturally on X by left translation: if a ∈ G and x ∈ X, the
translation Ta by a is given by Ta(xΓ) = (ax)Γ. There is a unique Borel probability
measure µ (the Haar measure) on X that is invariant under this action. We let
G/Γ denote the associated Borel σ-algebra on G/Γ. Fixing an element a ∈ G, the
system (G/Γ,G/Γ, Ta, µ) is a k-step nilsystem and Ta is a nilrotation.

The system (X,X , µ, T ) is an inverse limit of a sequence of factors
{(Xj ,Xj , µj , T )} if {Xj}j∈N is an increasing sequence of T -invariant sub-σ-algebras
such that

∨
j∈N Xj = X up to null sets.4 If each system (Xj ,Xj , µj , T ) is isomorphic

to a k-step nilsystem, then (X,X , µ, T ) is an inverse limit of k-step nilsystems.
Proving convergence of the averages (3.1) is only possible if one can has a good

description of some characteristic factor for these averages. This is the content of
the Structure Theorem:

Theorem 6.1 (Host and Kra [34]). There exists a characteristic factor for
the averages (3.1) which is isomorphic to an inverse limit of (k−1)-step nilsystems.

The advantage of reducing to nilsystems is that convergence of the averages
under study is much easier in nilsystems. This is further discussed in Section 8.2.

6.3. Examples of nilsystems. We give two examples of nilsystems that il-
lustrate their general properties.

Example 6.2. Let G = Z× T× T with multiplication given by

(k, x, y) ∗ (k′, x′, y′) =
(
k + k′, x + x′ (mod 1), y + y′ + 2kx′ (mod 1)

)
.

The commutator subgroup of G is {0} × {0} × T, and G is 2-step nilpotent. The
subgroup Γ = Z × {0} × {0} is discrete and cocompact, and thus X = G/Γ is a
nilmanifold. Let X denote the Borel σ-algebra and let µ denote Haar measure on
X. Fix some irrational α ∈ T, let a = (1, α, α), and let T : X → X be translation
by a. Then (X, µ, T ) is a 2-step nilsystem.

The Kronecker factor of X is T with rotation by α. Identifying X with T2 via
the map (k, x, y) 7→ (x, y), the transformation T takes on the familiar form of a

4Recall that if X1 and X1 are sub-σ-algebras of X , then X1
WX2 denotes the smallest sub-

σ-algebra of X containing both X1 and X2. Thus X1
WX2 consists of all sets which are unions of

sets of the form the form A ∩B for A ∈ X1 and B ∈ X2.
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skew transformation:
T (x, y) = (x + α, y + 2x + α).

This system is ergodic if and only if α /∈ Q: for x, y ∈ X and n ∈ Z,

Tn(x, y) = (x + nα, y + 2nx + n2α)

and equidistribution of the sequence {Tn(x, y)} is equivalent to ergodicity.

Example 6.3. Let G be the Heisenberg group R×R×R with multiplication
given by

(x, y, z) ∗ (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′).

Then G is a 2-step nilpotent Lie group. The subgroup Γ = Z × Z × Z is discrete
and cocompact and so X = G/Γ is a nilmanifold. Letting T be the translation by
a = (a1, a2, a3) ∈ G where a1, a2 are independent over Q and a3 ∈ R, and taking X
to be the Borel σ-algebra and µ to be the Haar measure, we have that (X,X , µ, T )
is a nilsystem. The system is ergodic if and only if a1, a2 are independent over Q.

The compact abelian group G/G2Γ is isomorphic to T2 and the rotation on
T2 by (a1, a2) is ergodic (again for a1, a2 independent over Q). The Kronecker
factor of X is the factor induced by functions on x1, x2. The system (X,X , µ, T )
is (uniquely) ergodic.

The dynamics of the first example gives rise to quadratic sequences, such as
{n2α}, and the dynamics of the second example gives rise to generalized quadratic
sequences such as {bnαcnβ}.

6.4. Motivation for nilpotent groups. The content of the Structure The-
orem is that nilpotent groups, or more precisely the dynamics of a translation on
the homogeneous space of a nilpotent Lie group, control the limiting behavior of
the averages along arithmetic progressions. We give some motivation as to why
nilpotent groups arise.

If G is an abelian group, then

{(g, gz, gz2, . . . , gzn) : g, z ∈ G}
is a subgroup of Gn. However, this does not hold if G is not abelian. To make these
arithmetic progressions into a group, one must take into account the commutators.
This is the content of the following theorem, proven in different contexts by Hall [29],
Petresco [48], Lazard [42], Leibman [43]. (Recall that Gi = [G, Gi] denotes the ith
entry in the lower central series of G.)

Theorem 6.4. If G is a group, then for any x, y ∈ G, there exist z ∈ G and
wi ∈ Gi such that

(x, x2, x3, . . . , xn)× (y, y2, y3, . . . , yn)

=
(
z, z2w1, z

3w3
1w2, . . . , z

(n
1)w(n

2)
1 w

(n
3)

2 . . . w
(n

n)
n−1

)
.

Furthermore, these expressions form a group.

If G is a group, a geometric progression is a sequence of the form

g, gz, gz2w1, gz3w3
1w2, . . . , gz

(n
1)w(n

2)
1 . . . w

(n
n)

n−1, . . .

where g, z ∈ G and wi ∈ Gi.
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Thus if G is abelian, g and z determine the whole sequence. On the other hand,
if G is k-step nilpotent with k < n, the first k terms determine the whole sequence.
(This holds because each wi appears first in the ith term of the sequence and with
exponent 1, and so it is completely determined, and for i > k, each wi is trivial.)

Similarly, if (G/Γ,G/Γ, µ, Ta) is a k-step nilsystem and

x1 = g1Γ, x2 = g2Γ, . . . , xk = gkΓ, . . . , xn = gnΓ

is a geometric progression in G/Γ, then the first k terms determine the rest. Thus
in a k-step nilsystem, ak+1xΓ is a function of the first k terms axΓ, a2xΓ, . . . , akxΓ.

This means that the (k + 1)st term T (k+1)nx in an arithmetic progression
Tnx, . . . , T knx is constrained by the first k terms. More interestingly, the converse
also holds: in an arbitrary system (X,X , µ, T ), any k-step nilpotent factor places
a constraint on (x, Tnx, T 2nx, . . . , T knx).

7. Building characteristic factors

The material in this and the next section is based on [34] and the reader is re-
ferred to [34] for full proofs. To describe characteristic factors for the averages (3.1),
for each k ∈ N we define a seminorm and use it to define these factors. We start by
defining certain measures that are then used to define the seminorms. Throughout
this section, we assume that (X,X , µ, T ) is an ergodic system.

7.1. Definition of the measures. Let X [k] = X2k

and define T [k] : X [k] →
X [k] by T [k] = T × · · · × T (taken 2k times).

We write a point x ∈ X [k] as x =
(
xε : ε ∈ {0, 1}k)

and make the natural
identification of X [k+1] with X [k]×X [k], writing x = (x′,x′′) for a point of X [k+1],
with x′,x′′ ∈ X [k].

By induction, we define a measure µ[k] on X [k] invariant under T [k]. Set
µ[0] := µ. Let I [k] be the invariant σ-algebra of (X [k],X [k], µ[k], T [k]). (Note that
this system is not necessarily ergodic.) Then µ[k+1] is defined to be the relatively in-
dependent joining of µ[k] with itself over I [k], meaning that if F and G are bounded
functions on X [k],

(7.1)
∫

X[k+1]
F (x′) ·G(x′′) dµ[k+1](x)

=
∫

X[k]
E(F | I [k])(y) · E(G | I [k])(y) dµ[k](y).

Since (X,X , µ, T ) is assumed to be ergodic, I [0] is trivial and µ[1] = µ×µ. If the
system is weak mixing, then for all k ≥ 1, µ[k] is the product measure µ×µ×· · ·×µ,
taken 2k times.

7.2. Symmetries of the measures. Writing a point x ∈ X [k] as

x = (xε : ε ∈ {0, 1}k),

we identify the indexing set {0, 1}k of this point with the vertices of the Euclidean
cube.

An isometry σ of {0, 1}k induces a map σ∗ : X [k] → X [k] by permuting the
coordinates:

(σ∗(x))ε = xσ(ε).
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For example, from the diagonal symmetries for k = 2, we have the permutations
(x00, x01, x10, x11) 7→ (x00, x10, x01, x11)

(x00, x01, x10, x11) 7→ (x11, x01, x10, x00).

By induction, the measures are invariant under permutations:

Lemma 7.1. For each k ∈ N, the measure µ[k] is invariant under all permu-
tations of coordinates arising from isometries of the unit Euclidean cube.

7.3. Defining seminorms. For each k ∈ N, we define a seminorm on L∞(µ)
by setting

|‖f‖|2k

k =
∫

X[k]

∏

ε∈{0,1}k

f(xε) dµ[k](x).

By definition of the measure µ[k], this integral is equal to
∫

X[k−1]
E

( ∏

ε∈{0,1}k−1

f(xε) | I [k−1]

)2

dµ[k−1]

and so in particular it is nonnegative.
From the symmetries of the measure µ[k] (Lemma 7.1), we have a version of the

Cauchy – Schwarz inequality for the seminorms, referred to as a Cauchy – Schwarz –
Gowers inequality:

Lemma 7.2. For ε ∈ {0, 1}k, let fε ∈ L∞(µ). Then∣∣∣∣
∫ ∏

ε∈{0,1}k

fε(xε) dµ[k](x)
∣∣∣∣ ≤

∏

ε∈{0,1}k

|‖fε‖|k.

As a corollary, the map f 7→ |‖f‖|k is subadditive (meaning that |‖f + g‖|k ≤
|‖f‖|k + |‖g‖|k for all f, g ∈ L∞(µ)) and so:

Corollary 7.3. For every k ∈ N, |‖·‖|k is a seminorm on L∞(µ).

Since the system (X,X , µ, T ) is ergodic, the σ-algebra I [0] is trivial, µ[1] = µ×µ
and |‖f‖|1 =

∣∣∫ f dµ
∣∣. By induction,

|‖f‖|1 ≤ |‖f‖|2 ≤ · · · ≤ |‖f‖|k ≤ · · · ≤ ‖f‖∞.

If the system is weak mixing, then |‖f‖|k = |‖f‖|1 for all k ∈ N.
By induction and the ergodic theorem, we have a second presentation of these

seminorms:

Lemma 7.4. For every k ≥ 1,

|‖f‖|2k+1

k+1 = lim
N→∞

1
N

N−1∑
n=0

|‖f · Tnf‖|2k

k .

7.4. Seminorms control the averages (3.1). The seminorms |‖·‖|k control
the averages along arithmetic progressions:

Lemma 7.5. Assume that (X,X , µ, T ) is ergodic and let k ∈ N. If ‖f1‖∞, . . . ,
‖fk‖∞ ≤ 1, then

lim sup
N→∞

∥∥∥∥
1
N

N−1∑
n=0

Tnf1 · T 2nf2 · · · · · T knfk

∥∥∥∥
L2(µ)

≤ min
`=1,...,k

`|‖f`‖|k.
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Proof. We proceed by induction on k. For k = 1, by the ergodic theorem

lim
N→∞

∥∥∥∥
1
N

N−1∑
n=0

Tnf1

∥∥∥∥
L2(µ)

=
∣∣∣∣
∫

f1 dµ

∣∣∣∣ = |‖f1‖|1.

Assume it holds for k ≥ 1. Let f1, f2, . . . , fk+1 ∈ L∞(µ) with ‖fj‖∞ ≤ 1 for
j = 1, 2, . . . , k + 1 and define un = Tnf1 · T 2nf2 · · ·T (k+1)nfk+1. Assume that
` ∈ {2, 3, . . . , k + 1} (the case ` = 1 is similar). Then

∣∣∣∣
1
N

N−1∑
n=0

〈un+h, un〉
∣∣∣∣ =

∣∣∣∣
∫

(f1 · Thf1)
1
N

N−1∑
n=0

k+1∏

j=2

T (j−1)n(fj · T jhfj) dµ

∣∣∣∣

≤ ‖f1 · Thf1‖L2(µ)

∥∥∥∥
1
N

N−1∑
n=0

k+1∏

j=2

T (j−1)n(fj · T jhfj)
∥∥∥∥

L2(µ)

.

Set

γh = lim sup
N→∞

∣∣∣∣
1
N

N−1∑
n=0

〈un+h, un〉
∣∣∣∣.

Then by the inductive hypothesis, with fj−1 replaced by fj ·T jhfj for j = 2, 3, . . . ,
k + 1, we have that

γh ≤ ` · |‖f` · T `hf`‖|k.

Thus
1
H

H−1∑

h=0

γh ≤ `2
1

`H

`H−1∑
n=0

|‖f` · Tnf`‖|k

and the statement follows from the van der Corput lemma (Lemma 5.9) and the
definition of the seminorm |‖·‖|k+1. ¤

7.5. The Kronecker factor, revisited (k = 2). We have seen two pre-
sentations of the Kronecker factor (Z1,Z1,m, T ): it is the largest abelian group
rotation factor and it is the sub-σ-algebra of X that gives rise to all eigenfunctions.
Another equivalent formulation is that it is the smallest sub-σ-algebra of X such
that all invariant functions of (X ×X,X × X , µ × µ, T × T ) are measurable with
respect to Z1 ×Z1. Recall that π1 : X → Z1 denotes the factor map.

We give an explicit description of the measure µ[2], and thus give yet another
description of the Kronecker factor. For f ∈ L∞(µ), write f̃ = E(f | Z1).

For s ∈ Z1 and f0, f1 ∈ L∞(µ), we define a probability measure µs on X ×X
by ∫

X×X

f0(x0)f1(x1) dµs(x0, x1) :=
∫

Z1

f̃0(z)f̃1(z + s) dm(z).

This measure is T×T -invariant and the ergodic decomposition of µ×µ under T×T
is given by

µ× µ =
∫

Z1

µs dm(s).

Thus for m-almost every s ∈ Z1, the system (X ×X,X × X , µs, T × T ) is ergodic
and

µ[2] =
∫

Z1

µs × µs dm(s).
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More generally, if fε, ε ∈ {0, 1}2, are measurable functions on X, then
∫

X[2]
f00 ⊗ f01 ⊗ f10 ⊗ f11 dµ[2]

=
∫

Z3
1

f̃00(z) · f̃01(z + s) · f̃10(z + t) · f̃11(z + s + t) dm(z) dm(s) dm(t).

It follows immediately that:

|‖f‖|42 :=
∫

f ⊗ f ⊗ f ⊗ f dµ[2]

=
∫

Z3
1

f̃(z) · f̃(z + s) · f̃(z + t) · f̃(z + s + t) dm(z) dm(s) dm(t).

As a corollary, |‖f‖|2 is the `4-norm of the Fourier Transform of f̃ and the
factor Z1, defined by |‖f‖|2 = 0 if and only if E(f | Z1) = 0 for f ∈ L∞(µ), is the
Kronecker factor of (X,X , µ, T ).

7.6. Factors for all k ≥ 1. Using these seminorms, we define factors Zk =
Zk(X) for k ≥ 1 of X that generalize the relation between the Kronecker factor
Z1 and the second seminorm |‖·‖|2. We define Zk as follows: for f ∈ L∞(µ),
E(f | Zk) = 0 if and only if |‖f‖|k+1 = 0. We let Zk denote the associated factor.
That this does define a factor needs proof and to further explain this and the
definition, we start by describing some geometric properties of the measures µ[k].

Indexing X [k] by the coordinates {0, 1}k of the Euclidean cube, it is natural
to use geometric terms like side, edge, vertex for subsets of {0, 1}k. For example,
Figure 1 illustrates the point x ∈ X [3] with the side α = {010, 011, 110, 111}:

Let α ⊂ {0, 1}k be a side. The side transformation T
[k]
α of X [k] is defined by:

(
T [k]

α x
)
ε

=

{
Txε if ε ∈ α;
xε otherwise.

We can represent the transformation Tα associated to the side {010, 011, 110, 111}
by Figure 2.

Since permutations of coordinates leave the measure µ[k] invariant and act
transitively on the sides, we have:
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ERGODIC METHODS IN ADDITIVE COMBINATORICS 25

u u

u

rr

r r

u

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

.....
.....

.....
.....

.....
............................................
....
....
....
....
....
....
....
....
....
Tx011 Tx111

Tx110

x101x001

x000 x100

Tx010

Figure 2.

Lemma 7.6. For all k ∈ N, the measure µ[k] is invariant under the side
transformations.

We now view X [k] in a different way, identifying X [k] = X ×X2k−1. A point
x ∈ X [k] is now written as

x = (x0, x̃) where x̃ ∈ X2k−1, x0 ∈ X, and 0 = (00 . . . 0) ∈ {0, 1}k.

Although the 0 coordinate has been singled out and seems to play a particular role,
it follows from the symmetries of the measure µ[k] (Lemma 7.1) that any other
coordinate could have been used instead.

If α ⊂ {0, 1}k is a side that does not contain 0 (there are k such sides), the
transformation T

[k]
α leaves the coordinate 0 invariant. It follows from induction and

the definition of the measure µ[k] that:

Proposition 7.7. Let k ∈ N. If B ⊂ X2k−1, there exists A ⊂ X with

(7.2) 1A(x0) = 1B(x̃) for almost all x = (x0, x̃) ∈ X [k]

if and only if X ×B is invariant under the k transformations T
[k]
α arising from the

k sides α not containing 0.

This means that the subsets A ⊂ X such that there exists B ⊂ X2k−1 sat-
isfying (7.2) form an invariant sub-σ-algebra Zk−1 = Zk−1(X) of X . We define
Zk−1 = Zk−1(X) to be the associated factor. Thus Zk−1(X) is defined to be the
sub-σ-algebra of sets A ⊂ X such that (7.2) holds for some set B ⊂ X2k−1.

We give some properties of the factors:

Proposition 7.8. (1) For every bounded function f on X,

|‖f‖|k = 0 if and only if E(f | Zk−1) = 0.

(2) For bounded functions fε, ε ∈ {0, 1}k, on X,
∫ ∏

ε∈{0,1}k

fε(xε) dµ[k](x) =
∫ ∏

ε∈{0,1}k

E(fε | Zk−1)(xε) dµ[k](x).

Furthermore, Zk−1 is the smallest sub-σ-algebra of X with this property.
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(3) The invariant sets of (X [k],X [k], µ[k], T [k]) are measurable with respect
to Z [k]

k . Furthermore, Zk is the smallest sub-σ-algebra of X with this
property.

The proof of this proposition relies on showing a similar formula to that used
(in (7.1)) to define the measures µ[k], but with respect to the new identification
separating the 0 coordinate from the 2k − 1 others. Namely, for bounded functions
f on X and F on X2k−1,∫

X[k]
f(x0) · F (x̃) dµ[k](x) =

∫

X[k−1]
E(f | Zk−1) · E(F | Zk−1) dµ[k−1].

The given properties then follow using induction and the symmetries of the mea-
sures.

We have already seen that Z0 is the trivial factor and Z1 is the Kronecker
factor. More generally, the sequence of factors is increasing:

Z0 ← Z1 ← · · · ← Zk ← Zk+1 ← · · · ← X.

If X is weak mixing, then Zk(X) is the trivial factor for every k.
An immediate consequence of Lemma 7.5 and the definition of the factors is

that the factor Zk−1 is characteristic for the average along arithmetic progressions:

Proposition 7.9. For all k ≥ 1, the factor Zk−1 is characteristic for the
convergence of the averages

1
N

N−1∑
n=0

Tnf1 · T 2nf2 · · · · · T knfk.

This means that in order to understand the long term behavior of the multiple
average along a k-term arithmetic progression, it suffices to assume that the space
itself is Zk. In particular, once we show that the factor Zk has some useful structure
(and this is the content of the Structure Theorem of [34], Theorem 8.1, discussed
in Section 8), we are able to prove the existence of the limit of the average along
arithmetic progressions. Proposition 7.9 would be meaningless if we were not able
to explicitly describe the structure of Zk in some way other than the abstract
definition already given, and then use that description to prove convergence.

8. Structure theorem

8.1. Systems of order k. For k ≥ 0, an ergodic system X is said to be of
order k if Zk(X) = X. This means that |‖·‖|k+1 is a norm on L∞(µ).

Given an ergodic system (X,X , µ, T ), Zk(X) is a system of order k, since
Zk(Zk(X)) = Zk(X). The unique system of order zero is the trivial system, and
a system of order 1 is an ergodic rotation. By definition, if a system is of order k,
then it is also of order k′ for any k′ > k.

By Proposition 7.9, to show convergence of

1
N

N−1∑
n=0

Tnf1 · T 2nf2 · · · · · T knfk

in an arbitrary system, it suffices to assume that each function is defined on the fac-
tor Zk−1. But since Zk−1(X) is a system of order k, it suffices to prove convergence
of this average for systems of order k − 1.

In this language, the Structure Theorem becomes:
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Theorem 8.1 (Host and Kra [34]). A system of order k is the inverse limit
of a sequence of k-step nilsystems.

Before turning to the proof of the Structure Theorem, we show convergence for
the average along arithmetic progressions in a nilsystem. Combining this conver-
gence with Theorem 8.1 completes the proof of Theorem 3.1.

8.2. Convergence on a nilmanifold. Using general properties of nilmani-
folds (see Furstenberg [15] and Parry [47]), Lesigne [46] showed for connected group
G and Leibman [44] showed in the general case, convergence in a nilsystem:

Theorem 8.2. If (X = G/Γ,G/Γ, µ, T ) is a nilsystem and f is a continuous
function on X, then

1
N

N−1∑
n=0

f(Tnx)

converges for every x ∈ X.

(See also Ratner [50] and Shah [53] for related convergence results.)
As a corollary, we have convergence in L2(µ) for the average along arithmetic

progressions in a nilmanifold:

Corollary 8.3. If (X = G/Γ,G/Γ, µ, T ) is a nilsystem, k ∈ N, and f1, f2, . . . ,
fk ∈ L∞(µ), then

lim
N→∞

1
N

N−1∑
n=0

Tnf1 · T 2nf2 · · · · · T knfk

exists in L2(µ).

Proof. By density, we can assume that the functions are continuous. By
assumption, Gk is a nilpotent Lie group, Γk is a discrete cocompact subgroup and
Xk = Gk/Γk is a nilmanifold. Let

s = (t, t2, . . . , tk) ∈ Gk

and let S : Xk → Xk be the translation by s, meaning that

S = T × T 2 × · · · × T k.

We apply Theorem 8.2 to (Xk, S) with the continuous function

F (x1, x2, . . . , xk) = f1(x1)f2(x2) . . . fk(xk)

at the point y = (x, x, . . . , x) and so the averages converge everywhere. ¤

Thus Theorem 3.1 holds in a nilsystem, and we are left with proving the Struc-
ture Theorem.

8.3. A group of transformations. To each ergodic system, we associate a
group of measure preserving transformations. The general approach is to show that
for sufficiently many systems of order k, this group is a nilpotent Lie group. The
bulk of the work is to then show that this group acts transitively on the system.
Thus the system can be given the structure of a nilmanifold and the Structure
Theorem (Theorem 8.1) follows.

Most proofs are sketched or omitted completely, and the reader is referred
to [34] for the details.
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Let (X,X , µ, T ) be an ergodic system. If S : X → X and α ⊂ {0, 1}k, define
S

[k]
α : X [k] → X [k] by:

(
S[k]

α x
)
ε

=

{
Sxε if ε ∈ α;
xε otherwise.

Let G = G(X) be the group of transformations S : X → X such that for all
k ∈ N and all sides α ⊂ {0, 1}k, the measure µ[k] is invariant under S

[k]
α .

Some properties of this group are immediate. By symmetry, it suffices to con-
sider one side. By definition, T ∈ G, and if ST = TS then we also have that S ∈ G.
If S ∈ G and k ∈ N , then µ[k] is invariant under S[k] : X [k] → X [k]. Furthermore,
S[k]E = E for every E ∈ I [k].

By induction, the invariance of the measure µ[k] under the side transformations,
and commutator relations, we have:

Proposition 8.4. If X is a system of order k, then G(X) is a k-step nilpotent
group.

8.4. Proof of the Structure Theorem. We proceed by induction. By the
inductive assumption, we can assume that we are given a system (X,X , µ, T ) of
order k. We have a factor (Y,Y, ν, T ), where Y = Zk−1(X) and π : X → Y is
the factor map. Furthermore, Y is an inverse limit of a sequence of (k − 1)-step
nilsystems

Y = lim←−Yi; Yi = Gi/Γi.

We want to show that X is an inverse limit of k-step nilsystems.
We have already shown that if fε, ε ∈ {0, 1}k, are bounded functions on X,

then ∫ ∏

ε∈{0,1}k

fε(xε) dµ[k](x) =
∫ ∏

ε∈{0,1}k

E
(
fε | Y)(xε) dµ[k](x).

In particular, for f ∈ L∞(µ),

|‖f‖|k = 0 if and only if E(f | Y) = 0.

Furthermore, X does not admit a strict sub-σ-algebra Z such that all invariant sets
of (X [k], µ[k], T [k]) are measurable with respect to Z [k]. Recall also that the system
(X [k], µ[k], T [k]) is defined as a relatively independent joining.

In [16], Furstenberg described the invariant σ-algebra for an arbitrary relatively
independent joining. It follows that X is an isometric extension of Y , meaning that
X = Y ×H/K where H is a compact group and K is a closed subgroup, µ = ν×m,
where m is the Haar measure of H/K, and the transformation T is given by

T (y, u) = (Ty, ρ(y) · u)

for some map ρ : Y → H. (Note that we are making a slight, but standard, abuse
of notation in using the same letter T to denote both the transformation in X and
Y .)

Lemma 8.5. For every h ∈ H, the transformation (y, u) 7→ (y, h · u) of X
belongs to the center of G(X).

Thus H is abelian. We can substitute H/K for H, and we use additive notation
for H.

We therefore have more information: X is an abelian extension of Y , meaning
that X = Y ×H for some compact abelian group H, µ = ν ×m, where m is the
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Haar measure of H, and the transformation T is given by T (y, u) = (Ty, u + ρ(y))
for some map ρ : Y → H. We call ρ the cocycle defining the extension.

Furthermore, we show that the cocycle defining this extension has a particular
form, given by a particular functional equation:

Proposition 8.6. If (X,X , µ, T ) is a system of order k and (Y,Y, ν, T ) =
Zk−1(X), then X is an abelian extension of Y via a compact group H and for the
cocycle ρ defining this extension, there exists a map Φ: Y [k] → H such that

(8.1)
∑

ε∈{0,1}k

(−1)ε1+···+εkρ(yε) = Φ(T [k]y)− Φ(y)

for ν[k]-a.e. y ∈ Y [k].

We can make a few more assumptions on our system. Namely, by induction
we can deduce that H is connected. Since every connected compact abelian group
H is an inverse limit of a sequence of tori, we can further reduce to the case that
H = Td.

8.5. The case k = 2 (The Conze – Lesigne equation). We maintain no-
tation of the preceding section and review what this means for the case k = 2. By
assumption, we have that (Y,Y, ν, T ) is a system of order 1, meaning it is a group
rotation. The measure ν[2] is the Haar measure of the subgroup

{
(y, y + s, y + t, y + s + t) : y, s, t ∈ Y

}

of Y 4. The functional equation of Proposition 8.6 is: there exists Φ: Y 3 → Td with

ρ(y)− ρ(y + s)− ρ(y + t) + ρ(y + s + t) = Φ(y + 1, s, t)− Φ(y, s, t)

It follows that for every s ∈ Y , there exists φs : Y → Td and cs ∈ Td satisfying
the Conze – Lesigne equation (see [9]):

(CL) ρ(y)− ρ(y + s) = φs(y + 1)− φs(y) + cs.

The group G(X) associated to the system is the group of transformations of
X = Y × Td of the form

(y, h) 7→ (y + s, h + φs(y))

where s and φs satisfy (CL).

8.6. Structure theorem in general. We give a short outline of the steps
needed to complete the proof of the Structure Theorem for k ≥ 3. We have that
Y = Zk−1(X) is a system of order k − 1, X = Y × Td, T (y, h) = (Ty, h + ρ(y)),
and ρ : Y → Td satisfies the functional equation (8.1). By the induction hypothesis
Y = lim←−Yi where each Yi = Gi/Γi is a (k − 1)-step nilsystem.

We first show that the cocycle ρ is cohomologous to a cocycle measurable with
respect to Yi for some i, meaning that the difference between the two cocycles is
a coboundary. This reduces us to the case that ρ is measurable with respect to
some Yi, and so we can assume that Y = Yi for some i. Thus Y is a (k − 1)-step
nilsystem and we can assume that Y = G/Γ with G = G(Y ).

We then use the functional equation (8.1) to lift every transformation S ∈ G
to a transformation of X belonging to G(X). Starting with the case S ∈ Gk−1, we
move up the lower central series of G. Lastly we show that we obtain sufficiently
many elements of the group G(X) in this way.



30 B. KRA

8.7. Relations to the finite case. The seminorms |‖·‖|k play the same role
that the Gowers norms play in Gowers’s proof [23] of Szemerédi’s theorem and
in Green and Tao’s proof [25] that the primes contain arbitrarily long arithmetic
progressions. We let Uk denote the k-th Gowers norm. For the finite system Z/NZ,
|‖f‖|k = ‖f‖Uk

. Furthermore, ‖·‖Uk
is a norm, not only a seminorm. The analog of

Lemma 7.5 is that if ‖f0‖∞, ‖f1‖∞, . . . , ‖fk‖∞ ≤ 1, then there exists some constant
Ck > 0 such that∣∣E(

f0(x)f1(x + y) . . . fk(x + ky) | x, y ∈ Z/pZ
)∣∣ ≤ Ck min

0≤j≤k
‖fj‖Uk

.

Other parts of the program are not as easy to translate to the finite setting.
Consider defining a factor of the system using the seminorms. If p is prime, then
Z/pZ has no nontrivial factor and so there is no factor of Z/pZ playing the role of
the factor Zk, meaning there is no factor with

E(f | Zk) = 0 if and only if ‖f‖Uk
= 0.

Instead, the corresponding results have a different flavor: if ‖f‖Uk
is large in some

sense, then f has large conditional expectation on some (noninvariant) σ-algebra
or it has large correlation with a function of some particular class. Although we
have a complete characterization of the seminorms |‖·‖|k (and so also of the factors
Zk) in terms of nilmanifolds, there are only partial combinatorial characterizations
in this direction (see [26–28]).

9. Other patterns

9.1. Commuting transformations. Ergodic theory has been used to detect
other patterns that occur in sets of positive upper density, using Furstenberg’s
correspondence principle and an appropriately chosen strengthening of Furstenberg
multiple recurrence. A first example is for commuting transformations:

Theorem 9.1 (Furstenberg and Katznelson [19]). Let (X,X , µ) be a prob-
ability measure space, let k ≥ 1 be an integer, and assume that Tj : X → X are
commuting measure preserving transformations for j = 1, 2, . . . , k. Then for all
A ∈ X with µ(A) > 0, there exist infinitely many n ∈ N such that

(9.1) µ(A ∩ T−n
1 A ∩ T−n

2 A ∩ · · · ∩ T−n
k A) > 0.

(In [20], Furstenberg and Katznelson proved a strengthening of this result,
showing that one can place some restrictions on the choice of n; we do not discuss
these “IP” versions of this theorem or the theorems given in the sequel.) Via
correspondence, a multidimensional version of Szemerédi’s theorem follows: if E ⊂
Zr has positive upper density and F ⊂ Zr is a finite subset, then there exist z ∈ Zr

and n ∈ N such that z + nF ⊂ E.
Again, this theorem is proven by showing that the associated lim inf of the

average of the quantity in Equation (9.1) is positive. And again, it is natural to
ask whether the limit

lim
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−n
1 A ∩ · · · ∩ T−n

k A)

exists in L2(µ) for commuting maps T1, . . . , Tk. Only partial results are known. For
k = 2, Conze and Lesigne ([8, 9]) proved convergence. For k ≥ 3, the only known
results rely on strong hypotheses of ergodicity:
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Theorem 9.2 (Frantzikinakis and Kra [13]). Let k ∈ N and assume that
T1, T2, . . . , Tk are commuting invertible ergodic measure preserving transformations
of a measure space (X,X , µ) such that TiT

−1
j is ergodic for all i, j ∈ {1, 2, . . . , k}

with i 6= j. If f1, f2, . . . , fk ∈ L∞(µ) the averages,

1
N

N−1∑
n=0

Tn
1 f1 · Tn

2 f2 · · · · · Tn
k fk

converge in L2(µ) as N →∞.

The idea is to prove an analog of Lemma 7.5 for commuting transformations,
thus reducing the problem to working in a nilsystem. The factors Zk that are char-
acteristic for averages along arithmetic progressions are also characteristic for these
particular averages of commuting transformations. Without the strong hypotheses
of ergodicity, this no longer holds and the general case remains open.

9.2. Averages along cubes. Another type of average is along k-dimensional
cubes, the natural objects that arise in the definition of the seminorms. For exam-
ple, a 2-dimensional cube is an expression of the form:

f(x)f(Tmx)f(Tnx)f(Tm+nx).

In [4], Bergelson showed the existence in L2(µ) of

lim
N→∞

1
N2

N−1∑
n,m=0

Tnf1 · Tmf2 · Tn+mf3,

where f1, f2, f3 ∈ L∞(µ). Similarly, one can define a 3-dimensional cube:

f1(Tmx)f2(Tnx)f3(Tm+nx)f4(T px)f5(Tm+px)f6(Tn+px)f7(Tm+n+px)

and existence of the limit of the average of this expression L2(µ) for bounded
functions f1, f2, . . . , f7 was shown in [33].

More generally, this theorem holds for cubes of 2k − 1 functions. Recalling the
notation of Section 7, we have for ε = ε1 . . . εk ∈ {0, 1}k and n = (n1, . . . , nk) ∈ Zk,

ε · n = ε1n1 + ε2n2 + · · ·+ εknk,

and 0 denotes the element 00 . . . 0 of {0, 1}k. We have:

Theorem 9.3 (Host and Kra [34]). Let (X,X , µ, T ) be a system, let k ≥ 1
be an integer, and let fε, ε ∈ {0, 1}k \{0}, be 2k−1 bounded functions on X. Then
the averages

1
Nk
·

∑

n∈[0,N−1]k

∏

ε∈{0,1}k

ε 6=0

T ε·nfε

converge in L2(µ) as N →∞.

The same result holds for translated averages, meaning the average for n ∈
[M1, N1]× · · · × [Mk, Nk], as N1 −M1, . . . , Nk −Mk →∞.

By Furstenberg’s correspondence principle, this translates to a combinatorial
statement. A subset E ⊂ Z is syndetic if Z can be covered by finitely many
translates of E. In other words, there exists N > 0 such that every interval of size
N contains at least one element of E. (Thus it is natural to refer to a syndetic set
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in the integers as a set with bounded gaps.) More generally, E ⊂ Zk is syndetic if
there exists an integer N > 0 such that

E ∩ (
[M1,M1 + N ]× · · · × [Mk,Mk + N ]

) 6= ∅
for all M1, . . . ,Mk ∈ Z.

Restricting Theorem 9.3 to indicator f unctions, the limit of the averages
k∏

i=1

1
Ni −Mi

·
∑

n1∈[M1,N1],...,nk∈[Mk,Nk]

µ

( ⋂

ε∈{0,1}k

T ε·nA

)

exists and is greater than or equal to µ(A)2
k

when N1 −M1, . . . , Nk −Mk → ∞.
Thus for every ε > 0,{

n ∈ Zk : µ

( ⋂

ε∈{0,1}k

T ε·nA

)
> µ(A)2

k − ε

}

of Zk is syndetic.
By the correspondence principle, we have that if E ⊂ Zk has upper density

d∗(E) > δ > 0 and k ∈ N, then
{
n ∈ Zk : d∗

( ⋂

ε∈{0,1}k

(E + ε · n)
)
≥ δ2k

}

is syndetic.

9.3. Polynomial patterns. In a different direction, one can restrict the it-
erates arising in Furstenberg’s multiple recurrence. A natural choice is polynomial
iterates, and the corresponding combinatorial statement is that a set of integers
with positive upper density contains elements who differ by a polynomial:

Theorem 9.4 (Sárközy [51], Furstenberg [17]). If E ⊂ N has positive upper
density and p : Z→ Z is a polynomial with p(0) = 0, then there exist x, y ∈ E and
n ∈ N such that x− y = p(n).

As for arithmetic progressions, Furstenberg’s proof relies on the correspondence
principle and an averaging theorem:

Theorem 9.5 (Furstenberg [17]). Let (X,X , µ, T ) be a system, let A ∈ X
with µ(A) > 0 and let p : Z→ Z be a polynomial with p(0) = 0. Then

lim inf
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−p(n)A) > 0.

The multiple polynomial recurrence theorem, simultaneously generalizing this
single polynomial result and Furstenberg’s multiple recurrence, was proven by
Bergelson and Leibman:

Theorem 9.6 (Bergelson and Leibman [6]). Let (X,X , µ, T ) be a system,
let A ∈ X with µ(A) > 0, and let k ∈ N. If p1, p2, . . . , pk : Z → Z are polynomials
with pj(0) = 0 for j = 1, . . . , k, then

(9.2) lim inf
N→∞

1
N

N−1∑
n=0

µ
(
A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A

)
> 0.



ERGODIC METHODS IN ADDITIVE COMBINATORICS 33

By the correspondence principle, one immediately deduces a polynomial Sze-
merédi theorem: if E ⊂ Z has positive upper density, then it contains arbitrary
polynomial patterns, meaning there exists n ∈ N such that

x, x + p1(n), x + p2(n), . . . , x + pk(n) ∈ E.

(More generally, Bergelson and Leibman proved a version of Theorem 9.6 for com-
muting transformations, with a multidimensional polynomial Szemerédi theorem as
a corollary.)

Again, it is natural to ask whether the lim inf in (9.2) is actually a limit. A
first result in this direction was given by Furstenberg and Weiss [22], who proved
convergence in L2(µ) of

1
N

N−1∑
n=0

Tn2
f1 · Tnf2

and
1
N

N−1∑
n=0

Tn2
f1 · Tn2+nf2

for bounded functions f1, f2.
The proof of convergence for general polynomial averages uses the technology of

the seminorms, reducing to the same characteristic factors Zk that can be described
using nilsystems, as for averages along arithmetic progressions:

Theorem 9.7 (Host and Kra [35], Leibman [45]). Let (X,X , µ, T ) be a
system, k ∈ N, and f1, f2, . . . , fk ∈ L∞(µ). Then for any polynomials p1, p2, . . . ,
pk : Z→ Z, the averages

1
N

N−1∑
n=0

T p1(n)f1 · T p2(n)f2 · · · · · T pk(n)fk

converge in L2(µ).

Recently, Johnson [36] has shown that under strong ergodicity conditions, sim-
ilar to those in Theorem 9.2, one can generalize this and prove L2(µ)-convergence
of the polynomial averages for commuting transformations:

1
N

N−1∑
n=0

T
p1(n)
1 f1 · T p2(n)

2 f2 · · · · · T pk(n)
k fk

for f1, f2, . . . , fk ∈ L∞(µ).
For a totally ergodic system (meaning that Tn is ergodic for all n ∈ N), Fursten-

berg and Weiss showed a stronger result, giving an explicit and simple formula for
the limit:

1
N

N−1∑
n=0

Tnf1 · Tn2
f2 →

∫
f1 dµ ·

∫
f2 dµ

in L2(µ).
Bergelson [3] asked whether the same result holds for k polynomials of different

degrees, meaning that the limit of the polynomial average for a totally ergodic
system is the product integrals. In [12], we show that the answer is yes under a
more general condition. A family of polynomials p1, p2, . . . , pk : Z→ Z is rationally
independent if the polynomials {1, p1, p2, . . . , pk} are linearly independent over the
rationals. We show:
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Theorem 9.8 (Frantzikinakis and Kra [12]). Let (X,X , µ, T ) be a totally
ergodic system, let k ≥ 1 be an integer, and assume that p1, p2 . . . , pk : Z → Z are
rationally independent polynomials. If f1, f2, . . . , fk ∈ L∞(µ),

lim
N→∞

∥∥∥∥
1
N

N−1∑
n=0

T p1(n)f1 · T p2(n)f2 · · · · · T pk(n)fk −
k∏

i=1

∫
fi dµ

∥∥∥∥
L2(µ)

= 0.

As a corollary, if (X,X , µ, T ) is totally ergodic, {1, p1, . . . , pk} are rationally
independent polynomials taking on integer values on the integers, and A0, A1, . . . ,
Ak ∈ X with µ(Ai) > 0, i = 0, . . . , k, then

µ(A0 ∩ T−p1(n)A1 ∩ · · · ∩ T−pk(n)Ak) > 0

for some n ∈ N. Thus in a totally ergodic system, one can strengthen Bergelson
and Leibman’s multiple polynomial recurrence theorem, allowing the sets Ai to be
distinct, and allowing the polynomials pi to have nonzero constant term. It is not
clear whether or not this has a combinatorial interpretation.

10. Strengthening Poincaré recurrence

10.1. Khintchine recurrence. Poincaré recurrence states that a set of pos-
itive measure returns to intersect itself infinitely often. One way to strengthen this
is to ask that the set return to itself often with ‘large’ intersection. Khintchine
made this notion precise, showing that large self intersection occurs on a syndetic
set:

Theorem 10.1 (Khintchine [37]). Let (X,X , µ, T ) be a system, let A ∈ X
have µ(A) > 0, and let ε > 0. Then

{n ∈ Z : µ(A ∩ TnA) > µ(A)2 − ε}
is syndetic.

It is natural to ask for a simultaneous generalization of Furstenberg multiple
recurrence and Khintchine recurrence. More precisely, if (X,X , µ, T ) is a system,
A ∈ X has positive measure, k ∈ N, and ε > 0, is the set

{
n ∈ Z : µ

(
A ∩ TnA ∩ · · · ∩ T knA

)
> µ(A)k+1 − ε

}

syndetic?
Furstenberg multiple recurrence implies that there exists some constant c =

c(µ(A)) > 0 such that

{n ∈ Z : µ(A ∩ TnA ∩ · · · ∩ T knA) > c}
is syndetic. But to generalize Khintchine recurrence, one needs c = µ(A)k+1. It
turns out that the answer depends on the length k of the arithmetic progression.

Theorem 10.2 (Bergelson, Host and Kra [5]). Let (X,X , µ, T ) be an
ergodic system and let A ∈ X . Then for every ε > 0, the sets

{n ∈ Z : µ(A ∩ TnA ∩ T 2nA) > µ(A)3 − ε}
and

{n ∈ Z : µ(A ∩ TnA ∩ T 2nA ∩ T 3nA) > µ(A)4 − ε}
are syndetic.
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Furthermore, this result fails on average, meaning that the average of the left
hand side expressions is not necessarily greater than µ(A)3 − ε or µ(A)4 − ε, re-
spectively.

On the other hand, based on an example of Ruzsa contained in the appendix
of [5], we have:

Theorem 10.3 (Bergelson, Host and Kra [5]). There exists an ergodic
system (X,X , µ, T ) and for all ` ∈ N there exists a set A = A(`) ∈ X with µ(A) > 0
such that

µ(A ∩ TnA ∩ T 2nA ∩ T 3nA ∩ T 4nA) ≤ µ(A)`/2
for every integer n 6= 0.

We now briefly outline the major ingredients in the proofs of these theorems.

10.2. Positive ergodic results. We start with the ergodic results needed to
prove Theorem 10.2. Fix an integer k ≥ 1, an ergodic system (X,X , µ, T ), and
A ∈ X with µ(A) > 0. The key ingredient is the study of the multicorrelation
sequence

µ
(
A ∩ TnA ∩ T 2nA ∩ · · · ∩ T knA

)
.

More generally, for a real valued function f ∈ L∞(µ), we consider the multicorre-
lation sequence

If (k, n) :=
∫

f · Tnf · T 2nf · · · · · T knf dµ(x).

When k = 1, Herglotz’s theorem implies that the correlation sequence If (1, n)
is the Fourier transform of some positive measure σ = σf on the torus T:

If (1, n) = σ̂(n) :=
∫

T
e2πint dσ(t).

Decomposing the measure σ into its continuous part σc and its discrete part σd,
can write the multicorrelation sequence If (1, n) as the sum of two sequences

If (1, n) = σ̂c(n) + σ̂d(n).

The sequence {σ̂c(n)} tends to 0 in density, meaning that

(10.1) lim
N→∞

sup
M∈Z

1
M

M+N−1∑

n=M

|σ̂c(n)| = 0.

Equivalently, for any ε > 0, the upper Banach density5 of the set {n ∈ Z : |σ̂c(n)| >
ε} is zero. The sequence {σ̂d(n)} is almost periodic, meaning that there exists a
compact abelian group G, a continuous real valued function φ on G, and a ∈ G

such that σ̂d(n) = φ(an) for all n.
A compact abelian group can be approximated by a compact abelian Lie group.

Thus any almost periodic sequence can be uniformly approximated by an almost
periodic sequence arising from a compact abelian Lie group.

In general, however, for higher k the answer is more complicated. We find a
similar decomposition for the multicorrelation sequences If (k, n) for k ≥ 2. The
notion of an almost periodic sequence is replaced by that of a nilsequence: for an

5The upper Banach density d̄(E) of a set E ⊂ Z is defined by d̄(e) =
limN→∞

P
M∈Z(1/N)|E ∩ [M, M + N − 1]|.
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integer k ≥ 2, a k-step nilmanifold X = G/Γ, a continuous real (or complex) valued
function φ on G, a ∈ G, and e ∈ X, the sequence {φ(an · e)} is called a basic k-step
nilsequence. A k-step nilsequence is a uniform limit of basic k-step nilsequences.

It follows that a 1-step nilsequence is the same as an almost periodic sequence.
An inverse limit of compact abelian Lie groups is a compact group. However an
inverse limit of k-step nilmanifolds is not, in general, the homogeneous space of
some locally compact group, and so for higher k, the decomposition result must
take into account the uniform limits of basic nilsequences. We have:

Theorem 10.4 (Bergelson, Host and Kra [5]). Let (X,X , µ, T ) be an
ergodic system, f ∈ L∞(µ) and k ≥ 1 an integer. The sequence {If (k, n)} is the
sum of a sequence tending to zero in density and a k-step nilsequence.

Due to the connections between the use of the seminorms in ergodic theory
and the Gowers uniformity norms in additive combinatorics, it is natural that nilse-
quences also have a role to play on the combinatorial side. Recently, Green and
Tao (see [26–28]) have adapted the idea of a nilsequence to combinatorics, and this
plays a role in the asymptotics for the number of arithmetic progressions of length
4 in the primes. Ben Green’s notes in this volume have more on this connection.

Finally, we explain how Theorem 10.4 can be used to prove Theorem 10.2. Let
{an}n∈Z be a bounded sequence of real numbers. The syndetic supremum of this
sequence is defined to be

sup{c ∈ R : {n ∈ Z : an > c} is syndetic}.
Every nilsequence {an} is uniformly recurrent.6 In particular, if S = sup(an) and
ε > 0, then {n ∈ Z : an ≥ S − ε} is syndetic.

If {an} and {bn} are two sequences of real numbers such that an − bn tends
to 0 in density (in the sense of definition (10.1)), then the two sequences have the
same syndetic supremum. Therefore the syndetic supremums of the sequences

{µ(A ∩ TnA ∩ T 2nA)}
and

{µ(A ∩ TnA ∩ T 2nA ∩ T 3nA)}
are equal to the supremum of the associated nilsequences, and we are reduced to
showing that they are greater than or equal to µ(A)3 and µ(A)4, respectively.

10.3. Nonergodic counterexample. Ergodicity is not needed for Khint-
chine’s theorem, but is essential for Theorem 10.2:

Theorem 10.5 (Bergelson, Host, and Kra [5]). There exists a (nonergodic)
system (X,X , µ, T ), and for every ` ∈ N there exists A ∈ X with µ(A) > 0 such
that

µ
(
A ∩ TnA ∩ T 2nA

) ≤ 1
2
µ(A)`.

for integer n 6= 0.

Actually there exists a set A of arbitrarily small positive measure with

µ
(
A ∩ TnA ∩ T 2nA

) ≤ µ(A)−c log(µ(A))

for every integer n 6= 0 and for some positive universal constant c.

6A sequence {an} of real numbers is said to be uniformly recurrence if for all ε > 0 and all
h ∈ N, the set {n : |an+h − an| < ε} is syndetic
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The proof is based on Behrend’s construction of a set containing no arithmetic
progression of length 3:

Theorem 10.6 (Behrend [1]). For all L ∈ N, there exists a subset E ⊂
{0, 1, . . . , L− 1} having more than L exp(−c

√
log L) elements that does not contain

any nontrivial arithmetic progression of length 3.

Proof (of Theorem 10.5). Let X = T× T, with Haar measure µ = m×m
and transformation T : X → X given by T (x, y) = (x, y + x).

Let E ⊂ {0, 1, . . . , L− 1}, not containing any nontrivial arithmetic progression
of length 3. Define

B =
⋃

j∈E

[
j

2L
,

j

2L
+

1
4L

)
,

which we consider as a subset of the torus and A = T×B.
For every integer n 6= 0, we have Tn(x, y) = (x, y + nx) and

µ
(
A ∩ TnA ∩ T 2nA

)
=

∫∫

T×T
1B(y)1B(y + nx)1B(y + 2nx) dm(y) dm(x)

=
∫∫

T×T
1B(y)1B(y + x)1B(y + 2x) dm(y) dm(x).

Bounding this integral, we have that:

µ
(
A ∩ TnA ∩ T 2nA

)
=

∫∫

T×T
1B(y)1B(y + x)1B(y + 2x) dm(x) dm(y)

≤ m(B)
4L

.

By Behrend’s theorem, we can choose the set E with cardinality on the order
of L exp(−c

√
log L). Choosing L sufficiently large, a simple computation gives the

statement. ¤

For longer arithmetic progressions, the counterexample of Theorem 10.3 is
based on a construction of Ruzsa. When P is a nonconstant integer polynomial of
degree ≤ 2, the subset

{
P (0), P (1), P (2), P (3), P (4)

}

of Z is called a quadratic configuration of 5 terms, written QC5 for short.
Any QC5 contains at least 3 distinct elements. An arithmetic progression of

length 5 is a QC5, corresponding to a polynomial of degree 1.

Theorem 10.7 (Ruzsa [5]). For all L ∈ N, there exists a subset E ⊂ {0, 1, . . . ,
L−1} having more than L exp(−c

√
log L) elements that does not contain any QC5.

Based on this, we show:

Theorem 10.8 (Bergelson, Host and Kra [5]). There exists an ergodic
system (X,X , µ, T ) and, for every ` ∈ N, there exists A ∈ X with µ(A) > 0 such
that

µ(A ∩ TnA ∩ T 2nA ∩ T 3nA ∩ T 4nA) ≤ 1
2
µ(A)`

for every integer n 6= 0.
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Once again, the proof gives the estimate µ(A)−c log(µ(A)), for some constant
c > 0.

The construction again involves a simple example: T is the torus with Haar
measure m, X = T×T, and µ = m×m. Let α ∈ T be irrational and let T : X → X
be

T (x, y) = (x + α, y + 2x + α).

Combinatorially this example becomes: for all k ∈ N, there exists δ > 0 such
that for infinitely many integers N , there is a subset A ⊂ {1, . . . , N} with |A| ≥ δN
that contains no more than 1

2δkN arithmetic progressions of length ≥ 5 with the
same difference.

10.4. Combinatorial consequences. Via a slight modification of the corre-
spondence principle, each of these results translates to a combinatorial statement.
For ε > 0 and E ⊂ Z with positive upper Banach density (see the definition in
Footnote 5), consider the set

(10.2) {n ∈ Z : d̄(E ∩ (E + n) ∩ (E + 2n) ∩ · · · ∩ (E + kn)) ≥ d̄(Ek+1)− ε}.
From Theorems 10.2 and 10.3, for k = 2 and for k = 3, this set is syndetic, while
for k ≥ 4 there exists a set of integers E with positive upper Banach density such
that the set in (10.2) is empty.

We can refine this a bit further. Recall the notation from Szemerédi’s theorem:
for every δ > 0 and k ∈ N, there exists N(δ, k) such that for all N > N(δ, k), every
subset of {1, . . . , N} with at least δN elements contains an arithmetic progression
of length k.

For an arithmetic progression {a, a + s, . . . , a + (k− 1)s}, s is the difference of
the progression. Write bxc for integer part of x. ¿From Szemerédi’s theorem, we
can deduce that every subset E of {1, . . . , N} with at least δN elements contains at
least bcN2c arithmetic progressions of length k, where c = c(k, δ) > 0 is a constant.
Therefore the set E contains at least bc(k, δ)Nc progressions of length k with the
same difference.

The ergodic results of Theorem 10.2 give some improvement for k = 3 and
k = 4 (see [5] for the precise statement). For k = 3, this was strengthened by
Green:

Theorem 10.9 (Green [24]). For all δ, ε > 0, there exists N0(δ, ε) such that
for all N > N0(δ, ε) and any E ⊂ {1, . . . , N} with |E| ≥ δN , E contains at least
(1− ε)δ3N arithmetic progressions of length 3 with the same difference.

On the other hand, the similar bound for longer progressions with length k ≥ 5
does not hold. The proof in [5], based on an example of Rusza, does not use ergodic
theory. We show that for all k ∈ N, there exists δ > 0 such that for infinitely many
N , there exists a subset E of {1, . . . , N} with |E| ≥ δN that contains no more than
1
2δkN arithmetic progressions of length ≥ 5 with the same step.

10.5. Polynomial averages. One can ask whether similar lower bounds hold
for the polynomial averages. For independent polynomials, using the fact that the
characteristic factor is the Kronecker factor, we can show:

Theorem 10.10 (Frantzikinakis and Kra [14]). Let k ∈ N, (X,X , µ, T ) be a
system, A ∈ X , and let p1, p2, . . . , pk : Z→ Z be rationally independent polynomials
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with pi(0) = 0 for i = 1, 2, . . . , k. Then for every ε > 0, the set
{
n ∈ Z : µ(A ∩ T p1(n)A ∩ T p2(n) ∩ · · · ∩ T pk(n)A) > µ(A)k+1 − ε

}

is syndetic.

Once again, this result fails on average.
Via correspondence, analogous to the results of Section 10.4, we have that for

E ⊂ Z and rationally independent polynomials p1, p2, . . . , pk : Z→ Z with pi(0) = 0
for i = 1, 2, . . . , k, then for all ε > 0, the set

{
n ∈ Z : d̄

(
E ∩ (

E + p1(n)
) ∩ · · · ∩ (

E + pk(n)
)) ≥ d̄(E)k+1 − ε

}

is syndetic.
Moreover, in [14] we strengthen this and show that there are many configura-

tions with the same n giving the differences: if p1, p2, . . . , pk : Z→ Z are rationally
independent polynomials with pi(0) = 0 for i = 1, 2, . . . , k, then for all δ, ε > 0,
there exists N(δ, ε) such that for all N > N(δ, ε) and any subset E ⊂ {1, . . . , N}
with |E| ≥ δN contains at least (1− ε)δk+1N configurations of the form

{x, x + p1(n), x + p2(n), . . . , x + pk(n)}
for a fixed n ∈ N.
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