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1. INTRODUCTION 

Ergodic theory is a relatively new branch of mathematics which from 
a mathematical point of view may be regarded as generated by the 
interaction of measure theory and the theory of transformation groups. 
Its basic concept of "metric transitivity" or "ergodicity" was introduced 
in 1928 in a paper of Paul Smith and G. D. Birkhoff on dynamical 
systems. However, the significance of this concept was not appreciated 
until late 1931 when J. yon Neumann and G. D. Birkhoff proved the 
celebrated mean and pointwise ergodic theorems, and one may regard 
the nearly simultaneous appearance of these papers as marking the birth 
of the subject. Birkhoff's proof of the much more difficult pointwise 
ergodic theorem was stimulated by yon Neumann's theorem and yon 
Neumann, in turn, was stimulated by a key observation of B. O. Koopman. 

Let De be a surface of constant energy E in the phase space D of some 
Hamiltonian dynamical system. Let V,(~o) denote the point of phase 
space representing the "state" of the system t time units after it was 
represented by ~o. Then, for each t, oJ -- .  Vt(oJ ) is a one-to-one transfor- 
mation of f2 e onto itself which conserves the natural volume element ~e 
in f2e induced in £2 e by the Liouville measure dql .." dqn dpl  "'" d p n .  
Moreover, Vq+t~ = VqVt~  for all real numbers t 1 and tz. Koopman's 
observation (not so obvious 40 years ago as now) was that we may 
obtain a unitary representation't --+ Ut of the additive group of the real 
line in the Hilbert space 5°2(f2e, ~e) by defining Ut( f ) (co  ) = f (V, ( , -o) ) .  

* T h i s  art icle is a somewha t  expanded  vers ion of  a series of ten lectures  given by the 

a u t h o r  at Texas  Chr i s t i an  Unive r s i ty  June  19-23, 1972, in connect ion wi th  a conference 

held there  on the subject  of the ti t le.  
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Stone had just proved his celebrated theorem reducing the analysis of 
such a representation to that of the self-adjoint H which "generates it" 
via U~ = e itn, and Koopman remarked that the recently developed 
complete classification of self-adjoint operators could now be used to 
provide significant invariants for dynamical systems. 

Koopman's observation and remark suggested to von Neumann the 
possibility of an operator theoretic approach to the 60-year-old problem 
of justifying the interchange of space and time averages in the foundations 
of statistical mechanics. He recognized that metric transitivity was the 
proper substitute for the mathematically untenable "ergodic hypothesis" 
of Boltzman and his mean ergodic theorem provided the desired 
justification wherever metric transitivity could be established. 

The impact of this work on statistical mechanics has been rather less 
than expected in large part because of the great difficulty of establishing 
metric transitivity for systems of physical interest. On the other hand, 
as we shall see in detail below, the ergodic theorem and the notion of 
ergodicity have had and continue to have considerable influence on the 
theory of "stationary stochastic processes" in probability theory. 

Probability theory is much older than ergodic theory and is usually 
considered to have begun in 1654 with a correspondence between Fermat 
and Pascal about the proper division of stakes in certain gambling games. 
A chief concern during much of its history has been with the properties 
of sequences of "independent, identically distributed random variables" 
- - in  particular with the "law of large numbers" and the "central limit 
theorem". In the 1920's due to the work of Wiener, Steinhaus, and 
others, it came gradually to be realized that the new subject of measure 
theory, which had developed from the generalization and abstraction of 
ideas in Lebesgue's thesis of 1902, could be used to great advantage in 
providing a convenient and rigorous model for formulating and proving 
the results of probability theory. The decisive step was made by 
Kolmogoroff who systematically reformulated probability theory in 
measure theoretic terms in his fundamental and influential booklet 
"Grundbegriffen den Wahrsheinlichheitsrechnung" published in 1933. 
The next year several mathematicians recognized that the pointwise 
ergodic theorem, interpreted in probabilistic terms, was nothing more 
or less that a considerable generalization of the strong law of large 
numbers. Since these events, the measure theoretic point of view has 
more or less dominated probability theory--at  least in its more theoretical 
aspects. 

A key tool in ergodic theory--both in providing examples and in 
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analyzing those that exist-- is provided by harmonic analysis and its 
generalization from the integers and the real line to locally compact 
groups. The main ideas in effecting this generalization were provided 
by Hermann Weyl in the 1920's for compact groups and by L. Pontrjagin, 
E. R. van Kampen, and A. Weil for locally compact commutative groups. 
It is perhaps noteworthy that the important Pontrjagin-van Kampen 
duality theorem was published the year after Kolmogoroff's treatise and 
the same year that the connection between the ergodic theorem and the 
law of large numbers was pointed out. 

A second important tool--the concept of the entropy of an ergodic 
action--was introduced much later. In 1948 Claude Shannon, in studying 
certain problems in communication engineering, discovered that one 
could make precise mathematical sense out of the notion that some 
stochastic processes yield more "information" per observation than 
others and was thus able to assign a number to certain processes which 
he called entropy and which could be regarded as the rate at which they 
gave of[ information. In 1959 Kolmogoroff and Sinai showed that 
Shannon's notions could be used to assign an "entropy" to every ergodic 
action of the integers and that the resulting concept could be used to 
settle an old and important problem in pure ergodic theory. This 
breakthrough led to a rapid development of the properties of entropy 
and stimulated a renaissance in abstract ergodic theory which is still very 
much underway. The word "entropy" is used in information theory 
because of a certain analogy with the interpretation via statistical 
mechanics of the classical entropy of thermodynamics. Actually, recent 
work in statistical mechanics on the so-called "thermodynamical limit" 
and the hypothetical "infinite system" which realizes this limit makes it 
possible to recast statistical mechanics in a form which brings it into 
very close contact with the theory of stationary stochastic processes. 
Indeed, one may think of statistical mechanics in the infinite system 
limit as the theory of stochastic processes with "three-dimensional time". 
Conversely, one may think of an ordinary stochastic process with a 
discrete state space as providing the statistical mechanics of a one- 
dimensional gas. From this point of view, the entropy of information 
theory is identical with that of thermodynamics and statistical mechanics. 
Moreover, ergodicity and the ergodic theorem may be made to play 
a role in statistical mechanics analogous to the one it plays in the theory 
of stochastic processes and rather different from the classical role which 
gave rise to ergodic theory in the first place. 

In these lectures I propose to present a connected exposition of some 
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of the main ideas of ergodic theory both as a branch of pure mathematics 
and as the appropriate tool for analyzing the random phenomena 
encountered in the statistics of time series, in communication engineering, 
and in statistical physics. Emphasis will be placed upon the central 
importance of the concept of ergodicity or metric transitivity and its 
role in making possible a rigorous mathematical model for random 
behavior. Another theme that will be stressed is interplay between the 
problems of pure ergodic theory and the meaning for applications 
of the conceptual tools used to deal with them. In the hope of making 
the lectures conceptually self-contained and accessible to a wide audience, 
I have included introductory accounts of the necessary harmonic analysis 
as well as of the basic notions of probability, thermodynamics, and 
statistical mechanics. 

2. MEASURE THEORY AND PROBABILITY 

We shall do measure theory within the context of "standard Borel 
spaces" and begin by reminding the reader of the basic facts. A Borel 
space is a set S together with a distinguished a field of subsets; that is, 
a family of subsets closed under the countable Boolean operations. The 
members of the distinguished family are called the Borel subsets of S. 
A funct ionf  from one Borel space to another is said to be a Borel function 
i f f - l (E)  is a Borel set in the first space whenever E is a Borel set in the 
second. A bijection f from one Borel space to another is said to be a 
Borel isomorphism i f f  a n d f  -1 are both Borel functions. When there exists 
a Borel isomorphism from the Borel space S 1 to the Borel space $2, one 
says that S 1 and S 2 are isomorphic Borel spaces. Every topological space 
may be made into a Borel space by defining the Borel sets to be the 
members of the smallest ~ field containing the open and closed sets. 
A Borel space is defined to be standard if it is isomorphic to the Borel 
space defined by a Borel subset of a separable complete metric space. 
It is a remarkable fact that two standard Borel spaces having the same 
cardinal number are isomorphic as Borel spaces and that the continuum 
hypothesis holds for standard Borel spaces. Thus there is to within 
isomorphism just one noncountable standard Borel space. Let F be a 
countable set, and for each 9' in F, let A, be a Borel space. Then I-I, A , ,  
the Cartesian product of the A , ,  may be identified with the set of all 
functions g defined on F and such that g(~,) c A, for all ~ c _P. For each 
Yo ~ F and each Borel subset E of A,o, let ~ denote the set of all g ~ 1-Iv A, 
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such that g(7'o) ~ E. I-[~ A~ is given a Borel structure, called the product 
Borel structure, by defining a set to be a Borel set if its is contained in the 
smallest cr field containing all the sets /~. I t  follows that g--~ g(7o) is a 
Borel function for all ~o ~ F. I t  is easy to show that I-[7 A~ is standard 
whenever all of the A~ are standard. In  particular, choosing all of the A~ 
to be the same, one sees that the set A r of all functions from a countable 
set F to a standard Borel space A is itself a standard Borel space in a 
natural way. 

By a measure in the Borel space S, we shall mean a funct ion/z from the 
Borel subsets of S to the nonnegative real numbers  and ~ such that 
/~(E 1 L/E2 "") = /x(E1) +/x(E~) + "-  whenever E i c3 Ej. = 0 for i J= j,  
and  such that S = A 1U A s .-- where /x(A~)% oo. In other words, 
measures for us wi!l always be ~ finite. T h e  measure /x is said to be 
finite i f /x(S) < oo, and is said to be a probabili ty measure if/~(S) = 1. 
I f  ~({s}) > 0 for some s E S, we call s an atom and say that /x  is free of 
atoms if there are no points s such that /x({s}) > 0. Combining the 
theorem stated above about standard Borel spaces with a well-known 
result of Halmos and von Neumann,  one shows that given measures 
/~1 and/x~ in standard Borel spaces S 1 and S 2 which are free of atoms and 
such that/xl(S1) =/x~(S2) # 0, then there exists an i s o m o r p h i s m f  of S 1 

on $2 which is measure preserving in the sense that l~2(f(E)) = txl(E) 
for all Borel subsets E of S 1 . 

L e t / ,  be a probabili ty measure in the standard Borel space f2. By a 
real- or complex-valued random variable, one means a real- or complex- 
valued Borel function defined on D. Of course, one can define random 
variables with values in an arbitrary Borel space, but  we shall deal 
mainly with those that are real- and complex-valued. Le t  f be a real- 
valued random variable. Setting a/(E) = /~(f- l(E))  for all Borel subsets 
of the real line, we obtain a probabili ty measure c~ r in the real line which 
is called the distribution of the random variable f .  One thinks of aj(E) 
as the "probabi l i ty"  that an observation of f will lead to a value in E. 
T h e  integral I~_o~ x do~t(x ) = I f (a)dtx(a ) (if it exists) is called the 
expected value e o f  the random variable f ,  and ~ ( x -  e) 2 d~l(x ) = 
I(f(~o)- e) 2 d~(~,) (if it exists) is called the variance. Analogous 
definitions and remarks can, be made for complex-valued random 
variables. 

As long as one is concerned with a single random variable, the space D 
is superfluous; one need only know the probabili ty measure ~1 • In  other 
words, a random variable in isolation is completely described by its 
distribution. One introduces the space f2 in order to be able to discuss 
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relationships between random variables. I f  f and g are two real,valued 
random variables, t h e n i n  addition to the probabil i ty measures ~j and % 
in the real line which are their distributions, one may construct  a certain 
probabili ty measure a/,g in the plane which is called their joint distribution. 
This  is the probabili ty measure E--~/z(9-X(E)), where 9 is the Borel 
function w --+f(¢o), g(o~) f rom Q to the space of pairs of real numbers.  
c~ s and % are immediately deduceable f rom ~/.g by projecting on the 
coordinate axes, but  many different measures ~l,g are consistent with a 
given pair a1, % • One such is the product  measure a I × % ,  and when 
e%o = c~y × %,  one says that the random va r i ab l e s f andg  are independent. 
Intuitively, this means that an observation o f f  does not change in any 
way the distribution of possible values of g. At the other extreme, one 
might  have g ~ - f 2  so that, having measured f ,  there is no uncertainty 
left  for g. In this case, ~1.0 is supported by the curve  y = x 2 in the space 
of all pairs x, y; that is, the ~l.g measure of the complement  of the curve 
is zero. Of course, there are many intermediate possibilities. 

Consider the special case in which a I is supported by a countable set 
{ax, a.~ ,...}. It  follows at once from the definitions that aj,g is supported 
by the union of the lines L j ,  where Lj is the set of all x, y with x = a j .  
For  each Borel subset E of the real line, let Ej. denote the set of all x, y 
with x = a t and y ~ E. T h e n  E - ~  o~1,o(E~)/~1,g(L~) is a probabili ty 
measure/3j  in the real line. One interprets/3j(E) as the probabili ty that 
y is in E given that x = a t and calls flj the conditional probability distribu- 
tion for g given that f = a j .  Saying that f and g are independent  as 
defined above is equivalent to saying that flj is the same for all j .  On the 
other hand, when g is a function o f f ,  then ]3j is concentrated in a single 
point for all j but  that point will vary with j .  The  notion of conditional 
probabili ty distribution can be defined even when % is not concentrated 
i n a  countable set. However,  it requires more sophisticated mathematics 
to do so and it will be convenient to postpone the details to the next 
section. 

I f fx  ,f2 , . . . ,f~ is a set of n random variables, then m -+fx(co),f2(w),... , 
f~(¢o) = ~v(oJ) is a Borel map of X? into the space R ~ of all n-tuples of real 
numbers  Setting ~ E = / x  -1 E , • I1,G ..... /~( ) (9 ( ) )  one obtains a probabili ty 
measure in R ~ called the joint  distribution of the n-tuple fx ..... f ~ .  
I f  ~h ..... /, ~ ~h × ah  "'" × ~ / , '  one says that the f3' are mutually 
independent .  To  say that each pair f i ,  f j  are independent  does not in 
general imply that fx ..... f~ are mutual ly independent.  

By a discrete stochastic processes we shall mean a doubly infinite 
sequence ... f - 2 , f - x ,  f 0 ,  f l ,  f2.- .  of real or complex random variables. 



184 GEORGE W. MACKEY 

One usually thinks of the index n in f~ as a time parameter. The  nth 
random variablef~ might be the result of the nth spin of a roulette wheel 
or the temperature at a certain point in space at a certain hour on the 
nth day. The  real or complex number  f~(to) is a function of the two 
variables n and co and one may think of this function of two variables as 
either a family of functions of to parametrized by the integer n or as a 
family of functions of n (doubly infinite sequences) parametrized by ~o. 
In the first instance, to--~f~(to) are random variables; in the second, 
the functions n --~ f~(to) are called sample functions or sample sequences. 
Each sample function represents a possible sequence of observations of 
the infinitely many random variables fn • For example, in tossing a coin, 
f~ might be the random variable which is 1 when the nth toss is "heads"  
and --1 when it is tails. A sample function would then be a doubly 
infinite sequence of l ' s  and - - l ' s  representing the results of a doubly 
infinite sequence of coin tosses. One thinks of a so-called (discrete) time 
series in statistics as being the restriction to the nonnegative integers 
of some sample function of a discrete stochastic process. One seeks to 
recover the process from the time series and to make predictions about 
the " fu ture"  values of the sample functions. 

Given the discrete stochastic process ...f_~ , f -x  ,)co , f l  .... , let s(oJ) 
denote the sample function with parameter co; that is, let s(to) denote 
the doubly infinite sequence of real or complex numbers ...f_~(to), 
f-l(to), f0(to), fl(°J), "-.. Then  to -*  s(to) is a mapping of ~2 into the space 
R ~ or C ~ of all possible doubly infinite sequences of real or complex 
numbers. Moreover with respect to the product Borel structure in R ~° 
(resp. Co°), the mapping s is a Borel function. Hence, E --~ ff(s-l(E)) =- 
a(E) is a probability measure ~ on R ~° (resp. C a) which is the joint 
probability distribution of the whole infinite collection {f~} of random 
variables. I f  the mapping s is injective, one says that the random variables 
separate the points of -(2. When they do not, one can introduce an equiva- 
lence relation in D by saying that o~ 1 ~-~ ~oa if fj(tol) -~ fj(to2) for all j .  
The  space ~ of all equivalence classes may be made into a Borel space by 
defining the Borel sets to be those sets F such that r-l(F) is a Borel set 
in [2. Here, r(a) denotes the equivalence class to which a belongs. 
Defining / ~ ( F )=  /x(r-l(F)) and j~.(r(co))=SJ'(to)' one obtains a new 
stochestie process f_  2 , ) ~ ,  f0 ,-.. defined on f2,/~ whose random variables 
separate the points of £). For all probability purposes, this new process 
is equivalent to the original one so that there is no essential loss in 
generality in assuming that the random variables do separate. While it 
is not always true that ~ is standard, one can always find a Borel set N 
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with t2(N) = 0 so that ~ --  N is standard and ~ can be replaced by 

When the random variables do separate (as we may always assume), the 
mapping s is a Borel isomorphism of £2 onto a Borel subset of R °~ 
(resp. C ~) which carries ~ into the restriction of ~ to the image of £2. 
Since the complement of this image has c~ measure zero, there is no loss 
of generality in replacing £2 by R ~ (resp. C ~) and/~ by ~. In other words, 
a discrete real-valued (respectively complex-valued) stochastic process 
may be equivalently defined as a probability measure in R °~ (resp. C~). 
The  space £2 is then the set of all real-valued (respectively complex- 
valued) functions on the group Z of all integers and the random variable 
co ---~fn(~) is the function co --+ co(n). One advantage of this definition 
is that it permits us to introduce a natural homomorphism of the integers 
into a group of automorphisms of £2 as a Borel space. For each co E £2 and 
each integer n, let con = co', where co'(m) = co(n 4- m). Then to ~ con 
is an automorphism of £2 and ((co)n)n' = [co](n 4- n'). Of course, in 
general, these automorphisms will not preserve the measure/z,  but the 
case in which they do will be of central importance for us. Given this 
"act ion" of the group of integers in £2, one need only know one of the 
random variables ...f_~ , f -a  , f 0 , f l  ,f2 in order to know them all. 
Indeed, one has f n ( c o ) ~  f0([co]n) • Thus,  a third equivalent definition 
of a discrete stochastic process and the one that will be most convenient 
for us is the following. A discrete stochastic process is the system 
consisting of (i) a standard Borel space £2, (ii) an assignment of an auto- 
morphism co--~ [coin of £2 to each integer n such that [[co]n]m = 
[co](n 4- m), (iii) a probability measure/~ on £2, and (iv) a real- or complex- 
valued function f on £2. To get the random variables of the process as 
originally defined, one simply setsf~(co) = f([co]n). 

A discrete stochastic process is said to be stationary i f ,  for each r, 
the joint distribution of fm+l ,fm+~ .... ,f~+r in the space of r-tuples is 
the same for all m. It  is easy to see that a process is stationary if and 
only if the probability measure ~ defined in R ~ (resp. C °) is invariant 
under  the natural action of the integers. Thus  the measure /z in our 
third definition of a stochastic process may be taken as invariant whenever 
the process is stationary. 

The  notion of discrete stochastic process may be generalized in two 
obvious directions. First of all, one may replace the discrete time 
parameter by a continuous one and consider families of random variables 
{ft} parametrized by a real number  t. The  measure theoretic technicalities 
are less straightforward than in the discrete case, but one shows in analogy 
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with the above that such a continuous parametric process may be 
equivalently defined as the system consisting of (i) a s tandard Borel 
space £2, (ii) an assignment of an automorphism co --~ [~o]t of £2 to each 
real number  t in such a manner  that [[~o]t] t' = [oJ](t + t') for all t and t '  
and t, oJ --~ [colt is a Borel function from f2 × R to X2, (iii) a probabili ty 
measure/x in D, and (iv) a Borel f u n c t i o n f  on D. As in the discrete case, 
one calls the functions t --~f([co]t) the sample functions of the process, 
and for s ta t ionary  processes the measure /z  is i n v a r i a n t  in the sense that 
/~([E])t) = / x ( E )  for all t and E. Le t  f~ denote the sample function 
t --~f([co]t), and let ~ denote the mapping oJ ---~ f~ of f2 into the space o~ 
of all real- or complex-valued functions of a real variable, Setting 
fi(E) = /x(~b-l(E)), one obtains a measure/~ defined on a certain cr field 
of subsets of o ~ ,  or equivalently, on a certain a field of subsets of ~ o ,  
where ~o is the image of £2 under  ~b. Unlike the discrete case, Y itself 
cannot be made into a standard Borel space and we cannot define the 
process by simply giving a measure # defined on certain Borel sets 
specified in advance. One must also give J 0  or allow the Borel sets to vary 
with the process. T h e  difficulties produced by this circumstance have been 
extensively investigated by Doob but  will not concern us fur ther  here. 

The  other obvious direction of generalization consists in replacing the 
one-dimensional  t ime parameter  of the process whether  discrete or 
continuous by a parameter  varying over some more general multi-  
dimensional set such as physical space. Whenever  the parameter space 
has or can be given the s tructure of a group in a natural way, one can 
introduce a notion of invariance fo r  the family of random variables 
which reduces to stationarity in the special case in which the group is 
the group of translations in time. Thus  one is led to s tudy the system 
consisting of a more or less general group G acting as a group of auto- 
morphisms of a s tandard Borel space f2, a real- or complex-valued Borel 
function f defined on £2, and a probabili ty measure /x in £2--special 
interest attaching itself to the case in which/~ is invariant. 

Still fur ther  generalizations are possible and in fact important.  
However,  it will be convenient  to postpone their description until  
Section 8. 

3. ACTIONS OF SEPARABLE LOCALLY COMPACT GRouPs 
AND THE NOTION OF ERGODICITY 

Having seen how groups of measure-preserving transformations 
present themselves in a natural way in problems in probabili ty theory, 
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we turn  our at tention in this section and the next to the s tudy of such 
groups f rom the point  of view of pure  mathematics .  Le t  G be a locally 
compact  topological group which is separable in the sense that  there is 
a countable basis for the open sets. By a s tandard Borel G space, we shall 
mean a s tandard Borel space S together with a Borel mapp ing  s, x ~ s x  

of S × G into S such that  [sx] y = s ( x y )  and se = s for all x ,  y in G and 
all s ~ S, where e denotes the identity element  of G. I t  follows at once 
that  for each fixed x ,  the mapp ing  s --+ s x  is an au tomorph i sm of S and 
that  the mapp ing  so defined f rom G to au tomorphisms  of S is a homo-  
morphism.  A measure /~  in S is said to be i n v a r i a n t  if/x([E]x) = t~(E) 
for all x in G and all Borel subsets E of S. For  any measure/z  in S and any 
x in G, let/~x(E) = /x([E]x). /~ is said to be q u a s i - i n v a r i a n t  i f /x  and/zx 
have the same null sets for all x. While applications to probabi l i ty  theory 
are chiefly concerned with invariant probabil i ty measures,  much  of 
abstract  ergodie theory may  be developed for measures  which are only 
quasi-invariant.  In  dealing with quasi- invariant  measures,  one can 
replace the given measure  by any measure  having the same null sets 
wi thout  affecting the central concepts of the theory, and it is often 
convenient  to deal at once with all of these measures  at once. We define 
a m e a s u r e  c lass  to be the set of  all measures having the same null sets 
(sets of measure  zero) as any one of them and define a measure class to be 
invariant if for each X in G, and each/~ in the c lass , /~  is also in the class. 
Of  course, it amounts  to the same thing to say that  each/x in the class is 
quasi- invariant  and this is implied by  the quasi-invariance of any 
m e m b e r  of the class. An invariant measure  class may  or may not contain 
an invariant measure.  

By an action of the separable locally compact  group G, we shall mean 
the system consisting of a s tandard Borel G space S and an invariant 
measure  class C in S. For  each group G, we shall be interested in clas- 
sifying the actions of G up to " i somorph i sm" ,  two actions on $1 ,  C1 
and S 2 , C 2 being said to be isomorphic  if there exist G invariant  Borel 
null sets N 1 and N 2 in S 1 and S~,  respectively, and a Borel i somorphism 

of $1 - -  N1 or S 2 - -  N 2 such that  

(1) I f  E is a Borel subset  of S 1 - -  N 1 , then q)(E) is a C 2 null set if 
and only if E is a C a null set. 

(2) qz(sx) = q~(s)x for all s e S and x ~ G. 

Given an action of G with measure  class C in the s tandard Borel G 
space S ,  suppose that  S admits  a Borel subset  E which is invariant and 
such that  neither S - -  E nor E is a C null set. T h e n  S - -  E and E are 

6o7/I 2/2-4 
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both  standard Borel G spaces, and the restrictions of the measures in C 
to S - -  E and E define invariant measure classes and, hence, actions of G. 
T h e  original action is in an obvious sense a "direct  sum"  of the two 
"subact ions"  defined by  S -  E and E. Quite generally, if $1 ,  S 2 ,... 
are standard Borel G spaces with invariant measure classes C1, C~ .... , 
we may make S = S 1 ~A S 2 ... the disjoint union of the Sj into a s tandard  
G space by declaring the Borel subsets of S to be the sets E 1 u E 2 ..., 
where E~. is a Borel subset of S j .  I f /zj  ~ C j ,  we obtain a measure/z  in S 

oO 

by defining / z ( E ) =  5~j=1/~j(E n Sj) whose class C depends only on 
the C~. C is invariant, and we obtain a new action which we call the 
direct sum of the actions on the S t . An action which is not isomorphic to 
a direct sum of two or more nontrivial actions is said to be ergodic or 
metrically transitive. I t  follows at once from the definition that an action 
is ergodic if and only if every invariant Borel subset of S is either of 
measure zero (a null set) or the complement  of a set of measure zero. 
As we shall see below, the ergodic actions are the fundamental  building 
blocks from which all other actions can be constructed. While it is not  
t rue that every action is a direct sum of ergodic actions, it is true that 
every action is in a certain sense a "direct  integral" of ergodic actions 
and that this decomposit ion is essentially unique.  I t  follows that  to a 
large extent one can reduce the problem of finding all isomorphism 
classes of actions of a given group to that of finding the isomorphism 
classes of ergodic actions. 

Given an action of G with space S and invariant measure class C, one 
defines the orbit of s c S to be the set of all points into which s may be 
t ransformed by the elements of G; that is, the orbit  of s is the set of all sx 
with x ~ G. Any two orbits are either disjoint or identical, and when there 
is only one orbit, one says that the action is transitive. Obviously, transitive 
actions are always ergodic. Indeed,  they can be defined as actions in 
which there are no invariant subsets at all except for the empty  set and 
the whole space. T h e  ergodic actions then are those which are transitive 
in a measure theoretic sense, that is, in which there are no invariant 
Borel subsets except sets of measure zero and their complements.  Hence 
the term "metr ic  transit ivity",  T h e  shorter and more convenient  
synonym "ergodic"  comes from two Greek words meaning "work"  and 
"pa th"  and refers to the original (untenable) hypotheses of statistical 
mechanics to the effect that the trajectory of a point in phase space goes 
through every point  of a constant-energy hypersurface. 

Given any ergodic action, one can consider its orbits and ask whether  
any are of positive measure. I t  can be proved that all orbits are Borel 
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sets and it follows at once from ergodicity that at most one can be of 
positive measure. Thus we have the following dichotomy: either 

(a) There exists a unique orbit of positive measure and its com- 
plement is a null set so that the action is in fact isomorphic to a transitive 
action. 

o r  

(b) Every orbit is of measure zero. 

In the first case, we shall say that the action is essentially transitive and 
in the second that it is properly ergodic. 

The fact that properly ergodic actions can exist is at first rather 
surprising. Consider the following example. Let S be the set of all points 
on the unit circle in the complex plane, and let C be the measure class 
of the usual Lebesgue "arc length" measure. Let G be the additive 
group of all the integers, and let [ei°]n --  ei°e i~'~n, where ~ is some fixed 
irrational number; in other words, let the generator of the infinite cyclic 
group G act on S by rotating through an irrational multiple of a complete 
revolution. Every orbit of this action is countable and hence of measure 
zero, and intuition suggests that the action cannot be ergodic. Surely it 
must be possible to collect a number of these "very thin" orbits into 
a Borel set of positive measure without taking almost all of them. This 
intuition, however, turns out to be false. Assuming the existence of an 
invariant Borel set, one has only to consider the Fourier coefficients of 
its characteristic function to he led at once to the conclusion that  it is 
either a null set or the complement of one. Our action is properly 
ergodic. 

It is the existence of properly ergodic actions which gives ergodic 
theory its special flavor. If  all ergodie actions were essentially transitive, 
then ergodic theory would consist of the theorem on decomposition into 
ergodic parts and little else. The ergodie theorem and other results of 
the theory would reduce to corollaries of the decomposition theorem and 
elementary facts about harmonic analysis on groups. On the other hand, 
properly ergodie actions have a "pathological flavor" in that they cannot 
exist unless the orbit structure of the action of G on the standard Borel 
space S is of a particularly nasty character. Specifically, one can prove 
the following theorem. Let S be a standard Borel G space (where G is 
separable and locally compact), and suppose that there exists a Borel set A 
in S which meets each orbit just once. Then for every ergodic invariant 
measure class C in S, the corresponding action is essentially transitive. 
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Roughly speaking, this theorem says that  when one has a properly 
ergodic action, it is impossible to parametrize the orbits in a reasonable 
way. In the author's opinion, this apparently pathological character of 
properly ergodic actions is a reflection of the fact to be explained below 
that  such actions occur in an essential way in mathematical models for 
random behavior. 

The  fundamental  problem of finding (to within isomorphism) all 
possible ergodic actions of each separable locally compact group G now 
breaks naturally into two parts: (a) Find all possible transitive actions, and 
(b) find all possible properly ergodic actions. Part (a) is much the easier. 
As we shall see shortly, it is completely equivalent to finding all possible 
closed subgroups of G (where conjugate subgroups are identified), and 
this is a problem which can be explicitly solved for many groups G of 
interest in ergodic theory. For example, if G is the additive group of the 
real line, the most general closed subgroup other than G itself is the set 
of all integer multiples of a fixed nonnegative real number  A. To see how 
this reduction comes about, let H be a closed subgroup of the separable 
locally compact group G, and let G/H denote the set of all right H 
cosets Hx. G/H becomes a separable locally compact space if we define 
the open sets in G/H to be the sets whose inverse images in G are open 
and the associated Borel structure is standard. Setting ( H x ) y  = Hxy, 
one verifies at once that G/H becomes a transitive standard Borer G 
space. Conversely, let S be any transitive standard Borel G space and 
choose a point s o in S. It can be proved that the subgroup H~0 of all x 
in G with sox = s o is closed, and it then follows easily that  S is isomorphic 
as a G space to G/Hso. Changing s o to s i = SoX of course changes//so to 
H~ ~ x-lHsox. Finally, it can be proved that G/H always admits a 
unique invariant measure class. Indeed, let v be a Haar measure in G; 
that is, the unique (up to a multiplicative constant) measure which is 
finite on compact sets and invariant under  right translation. Let  v t be any 
finite measure in the class with v, and let ~i(E) = Vl(~b-i(E)), where 
is the map x --+ Hx of G onto G/H. The  class ~i is independent of the 
choice of v i and is the unique invariant measure class in G/H. This 
invariant measure class may or may not contain an invariant measure 
but if it does, this invariant measure is unique up to a multiplicative 
constant. More generally, if an ergodic invariant measure class contains 
an invariant measure, this measure is unique up to a multiplicative 
constant. I f  it is finite, then, of course, the measure class contains a 
unique invariant probability measure. 

Part (b) is not only much harder but  there are no groups for which it 
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has been solved except those for which it is trivial. I t  is not hard to show 
that compact groups have no properly ergodic actions so that the 
simplest group which has them is the additive group of all integers. 
The  properly ergodic actions of this group have been much more 
assiduously studied than those of any other group and a considerable 
amount  of information has been accumulated. However, we are still 
quite far from anything approaching a complete classification. In spite 
of these differences in difficulty, it is well to keep in mind that parts (a) 
and (b) of the classification problem are analogous problems. In particular, 
the various properly ergodic actions of a given G relate to one another 
in a manner suggestive of the way that the subgroups of a group behave, 
and, indeed, it turns out to be fruitful to think of each properly ergodic 
action as defined by a sort of "ideal" or "generalized" subgroup which 
we call a "virtual subgroup".  We shall not study virtual subgroups 
systematically in these lectures but  will invoke the point of view they 
suggest from time to time as a heuristic and motivational guide. 

Let  S 1 , C 1 and S 2 , C 2 be the spaces and measure classes for actions 
of the separable locally compact commutative groups G1 and G 2 . Then  
S 1 × S 2 becomes a standard G 1 × G 2 space if we define (sl, s2)(x ,y)  
to be (six, s~ y). Moreover, if/x I and/x 2 are members of C a and Cz, then 
/x~ x /x 2 is a member of an invariant measure class in S 1 × S 2 whose 
class depends only on C 1 and C 2 and may be denoted by C1 × C 2. 
It is more or less immediate that the resulting action of G 1 × Gz is 
ergodic if and only if the actions of G 1 and G2 are both ergodic. Moreover, 
the product action is essentially transitive if and only if both the G~ and 
G~ actions are transitive. We see in particular then that we can construct 
properly ergodic actions of a product of other groups whenever we can 
construct a properly ergodic action of at least one of the factors. I t  is of 
course not true that every ergodic action of G~ X G 2 is isomorphic to 
a product of ergodic actions of G~ and G2, respectively. To see this, 
we have only to look at the transitive case where the actions are defined 
by closed subgroups of G~ × G~. Those that are products of transitive 
actions of G1 and Ge are those whose defining subgroups are of the 
rather special form H 1 × / /2 ,  where H 1 and H 2 are closed subgroups 
of G 1 and G 2 , respectively. 

Let  S be the unit disk / z l ~< 1 in the complex plane, and let G be the 
additive group of all integers. Make S into a standard Borel G space by 
giving it the Borel structure defined by the topology of the complex 
plane and defining (z) n for each integer n to be ze ~"i~, where a is some 
fixed irrational number.  Then  tL is invariant, but  the action of G defined 
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by/~ and by z, n -+ ze 2 ~  is clearly very far f rom being ergodic. Given 
0 ~ r 1 < r 2 ~ 1, the set of all z with r 1 ~ t z{ ~ r 2 is invariant of 
positive measure and has a complement  of positive measure. Moreover,  
it is easy to see that there are no invariant subsets of positive measure 
on which the action is ergodic. On the other hand, let Sr denote the 
circle I z I = r, and let/zr denote the "arc  length measure"  on S , .  T h e n  
the measure/~ is a "direct  integral" of the measures/~,  in the precise 

1 E sense that for any Borel set E in S, I~(E) ~- ~o I~( n S~) dr. Moreover,  
each S~ is an invariant Borel set, and the pair S t , / ~ r  de fnes  an ergodic 
action of G for all r. We have in an obvious sense decomposed our given 
action as a "direct  integral" or "cont inuous  sum"  of ergodic actions. 

This  example is a typical special case of the general decomposit ion 
theorem alluded to above and to whose general formulat ion we now turn  
our attention. Le t  ~ be a finite measure in the standard Borel space S, 
and let 9 be a mapping of S onto some space R. T h e n  R becomes a 
Borel space if we define a subset E of R to be a Borel set whenever 
q~-l(E) is a Borel subset in S and setting ~(E) = / x ( ~ - l ( E ) )  gives us a 
measure 12 in R. We think of the sets cFl(r) for r e R as providing a 
"f iber ing" of S analogous to the fibering of the disk into circIes in the 
above example. T h e  fundamental  theorem on the fibering or decom- 
position of measures may be stated as follows. 

THEOREM. Let the fibering R, ~o be such that R as a Borel space is 
countably separated; that is, that there exist countably many Borel subsets 
E l ,  Ee ,... such that for any p and q in R with p ~ q, there exists j such 
that p ~ Ey and q 6 E~. Then there exists an assignment r--~ i~, of a 
measure i~ in 9-1(r) to each r ~ R such that for all Borel subsets E of S 
~(E) = ~l~r(E (5 9-1(r))d~(r) .  This assignment is essentially unique in 
the sense that i f  (r -+ i~/) is another with the same properties, then tZr = I~r ' 
almost everywhere with respect to 7. 

I t  is easy to see that if/,1 and/ ,2 are in the same class, then/~1 and k~ ~ 
are in the same class and/~1 and fir e are in the same class for almost all r. 
Since every measure class contains finite measures, the theorem just  
stated implies an analogous theorem about the fibering of measure 
classes. Based on this result, we may formulate the fundamental  theorem 
on the decomposit ion of actions into ergodic parts as follows. 

THEOREM. Let G be a separable locally compact group, and let C be an 
invariant measure class in the standard Borel G space S. Then there exists a 
fibering R, ~ of S such that the following conditions hold: 
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(1) R is countably separated. 
(2) Each ~v-l(r) is an invariant Borel set. 
(3) In the fibering of C defined by R, % almost all of the measure class 

C r are invariant and ergodic under the action of G. 

I f  R', ~v' is a second fibering with the same properties, then there exists 
a one-to-one Borel map 0 of almost all of R onto almost all of R'  such 
that the action defined by C r in ~0-1(r) is isomorphic so that defined by 
Co(r) in (q~')-~(0(r)). 

4. GROUP DUALITY AND EXAMPLES OF PROPERLY ERGODIC ACTIONS 

Let  S and C denote the standard Borel space and invariant measure 
class, respectively, for some action of the separable locally compact G. 
I f  C contains an invariant measure/x,  we may imitate the construction 
of Koopman mentioned in the introduction and define a "uni tary 
representation" x ~ Vx" of G in the Hilbert space ~q~2(S,/~) by defining 
Vx,( f ) (s  ) to be f (sx) .  The representation V can in fact be constructed 
even when C does not contain an invariant measure. One simply chooses 
/~ to be an arbitrary member of C and changes the definition to read 

V~"(f)(s) ~- V/p(s, x) f(sx), 

where p(s, x) is a Borel function which for each x in G is a Radon 
Nikodym derivative of/*x with respect to/~. Inserting the factor ~/p(s, x) 
compensates for the noninvariance of/* in such a fashion as to render the 
operators Vx" unitary. I t  is easily seen that (Vx"(9) • ~b) is a Borel function 
of ,x for each ~ and ~b in the Hilbert space . ~ ( S , / z )  and that V ~ ---- x y  

Vx'~Vy ~ for all x and y in G. Quite generally, one defines a unitary 
representation of separable locally compact group representation W 
of G to be a homomorphism x --> W x of G into the group of all unitary 
operators in some separable Hilbert space H(W)  such that x -~ Wx has 
one and hence all of the equivalent properties. 

(1) For each ~o and ~b in H(W) ,  x ~ (Wx(~) .(¢)) is a Borel function. 
(2) For each 9 and ~b in H(W) ,  x -+ (Wx(cp). (~b)) is continuous. 
(3) For each ~0 in H(W) ,  x ~ V/x(~) is continuous. 

Moreover, one defines two unitary representations W 1 and W 2 to be 
equivalent if there exists a unitary operator U from H ( W  ~) to H ( W  ~) 
such that U W x U  -1 = W.x 2 for all x in G. For rrvatiy purposes, one does 
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not distinguish between equivalent representations. Since it is quite 
easy to show that V,1 and V,2 are equivalent unitary representations of G 
whenever/x 1 and/zz are in C, it follows that our construction is essentially 
independent of the choice of/x and gives us a natural mapping of iso- 
morphism classes of actions of G into equivalence classes of unitary 
representations of G. While this mapping is far from being one-to-one, 
it provides a very useful partial classification of actions, and, in fact, 
for a certain class of properly ergodic actions is one-to-one. 

Given two unitary representations W a and W 2 of the same G, their 
direct sum W 1 @ W 2 is defined as the representation whose space is 
H ( W  1) @ H ( W  ~) such that (W 1 @ W2)~ = Wx 1 @ Wx ~. Similarly, one 
defines W 1@ W ~... @ W  ** and, more generally, W 1@ W 2 ~ - . . . .  
It is easy to see that the unitary representation defined by the direct sum 
of finitely or countably many actions is equivalent to the direct sum of 
those defined by the actions separately. Moreover, one can define "direct 
integral" for representations and prove a corresponding result for the 
unitary representation defined by a direct integral of other actions. Thus, 
one is interested primarily in finding the unitary representations defined 
by ergodic actions. A closed subspace M of the Hilbert space H(W) of 
a unitary representation W is said to be invariant if Wx(~) ~ M for all 
q0 e M. Defining Wx M to be the operator W~ restricted to elements of M, 
one obtains a new representation x -+ Wx M, called the subrepresentation, 
defined by the invariant subspace M. An obvious argument shows that 
the orthogonal complement M ± of M is invariant whenever M is and 
that W is equivalent to the direct sum of W M and W M~. Thus W is 
equivalent to a proper direct sum if and only if H(W)  has nontrivial 
closed invariant subspaces. A representation which has no nontrivial 
closed invariant subspaces is said to be irreducible. One attempts to 
analyze representations by decomposing them as direct integrals of 
irreducible representations. In the special case in which G is compact, 
every unitary representation is a direct sum of representations which are 
finite dimensional and irreducible. Moreover, whether or not G is 
compact, whenever a unitary representation can be written as direct sum 
of irreducibles, the irreducibles which occur are uniquely determined to 
within equivalence by specifying which irreducibles occur and with what 
multiplicity. 

Ergodic theory has up to now been mainly developed for groups G 
which are commutative as well as separable and locally compact, and 
when G is commutative its unitary representation theory takes an 
especially simple form because of a theorem asserting that an irreducible 
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unitary representation of a commutative group is necessarily one 
dimensional. Note that if V is a one-dimensional unitary representation, 
then V x = X(x)I, where I is the identity operator and X is a continuous 
complex-valued function on G, such that X ( x y ) =  X ( x ) X ( Y )  and 
] X(X)l = 1. Conversely, given any such function; that is, any continuous 
homomorphism x --+ X(x) of G into the group of all complex numbers of 
modulus one, then V x = X(X)I is a one-dimensional irreducible unitary 
representation of G. The functions X are called the one-dimensional 
characters of G, and in the commutative case, the "one dimensional" 
is usually omitted. Determining the irreducible unitary representations 
of a commutative G is equivalent to determining the characters of G. 

A fact which will be of great importance for us is that the set G of all 
one-dimensional characters of a given separable locally compact G is 
itself a separable locally compact group. Indeed, it is obvious that the 
product X1X2 of two one-dimensional characters is again such and so 
are the complex conjugates X1 and X2 of X1 and X~ • Thus G is a commu- 
tative group with respect to ordinary pointwise multiplication. For each 
E > 0 and each compact subset C of G, one defines Nc ,  ~ to be the set of 
all X ~ ~ with [ X(x) -- 1 j < E for all x ~ C. The sets Nc,~ can be shown 
to form a complete set of neighborhoods of the identity for a topology 
in ~ which makes it into a separable locally compact group. In the case 
in which G is commutative, G is called the dual group or the character 
group of  G. 

Perhaps the simplest example is that in which G is the additive group 
of all integers. Then x(n) = (X(1)) ~ by definition, and X is completely 
known as soon as we know X(1)- On the other hand, if we choose a to be 
an arbitrary complex number of modulus one, then setting x(n) = a n 
defines a character. ~ in this case is isomorphic to the group of all com- 
plex numbers of modulus one or, equivalently, to the quotient group 
obtained from the additive group of the real line by factoring out the 
subgroup of all integer multiples of 2~. Moreover, the topology of 
turns out to be the usual topology of the complex numbers so that ~ is a 
compact topological group. This is a special case of a general result. 
It is quite easy to prove that ~ is compact whenever G is discrete. 
Another simple and important example is that in which G is the additive 
group of all real numbers. If  y is any real number, then setting Xu(x) = 
e iux clearly defines a character, and it may be shown that every character 
is of the form Xu for some uniquely determined y. Since XulXu~ = Xu~+u2, 
it follows in this case that ~ is also isomorphic to the additive group of 
the real line. Moreover, one verifies that the topology of G as the dual 
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of G agrees with the usual real-line topology. Other duals of the important  
examples such as the additive group of Euclidean n space can be computed 
from the above using the following easy theorem about direct products: 
The  characters of G 1 × G.~ are precisely the functions x, y ~ Xl(X)X~(Y) = 
X1X2(X, y) ,  where X1 and X2 are arbitrary members of ~1 and ~2 ,  respec- 
tively. Moreover, X1, )¢~--* X1X~ is an isomorphism of ~1 × ~2 and 

G 1 × G~ as topological groups. I t  follows in particular that the most 
general character of the additive group of Euclidean n space is 

X I ,...~ X n --+ ei(XlYl+'"+XnYn) 

where Yl ,..., Y. are fixed real numbers. 
Consider X(X), where x is a f ixed element of G and X is a variable 

element of ~.  The  resulting complex-valued function on G is a member  
fx of ~, the character group of ~ .  Indeed, f x ( x 1 x ~ ) =  XaX2(x) = 
XI(x) X~ x =fx(X~)fx(x2) ,  and continuity is equally easy to establish. 
Thus  we have a natural mapping x ~ fx of G into ~ which is seen at once 
to be a continuous homomorphism. The  celebrated Pontryagin van 
Kampen  duality theorem says much more; the mapping x---~fx is one 
to-one and onto, and its inverse is continuous so that it defines an iso- 
morphism between G and G as topological groups. I f  we use this iso- 
morphism to identify G and 0,  we see that the relation between G and 
is a reciprocal one. G is just  as much the dual of ~ as ~ is the dual of G. 
Separable locally compact commutative groups (actually, the duality 
theorem is true without separability) occur in dual pairs. Moreover, 
in this duality, the duals of compact group are always discrete so that 
every compact commutative group is the dual of some discrete one and 
conversely. 

Let  0 be a continuous homomorphism of G1 into Ge, where G1 and G 2 
are locally compact commutative groups. Then  for each X ~ ~2 ,  
x ~ x(O(x)) is a member [X] 0* of ~1 ,  and X -+ [X] 0* is a continuous 
homomorphism of G 2 into G 1 , called the dual of 0. Of course, 0"* = 0 
if we identify ~ with G. When GI is a closed subgroup of G z and 0 
is the identity mapping, then 0* maps ~2 onto ~1 ,  and its kernel is the 
closed subgroup G1 i of Gz ± consisting of all X1 with Xl(X) = 1 for all x 
in G 1 . The  subgroup G1 J- is called the annihilator of G 1 . Of course, 
G~ -I ~ G 1 when 61 is identified with G 1 . 

Let  K 1 , K~ ,... be an infinite sequence of compact commutative groups 
(some or all of which may be finite), and let K denote their complete 

oo 

direct product I-[j=1 Kj.. With the product topology, K is a compact 
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commutative group which is separable if all of the K 3. are. Now, let 
Xl, X~, X3 ,.-. be a sequence such that Xj ~/~j and such that Xu ~ 1 for all 
but a finite number of j. Then I-I~=l xj(xj) is well-defined for all 

c o  

Xa, x~ ,... ~ K = YIj=I/(3. and defines a character of K. It is not difficult 
to show that every character of K has this form for some uniquely 

c o  

determined sequence X1, Xz ... .  The dual of I-[j=1 Kj is thus naturally 
oO 

isomorphic to a certain discrete subgroup of the product [Ij=l ~ j -  
Members of this class of examples will occur several times in the sequel. 

Let S be a standard Borel G space, where G is a separable locally 
compact commutative group; let C be an ergodic invariant measure class 
in S; and let V be the associated unitary representation of G. One says 
that the action of G defined by S and C has a pure point spectrum if V is 
a direct sum of irreducible representation (i.e., of one-dimensional 
characters), and the set of characters which appear is called the spectrum 
of the action. As we shall see, it is possible to give a complete analysis 
of all possible ergodic actions with pure point spectrum. First of all, it 
is not difficult to show that if H(V) has any one-dimensional invariant 
subspaces at all, then C contains a finite invariant measure. Thus, if V 
has a pure point spectrum, then C contains a unique invariant probability 
measure /x. If  g is contained in the invariant subspace corresponding 
to the character )/, then for all x ~ G, g(sx) = X(x) g(s) for almost all s in S, 
whence it follows that l g(sx)J ~ I g(s)[ in that by ergodicity, J g(s)J is 
almost everywhere constant and in particular may be taken to be bounded. 
Hence, if g l ( s x ) ~  Xx(X)gx(s ) and gz(sx)= Xz(x)g(s), then g~ff~ is in 
~¢2(S,/,) and glg2(sx) ~ X~(x) 22(x) ~ ( s ) .  If Xl = X2, it follows that 
gl~2(sx) ~-glg2(s) and, hence, by ergodicity, that g ~  is a constant. 
Hence, g2 is a constant multiple of gl • On the other hand, if )/1 ~ )/~, 
then the subspace spanned by glgz is invariant and is associated with the 
character )6~2 = )/~X~ -1- In other words, each character which occurs, 
occurs with multiplicity one, and the set of characters making up the 
spectrum is a finite or countable subgroup of ~. It is a remarkable fact 
that an action with a pure point spectrum is determined to within 
isomorphism by its spectrum. Moreover, every countable subgroup of 
occurs as the spectrum of some ergodic action of G with a pure point 
spectrum. More specifically, one can prove the following. 

THEOREM. Let I" be a finite or countable subgroup of G, where G is a 
separable locally compact acommutative group and I" is not necessarily 
closed. Let 0 be the natural homomorphism of F as a discrete countable group 
into ~. Let O* denote the dual homomorphism of G into the compact dual 1# 
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of I" and make f" into a standard Borel G space by setting [X]x = xO*(x) 
for all X c lP and all x c G. Then Haar measure in ~0 is invariant and 
ergodic with respect to the G action. The resulting ergodic action of G has 
pure point spectrum with I" as spectrum, and every such action of G is 
isomorphic to this one. The actions is properly ergodic if  and only i f  F is 
not closed. When 1" is closed, the associated transitive action of G is that on 
the coset space of G /F  ±. 

If follows at once from this theorem that the isomorphism classes of 
properly ergodic actions with a pure point spectrum for a given G corre- 
spond one-to-one to the nonclosed countable subgroups of G and, 
hence, exist in great variety whenever G is not compact. In the special 
case in which G is the additive group of the integers so that ~ is the 
multiplicative group of all complex numbers of modulus one, the 
simplest possible example for F is a nonfinite cyclic group, that is, the 
group of all e i~° where 0/2w is irrational. This class of examples is 
precisely the one discussed in Section 3 and the only class we have 
presented up to the beginning of the current discussion. We see, in 
particular, that every noncompact G admits at least continuum many 
mutually nonisomorphic properly ergodic actions. 

The examples of actions with pure point spectra just constructed are 
such that the measure-preserving transformations s --+ sx are all transla- 
tions on a compact commutative group F. Now Haar measure on a 
compact group is preserved not only by all left and right translations but 
also by all automorphisms of the group. We shall now investigate 
groups of automorphism of separable compact commutative groups and 
so obtain examples of ergodic actions which not only fail to have pure 
point spectra but are in various ways at the opposite extreme from 
actions with pure point spectra. Let K be a separable compact com- 
mutative group, and let ~ be an automorphism of K. Then setting 
[h]n = an(k) and taking C to be the measure class of Haar measure/x, 
we obtain an action of Z, the additive group of all the integers. Let V 
denote the associated unitary representation of Z. Now if t~ is chosen so 
that /x(K) ~- 1, the characters of K form a complete orthonormal set. 
Indeed, by the theorem on pure point spectra cited above, the transitive 
action of K defined by the identity subgroup has /~  as its spectrum, and 
this implies that the members o f / £  have the property in question. As 
first noticed by Halmos, this fact may be  used to determine the structure 
of V since V~()¢) = [X](~*) ~, where ~* is the automorphism o f / ~  dual 
to ~. Let 0 x denote the "orbit of )~", that is, the set of all [X](~*) ~ for 
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fixed X and variable n. Then the characters in each orbit span a sub- 
representation of V and V is the direct sum of these subrepresentations. 
This subrepresentation associated with the orbit of X is at once seen to be 
equivalent to the representation associated with the corresponding 
transitive action of Z on O x and hence determined by the subgroup Z o 
of all n with X(~*) ~ : X- This subgroup Z 0 is either the group of all 
multiples of some fixed positive integer m 0 or consists of the identity 
alone. In the first case, the orbit has m o elements and the corresponding 
component of V is the direct sum of the m 0 characters n--~ exp(2~ril/mo), 
l = 0, l, 2,... m 0 -- 1. In the second case, the orbit is infinite and the 
corresponding component of V is the representation W whose space is 
the space of all complex-valued functions n--~f(n) on Z such that 
~,~__~ If(n)l 2 < ov with W~(f)(m) = f (m  + n). This is called the regular 
representation of Z and an easy application of Fourier analysis shows 
that it has no irreducible subrepresentations at all. Notice that the one- 
dimensional identity occurs once in the component associated with each 
finite orbit. On the other hand, where there is a finite invariant measure 
in the measure class, it follows at once from the definition of ergodicity 
that an action is ergodic if and only if the only invariant square summable 
functions are the constants. Since the identity o f / <  is always an orbit, 
the action will be ergodic if and only if every other orbit is infinite. 
Thus we have outlined the proof of Halmos' theorem: Let ~ be an 
automorphism of the separable compact commutative group K, and let 
~* denote the dual automorphism of the discrete character group /~. 
Then the action of the integers on K and Haar measure defined by 
is ergodic if and only if every ~* orbit i n / £  other than the identity has 
infinitely many elements. When it is ergodic, the associated unitary 
representation of the integers is the direct sum of the one-dimensional 
identity and has as many replicas of the regular representation as there 
are infinite orbits. In particular, the point spectrum contains just one 
element. 

To produce examples of pairs K, ~ in which the conditions of Halmos' 
theorem hold so that an ergodic action of Z is defined, one can proceed 
as follows. Let A be a separable compact commutative group which may 
be finite, and let K be the group A z of all functions from Z to A made 
into a compact separable topological group by regarding it as a direct 
product of replicas of A. Then the mappingf--~ ~(f), where o~(f)(n) = 
f ( n  + 1), is clearly an automorphism of K. We have already discussed 
the character group of K, and a straightforward computation shows 
that ~* has countably many infinite orbits and no finite orbits other than 
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the identity. The corresponding action of Z is thus ergodic, and the 
associated group representation V is the direct sum of the one-dimen- 
sional identity and of countably many replicas of the regular representa- 
tion of Z. Notice that V is the same no matter what A is. Thus it is not 
immediately clear whether changing A changes the isomorphism class 
of the associated action as well. It  is easy to see that the isomorphism 
class of the action depends only on the structure of the measure space 
A becomes when Haar measure is introduced, and, hence, only on the 
cardinal number of A. When A is finite with n elements, the corre- 
sponding ~ is called the n shift, and for many years it was an unsolved 
problem to decide whether the n shift and the n' shift could define 
isomorphic actions when n and n' were different. In fact, for no two 
distinct values of n could it be decided whether or not the actions were 
isomorphic. The problem was finally settled in 1959 by the work of 
Kolmogorov and Sinai who introduced a new invariant based on the 
concept of entropy in information theory and showed that the n shift 
and the n' shift define isomorphic actions if and only if n = n'. We shall 
have more to say about this in later sections. 

Thus far, we have produced examples of properly ergodic actions 
other than those having pure point spectra only for the special case of 
the infinite cyclic group Z. However, the method is easily extended 
to arbitrary countable discrete groups--even noncommutative ones. 
First of all, Halmos' result about infinite cyclic groups of automorphisms 
of K extends at once to arbitrary countable groups. One looks at the 
orbits of the dual action o n / ~  and finds as before that the action on K 
is ergodic if and only if there are no nontrivial finite orbits. If it is ergodie, 
then the associated representation g is a direct sum of the one-dimen- 
sional identity and of a representation associated with each orbit. The 
representation associated with the orbit of )¢ is, however, not necessarily 
the regular representation of the group G but the representation associ- 
ated with the transitive action of G on the coset space G/H, where H is 
the subgroup leaving a point fixed. This representation can be shown 
to have no finite-dimensional irreducible subrepresentations. To 
produce examples, let G be an arbitrary countably infinite discrete group, 
and let A be as above. Let K = A a denote the group of all functions 
from G to A topologized as a direct product of replicas of A. Then for 
each x ~ G, f - - + f '  is an automorphism of K if f ' (y)  = f ( y x - 1 ) .  The 
dual action of G o n / ~  is easily seem to have no nontrivial finite orbits 
and to be such that all "isotopy subgroups" H for the infinite orbits 
reduce to the identity. Thus, Haar measure on K is ergodic under G, 
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and the associated group representation is a direct sum of the one- 
dimensional identity and of countably many replicas of the regular 
representation of G. A further class of examples may be obtained by 
replacing K = A a by the group of all functions from some infinite coset 
space G/H to A. 

There is an analogue of the above construction which applies to 
arbitrary separable locally compact groups but it cannot be described 
immediately. Indeed, in the special case of the additive group of the 
real line, it reduces to the ergodic action of the real line associated with 
the celebrated Wiener measure in the space of continuous functions. 
We shall give details in a later section. 

5. THE ERGODIC THEOREM AND ITS SIGNIFICANCE FOR THE 

THEORY OF STOCHASTIC PROCESSES 

Recall that a discrete stationary stochastic process is defined by giving 
three things: (1) A standard Borel Z space g?, where Z is the additive 
group of the integers, (2) an invariant probability measure ~ in D, and 
(3) a real- or complex-valued Borel func t ionf  defined on £2. (1) and (2) 
together define an action of Z, and we may accordingly classify processes 
by classifying the underlying actions of Z. Of course, there will be many 
distinct processes associated with a given action corresponding to 
different choices for f ,  but it will turn out that the nature of the underlying 
action sharply limits the possibilities for the process and that, conversely, 
we may classify actions by the nature of the processes which can be built 
upon them. This interplay between the classification and properties of 
actions and processes will be one of our principal themes. 

To begin with, let us examine the meaning of the decomposition 
theorem of Section 3 for the nature of a process D, ~, f. By that theorem, 
D may be fibered into Z invariant Borel subsets g?~ each of which is 
equipped with a finite invariant measure % which is ergodic under the 
action of Z. The measures ~ have the property that 

e~(E) = f ~r(E n .('Jr) d~(r) 

for all Borel subsets E of $2 and are essentially uniquely determined by 
this fact. Moreover, the ~ are all probability measures. Let f i  denote the 
restriction of f to O r . Then for each r, the triple g2~, ~ ,  fr defines a 
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discrete stationary stochastic process for which the underlying action 
is ergodic. Moreover, in an obvious sense, one may think of the original 
process as being a direct integral of these ergodic processes. Now 
consider an arbitrary sample function n -+f([~o]n) of our process. The 
point ~o will belong to one of the fibers D~, and since f2~ is Z invariant, 

f([o)]n) ~f~([oJ]n) for all n. In other words, every sample function 
coincides with a sample functions of one of the ergodic components of the 
process. This simple fact is of considerable significance since, in many 
contexts, it permits us to confine our attention to the ergodic case. Note 
in particular that in the theory of time-series analysis, one is presented 
with a part of the past of one sample function and one wants to make 
deductions about the process and about the probability of various events 
in the future. A little reflection makes it clear that the past of one sample 
function can at most yield information about the ergodic part D r in 
which that sample function lies and that in making predictions one can 
assume that the process is ~2~, %,  f~ instead of ~2, ~, f .  In other words, 
in the prediction theory of stationary stochastic processes, one may 
always assume that one is dealing with a process whose underlying action 
is ergodic. 

Since every sample function is the sample function of an ergodic 
component of the process, it is interesting to investigate the effect on the 
sample functions of the division of ergodic actions into these which are 
properly ergodic and those which are essentially transitive. Now the only 
ergodic actions which arise from stationary stochastic processes have 
finite invariant measures, and the only transitive actions of Z which have 
finite invariant measures are those whose defining subgroup contains 
more than 0. Hence the transitive components in the decomposition of 
an arbitrary stationary stochastic process are finite sets on which 1 acts 
by a cyclic permutation of order k, where k is the number of elements 
in the set. Clearly, the sample functions associated with the elements of 
such a finite invariant set are periodic with period k. Thus for a stationary 
stochastic process whose underlying action is essentially transitive, 
almost aII sample functions will be periodic functions with a fixed 
period k. More generally, given an arbitrary stationary process, we have 
the following dichotomy. Either (a) almost every sample functions is 
periodic or (b) for a set of r values of positive measure, the ergodic 
action of Z on ~2~, ~ is properly ergodic. 

This simple observation tells us that if properly ergodic actions of the 
integers did not exist then for every stationary stochastic process, almost 
every sample function would be periodic. It is in this sense that one can regard 
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the existence of properly ergodic actions as a necessary condition for the 
existence of a realistic mathematical model for random phenomenon. 

Given a sample function n -+f([o~]n) of a discrete stationary process, 
one can consider the mean 

f([~o]l) +f([o)]2) + .-. +f( [w]N) 
N 

of N successive observations. Intuitive ideas about the nature of proba- 
bility suggest that this mean should have a limit as N tends to oo which 
is equal to the common expected value of the random variables of the 
process (that is to ff(co)d~(oJ)) whenever the latter exists. In mathe- 
matical terms, one expects that whenever f is in ~'(D, N), then 

f([o)]l) +f([~o]2) + .-. +f([oJ]N) 
N 

has a limit as N ~ oo and that the limit is equal to ff(a)da(a). Of 
course, since f can be arbitrary on a set of ~ measure zero without 
affecting its integrability, one can at most hope that the limit in question 
exists almost everywhere. The celebrated pointwise ergodic theorem 
proved by G. D. Birkhoff in late 1931 states precisely this provided only 
that the action is ergodic. More exactly, Birkhoff's theorem (in its discrete 
form) says that whenever f is in 5¢1(D, ~) and ~ is invariant, then 

lira f([~o] 1) + f([oaJ2) + . . .  + f([oa]N) 
N ~ o  N 

exists for almost all co in f2 and that this limit is almost everywhere 
equal to ff(co) d~ whenever the action is ergodic. The existence of the 
limit is the difficult point to establish and this is quite independent of 
the ergodicity hypothesis. It is obvious that the limit is measurable and 
invariant under the action and hence must be almost everywhere 
constant if ergodicity holds. To prove that this constant must be equal 
to .If(co) do is then an elementary exercise in the theory of the Lebesgue 
integral. When the action is not ergodic, the limit in question will 
depend upon the ergodic component to which co belongs and only "by 
accident" will be equal to ~f(co) dc~. Thus the concept of ergodicity is 
essential in order that the so-called "strong law of large numbers" 
should hold in probability theory and the content of the G. D. Birkhoff 
ergodic theorem is that it does, in fact, hold whenever the underlying 
action is ergodic. 

6o7/.2/2-5 



204 GEORGE W. MACKEY 

Actually, in its original form, the ergodie theorem was proved for 
actions of the real line rather than actions of the integers and correspond- 
ingly took the form of asserting the almost everywhere existence of 

limSf( T-~ I f([oJ])t at. 

Moreover, it was proved under somewhat more restrictive hypotheses 
on D and the action. However, it is easy to derive one form of the theorem 
from the other and the superfluity of some of the original hypothesis was 
soon recognized. In proving his theorem, Birkhoff was motivated by 
the needs of statistical mechanics (cf. Section 9) rather than those of the 
theory of stochastic processes, and the connection with stochastic 
processes was not pointed out until two years later. As mentioned in the 
introduction, Birkhoff's work was inspired by yon Neumann's proof of 
the (much easier) mean ergodic theorem and it was yon Neumann who 
called attention to the significance of the concept of ergodicity in implying 
equality for the two means. Before the proof of the ergodic theorem, the 
strong law of large numbers was known to hold only in rather special 
cases such as that in which the random variables are independent. 

Of course, the ergodic applies equally well to the action co, n -+ [~o](--n) 
and so tells us that not only does 

j (f(w) d~ = lira f ( [c° ] l )  -~f([oJ]2)  ÷ ... + / ( [ w i N  ) 
N ~  N 

but that also 

f f(w) d~ = N-.~lim f([°d(--1)) + f([oq(--2))N + "'" + f([~o](--N)) 

In other words, one can compute the invariant ~f(~o) do of the process 
from the "complete past" ...f([co](--n)),f([~o](--n q- 1) ) . . - f ( [ co ] -  1) 
of almost any sample function. We show next that one can do much 
better than this. When ergodicity holds, one can reconstruct the entire 
process from almost any sample function. The procedure we shall 
outline for doing this involves both the ergodic theorem and a theorem 
about locally compact commutative groups called the Bochner-Herglotz 
theorem. We begin by describing the latter which will be used again 
in the sequel. Let G be a locally compact commutative group, and let X 
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be a member  of G, the character group of G. Let  x I , . . . ,  X n be a finite 
set of elements of G, and let q , . . . ,  c n be complex numbers.  Then ,  
of course, (CIXI(Xx) ~- "'" CnX(X~))(CIXI(Xl) @ "'" cnx;t(gn) ~ O. B u t  the 
left-hand side is equal to X i , j  Q c j x ( x i x - ; ~ )  • In other words, X is "positive 
definite" where a complex-valued function f on a topological group G 
is defined to be p o s i t i v e  d e f i n i t e  wherever it is continuous and satisfies 
the inequality, ~in, j=l £ic]f(xix~ 1) ~ 0 for arbitrary choices of the group 
elements x~, x 2 ,..., x~ and the complex numbers  q ,..., c~. More  
generally, let/~ be any finite measure on ~,  and let f i ( x )  = ~ X ( x )  d t z (X) .  

One verifies at once that /2, the Fourier  t ransform of tz, is a positive 
definite function on G. T h e  Bochner-Herglo tz  theorem asserts that the 
mapping tz -+/~ is injective and has every positive definite function in its 
range. In  other words, for every positive definite function g on G, there 
exists a unique finite measure/x on ~ such that g = ft. 

Given a real-valued discrete stationary stochastic process, a simple 
change of variable such as y - - ~  e i a r e t n n y  converts it into a discrete 
stationary process whose values lie in the compact group T of all complex 
numbers  of modulus one. T h e n  replacing I2 by T ~ the group of all 
functions f rom the integer to T ,  we see that [2 is a compact commutat ive 
g r o u p - - t h e  direct product  of eountably many replicas of T. I f  co e 12 = 
T ~, then [co](m) = ~o(n q- m), and our basic random variable of which 
the rest are translates will be ~o--~ ~o(0) = g(co). Our process will be 
fully described as soon as we are given the invariant probabili ty measure 
/~ in 12, and we shall show how to compute  it from the complete past of 
almost any sample function. T h e  basic idea is that by the Bochner -  
Herglotz theorem it is enough to determine the Fourier  transform/2 of/~, 
and/2,  being a function on the countable dual group ~), takes on only 
countably many values. We shall use the ergodic theorem to derive 
an explicit formula for computing each of these values. Given any pair 
of integers n, m, let us define X,,,~(~o) to be [~o(m)] ~. It  is clear that X~,m 
is in ~ and easy to show that every member  of ~) is uniquely a finite 
product  of the form Xn~mx X~,  ~ "'" X n ,  , , ~ ,  where m I < m 2 " "  < m k and 
n 1 , nz ,..., nk are arbitraryl I t  suffices then to compute  

f ~(ml)~'~(~2)~'~(m~) ~ d~(~o) 

for every 2k-tuple of integers m 1 < m 2 ..- < m k . . . .  n I , n~ , . . . ,  n k . But 
~ o - - ~  co(rnl)*~lo)(ma)n~co(mk)~,~ is bounded  and measurable and therefore 
integrable. I t  follows then from the ergodie theorem that 
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P(x . . . .  , " "  x., . , .)  

f w(m,) n' ' '" w(mk) "~ dl~(oo ) 

= lim 1 ~ w(ml _ mk _ n),l ~o(m 2 _ m k  _ n),2.." co(_n),k 

for almost ~o. But this final expression involves only o~(j) f o r j  < 0 and, 
hence, is known whenever the complete past of the sample function is 
known. Note that each value of # is just an average of product of powers 
of "shifts" of the sample past. 

Although the argument uses ergodicity in an essential way, the con- 
struction of # can be carried out in any case and leads to a function on 
which is readily seen to be positive definite and hence the Fourier 
transform of a unique measure v in ~2. Moreover, v is a probability 
measure since #(e) ~ l. What is the relationship of this probability 
measure v to the nonergodic /z with which we started ? Consider the 
decomposition of /z into ergodic components described above. Each 
component lies in an invariant subset of £2, and every point g2 lies in one 
of these invariant subsets. Clearly, u is just the (normalization) of the 
ergodic component of/z associated with the invariant subset to which 
our particular sample function belongs. In other words, whether an 
original process is ergodie or not, almost every sample function will 
belong to an ergodic component, and the past of almost all of the sample 
functions belonging to this component can be used just as above to 
compute the measure in this ergodic component. On the other hand, 
these sample functions yield no information about the rest of the process. 
Note however that from the point of view of predicting the future from 
the past, one is interested only in the ergodic component to which the 
given sample function belongs. Hence, as already indicated above, in 
prediction problems there is no loss in generality in assuming that the 
underlying action is in fact  ergodic. 

6. THE SPECTRA OF ACTIONS AND PROCESSES 

Let G be a separable locally compact group. As explained in Section 4, 
every measure class preserving action of G is canonically associated with 
a unitary representation of G whose equivalence class is therefore an 
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invariant of the action. When G is commutative and the action is ergodic, 
a special role is played by those actions for which the associated unitary 
representation is a discrete direct sum of irreducibles. In this case 
(as we saw in Section 4), the isomorphism class of the action is uniquely 
determined by the equivalence class of the representation. This equiv- 
alence class is, in turn, uniquely determined by a countable subgroup 
of ~ which is called the spec t rum of the action. When the representation V 
is not a discrete direct sum of irreducibles, it need not determine the 
isomorphism class of the actions, but its equivalence class is still an 
important invariant. Moreover, this equivalence class is not describable 
by anything so elementary as a subset of ~. The analogue of the spectrum 
of an action must be defined in a more subtle fashion. 

In the special case in which G is the additive group of the real line, 
Stone's theorem tells us that any unitary representation V of the real line 
may be expressed uniquely in the form V t = e itH, where H is a self- 
adjoint operator and two unitary representations V 1 and V 2 are equivalent 
if and only if the corresponding self-adjoint operators H 1 and H 2 are equiv- 
alent in the sense that H 2 = U H  1U -1 for some unitary operator U. In this 
case then, the problem of determining the equivalence classes of unitary 
representations of G is equivalent to the problem of determining the 
equivalence classes of self-adjoint operators. This problem is trivial when 
H 1 and H 2 are diagonalizable, it being obvious that they are then equiv- 
alent if and only they have the same eigenvalues with the same multi- 
plicities. When Hi  and H 2 have a ~so-called "continuous spectrum", 
the problem is much more difficult but has been completely solved. The 
case in which H 1 and H~ are bounded was analyzed by Hahn and Hellinger 
in extension of Hilbert's spectral theorem. A few years later in the 1920's, 
the theorems of Hilbert, Hahn, and Hellinger were generalized to the 
unbounded case and thrown into abstract form by yon Neumann and 
Stone. A detailed exposition of the unitary equivalence theory appears 
as Chapter VII in Stone's now classic treatise and a more modern version 
in a book by Halmos entitled "Introduction to Hilbert space and the 
theory of spectral multiplicity". When these theorems about self-adjoint 
operators are translated into corresponding theorems about unitary 
representations of the additive group of the real line, they take a form 
which is meaningful for arbitrary separable locally compact commutative 
groups. These more general theorems turn out to be true and provide 
a complete analysis of all equivalence classes of unitary representations 
for every separable locally compact commutative group G. In the next 
few paragraphs, we shall describe the analysis thus made possible. 
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Let  G be a separable locally compact group, and let V be a unitary 
representation of G. In the special case in which V is a discrete direct 
sum of irreducibles, let Xl, X~ .... denote the members of ~ corresponding 
to the irreducible constituents which actually occur, and for each j ,  
let Px~ denote the projection operator on the maximal subspace on which V 
reduces to the form Vx = Xs(X)I, where I is the identity. Then  for each 
pair % ~h of vectors in Yt~(V), we have Vx(qo) = ~ j  Xs(X)Pxj(q~), ~b = 

25 P~(~b), and (V~(q~) • ¢) = 25 Xs(x)(P~,(q)) " P ~ ( ¢ )  = Z5 Xs(x)(P~j(q~) " ¢). 
Hence V can be completely reconstructed given the X5 and the projections 
P x .  Now for each Borel subset E of ~,  let Pe = ~xj~e P,j where the 
sum is to be interpreted in the sense of strong convergence; i.e., Pe(q~) = 
52~e P~(q)) for every q~ in 24,~(V). Then  E --~ PE is a so-called "projection 
valued measure" on ~.  Quite generally, if S is an arbitrary Borel space, 
one defines a pro jec t ion-va lued  measure P on S to be an assignment of 
a projection operator PE on a separable Hilbert space ~f~(P) to each 
Borel set E _C S in such a fashion that the following conditions are 
satisfied: 

(i) PEPF = P F P e  = P e e p  for all E and F. 
(ii) P0 = O a n d P s = I .  

(iii) Whenever E l ,  E 2 ,... are mutually disjoint, then PeluL~u . . . .  
Pel + Pe~ + " " .  

The  projection-valued measure P on ~ defined above is special in that 
there exists a countable set ({X1} k9 {X2} w -.-) = A such that Po-a  = 0. 
One says that P has countable  support .  Conversely, it is easy to see that 
every projection-valued measure with countable support arises as 
indicated from a unique representation V of G which is a discrete 
direct sum of irreducibles. One has a natural one-to-one correspondence 
between all projection-valued measures on ~ with countable support 
and all discretely decomposable unitary representations of G. The  
spectral theorem asserts that this correspondence may be extended 
to one between all unitary representations V of G and all projection- 
valued measures P on G. Notice that for any projection-valued measure 
P on ~ and each vector ~0 in ~ ( P ) ,  the mapping E ~ (P~(q~) -cp) is a 
measure on ~. Moreover, for each x in G, X--~ X(x) is a continuous 
function on ~ which may be integrated with respect to his measure. By 
an obvious abuse of notation, we write this integral as f X(X) d(P~(~o) • q~). 
More generally, ifq~ and ¢ are two vectors, E --+ (Pe(q~) " ¢)  is a finite linear 
combination of measures and we may form the integral f X(x) d(P~(~v) • ¢) .  
When P has countable support {X~} u {X2} tA ..-, it is evident that 
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X(X) d(Px(q~)" ~) = Z Xj(x)(Px,(q~) " ~b) = (V~(~0) • ~b), where V is the 
associated unitary representation. In the general case, it is easy to show 
that  for each x in G, there exists a unique bounded linear operator V x 
such that (Vx(q~)" ~b ) ~ fX(x)d(P~(q~).~b) for all ~0 and ~b. Moreover, 
it is only slightly more difficult to show that Vx is always unitary and 
that x--* Vx is a unitary representation of V. The  more difficult part 
of the spectral theorem (proved independently in the mid 1940's by, 
Ambrose, Neumark, and Godement)  states that every unitary repre- 
sentation V of G arises in this way from some projection-valued measure 
P on C. It  is easy to see that V determines P uniquely and that two V's 
are equivalent if and only if the corresponding P 's  are equivalent. 
Of course, one defines p1 and p2 to be equivalent if there exists a unitary 
map U from ~ ( p 1 )  to ~ ( P ~ )  such that UPe ~ U -~ = Pe a for all E. 

It follows from the spectral theorem as just  formulated that the 
problem of classifying unitary representations of G to within equivalence 
reduces completely to the corresponding problem for projection-valued 
measures on ~. On the other hand, the notion of projection-valued 
measure involves only the Borel structure on ~ and is completely 
independent of its group structure. Since ~1 and G2 are isomorphic as 
Borel spaces except when they have different cardinal numbers, one can 
deduce the classification of projection-valued measures for any non- 
countable ~1 from that for the real line and, hence, from the classical 
theory for self-adjoint operators. Moreover, one can forget about groups 
and describe the classification for an abstract Borel space M. For 
definiteness, we shall assume that M is standard, although a weaker 
restriction would suffice. For each ~r finite measure/z  on M, we define 
a projection-valued measure P"  on M as follows. Its space is ~ 2 ( M ,  ix) 
and for each f in ~ 2 ( M ,  tz) and each Borel set E in M, Pe"( f )  = cPef, 
where ~o e is the function on M which is one for m in E and zero for m 
in M -  E. Moreover, if g is any element of ~ 2 ( M ,  tx) which never 
vanishes, then g is easily seen to be a cyclic vector for P"  in the sense 
that the finite linear combinations of the vectors Pe"(g) are dense in 
~2(M, /~)  = .~(P").  In particular, if /x(M) < c~, we may choose g z 1 
and then/x(E) ~ (Pe,(g) o g). Conversely, if E --~ Pe is any projection- 
valued measure on M which admits a cyclic vector g, then 
E ~ (Pc(g) ° g) = v(E) is a measure on M such that v(M) < oo and one 
verifies easily that the mapping cl~oel -~ ... Cn~OEm --~ qPel(g  ) + "'" %Pe,,(g) 
is norm-preserving and linear from a dense subspace of ~ ( M ,  v) to 
~ ( P )  and that the unique continuous extension of this mapping to all of 
~c~2(M, v) sets up an equivalence between P and P". Since any finite 
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measure ul on M with the same null sets as/ ,  is of the form E -~- ~e I g L 2 d/* 
for some g in ~L~'2(M, v) which is never zero and since PE" = 0 if and only 
i f / , ( E )  = 0, one deduces that: A projection-valued measure P on M is 
equivalent to one of the form P~ if  and only i f  it admits a cyclic vector and 
P" and P"" are equivalent i f  and only i f  t* and t x' lie in the same measure class. 
In other words, the mapping/x -+ P ,  sets up a one-to-one correspondence 
between measure classes on M and equivalence classes of those projection- 
valued measures P on M which possess a cyclic vector. In  order to 
unders tand the significance of this result, we need to see what having 
a cyclic vector means from some other point of view. To  this end, 
consider the special case in which P has countable support  so that 
Plmb # 0 for some countable subset m l ,  m 2 .... of M and Pe = 
~m~e P{ms} " I t  is straightforward to show that P has a cyclic vector 
if and only if P{m~} has a one-dimensional range for all i. When  M = G, 
this is the same theory as saying that each irreducible consti tuent in the 
associated group representation occurs only once, that is, that  there are 
no multiplicities. Accordingly, we define a general P to be multiplicity free 
if it has a cyclic vector ~o so that the P"  are just  the multiplicity-free 
projection-valued measures. One can define "direct  sums" of projection- 
valued measures by analogy with direct sums of group representations 

1 p e  (p1 @ p2 ... @ pn  @ "" )E[ f l , f 2  ,---] being Pe (f ,) ,  e (f2) .... , and one 
sees at once that the direct sum kP  of k replicas of the same multiplicity- 
free countably supported projection-valued measure P is such that 
(kP){r~ } has a k-dimensional range whenever P{m} ~ 0. In this sense, 
k P  is uniformly of multiplicity k. More  generally, if p1 and p2 are 
arbitrary multiplicity-free projection-valued measures on M and k 1 
and k 2 are positive integers or or, then one can show (but the proof  is 
not obvious) that k iP  1 and k2P 2 are equivalent if and only if k 1 : k~ and 
p1 and P~ are equivalent. Thus  it makes sense to say that a projection- 
valued measure has uniform multiplicity k if it is equivalent to kP  °, 
where po is multiplicity free and one sees that for each k, the projection- 
valued measures which have uniform multiplicity k correspond one-to- 
one to the measure classes in M. Thinking of the meaning of uniform 
multiplicity in the case in which P has countable support,  it is natural 
to conjecture that every projection-valued measure is equivalent to 
direct sum of projection-valued measures each having uniform multi- 
plicity k and that this decomposit ion is essentially unique when "over-  
lapping" is avoided. This  is in fact so. Let  us define the projection-valued 
measures p1, p2,.., to be disjoint if there exist disjoint Borel sets E 1, E~,... 
such that P~-e j  = 0. T h e n  it can be proved that for every projection- 
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valued measure P on M, there exist mutually disjoint projection-valued 
measures P~, p1, pz,.., such that P is equivalent to pod @ p1 @ p2 @. . .  
and PJ has uniform multiplicity j.  Moreover, each PJ is uniquely 
determined up to equivalence. Of course, some terms may be missing. 
If Cj is the measure class whose null sets are those of PI, then the 
Cj are mutually disjoint measure classes which are uniquely determined 
by the equivalence class of P and, in turn, uniquely determine this 
equivalence class. Obviously, every sequence Coo, C1, Ca ,... of disjoint 
measure classes occurs. 

Returning to the special case in which M = ~ for some separable 
locally compact commutative group, it follows from the spectral theorem 
and the foregoing analysis that the unitary representations of G are 
completely classified by the sequences Co, C1, C2 .... of disjoint 
measure classes in ~. One verifies easily that the unitary representation 
of G, whose projection-valued measure is P", is equivalent to the repre- 
sentation V" in 5°~(~,/z) defined by the equation Vx"(f)(x) -~ X(x)f(x). 
Hence the representation associated with 

c = ,  c l ,  c~ .... is oov-~ ® v,1 ® 2v"~ @ ..., 

where/xj is any member of Cj .  In an obvious sense, V" is the "direct 
integral with respect to t x'' of the irreducible representations of G defined 
by the members of G. Hence, our theorem implies in particular a 
canonical "direct .integral decomposition" for every unitary representa- 
tion V of G. If V is the unitary representation associated with an action 
of G, we shall call Cj the multiplicity j component of the spectrum of the 
action. A measure class which is supported by a countable set is com- 
pletely determined by the minimal countable set which supports it so 
that such measure classes may be identified with subsets. With this 
convention, our definition of spectrum is consistent with that given 
earlier. 

Recall the construction of the chief class of examples given so far of 
an ergodic action without pure point spectrum. Given a countable 
commutative group G, let A be a separable compact commutative group 
and form the compact group A c of all functions from G to A. For each 
f ~ A  c and each x in G, let f , ( y )  =f(yx -1 ) .  Thenf---~fx is an auto- 
morphism of A ~, and A ~ thus becomes a G space. Haar measure tz in A ~ 
is invariant and the associated action of G on A a is ergodic whenever G 
is not finite. To compute the spectrum, we use the fact that the characters 
of A a form a complete orthonormal set in ~Z(A ~,/z) and that the most 
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general character on A a is defined by a function from G to e{ which is 
the identity for all but  a finite number  of members  of G. One sees easily 
that, except for the identi ty character, the transforms of a character by 
the elements of G are all distinct. It  follows that the representation V of G 
associated with the given action is the direct sum of the one-dimensional 
identi ty and of countably many replicas of the regular representation 
of G, the latter being the representation in ~q'2(G, v) defined by setting 
W x f ( y )  f ( y x ) ,  where v in g a a r  measure in G. On the other hand, 
the duality theorem tells us that the members  of G form a complete 
or thonormal  set in £a~(~, ~), where ~ is Haar measure in ~,  and it follows 
that the regular representat ion of G is equivalent to the representation V ~ 
defined above. In  other words, the regular representation is multiplicity 
free and has the measure class of Haar measure as its defining measure 
class. I t  now follows that the spectrum of the ergodic action of G on A a 
has all components  zero except the multiplicity-one component  and the 
multiplicity-oo component ,  the former being the measure class of a 
discrete measure supported by the identity and the latter being the 
measure class of Haar measure• In particular, the spectrum is independent  
of the choice of A. Since the one-dimensional identity is a component  of 
V whenever there is a finite invariant measure, one often abbreviates 
and says simply that the spectrum is a countable Haar spectrum. In the 
special case in which G = Z, Haar measure is Lebesgue measure in the 
circle and one speaks of the spectrum as being countable Lebesgue. 

I f  G 1 and G 2 are separable locally compact  commutat ive groups and 
S 1 , /x I and S~, t*2 define actions of G 1 and G~, respectively, then one 
has a well-defined product  action of G 1 × G~ on SI × $2, ILl × IX2, 
and it is natural to a t tempt  to relate the spectrum of the product  action 
to the spectra of the factors. One shows easily that the multiplicity j 
component  of the product  action is the measure class of Zd va I × V]/g, 
where d varies over the divisors of j and vl k is a measure in the class 
defining the multiplicity l component  of the action of G k . W h e n j  = oo, 

• cO o 0  

this sum must  be replaced by ~n=l  vn 1 × u~ 2 q- ~n=l  v~ 1 × v~ 2. In the 
special case in which G t = a 2 = G, one can restrict the action of 
G × G on S 1 × S= to the diagonal G consisting of all x, y with x = y 
and so obtain a new action of G. T h e  spectrum of this action can be 
computed  f rom that of the component  actions in a straightforward way 
using the result on the action of G × G just  described. In  particular, 
a character X of G is contained in the discrete part of the spectrum if and 
only if X = XtX~, where Xl and X2 are in the discrete part of the two 
component  actions on S 1 and 82,  respectively. Moreover,  it is contained 
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with a multiplicity equal to the number of different ways in which Z can 
be factored. It is a corollary that the product of two ergodic actions of G 
is also ergodic if and only if no X except the identity is in the discrete 
part of the spectra of both actions. If one action is ergodic with pure 
point spectrum and the other is ergodic with countable Lebesgue 
spectrum, one sees easily that the product action is countable Lebesgue 
superposed upon a discrete spectrum equal to that of the component 
with a pure point spectrum. 

Let G be the additive group of the integers or of the real line, and let/L 
be an invariant probability measure in the standard Borel G space S. 
Then, as we have seen, every real-valued member f of 5F~(S, tz) defines 
a stationary stochastic process. Let V be the unitary group representation 
associated with the action of G on S, /z, and let P~" be the projection- 
valued measure on 0 associated with V by the spectral theorem. Then 
E ~ (Per(f)  • ( f))  is a finite measure co on 0 absolutely continuous with 
respect to the spectrum of the action. This measure is called the spectrum 
of the process. It is not determined until one knows f as well as the action 
but is an actual measure instead of a measure class. As will be seen 
below, it is an important invariant of the process. 

The Fourier transform of the spectrum is 

f X(X) dw(x) = f X(x) d(PxV(f  ) " ( f ) ,  

which, by the spectral theorem, is equal to 

(v~(f). (f)) = f f([s]x) f(s) dr(s). 

In other words, the spectrum of the process is just the measure associated 
to the positive definite function x--~ ( V x ( f ) . ( f ) )  by the Bochner 
Herglotz theorem. This positive definite function on G is called the 
covariance function and can be computed from the process without 
decomposing V. Actually, when the action is ergodic, it can be computed 
easily from the complete past of almost any sample function. Consider 
first the case in which G is the additive group of the integers and apply 
the ergodic theorem to the function f([s]n)f(s) and the action 
s, n --~ [s](--n). We find that 

f f([sJn)f(s) ds = V, ( f )  . f  

=limf([s](n - 1))/([s](-1)) +f([s](n - 2))f([s][-2] -?" .  +f([s](n-k))f([s][-h]) 
k-coo k ' 
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where the limit exists for almost all s. In other words, for almost all 
sample sequences (sample functions) n- - -~ f ( [ s ]n)  = f~(n), we find that 

f~(n - -  l)f ,(--1) + f~(n - -  2)f~(--2) + " + L ( n  - -  k ) L ( - - k  ) 

has a limit as k -+ oo for all n and that the resulting function of n is 
independent  of the sample function chosen and equal to the desired 
covariance function. The  limit of ~ 

f,(~ - l) f X -  1) + L(~ - 2) f s ( - 2 ) - ,  f , ( .  - k) L ( - k )  
k 

is called the autocorrelation sequence of the sample sequence. One can 
clearly drop any finite number  of terms without changing the value of 
the limit so that one really needs to knowf~(m) only for m < 0; that is, 
one needs only the complete past of almost any sample sequence. An 
analogous result holds when G is the additive group of the real line, but  
there are additional technical complications in the proof. 

7. THE HARMONIC ANALYSIS OF SAMPLE FUNCTIONS 

In this section we return to the applications of ergodic theory to 
probability theory and relate the spectral analysis of the group repre- 
sentation V associated with an ergodic action to the behavior of the 
sample functions of the stationary stochastic processes built upon the 
action. We shall concentrate attention upon continuous stochastic 
processes so that the group G will be the additive group of the real line. 
The  situation is especially transparent in the special case in which the 
action has a pure point spectrum so that S z ( S ,  Ix) admits an orthonormal 
basis 501,5°2 .... with V~(50~) = e~:XaJ50j, where the 2,j are real numbers. Then  
if the function f defining the process is in ~ 2 ( S ,  Ix), we have f ( s )  = 

o o  

Zj=l  cj50j(s), where cj = I f ( s ) ~ ( s ) d I x ( s )  and convergence is in the 
Hilbert space norm. For f in a suitable dense subspace of 5~2(S, Ix), 

o o  . c ~  . 

we have Zj=I 1 c3' I < oo so that the series 52;.=1 cs50j(s) converges uniformly 
tof(s) .  In this case, the sample functionf~(x) = f ( [ s ] x )  = 52f-1 cj50~[[s]x] = 

c O  

52j=:t cje~aJ~'50j(s) = X4=1 q50/s)  e ~jx where the series converges uniformly. 
In other words, almost every sample function can be expanded in an 

c O  

infinite series of the form 52j=1 cjle i~j~ with one term for each irreducible 
component  of V and with ] cj I I = ! cj ] and independent of the particular 
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sample function chosen. In particular, almost all sample functions are 
"almost periodic" in the sense of Bohr. We recall in this connection 
that, generalizing the original definition of Bohr, we can define almost 
periodicity for continuous functions on any topological group and that 
when the group is commutative, being almost periodic is equivalent to 
being a uniform limit of finite linear combinations of characters. More- 
over, if A is the vector space of all almost periodic functions on the 
commutative topological group G, then there exists a unique continuous 
linear functional M on A which takes the function identically 1 into 1 
and is translation invariant. One refers to M ( f )  as the mean value off .  
When G is the additive group of the real line, 

• I ( f )  = lim f(t) dt 
T~ov "-T 

and when G is the additive group of the integers 

21/l(f) = lim f(1) +f (2)  -? "'" +f(n)  
~ o z  n 

For each character X of G and each almost-periodic function f, )~f is also 
almost periodic and M(2 f )  is zero except for a countable subset X1, X~ ,... • 
The formal series )Z m(2nf )Xn(x)  is called the Bohr-Fourier series 
f o r f  and converges to f w h e n f  is sufficiently regular. In any case, f can be 
uniformly approximated arbitrarily closely by finite linear combinations 
of X1, )~ ,..- • It is interesting to compare the theory of almost-periodic 
functions just described with a certain property of the sample functions 
of our process deducible from the ergodie theorem. Indeed the coefficient 
cj ~-ff(s)~os(s ) dl~(s), and by the ergodic theorem, we may compute 
this by choosing almost any s and setting 

fo r l for c¢ = lim £ f(sx) ~j(sx) dx = lim fs(x) ~(s) e -i~jx dx. 
T ~  I T~cc 

In other words, the almost-periodic function mean Offse-~Jx exists and 
equals c~%(s). Thus, even when Zj= l [c j [  ~ ~ ,  ahnost all sample 
functions have a formal Bohr-Fourier series equal to ~j=l cjq~j(s)eia¢ ~. 
In fact, one can show that they are almost periodic in a generalized sense 
introduced by Besicovitch and related to the Bohr almost-periodic 
functions just as the square summable periodic functions are related 
to the continuous periodic functions. Note that any almost periodic 
function, whether Bohn or Besicovitch, is zero everywhere if it is zero 
on a half line. Thus, when the sample functions of a process are almost 
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periodic, the future is completely determined by the past and no real 
randomness is involved. In other words, the processes whose underlying 
actions have pure point spectra are of rather limited interest in proba- 
bility theory. 

In the general case, however, the unitary representation V may have 
irreducible subrepresentations even if the spectrum is not entirely 
discrete, and the analysis given above may be adapted to analyze the 
process into a sum of a deterministic and a more random process. Let 
V = V a @ V c, where V a is a discrete sum of irreducibles and V c has no 
irreducible subrepresentations. Then the function f defining the process 
may be written uniquely in the form f = )ca + r e ,  where fa ~ ~ ( V a )  
and fc ~ ~°4°(Vc). Of course, fa and fe define processes themselves, and 
each sample function fs will be the sum (fa)s 4- (fc)s of corresponding 
sample functions of these two auxiliary processes. Just as in the case 
of a purely discrete spectrum, the sample function (fa)s may be expanded 
into a Bohr-Fourier series whose coefficients may be computed from 
the past of fs in the same way. It is possible to use fs instead of (fa)s 
because the contribution of (fc)~ is always zero. The resulting analysis 
of the sample function into a sum of periodic components and a function 
having no such components is called "determining the hidden perio- 
dicities" or "periodogram analysis". If (fa)~ has the Bohr-Fourier 

¢O 

series Zj~I c~q)j(s) e i~js, then the measure supported by the countable set 
{tl} w {A2} k9--. and assigning {At} the measure I cj ]2 is precisely the 
atomic part of the spectrum of the process as defined in the last section. 

In 1930, Norbert Wiener published an important and influential 
memoir entitled "Generalized Harmonic Analysis" whose explicit aim 
was to find a generalization of periodogram analysis which would deal 
effectively with the continuous components (fe)s of sample functions and 
the nonatomic part of what we have called the spectrum of the process. 
Although what Wiener did is best understood by thinking of the functions 
concerned as the sample functions of a stationary stochastic process, 
this was not the point of view be took at the time. Indeed, the theory 
of continuous parameter stochastic processes had yet to be developed 
and the ergodic theorem had not yet been proved. Wiener's paper is 
presented entirely from the point of view of the harmonic analysis of 
a single function on the line. Wiener was motivated by the needs of 
electrical engineers working on telephones, radios, and other communica- 
tion devices. They concerned themselves with rapidly fluctuating 
currents and voltages and the effects on these of being passed through 
various kinds of circuits. Like so many problems in mathematics and 
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physics, this problem of the engineers was one for which Fourier analysis 
was the appropriate tool. However, the functions with which they had 
to deal were neither periodic nor rapidly decreasing at oo, so that neither 
the theory of Fourier series not the theory of Fourier transforms was 
an adequate tool. The applied mathematician 0liver Heaviside had 
filled the breach after a fashion with his celebrated "operational calculus" 
which gave usable answers to many practical problems but involved a 
large amount of rather mysterious heuristic reasoning. Wiener had set 
himself the task of rigorizing and understanding the Heaviside rules and 
thus was led to the generalized Fourier analysis of the memoir alluded 
to above. On the other hand, Wiener was well aware that there were 
connections of his work with the mathematics of randomness. In fact, 
he obtained examples of functions which had "continuous spectra" by 
using his celebrated theory of "Brownian motion". This theory (which 
will be described in the next section) was, in fact, an anticipation of an 
important part of the theory of continuous parameter stochastic processes, 
and Wiener showed in effect that almost all sample functions of the 
corresponding process had the continuous spectra he was seeking. 
Moreover, the second volume of Wiener's autobiography contains the 
following statement (on page 79): "In other words I already began to 
detect a statistical element in the theory of the continuous spectrum, and 
through that, in communication theory. Now, almost thirty years later, 
communication theory is thoroughly statistical and this can be traced 
directly back to my work of that time." What Wiener means by this last 
sentence is that the fluctuating voltages and currents with which the 
communication engineer deals can fruitfully and meaningfully be 
regarded as sample functions of a stationary stochastic process and that 
it is better to work with the whole ensemble of possible sample functions 
than to deal with any one of them. This point will be elaborated further 
in a later section. 

A key role in Wiener's theory is played by the concept of the "spectrum 
of a function". This is a measure on the real line which coincides with the 
spectrum of the underlying stochastic process whenever the function 
is a sample function, and one can motivate Wiener's definition by 
looking at how one would compute the spectrum from almost any sample 
function. If), is the spectrum, then, as we have seen, the Fourier transform 
(p of 7, can be obtained from almost any sample function by means of the 
formula 

= lim 1 iT ~o(x) T~ T 3o f ( x  - -  t ) f ( - - t )  at. 
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If y is absolutely continuous with respect to Lebesgue measure so that 
7(E) = fE p(x) dx for some summable positive density p, then go is just 
the ordinary Fourier transform of O and O(x) = 1/2~r~_~ go(t)e ~t  dt, 
at least when p is bounded. Of course, the integral may have to be 
interpreted as a limit in the mean as A ~ oo of the function 
1/2~rfA_Ago(t)ei*tdt. Nowy( [O ,x ] )  = .[op(y) I-®go( ) ~ t d t Y d t d y .  
If the interchange of integrals can be justified, then this may be rewritten 
a s  

1"-~- fT .  9~(t) _ 

and, evaluating the inner integral, one has the formula: 

1 f ~  e itx -- 1 
~,([o, ~]) = ~ _o, t ~( t )  at.  

Wiener considers the class of all complex-valued measurable functions 
for which go(x)= limr_~ 1 / T y r _ r f ( X 4  - t ) f ( t ) d t  exists for all x and 
shows by a long argument that the function S defined by 

1 j'~ e iux - -  1 qo(x) dx  S ( u ) =  G ~  _~ . 

exists for all u. He calls it the integratedperiodogram off.  It is a monotone 
function of u and the measure it defines coincides with the spectrum of 
the process when f is almost any sample function of a stationary 
stochastic process. 

Let us write down the purely formal expression 

1 co e i tU _ 1 f ( t )  dt, 
g(x) = ~ f_~ t 

w h e r e f  is as above. Differentiating formally, we get 

1 S g'(x) = T J  _ e . ~ f ( t )  at. 
oc) 

Moreover, changing the integrand from (e itx - 1)It to eUX/t on the interval 
--1 ~ t ~< 1 wilt change the original expression by 1/2~ri ~ l l f ( t ) / t  dt 
which does not depend on x. Hence, formally speaking, if we define 
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we get a function whose derivative is the (nonexistent) Fourier transform 
of f .  One of the easy results of Wiener's generalized harmonic analysis 
is that the second expression for g actually makes sense when the infinite 
integrals are interpreted as limits in the mean. In other words, there is 
an actual function g whose nonexistent derivative may be looked upon as 
the nonexistent Fourier transform off .  In modern terminology, of course, 
g'  exists as a distribution and this distribution is the Fourier transform 
o f f .  

I f  g '  existed and were the actual Fourier transform of f ,  then it would 
oo t o0 

follow from the Plancherel formula that ~_ ,  I g (x)[ 2 dx  ~ f _ ~  I f ( x ) r  2 dx. 
As a substitute for this, Wiener was able to prove that 

lim 1 I g(u + E) g(u e) l ~ du lira 1 r -- -- -= 1 f(t)] 2 dt, 
~-~0 ~ "  --00 T - ~  ~ T 

a result of which he was so proud that he had it printed on the cover of 
the second volume of his autobiography. It turned out to be quite easy 
to reduce the problem to showing that 

. 2 r ~ _ . ,  sin2¢t . 1 ( r  
lm - -  ! F( t )  ~ at ~ lim -m Jo F(t)  dt, 

o ~re do t T ~  1 

where F ( t )  = I f ( t )  l 2 + ] f ( -  t)[ 2, but Wiener had considerable difficulty 
in doing the latter. When it was pointed out to him that he needed a 
so-called "Tauber ian  theorem",  he proceeded to prove a very general 
such theorem which not only enabled him to complete the proof of the 
above but  included as corollaries all previously known Tauberian 
theorems. 

The  only obvious examples of functions f which satisfy Wiener's 
condition that 

l for ~0(x) lim f ( x  - -  T~o~ T-  t ) f ( t )  dt 

should exist for all x are functions which are almost periodic in some 
sense or else such that ~v(x) ~ O. On the other hand, for any stationary 
stochastic process with finite variance, it is clear that almost every 
sample function satisfies the Wiener condi t ion--at  least for almost all x. 
Moreover, the spectrum of the sample functions coincides with the 
spectrum of the process. These sample functions provide a rich source 
of examples; and others are difficult to come by and almost unknown. 
From a practical point of view, Wiener's theory is a theory of sample 

6o7/1212-6 
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functions. To get an idea of what a sample function might look like, 
consider a funct ionf  taking on only the values 1 and --1 and constant on 
each interval n < x ~< n -- 1, where n is an integer. To decide whether f  
takes on the value 1 or --1 in each interval of constancy, toss a coin 
countably many times and label the tosses with the integers. Choose 1 
or --1 for n < x ~< n -~ 1 according as the nth toss is heads or tails. 
As shown by Wiener, one thus obtains a function with a nontrivial 
continuous spectrum for almost every possible sequence of tosses. 
In fact, the spectrum is absolutely continuous with respect to Lebesgue 
measure, and its Radin-Nikodym derivative can be explicitly computed. 

We have seen the meaning of Wiener's spectrum from the stochastic 
process point of view. What about the actual harmonic analysis of the 
sample functions ? The spectrum tells us "what harmonic constituents 
are there" and with what "weights" but not how to decompose the 
functions. The answer lies in looking at the spectral theorem for the 
underlying group representation V and the projection-valued measure 
on the line E--* Pe which it assigns to V. When there is a discrete 
spectrum {A1, A~ ,...}, the projections P{~j} are one dimensional and the 
functions ~oj generate their ranges. In the general case, the Pe are the 
natural substitute for the q~j.. Let f ~  ~2(S,/x) define a stationary 
stochastic process with sample functions fs(x)=f([s]x), and let 
~ ' =  E1 u E~ .-. u E~, where the E~ are disjoint Borel sets. Ifgj = Pej(f), 

7b 
then for almost all s, fs(x) = 2j'=1 (gj)8(x), and each gj. defines a stationary 
stochastic process whose spectrum is supported by the set Ej .  In this 
manner, the projection-valued measure P may be used to define a sort 
of harmonic analysis of the sample functions which reduces to that 
provided by the Bohr-Fourier analysis when the sample functions are 
almost periodic. In particular, it makes sense to ask for the component 
of a sample function whose spectrum lies in a particular Borel set. 

More generally, let ~b be any real-valued Borel function defined on G, 
and let P ~  = P~-I(F ) for each Borel subset of the real line. Then P~ is 
a projection-valued measure on the real line and, by the spectral theorem 
for self-adjoint operators, is canonically associated with a self-adjoint 
operator H~. Whenever f is in the domain of Hz,  the sample functions 
of the process defined by H~(f) may be thought of as the result of 
multiplying the harmonic constituents of the sample functions f8 by 
the values of ~b. If f8 had a Fourier transform, then (H~(f))s would be 
the result of multiplying this Fourier transform by ~b and then taking 
the inverse Fourier transform. In the particular case in which ~b has a 
summable Fourier transform ~, one verifies, as might be expected, that 
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(H~(f))s may be obtained directly from f8 by forming the convolution 
off8 and ~. 

An important case in which ~b is not the Fourier transform of a 
summable function is that in which ~b(x) ~ x. In this case, one verifies 
that H+ is the operator which takes f(s) into i(d/dx)f[(sx)]~= o so that 
(l li)(H~(f))8 is just the derivative off~ whenever f is in the domain of H~. 
It follows that when ~b is a polynomial P, then (H~f)8 is the differential 
operator P(i(d/dx)) applied to f. This suggests that, quite generally, one 
can interpret the operator f~--+ (H~f)~ discussed above as ~b(i(d/dx)) 
and thus assign a meaning to ~b(i(d/dx)) when ~b is an arbitrary Borel 
function. The problem in rigorizing the Heaviside operational calculus 
was precisely to make sense of expressions such as 4s(i(d/dx)) when 
the functions to be operated on were those arising in communication 
engineering. The above discussion provides a solution for the sample 
functions of stationary stochastic processes and hence for the functions 
arising in communication engineering. 

The notion of the spectrum of a stationary stochastic process is of 
importance when there is a question of separating the sum of two 
processes back into their components. Let f and g be two members of 
5~1(S,/z), and let h = f +  g. The question is this: Given a sample 
function h a of the process defined by h, can be find the sample functions 
f~ and g~ at least approximately ? The answer depends upon the relation- 
ship between the spectra of the process defined b y f  and by g. Let P be the 
projection-valued measure associated with the unitary group representa- 
tion V defined by the action. Then (Vt(q~) • 9)) = f e ixt d(Pt(q~ ) • ~o) for all 
50 in 5q2(S,/x), so E --+ (Pc(f) "f) is the spectrum of the process defined 
by f and E --+ (Pc(g) "g) is that defined by g. If there exists a finite 
interval I such that (Ps(f) "f) is near to ( f . f )  and (Ps(g)" g) is close 
to zero, then Ps(f  + g) will be a good approximation to f, and for almost 
all s, (Pl(f  + g))~ will be a good approximation to f~. Such an I will 
exist, of course, if and only if the two spectra have a "small overlap" 
in the sense that every interval is assigned a "small" value by one 
spectrum or the other. 

When I does exist, its characteristic function may be approximated by 
a smooth function %0 having a summable Fourier transform ~b I . Then 
Ps(f  + g) will be approximated by %°(H)(f + g), and so f will be 
approximated by %°(H)(f + g). The convolution of h s ~- ( f  -~ g)s with 
~b s will then be an approximation to f s ,  and we have a usable way of 
computing an approximation to f~ from a knowledge of ( f  + g)s. One 
speaks of filtering gs out of ( f  + g)s. In communication engineering, 
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f8 is the message and gs is a contaminating "noise". Evidently, one must 
try to send messages whose spectra are more or less disjoint from that 
of the expected noise. 

Notice that multiplying f ( t )  by e ~at simply translates the spectrum 
of f by an amount h. Thus, given sample functions f and g, one may 
always filter g out of e~a~f + g by taking A large enough. This principle is 
made use of in radio broadcasting and in transmitting several telephone 
messages simultaneously along the same wire. Instead of transmitting 
the desired messages f l  ,f2 ..... f~ directly, one sends purely periodic 
"messages" dalt,..., e ia~t and "modulates the amplitudes" by replacing 
them by d~l~fl(t),..., e~a~tf~(t). If 2,1, ~'2 ,.--, ;~ are sufficiently far apart, 
then the spectra of these functions will have very little overlap and one 
may send.the message ei~/l(t  ) + -., e~a~tf,~(t) and separate the compo- 
nents at the receiving end. When one tunes a radio set, one is adjusting 
an electronic filter to filter out everything except the message of the 
form daiS(t) for some fixedj. 

The spectrum of a process also plays a central role in the linear 
prediction theory independently worked out by Wiener and A. N. 
Kolmogoroff in 1940 and 1941. The fundamental problem of prediction 
theory (not necessarily linear) is the following. Given the past of a 
sample function of a stationary stochastic process, what can one conclude 
(probabilistically speaking) about the future ? As explained in Section 4, 
it is possible to reconstruct the whole process (more precisely, the 
relevant ergodic component) from the past of almost any sample func- 
tion. If one is dealing with a discrete process (as will now be assumed 
for simplicity), this means that one can find the appropriate probability 
measure/ ,  on the space S of all functions from G to the real or complex 
numbers. Let S -  denote the set of all "pasts"; that is, the set of all 
functions from the negative integers to the real complex numbers, and 
let S + denote the set of all "futures". There are natural Borel maps ~r 
and ~0 of S onto s -  and S +, respectively, where ~r(s) is the restriction 
of s to the negative integers and 9(s) is its restriction to the nonnegative 
integers. Clearly, ~r-l(p) is the set of all sample functions with the same 
past p, and the fibering of S defined by the ~r-l(p) is associated (as 
explained in Section 3) with a corresponding fibering of the measure/z 
into measures/z~o concentrated in the fibers. For each Borel set E in S +, 
let fi~(E) = /x~(9-1(E)). Then for almost all p, #~ will be a well-defined 
probability measure in S + which tells one the probabilities of various 
futures given that the past was p. When the random variables of the 
process are independent, the /2~ will be independent of p and will 
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coincide with the image/2 of/~ in S +. More generally, the/2~ will depend 
upon p, and/2 will be a weighted average of all/~p. Thus the/2p will be 
less "spread out" than/2, and knowing the past p will enable one to make 
more precise predictions than just knowing the process and hence /2. 
At the other extreme from independence, it may happen that almost 
every /2~ is a point measure in S +. When this happens, the future is 
uniquely determined when the complete past is known, and the process 
is said to be deterministic. We have already seen that any process whose 
underlying action has a pure point spectrum is deterministic in this sense 
and other examples will be found in the discussion to follow. 

The linear prediction theory of Wiener and Kolmogoroff is not 
concerned with finding the/2p but with finding the "best" linear predic- 
tion for s(0), given s(--1), s(--2), s(--3),.. . .  More precisely, they sought 
to find complex numbers c l ,  c 2 ,... such that predicting s(0) to be 

c o  , ' 

Zj=I c_js(--J) minimizes the square of the expected error. Letf (s)  = s(0) 
and let V be the unitary group representation defined by the action of G 
on S. The problem is then easily seen to be equivalent to the following. 

o o  

Find c_1, c_2 ,... so as to minimize H Y ~ j = i c ~ V _ j ( f ) - - f l l ,  where kl I] 
is the norm in Y~(S,/z). Let M denote the closed linear span of V_l(f) , 
V_2(f) ..... There is clearly a fundamental dichotomy depending upon 
whether or not f is in M. If f is in M, then there is no limit to how 
accurately s(0) may be predicted by suitable choices of c_ 1 , c e ,..., and 
one can show accordingly that the process must be deterministic in the 
sense defined above. If f is not in M, then f may be written uniquely 
in the form g + g', where g ~ M and g' ~ M ±, and g will be the closest 
possible approximation t o f  among elements in M. The problem becomes 
that of expressing g in the form c_ tV_ l ( f )  + c_2V 2(f) @- . - .  

It is obvious that which side of the dichotomy one is on and, in fact, the 
whole problem depends only on the unitary equivalence class of the 
pair f ,  V--indeed only on that of the pair f, V', where V' is the sub- 
representation generated by f. But V' is multiplicity free and so defined 
by a measure class in ~ which is here the circle group. In fact, if 7 is 
the spectrum of the process or, equivalently, the measure associated 
with the positive definite function n--~ ( V ~ ( f ) . ( f ) )  = ( V n ' ( f ) . ( f ) )  
by the Bochner-Herglotz theorem, then 7 is in the measure class and 
one can realize the Hilbert space as 5¢2(~, V) in such a manner that f 
becomes the function identically one. The problem then becomes that 
of approximating 1 by c_le -~9 + c_2e -2i~ + ... on the unit circle ~ with 
respect to the norm in 5~2(G, ~) and so depends only on knowing y, 
the spectrum of the process. 
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This problem had been considered and solved by G. Szeg5 in 1920 in a 
different context, but this was not known by Wiener and Kolmogoroff 
who solved it again. (Actually, Wiener dealt with the continuous case.). 
Let 7 = 78 + 7~, where 7~, is absolutely continuous with respect to 
Lebesgue measure with Radin-Nikodym derivative p; and )'8 is singular 
with respect to Lebesgue measure. Of course, p and 78 determine 7 and 
are uniquely determined by it. The solution to our problem can then 
be expressed rather elegantly as follows. The function 1 is in the closed 
linear span of e -~°, e -2i° ..... if and only if f log p dO = -oo. If  f log p dO > - ~  

and 78 = O, then the coefficients c_ 1 , c_ 2 .... may be computed from p by 
the following algorithm: Apply the Poisson formula to log p to obtain a 
harmonic function in the unit disk with the values of log p as boundary 
values. Let h be an analytic function with this harmonic function as its 
real part. The function h is then unique up to an additive pure imaginary 
constant, and e hI2 = / ~  is uniquely determined up to a multiplicative 
constant of absolute value 1. Expand 1 -  (/~(0)//~) in a power series 
about 0. The complex conjugates of the coefficients will be the desired 
c j .  When f log p dO > -- oo and 78 ~- 0, one can write the process as 
a sum of two others, one of which has 7 ----- 78 and so is deterministic 
and the other of which has 7 = 7a and can be dealt with as just explained. 

Observe that whenever the underlying action has a pure point spec- 
trum, one has 7 ~- 78 and so a deterministic process as has already been 
deduced from the properties of almost periodic functions. Actually 
having f log O dO > --oo implies more than being deterministic in the 
sense that/2~o is a point measure. It implies that arbitrarily good l inear 

prediction schemes exist. Recall also that 7 is computable from the 
autocorrelation function of the past of almost any sample function. 

8. THE CONSTRUCTION OF PROPERLY ERGODIC ACTIONS OF 
NONDISCRETE GROUPS OTHER THAN THOSE WITH PURE POINT SPECTRA: 

INDUCED ACTIONS, HOMOGENEOUS CHAOS AND WIENER MEASURE 

Although the discussion in Section 7 alluded to the existence of 
ergodic actions of the real line having a continuous spectrum, no 
examples were actually produced. In fact, except for discrete groups, 
we have exhibited no examples of properly ergodic actions other than 
those with pure point spectra. The first example was produced by yon 
Neumann using a general procedure for constructing ergodic actions 
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of the real line out of ergodic actions of the integers. Given an ergodic 
action of the integers on the standard Borel measure space S,/~, where/ ,  
is finite and invariant, let a denote the measure-preserving transformation 
s --~ [s] 1 and choose a positive real number A. Let I~ denote the interval 
0 < x < ?t, and let G be the additive group of the real line. For each s, x 
in S x I~ and each t in G, let [s, x]t = s, x + t whenever 0 ~< x -t- t < A, 
and let [s,x]t = ~(s), x + t - - A  whenever )t ~ < x q - t  <2A.  More 
generally, let n t be the unique integer such that ntA ~< x + t < (n t + 1)~, 
and let [s, x]t ~ an~(s). One verifies that S × / a  is a standard Borel G 
space and that /z × v is invariant and ergodie, where v is Lebesgue 
measure in Ia. The resulting action of G is called the f low of  height 
built over the measure-preserving transformation ~. It will have pure point 
spectrum if and only if the integer action defined by c~ has a pure point 
spectrum. Thus, to obtain a properly ergodic action of G not having 
a pure point spectrum, it is only necessary to start with such an action 
of the integers. To compute the spectrum of the G action from the given 
action of the integers, first identify the integers with the subgroup Z~ of 
G consisting of all integer multiples of A and consider the subgroup Z~ ± 
of G consisting of all characters which are trivial on Za. The quotient 
group ~/Za  ± is canonically identifiable with the dual Za, and the 
measure classes in ~ defining the spectrum of the G action are precisely 
the "liftings" to ~ of the measure classes in ~/Z~ l defining the spectrum 
of the Z~ action. In particular, if the spectrum of the Z~ action is the 
identity plus countable Lebesgue as in the examples of Section 4, the 
spectrum of the G action will be the discrete set Za ± plus countable 
Lebesgue. 

It is interesting to study the nature of the sample functions of the 
continuous stationary stochastic process defined by the action of G on 
S × Ix and a certain kind of real-valued function f on S x I~. Let 
S = $1 u Sz "." t3 S t ,  where the Sj are disjoint Borel sets of positive 
measure, and let f l  , f2, . . . , f r  be real-valued Borel functions on Ia. 
Definer(s, x) asfj(x) whenever s is in S~. Then for each s, x, the function 
t -->f([s, x]t) will be a translate of a function which coincides on each 
interval nA < t < (n + 1)A (n an integer) with the function t -+f j ( t  -- nA) 
for some value of j,  and in a certain obvious sense, j will "depend 
randomly on n" in a manner depending on the choice of the Sj and the 
nature of the given action of Za on S. In particular, if A = 1, r = 2, 
and f l  and f2 are ~ 1, respectively, then the Za action, $ 1 ,  and S 2 may be 
chosen so that all sample functions are translates of the "coin-toss 
functions" mentioned toward the end of Section 7. 
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In order to obtain an example of a properly ergodic action of the 
real line with a finite invariant measure and no point spectrum (except for 
the identity), von Neumann introduced a generalization of the above 
construction in which the constant A is replaced by a positive real-valued 
Borel function on S and S × Ia by the set of all pairs s, x with 
0 ~< x ' <  ;~(s). One speaks of the flow built under the function A. Von 
Neumann was able to show that A could be chosen so that there is no 
(nontrivial) point spectrum. Ten years later, W. Ambrose proved that 
every properly ergodic action of the real line having a finite invariant 
measure is isomorphic to a flow built under a function. 

If one takes the "virtual group" point of view alluded to in Section 3, 
one is led more or less immediately to a far-reaching generalization of 
the concept of the flow of height A built under a measure-preserving 
transformation and somewhat less immediately to a generalization of the 
concept of a flow built under a function. Since a closed subgroup of a 
closed subgroup of a group is itself a closed subgroup of that same 
group, it follows that a transitive action of a closed subgroup is canon- 
ically associated with a transitive action of the whole group. The analogy 
between transitive and properly ergodic actions now suggests the existence 
of an ergodic action of a separable locally compact group G canonically 
associated with every ergodic action of every closed subgroup H of G. 
This suggestion is borne out by the facts but before describing the 
relevant construction, it is necessary to introduce an auxiliary notion for 
which we shall have further use later on. This is the notion of a 
"quotient action" of a given ergodic action. Let S be a standard Borel 
G space, and let C be an invariant measure class in S. Let there be 
given an equivalence relation in S, let S denote the space of all 
equivalence classes, and let 7* denote the canonical map of S on o °. One 
says that this equivalence relation is invariant if G maps each equivalence 
class onto another so that setting [~(s)]x = [~g(sx)] unambiguously defines 
an action of G on S. One converts • into a Borel space by defining 
its Borel sets to be the sets E such that W-I(E) is a Borel subset of S 
and defines C to be the unique measure class in S which contains the 
measures E ~/x(~-a(E)) ,  where /x is in C. If S is standard or can be 
made so by discarding an invariant set of measure zero, one obtains a 
new action of G called the quotient action defined by the equivalence 
relation, and one says that the equivalence relation is measurable as well as 
invariant. It is clear that a quotient action is ergodic whenever this is true 
of the original action. On the other hand, a quotient action can be 
transitive even when the original action is properly ergodic. 
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Now let H be a closed subgroup of the separable locally compact group 
G, and let S be a standard Borel H space equipped with an ergodic 
invariant measure class C. Form S x G and convert it into an H x G 
space by defining (s, x)(h, y) to be Is]h, y-lxh. If  Ca is the measure class 
of Haar measure, then C × Cc will be an ergodic H × G invariant 
measure class in S x G. Let us define two elements of S × G to be 
equivalent if there exists an element of H × e carrying one into the other. 
One verifies that this equivalence relation is invariant and measurable 
under the action of e × G on S x G and that the quotient action is 
ergodic. This is the way in which one associates an ergodic action of G 
with every ergodic action of H. It is called the ergodic action of G induced 
by the given action of H. In the special case in which the H action is 
transitive so that S may be identified with H/K for some closed subgroup 
K of H, it is easy to see that the induced action of G is also transitive 
and isomorphic to the natural action of G on G/K. In the special case 
in which G is the additive group of the real line, the most general 
possible H other than {0} and G itself is the group Z~ of all integer 
multiples of some positive real number A. Given an ergodic action of Z~ 
with a finite invariant measure, let ~ be the measure-preserving trans- 
formation associated with A, the generator of Z~. Then the action of G 
induced by the given ergodic action of Z~ is easily shown to be isomor- 
phic to the flow of height A built over ~. Using the technique of inducing 
from discrete subgroups and known ergodic actions of the latter, one 
can exhibit a considerable supply of properly ergodic actions for most 
noncompact separable locally compact groups. 

The word "induced" is used in describing the above construction to 
emphasize the fact that it is closely analogous to a construction in the 
theory of group representations. If  L is a unitary representation of the 
closed subgroup H of the separable locally compact group G, then using 
L one can define a unitary representation U L of G called the representation 
of G induced by L. In the special case in which the coset space G/H 
admits an invariant measure if, the definition of U s is quite simple. One 
considers the set 5 of all Borel funct ionsf  from G to ~ ( L )  which satisfy 
the identityf(hx) -~ Lhf(x ) for all h in H and all x in g. For each such 
function, (f(x) .f(x)) is evidently a constant on the right H cosets and 
hence may be looked upon as a function on the coset space G/H. Let ~ 0  
denote the subset of ~ consisting of all f in ~ for which 
fG/n (f(x) "f(x)) dff(£) ~ co, where £ denotes the canonical image of x 
in G/H. Identifying members of ~-0 which are equal almost everywhere, 
one obtains a Hilbert space with [Jf I1 ~ = fG/n (f(x) "f(x)) dff(~) and the 
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obvious addition and scalar multiplication. This Hilbert space is 2/F(U L) 
and U x L ( f ) ( y ) = f ( y x ) .  When G/H does not admit an invariant 
measure, the definition of U L is a bit more complicated and will be 
omitted here. In any case, as might be expected, one can show that the 
unitary representation V defining the spectrum of an induced ergodic 
action of G is equivalent to U L, where L is the unitary representation 
of H defining the spectrum of the inducing ergodic action of H. When G 
is commutative and L is one dimensional and defined by a character X 
of H, the structure of U L is easily described. Let  H a denote the subgroup 
of 0 consisting of all characters of G which are identically 1 on H. Let  X ° 
be any extension of X to G, and let v be the measure on 0 defined by 
setting v(E) = vn±(Ex -1 n Hi) ,  where vn~ is Haar measure in H ±. Then  
U L is the multiplicity-free representation of G defined by the measure 
class of v. I t  may be looked upon as the "direct  integral" of the one- 
dimensional representations defined by the characters in the coset H I x  
with respect to the translate by X of Haar measure in H ±. Since inducing 
commutes with the taking of "direct  integrals", one sees, in the commu- 
tative case at least, how to find the spectrum of an induced action when 
one knows the spectrum of the inducing action. 

As mentioned above, the virtual group point of view also leads to a 
generalization of the yon Neumann  "flow built under  a funct ion" 
construction. However, the function s--~ 1(s) in the yon Neumann  
construction has to be replaced by a function ¢r from S x H to G 
satisfying the cocycle identity 7r(s, hlh~) = 7r(s, hi) ~([s] h t ,  h2). Here, 
H and G are separable locally compact groups and S is a standard Borel H 
space equipped with an ergodic invariant measure class C. When H is 
the additive group of the integers, 7r is uniquely determined by the 
function s ~ 7r(s, 1), and given any Borel function 9 from S to G, there 
is a unique 7r such that  7@, 1) ~ 9(s). In yon Neumann 's  case, H is the 
additive group of the integers and G is the additive group of the real 
line so that the cocycles 7r correspond one-to-one to the real-valued 
functions on S. To  construct an action of G, given 7r and the action of H, 
one forms S X G and converts it into an H × G space by defining 
(s, x)(h, y) to be [s]h, y-lxTr(s, h). The product of C and the measure 
class of Haar measure in -G is an ergodic invariant measure class as 
above, and one defines the desired action of G as a quotient action of 
the restriction to e × G. However, unlike the special case considered 
above, the equivalence relation need not be that defined by the H action. 
I t  will be only if that equivalence relation is measurable. More generally, 
it is the (essentially unique) measurable equivalence relation which has 
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the smallest equivalence classes among all of those whose equivalence 
classes contain the H × e orbits. To obtain it, one fibers S × G into 
ergodic parts under the H × e action and takes the fibers as the equiva- 
lence classes. 

From a virtual group point of view (the cohomology class of), a cocycle 
~r is a homomorphism into G of the virtual subgroup of H associated with 
the given ergodic action of H on S. The virtual subgroup associated 
with the ergodic action of G just defined is then the closure of the range 
of this homomorphism (and, in some cases, simply the range). From 
this point of view, the theorem of Ambrose cited above may be regarded 
as the assertion that a large family of virtual subgroups of the additive 
group of the real line are homomorphic images of virtual subgroups of 
the integers. A number of other results in ergodic theory have recently 
been recognized to have closely related interpretations. A startling result 
of R. M. Belinskaya published in 1968 and based on results of Vershik 
states that any two properly ergodie actions of the integers which have 
finite invariant measures define equivalence relations which are iso- 
morphic in a certain sense. This implies that the corresponding virtual 
subgroups are isomorphic as virtual groups so that there are many 
fewer distinct virtual groups than one might have believed. Actually, 
an equivalent result is contained in a paper of H. A. Dye published i n 
1959, but its significance was obscured for some time by the Boolean 
algebra viewpoint in terms of which it was formulated. Moreover, a 
generalization which Dye published four years later shows that the group 
of integers may be replaced by a more general countable discrete group 
and, in particular, by a direct product of finitely many replicas of the 
integers. As observed by Peter Forrest in his 1972 Harvard thesis, 
Ambrose's theorem may be shown to be equivalent to the stronger 
statement that the virtual subgroup of the additive group of the real line 
defined by an ergodic action with a finite invariant measure is actually 
isomorphic to such a virtual subgroup of the integers. Forrest then went 
on to generalize the theorems of both Belinskaya and Ambrose by 
proving an analogue of Belinskaya's theorem in which the integers are 
replaced by a finite product of replicas of the integers and replicas of the 
additive group of the real line. 

The examples of properly ergodic actions given in Section 4 were of 
two radically different kinds. On the one hand, there were the actions 
with pure point spectra and on the other those defined by groups of 
automorphisms of countable products of compact commutative groups. 
Moreover, those in the latter category were defined only for discrete 
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groups. This  is because the automorphisms were defined as permutat ions 
of the index set over which the infinite product  was taken. We propose 
now to fulfill the promise made at the end of Section 4 and show how to 
define analogues of these actions for arbitrary separable locally compact 
groups. T h e  definition can best be motivated by looking at a proba- 
bilistic interpretat ion of what was done in the discrete case. Let  dd  
be a countable index set, and let m - + f , ~  denote an assignment of a 
random variable on a probabili ty space S, tz to each m in M. Suppose that 
these random variables are independent ,  identically distr ibuted and 
separate the points of S. For  each s in S, let F 8 be the function from d/t' 
to the space A in which the fro take their  values defined by Fs(m ) = fr~(s). 
T h e n  s -+  F 8 allows one to identify S with a subset of the space A ~ of all 
functions f rom d / / t o  A and to think of/% as a measure in A ~ which 
assigns the measure zero to the complement  of the image of S. T h e  fact 
that this complement  is of measure zero allows one to replace S by A ~a. 
Of course, A ~ may be looked upon as a direct product  over the index 
set ~ of replicas of the standard Borel space A. Moreover,  the fact that 
the random variables are independent  implies that/x is the direct product  
of replicas of v, where v is the probabili ty measure in A defining the 
common distribution of the f ~ .  Evidently, every permutat ion of dr '  
defines an automorphism of A ~e as a Borel space which preserves the 
measure /%. Now suppose that the measure v has no points of finite 
measure or else that A is finite and all points have the same v measure. 
Then ,  by the theorems quoted in Section 2, A,  v will be isomorphic as 
a standard Borel measure space, either to the circle group with Haar  
measure or else to a finite cyclic group with Haar  measure. But replacing 
A,  v by a separable compact  group with its Haar measure reduces our 
construction to that of the last part of Section 4. In  short, whenever  a 
group G permutes  a countable family of identically distributed inde- 
pendent  random variables among themselves, there is a canonically 
associated action of G on the underlying probabili ty measure space, 
and to within isomorphism, the actions constructed in the last part of 
Section 4 are the special cases of those in which the common distribution 
either has no atoms or else is atomic with all atoms of equal probability. 
I t  follows as a corollary of this discussion and the results of Section 4 
that the action of the integers underlying a discrete stationary stochastic 
process is necessarily ergodic whenever  the random variables are 
independent .  While the above argument  seems to demand a restriction 
on the common  distribution, this restriction is easily removed by the 
following device. Any measurable equivalence relation in the space A 
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defines a G invariant equivalence relation in A ~z, and the corresponding 
quotient action is the same as the action one gets by replacing A by a 
quotient space _~. Taking A to be the circle group, one can choose the 
equivalence relation so that ~ ,  together with the image in it of Haar 
measure, becomes an arbitrary standard Borel probability space. Thus, 
taking suitable quotient actions of the actions defined in the last part of 
Section 4, one obtains all the actions that one can get by permuting 
identically distributed independent random variables. As already pointed 
out, quotient actions of ergodic actions are necessarily ergodic. 

In order to find an analogue for continuous groups of the ergodic 
actions defined by independent random variables, one needs to be able 
to deal somehow with a continuum of independent random variables. 
The most obvious thing to do is to seek a continuous stationary stochastic 
process for which the random variables f~(s) are mutually independent. 
It is easy to see, however, that such a process cannot exist. If  it did, then 
fe(s) = fo([S]t) for some f0- By a change of variable, it may be assumed 
t h a t f  ° is in ~ ( S ,  tL), and it follows that ff0([s]t)fo(s) dl~(s) -= (V~(fo) " f  o) 
is continuous in t. On the other hand, independence demands that thef t  
be mutually orthogonal and, hence, that (Vt(f0) "f0) be zero except 
when t -- 0. 

The way around this difficulty is suggested by looking at a fundamental 
difference between families of random variables parameterized on the one 
hand by a countable set and on the other by a continuum. Let de' be a 
countable set, and let m --> fm be an assignment of a real- or complex- 
valued random variable to each m in ~/#. For each finite subset E of J{, 
let fe(s) = ~ e f m ( s ) .  Then the fE constitute a family of random 
variables parametrized by the finite subsets o f /4 '  and having the further 
property thatfElue~ = f e  1 -? f ~  whenever E 1 n E 2 = 0. Conversely, any 
such assignment E--~ ge may be obtained in this way from the point 
assignment m - + g m ,  where gm ~ g{m}" Now suppose that ~ is a 
standard Borel G space and that v is a measure in ~ ' .  Let m -+fro be an 
assignment of a real- or complex-valued random variable to each m 
in J{. If suitable measurability and integrability conditions are satisfied, 
one can assign a random variable f~ to each Borel subset E of ~//g for 
which u(E) < oo by definingfe(s) to be re fro(s)dr(m). This assignment 
will then have the property that fEiue~ = fE~ + fe~ whenever E 1 and E 2 
are disjoint and also the property that fE = 0 whenever v ( E ) =  O. 
However, unlike the discrete case, there will be in general no converse. 
Unless v is atomic, there will exist assignments E --+ ge having the above 
two properties which cannot be obtained by integrating a point assign- 
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ment m -+ gin; that is, which are not "differentiable". Now in the discrete 
case to say that the fm are independent is equivalent to saying that f e , ,  

're 2 ,... andfej are independent whenever the Ej are disjoint. This suggests 
that there might exist additive set assignments E --+ fe  in the continuous 
case which are not differentiable but are such that disjoint sets map into 
independent random variables. Such assignments do exist and provide 
the sought-for continuum substitute for countable sets of independent 
random variables. 

Adopting some terminology introduced by Wiener (and since aban- 
doned), let us define a chaos on the standard Borel measure space Jg, u 
to be an assignment of a real- or complex-valued random variable fe  
on a standard probability space S, ix to each Borel subset E of J/d of 
finite measure in such a manner that felue ~ =-fel ÷ fe~ whenever E 1 
and E2 are disjoint and fe  = 0 whenever v(E) = 0. Now suppose that J/{ 
is a transitive Borel G space for some separable locally compact group G 
and that the measure v is G invariant. In that event, one says that the 
chaos is homogeneous (with respect to the G action) if the random variables 
f(e~)x, f(e)x ,..., f(E;)x have the same joint probability distribution as the 
random variables f ~  ,fe~ ,...,fej for arbitrary x in G and arbitrary 
disjoint Borel subsets El ,  E~,..., Ej of J/d. In the particular case in 
which dg ~ G = the additive group of the integers, the action is trans- 
lation and v is the counting measure, the notion of homogeneous chaos 
is equivalent to that of stationary stochastic process. An example which 
occurs in statistical mechanics is provided by a gas idealized to occupy 
all of space. In this case, d/g is Euclidean space, G is the group of all 
isometrics of dr', and for each Borel subset E of ./d, fe  is the random 
variable whose value at any observation is the number of gas molecules 
in the set E. Other examples occur in the theory of turbulence. 

Given a homogeneous chaos (normalized so that the random variables 
separate the points of S), there is an essentially unique way of defining 
an action of G on S which is consistent with its action on dr' in the sense 
that f[~]x_~(s) ~ f([s]x) and/x is invariant under this G action. Indeed, 
a homogeneous chaos may be equivaIentIy defined as the system con- 
sisting of a standard Borel G space S, an invariant probability measure t~ 
in S, and a chaos with S, i ~ as probability space which satisfies the identity 
f[e]x_~(s) ~f([s]x) .  The G action on S, t~ of course plays the same 
role in the theory of a homogeneous chaos that the underlying action 
of the real line or integers plays in the theory of stationary stochastic 
processes. 

To find examples of ergodic actions of a group G generalizing those 
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defined for discrete G at the end of Section 4, it is now clear what we 
must do. For each transitive G space ~/~ with an invariant measure v, 
we must find a chaos homogeneous with respect to the G action such 
that f e  1 and f e  2 are independent whenever E 1 and E~ are disjoint. It is 
quite easy to show that the associated action of G on S will often be 
ergodic. However, showing that the fE exist is far from easy. It was first 
accomplished by Norbert Wiener in the early 1920's as the key step 
in his construction of a mathematical theory of Brownian motion. He 
considered only the case in which ~t' = G = additive group of the real 
line. However, using the isomorphism theorems for measure spaces 
quoted in Section 2, one can deduce what one needs in the general case 
from Wiener's results. In the real-line case, a chaos is determined by its 
values on finite intervals and, hence, its values on intervals of the form 
0 ~< x ~ a. Setting fa = f[o.a] , one obtains a continuous stationary 
stochastic process a--+)ca which uniquely determines the homogeneous 
chaos. Independence in these terms amounts to the independence of 
differences fa0 --fb,  when the intervals [ai, bi] are disjoint. One speaks 
of a stationary stochastic process with independent increments and this is 
what Wiener actually produced (he did not introduce the chaos notion 
until 1938). 

Let E - ~ f e  be any homogeneous chaos on the real line, and let I be 
a finite interval. For each n = l, 2,..., I can be written as a sum of n 
disjoint intervals of equal length I = / 1  • 12 u - - .  u In and, corre- 
spondingly, f i  ~ f l  1 + fx~ + "'" + f , , .  Now, i f f  takes disjoint sets into 
independent random variables, thefij  will be independent and identically 
distributed. In other words, for fixed I, f t  will be a sum ofn independent 
identically distributed random variables for all n--no matter how large. 
This condition strongly restricts the possibilities for the distribution of 
f i ,  and (as suggested by the central limit theorem) one of the few 
possibilities is that f i  be "normally distributed with mean zero and 
variance proportional to the length of I" ;  that is, that the probability 
measure in the real line defining the distribution have a density propor- 
tional to e-Z2~ o~, where ~ is proportional to the length of L What Wiener 
proved in effect is that such a chaos always exists. It  is unique and we 
shall refer to it as the Wiener chaos. Using the isomorphism theorems 
as indicated above, one can now prove more generally, that, given any 
standard Borel space ~ equipped with an atom-free invariant measure u 
and any real A > 0, there exists a chaos E ~ f e  defined on ~///f such that 
(a) fE 1 , re  2 .... , fE~ are independent when the E i are disjoint and (b) each 
f e  is normally distributed with variance Av(E). This chaos is unique up 
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to the obvious isomorphism and is homogeneous with respect to G 
whenever v is invariant under a transitive action of G. The associated 
action of G can easily be shown to be ergodic in many special cases; 
in particular, when s// -~ G, the action is right translation, v is Haar 
measure, and G is not compact. In the special case in which G is the 
additive group of the real line so that a--~fa  ----f[o,a] is a stationary 
stochastic process, the measure /z defines a measure in the space of 
sample functions with respect to which almost all functions are con- 
tinuous. This is the famous "Wiener measure" in the space of continuous 
functions. 

Another possibility for the distribution of the random variablesfe is the 
Poisson distribution. This one-parameter family of distributions is 
concentrated in the positive integers and assigns to n the probability 
e-aAn/n!, where A is a fixed positive real number. There exists a corre- 
sponding chaos which in three-dimensional space is the positive integer 
valued chaos describing the distribution of molecules in a perfect gas. 

9. THERMODYNAMICS, STATISTICAL MECHANICS, AND ENTROPY 

Consider a gas which (for simplicity) will be assumed to consist of 
identical molecules which do not interact chemically. If  unit mass of this 
gas is enclosed in a container of volume v and allowed to "come to 
equilibrium" at a fixed absolute temperature T, there will be a pressure p 
exerted on the walls of the container which depends only on T, v, and the 
chemical nature of the gas molecules. When v and T are sufficiently 
large, one has p ~ N R T / v  to a high degree of approximation, where 
N is the number of molecules and R is a universal constant called the 
gas constant. In a so-called "perfect gas", the formula p ~ N R T / v  holds 
exactly, but in an actual gas one has the more complicated relationship 

( C(T) ) N R T  1 -}- B(T) -k ~ -}- "'" 
P - ~  -v v ' 

where the functions B, C, etc., must be determined by experiment and 
are called the virial coefficients. In addition to determining the pressure 
as a function of volume and temperature, one can also measure the so- 
called heat capacities of the gas as a function of these same two variables. 
If  H(A T, T, v) is the quantity of heat required to raise the temperature 
of the gas from T to T + A  T while holding the volume fixed at v, then by 
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definition the heat capacity at constant volume C~ is lim~r_~o H(A T, T, v)/A T. 
The heat capacity at constant pressure Cp is defined analogously holding 
the pressure constant and varying the volume. For a perfect gas, C, and 
C~o are different constants, but for an actual gas they depend on v and T 
much as the pressure does, and one must determine two new sets of 
functions of T analogous to the virial coefficients in order to know the 
thermal properties of the gas. 

Until one takes account of the laws of thermodynamics, there is no 
a priori relationship between the three functions p, C o , and C~. They 
must be determined separately by independent experiments. However, 
the law of conservation of energy implies that there exists a positive 
constant I and a fourth function U called the internal energy function 
from which C~ and C~ may be computed by ,means of the formulas 

1 0 U  
C~ -- A aT l ( P + ~-v ) , ~-T-/--5~v ] . C~ = Co -- X 

Thus the functions p, C v ,  and C~ are not in fact independent, and it 
suffices to know the two functions p and U and the constant 1 in order 
to be able to compute C o and C~ as well. Moreover, I is a universal 
constant--the same for all gases. Solving the above equations for ~ U/9 T 
and ~ U/gv one finds that 

~ u  ~(co - c~) ep/~v 
o---~ = a p / ~ T  - -  p 

and OU/aT = AC., so that U is uniquely determined up to an additive 
constant by p, C v , C~o, and A. Of course, U and A will not exist at all 
unless p, C , ,  and C~0 are properly related, and the fact that they are so 
related is the content of the first law of thermodynamics in the present 
context. A simple computation shows that the condition on Cv, Cp, 
and p is that 

should be a constant and this constant is A. Thus I is uniquely determined 
by p, Cv, and Cp. 

The physical idea behind these mathematical considerations is that 
heat is a form of energy and never appears or disappears without an 
equivalent amount of some other form of energy disappearing or 
appearing to compensate for it. Let t be the conversion factor which 

6o7]I2]2-7 
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converts quantity of heat into a corresponding number of units of 
mechanical energy. Then taking into account the mechanical work done 
or absorbed by an expanding or contracting gas, one finds that the net 
total change in the energy of the gas when v and T change from v l ,  

T~ to v~, T2 is the line integral 

op/er 

taken over whatever path L that the gas follows in making the change. 
Conservation of energy requires that this line integral should be inde- 
pendent of the path and, hence, that U should exist. Of course, the value 
of the line integral will,be g(v~, T2) -- U(vl, T1). 

Just as the first law of thermodynamics implies a relationship between 
the three independently defined functions p, C v , and C9, so the second 
law implies a relationship between 20 and U so that these functions do 
not have to be independently measured either. The second law has many 
equivalent formulations all having to do with the closely related facts 
that turning mechanical energy into heat energy and letting heat flow 
from high to low temperatures are in a sense irreversible processes. One 
formulation says that it is impossible to transfer a nonzero quantity of 
heat from a body at one temperature to a body at a higher temperature 
without effecting changes in other bodies. In proving the equivalence 
of various formulations as well as in deducing their consequences for the 
functions p and U, one considers the energy changes that take place 
when one changes the volume and temperature of a gas along a so-called 
Carnot cycle; that is, a closed curve made up of two curves of constant 
temperature and two "adiabatic" curves. By definition, an adiabatic 
curve is one along which the change in U is exactly compensated by the 
mechanical work done so that no heat energy is given off or absorbed. 
In mathematical terms, it is a solution of the first-order differential 
equation 

d~/dT = --~ U/~T/((aU/~v) + p). 

The net effect of transversing a Carnot cycle in the proper direction is 
to take a quantity of heat Q1 at a temperature T 1 , transfer Qe of it to a body 
of lower temperature T 2 , and turn the difference Q1 -- ~2 into mechanical 
energy. By transversing the cycle in the opposite direction, one can 
reverse the process. An easy argument using the second law now shows 
that the "efficiency" (Q~ -- Q2)/Q~ must be the same for all cycles and all 
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substances operating between the same two temperatures T i and T 2 . 
Moreover, it is easy to show that up to a multiplicative constant there is 
one and only one way of parameterizing temperature so that this efficiency 
is equal to (T 1 -- T2) /T  i . The absolute temperature scale is defined by 
choosing one of these parameterizations. 

Now given U and p, one can compute the efficiency (Qi -- Q2)/Qi for 
any Carnot cycle. When one does this one finds that (Qi -- Q2)/Q1 = 
(T 1 -- T2) /T  1 for all Carnot cycles if and only if the line integral 
IL (a U / a T )  d T / T  + [(a U/cOv + p)  dv] /T  depends only upon the end points 
of the path L; that is, if and only if there exists a function S such that 
aS~aT  = ( l / T ) a U / a T  and ~S /av  = (1/T)(p + (aU/~v)) .  The function 
S is, of course, uniquely determined by U and p up to an additive 
constant. It is called the entropy function, and its existence is equivalent 
to the second law of thermodynamics in the present context. Because of 
the existence of the entropy function, there is a single function of v and T 
from which U, p,  S ,  and, hence, Cv and Cp can all be computed. This 
is the  f ree  energy function F defined as U --  T S .  Indeed 

e e / ~  = ( ~ U / ~ )  - -  T ( O S / e ~ )  = (eU/O~)  - -  ( p  + ( ~ U / e ~ ) )  = - - ?  

and 

OF/~T = (OU/OT) --  S + T(OS/~T) = (OU/OT) --  S --  (3U/3T) = - - S  

so that 

p = --3F/Ov, S = --3F/~I', U ---- F -- T(OF/~T). 

Notice that knowing p determines F up to an additive function of T 
alone. Thus the two laws of thermodynamics imply that, in addition to 
the virial coefficients in the pressure function, one needs to measure just 
one more function of the temperature in order to know all the thermo- 
dynamic functions of v and T. 

In thermodynamics, heat and temperature are accepted as fundamental 
concepts not reducible to anything else. In statistical mechanics, on the 
other hand, one attempts to explain heat, temperature, and the laws of 
thermodynamics as consequences of the laws of particle mechanics 
applied to the molecules of the substances concerned. In particular, 
it provides an algorithm for computing the free-energy function of a gas 
once one knows the differential equations of motion of the molecules 
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of which the gas is composed. Given a gas of N molecules moving in 
a fixed enclosure If of volume v, let D denote the corresponding phase 
space; that is, the set of all possible positions ql and momenta Pi of the 
molecules, let H be the function on .(2 giving the total energy in terms 
of the positions and momenta, and let t -+ a t denote the one-parameter 
group of automorphisms of D whose orbits are the curves obtained by 
integrating the equations of motion dqi/dt = ~H/Op¢, dp~/dt = 
- -~H/~q i .  Let ~ denote the Lebesgue measure in g2 associated with the 
coordinatization ql, q2 ,..., qa~ Pl ,P2 ,...,Pan • As noted by Liouville, ~ is 
invariant under the real line action on ~2 defined by the a t . Now a great 
many different points of D define states of motion of the gas which appear 
the same to a macroscopic observer. According to statistical mechanics, 
the phase space counterpart of our gas in equilibrium at temperature T 
is not some point of £2 but a probability measure /XT in g2. The idea is 
that if one could actually determine o) in D, one would get different 
answers at different times and with different ways of preparing the 
system, tXT(A) is the probability that a determination of o) would give 
a result in the set A _C_ f2. What probability measure in (2 is /XT to be ? 
The answer proposed by Gibbs and now more or less universally accepted 
is that 

l~ e -H/kr d~ 
~r(A) = f~ e-M/~T at  

where k is a universal constant known as Boltzman's constant. With this 
choice for/x r , the expected value of the kinetic energy of the gas mole- 
cules can be computed to be (3/2) N k T  so that k T  is just 2/3 of the mean 
kinetic energy per molecule. Since the absolute temperature thus turns 
out to be proportional to the mean kinetic energy per molecule, one has 
a "natural" choice for the arbitrary multiplicative constant in the 
definition of absolute temperature. Except for the 2/3, Boltzman's 
constant is just a conversion factor from conventional units to the 
"natural" ones. Identifying U(v, T)  with the expected value j" H d/x r of 
H, one has an algorithm for computing U once H is known. The volume 
v enters into the picture because H and ~2 depend upon the enclosure. 
Actually, [~ H dtxr will depend on the shape as well as the volume of the 
enclosure, but the dependence on the former is very slight as soon as v 
is reasonably large. One can avoid the difficulty by confining attention 
to one particular shape--say, cubic. A simple argument shows that 
p(v, T)  may be identified with f ~H/~v dtxr, and given these identifica- 
tions, one verifies that (dU + p dv ) /T  is indeed exact, so that second 
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law is a consequence of statistical mechanics. An easy computation 
shows that the free-energy function F is given by the formula 

F(v, T) : - - kT  log f e-H~ kr d~. 

Thus  to compute F and, hence, all thermodynamic functions, one needs 
to know only Se-n/eT d~, the so-called partition function. Using the 
formula S = - - S F / S T  for the entropy leads at once to the formula 

and setting 

S(v, T) ----- k log f e-~/kr d~ -F 
1 / T f He-H/kr d~ 

S e-Z/kr d~ 

e--H/kr 
Pr : f e_H/~r d~ ' 

this may be rewritten as 

S(v, T) : --k  f Pr log pr d~. 

Thus  the entropy depends only on the probability measure/z r = pr d~ 
and not on the particular Hamiltonian function H which gives rise to it. 
As will be explained more fully below, the expression - - f P r  Iogpr  d( 
may be regarded as a measure of the "degree of uncertainty" associated 
with/Zr • I t  is small when/~r  is highly concentrated and large when it is 
"spread out" .  One has then a simple statistical interpretation of the 
entropy of a gas. It is just k multiplied by the degree of uncertainty in 
the microscopic state of the gas for that macroscopic state whose entropy 
is in question. The  Gibbs measures /z T can be characterized as those 
probability measures of the form p d~ which maximize - - f p  log p d~ 
subject to the side condition that f p H  d~ should have a fixed value and 
this fact can be used as a sort of justification for their use in statistical 
mechanics. 

The  sense in which --.fPT log pr d~ may be regarded as a measure 
of the "degree of uncertainty" associated with the probability measure 
PT d~ can best be appreciated by considering a discrete analogue. Let  
A 1 , A 2 ,..., A n be a finite set of events exactly one of which will occur 
at any one time. Let  p~ be the probability of occurrence of A s so that 
0 ~< pj ~< 1 and Pl -~ P2 q- "'" -[- Pn : 1. I f  pj0 = 1 for some Jo, then 
A~o surely occurs and there is no uncertainty involved. I f  on the other 
hand Pl = P2 : Pl : P 2 -  - - P n  : 1/n, so that all events are 
equally likely, there is as much uncertainty as possible. Now one's 
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intuition suggests that having Pl =- P2 = 1/2, P3 = P4 "'" = P,~ = 0 
involves less uncertainty say than having Pl = P2 = P3 = P4 ~- 1/4, 
P5 = P6 . . . . .  p,~ = 0, but it is easy to construct examples in which 
it is not clear a priori which of two sets of probabilities for the Aj 
involves the greater uncertainty. However, in 1948, Claude Shannon 
in the course of developing a general theory of " informat ion"  (ef. 
Section 11) showed that if certain simple and natural axioms are to be 
satisfied, then there is to within a multiplicative constant one and only 
one way of assigning a real number  to each finite system P l ,  P2 ,---, P~ 
which measures the "degree of under ta inty"  exemplified by such a 
probability distribution. The  constant  may be chosen so that the number  
is --~2j=lP~ log pj., where 0 log 0 is interpreted as 0. While the formula 
was not new, such a satisfying justification for it had not previously been 
given. The  expression --J 'p log p d~ is an obvious continuous analogue 
of --~2j=lPj log p i - -  provided one is willing to accept ~ as a reference 
measure. Without  a reference measure, one cannot distinguish one 
atom-free probability measure from another. 

One may explain the fact that many different points ~o in ~O appear 
the same to a macroscopic observer by supposing that those functions ~b 
on £2 which a macroscopic observer can observe are "nearly constant" 
on the curves t --+ ~,(oJ) for almost all ~o. To make this statement more 
precise, considering the fibering o f /2  corresponding to a direct integral 
decomposition of the invariant measure ~ into ergodic components ~r" 
Let  the fiber supporting ~r be g?,. One can show that ~r(g2,) is finite 
for all r, and the ergodic theorem then implies that whenever ~ is a 
bounded Borel function, there is a mean value 

l f f  ~(~o) = lira ~b(~(oJ)) 
T-~o "T  

defined for almost all ~o and depending only on r. To say that ~b is 

"nearly constant" on the curves t --+ ~t(oJ) is to say that (~(~o) -- ~(o~)) 2 
is very small compared to q~(oJ)~; i.e., that for almost all oJ, ~b(~t(~o)) 
is relatively very near to ~(~o) for a very large fraction of the time. 
When  this holds, ~b will appear to be a eonstant in time to a macroscopic 
observer, and, moreover, the constant will be the same for ~ almost all 
o~ in /'2 r . In  other words, to a macroscopic observer, the state of the 
system depends only on the (abstract) parameter r and is constant in 
time. Now the fibering of D provided by the constant energy hyper- 
surfaces ~E decomposes [ into measures [E, and the decomposition 
defined by the Dr is clearly a refinement of this. Suppose that it were not 
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a proper refinement; that is, that the action of the a t on the De were 
already ergodic with respect to the ~e- Then  the maeroscopie state of 
the gas would be completely determined by the two real variables v and E, 
and this is what one finds experimentally. Moreover, under this hypo- 
thesis of ergodicity for the ~e, it would also follow that the mean values 

and (~b-  q~)e could be computed without solving the equations of 
motion in order to find the a t . One would have q~(E) = f ~b(co) d~/~(~2~) 
and a similar formula for (~ --  q~)~'. I t  was with this application in mind 
that yon Neumann and G. D. Birkhoff proved their versions of the 
ergodic theorem and created the subject of ergodic theory. Unfortunately, 
it seems extremely difficult to decide whether the invariant measures ~e 
are in fact ergodic, and the problem is still unsolved although Ya. G. Sinai 
has made important progress in the last decade. 

The question of " the approach to equilibrium" may be viewed in a 
similar spirit. Whether  a point ~o 0 i n /2  represents "equi l ibr ium" or not 
is not precisely defined but depends upon whether ~b(¢o) is "near"  to 
q~(~Oo) for all macroscopically observable functions ~b. Assuming that ~b 
is nearly constant in the sense described above, ~l(~o0) will be an equilib- 
rium point for a portion of the time which is very close to one. Thus,  
even if co 0 is not an equilibrium point, ~t(~o0) will be such for some t > 0 
and will continue to be such except during rare intervals which are 
brief compared to the distances between them. 

The  above considerations suggest that /~r should be taken to be 
~e/~e(f2e), where E = U(v, T), rather than the Gibbs measure pr d~. 
However, for gases with a large number  of particles, the two are actually 
very close together and the Gibbs measure is much easier to deal with 
technically. I t  is, in fact, a continuous weighted mean of all measures 
of the form ~e/~e(De) with practically all of the weight going to a very 
short interval on the E axis. 

All known arguments designed to establish the relevance of the Gibbs 
measure and its corollary the algorithm F(v, T) = --kT log f e-I~/kr d~ 
are less than compelling and vulnerable to objections of one sort or 
another. Nevertheless, the algorithm and other consequences of assuming 
the Gibbs measure are believed to be valid (when the temperature is 
sufficiently high) and one of the main tasks of the specialist in (equilib- 
rium) statistical mechanics is to compute F(v, T) starting with hypotheses 
about the function H. The  reason for the qualification about high 
temperatures is that quantum effects become serious when the tempera- 
ture is low and a treatment based on classical mechanics is no longer 
accurate. 



242 GEORGE W. MACKEY 

The main problem in computing F from H is, of course, that of 
computing the partition function J e-H/kr dE = P(v, T) which is just 
f e-X/kr dE(x), where r is the measure in the real line defined by the 
formula r(A) = ~(H-I(A)). Finding P from r is merely a matter of 
computing a Laplace transform and the difficult problem is that of 
finding fi when H is given. In dealing with this difficult problem, it is 
useful to observe that it can be quickly reduced to a problem involving 
configurations only. The point is that H is a sum 

3N 1 2 
~ (Pj) + W(ql, q2 ..... qzN) 

j=l  

of a very simple function of the pj and a function W (the potential 
energy) of the q3" • Here, m is the mass of an individual molecule. One 
computes easily that each Gibbs measure /x r is a direct product of 
measures /zr 1 and /zT 2, where ~6T 1 is a measure in R 3u, the space of all 
possible momenta, and/zr 2 is a measure in V N, the space of all possible 
configurations. Moreover, ~ T  1 factors further as a 3N-fold product of 
replicas of identical measures on the real line, the latter being constant 
multiples of e-p'/2mkr dp. It follows that the partition function is a 
constant times (kT)3N/2Po(v, T), where P0(v, T) is a modified partition 
function defined as fvN e -W/kr d~o, where Co is Lebesgue measure in 
"configuration space" V N. Correspondingly, F(v, T) up to an additive 
constant is --(3/2) N k T l o g  k T - -  kTlog  Po(v, T), and everything 
depends upon being able to compute the modified partition function 
Po(v, T) or, more or less equivalently, the measure rio, where rio(A) = 
~ 0 ( W - I ( A ) ) .  

Notice that omitting the term - - (3 /2 )NhTlog  kT  does not change 
the pressure function at all and changes the entropy and internal energy 
functions only by adding N-times known functions of T which are the 
same for all gases. Thus, nothing essential is lost if one ignores the 
momenta and kinetic energy and develops what might be called configura- 
tional thermodynamics in which one replaces £2 by V N, H by W, and/zr 
by/xr  z. Given V and o, let p be any positive Borel function on V u such 
that f p do N = 1. Let W = --k  log p. Then the Gibbs measures for the 
potential energy W will be 

e(lOgo) /T dowN pl/r dan 

j 'vN ellogo)/r  daN ~r,N pl/r dan ' 

and, in particular, the Gibbs measure for unit temperature will be p do N. 
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In other words, every probability measure in V N which is absolutely 
continuous with respect to ~N and has an everywhere positive Radon- 
Nikodym derivative is the Gibbs measure at unit temperature for some 
(uniquely determined) potential energy function W. Moreover, it is easy 
to see that one can allow O to be merely nonnegative by permitting W 
to take on the value oo. From this point of view, configurational statistical 
mechanics (in a fixed volume) is just the theory of the one-parameter 
families of probability measures in V N of the form pl /r  d ~ N / f p l / r  daN, 
where p is an arbitrary nonnegative Borel function for which the integrals 
exist. In particular, given any probability measure k~ in V N such that 
dlz/d~ N exists and satisfies the indicated integrability conditions, it makes 
sense to ask for the associated free-energy and entropy functions. 

In order to include volume dependence, one must have a way of 
passing from a W in one volume to a "corresponding" W in the other. 
In actual gases, this comes about naturally because W is a sum of contri- 
butions from "two body potentials". One has a function w defined on the 
nonnegative real axis and 

N 

W ( x l y l z l ,  x2y2z~"" XNYNZN) ~ ~ W(V/(Xi - -  Xj) 2 + (y, -- y~)2 + (Z, -- Zj) 2) 
iv~j 

i , j = l  

a function which is well-defined on V n for all V as soon as w is given. 
Of course, only very special measures p do~ n will arise from such a W. 
On the other hand, those that do play a special role in probability theory 
quite apart from their significance for statistical mechanics (cf. Section 10) 

Mathematically speaking, there is no reason why configurational 
statistical mechanics should be limited to the case in which V is a region 
in Euclidean space. All definitions continue to make sense when V, 
is replaced by a quite general measure space which can even be discrete. 
Thus far, only one special case of his suggested generalization has been 
of actual interest to physicists. This is the case in which the measure 
space is the set of all points with integer coordinates in some volume V 
of Euclidean space and the measure is the counting measure. One speaks 
then of a lattice gas. The properties of lattice gases have been studied 
as a preliminary indication of what to expect in dealing with the more 
difficult case of actual gases. The theory of lattice gases is also interesting 
because it is mathematically equivalent to certain other (more realistic) 
problems in statistical mechanics. 
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10. STATISTICAL MECHANICS IN THE INFINITE VOLUME LIMIT 
AND ITS CONNECTIONS WITH STATIONARY STOCHASTIC PROCESSES 

AND HOMOGENEOUS CHAOSES 

Given a gas of N molecules moving in a region V of space, what 
happens to the entropy, pressure, internal energy, etc., if one changes N 
to N'  and at the same time replaces V by a region V' whose volume is 
N'/N times as great as that of V? Intuition suggests and experiment 
confirms that, if the temperature remains the same, then the pressure 
remains the same, while the entropy and internal energy are multiplied 
by N'/N. Accordingly, one speaks of pressure as an intensive quantity 
and of entropy and internal energy as extensive quantities. If one wants 
relationships which do not depend upon N or v, one looks at the entropy 
per unit volume, the internal energy per unit volume, and the pressure 
as functions of v/N and T. However, if one tries to compute these 
functions from the algorithms of statistical mechanics described in 
Section 9, one finds that there is a slight dependence on size as well. 
This dependence can be traced to the so-called "edge effect"--the fact 
that conditions become different near the walls of the container. On the 
other hand, it is clear that for a given v/N, the edge effect becomes 
relatively less and less important as N and v get large, and this, in turn, 
suggests that p, U/v should have definite limits as N and v tend to oo. 
These limits, if they exist, are the quantities one is really interested in 
computing, since the failure to find edge effects in experiments suggests 
that gases in laboratory quantities already are extensive enough to make 
edge effects too small to measure. One speaks of them as the thermo- 
dynamic limits of the functions concerned. As might be expected, they 
tend to be rather simpler functions of T and v/N than the corresponding 
functions with edge effects included. 

The first attempts to gave a rigorous mathematical proof of the 
existence of thermodynamic limits were made independently by van 
Hove in 1949 and by Yang and Lee in 1952. A thoroughgoing systematic 
attack on the problem was begun by D. Ruelle in 1963 and quickly led 
to quite complete results for rather general potentials. Ruelle's results 
together with those of other workers in the field may be found in a book 
entitled "Statistical Mechanics--rigorous results" which he published 
in 1968. 

As a refinement of computing the thermodynamic functions for finite 
systems of constant density and increasing volume and then taking 
their limits as the volume becomes infinite, one can conceive of trying 
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to find a (hypothetical) infinite system for which these limit functions are 
the actual thermodynamic functions themselves. This turns out to be 
a feasible program which has been in the course of development since 
the publication of a fundamental paper by H. Araki and E. J. Woods 
in 1963. These authors dealt with the special case of a perfect "Bose gas" 
in quantum statistical mechanics. A more general attack was inaugurated 
by Ruelle in 1965 and continued by Ruelle and others, especially 
R. L. Dobrushin. In the approach of Ruelle and his coworkers, emphasis 
is placed on developing the classical and quantum cases simultaneously 
using the theory of noncommutative C* algebras as a technical tool. 
This has the disadvantage of obscuring somewhat the connection with 
the theory of stochastic processes, which we wish to emphasize here. 

Accordingly, the description to follow will be closer in spirit to that 
given in the papers of Dobrushin. Dobrushin, a probabilist by training 
and a specialist in information theory, confined himself to classical 
statistical mechanics--and in fact to the lattice-gas case. 

Prior to introducing the infinite system limit, let us study the lattice 
gas notion in somewhat more detail. Let d{ denote the finite set of lattice 
points in our volume V, and let there be N gas molecules so that ~'N 
is the configuration space of the gas. Let W be the real t3 m-valued 
function on j{N defining the potential energy of each configuration. The 
macroscopic state of the gas at temperature T is then defined by the proba- 
bility measure /Zr which assigns a probability e--W(s)/kr/~ssdZN e -W¢*) / k r  

to each s = m 1 , m 2 , . . . ,  m s in J/Zu: For each m in J4', let N m ( s  ) be the 
number of indicesj for which m -- ms; that is, the number of molecules 
at lattice point m when the macroscopic state is s. The functions N m are 
random variables on the probability space J l  N, a T ,  and these functions 
separate the points of d ~  "N. Thus using the mapping s ---> co, where o~ is 
the nonnegative integer-valued function on ~ taking m into N m ( s ) ,  one 
may identify ~"~ with a subset of the space (Z+) ~z of all functions from 

to the nonnegative integers. Since extra points do no harm if they are 
collectively of measure zero, one can replace j [ , v  with the whole of 
(Z~) Jl and so obtain a configuration space which is the same for all N. 
Actually, it is customary to confine attention to the case in which it is 
impossible for two molecules to occupy the same lattice point so that Z + 
may be replaced by the two-element set F 2 consisting of 0 and 1. The 
system is completely defined then by giving ~ and the function W on 
(/72) d/ or, (almost) equivalently, by giving #/{ and for any T > 0 the 
Gibbs measure/*r which assigns the m e a s u r e  e--W~°')/kr/~-'~,~oe(F2)d[ e-W(<°)/kr 
to each one-point set {co} _C (F2) all. Note that changing W by adding a 
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constant to it leaves all the ~b~ T unaltered so that W is determined by 
the/x r only up to an (inessential) additive constant. 

In order to compare one set of lattice points with another and talk of 
an infinite limit, it is necessary to restrict W. As already mentioned in 
Section 9, physical experience suggests that it will suffice to consider 
sums of "two-body potentials". In other words, it will be assumed until 
further notice that there exists a real-valued function w defined on the 
additive group of all lattice points in space such that w ( - - m )  = w(m), 

= o 

W(cu) = 1/2 ~ w(ml -- ms) whenever ~ w(m) = N, 
++~ + J [  

m(ml)~(~(i, nm)=l 

and W(co)• oo whenever 52m~/t w(m). ~ N.  The function w will be 
called the interaction function. Let [~/~ I denote the number of lattice 
points in .V¢/. Given w and p = N/L d/{ [, the formula just written down 
assigns a unique energy function W to every (Fz) ~ for which I J C/]p 
is an integer. 

Whatever else is involved in defining the infinite volume limit of the 
systems specified by a fixed interaction function w and density p, it is 
clear that the configuration space must be (F2) z+ and that the macroscopic 
state of the system at temperature T must be defined by a probability 
measure t~r in this configuration space. The problem is to generalize 
the construction of the/~r in the (F2) m for finite ~/~ so that it makes sense 
in the infinite case and, correspondingly, to find appropriately generalized 
definitions of free energy, entropy, etc. Of course, an infinite homogene- 
ous system will have infinite entropy, infinite free energy, etc., and one 
seeks instead to define entropy per lattice site, free energy per lattice site, 
etc. This circumstance is one of the difficulties standing in the way of a 
straightforward generalization from finite to infinite de'. Another 
difficulty lies in the fact that (F~) z3 is not a discrete space and that there 
is no measure with respect to which the/xr are all absolutely continuous. 

However one goes about the task of overcoming these difficulties, it is 
clear from homogeneity that each/xr must be invariant with respect to 
the natural action of Z 3 on (Fz) z3 so that (except for the replacement of 
Z by Z 3) the system consisting of the configurations space and the 
macroscopic state is identical with that defining a discrete stationary 
stochastic process in the special case of random variables which take on 
only the two values 0 and 1. Put slightly differently, each macroscopic 
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(equilibrium) state of an infinite lattice gas is canonically associated with 
a three-dimensional discrete parameter chaos whose random variables 
take on only the values 0 and 1. This  suggests that the methods of 
ergodic theory may be applied to the problem and also raises the question 
of possibly finding analogues of thermodynamic concepts in other 
probabilisfic contexts. 

One application of ergodic theory is almost immediate and arises out 
of the attempt to assign a "densi ty"  to each microscopic state of our 
infinite lattice gas; that is, to each point of (F~) z~. An obvious way to do 
this is to consider for each 1 - 1, 2, 3,..., the set ~t '  z of all n l ,  n2, n3 in 
Z 3 with - - I  ~ nj ~ l for j = 1, 2, 3. Then  ~ m ~  oJ(m) will be the 
number  of gas molecules in ~gt when the state is co and the average 
"densi ty"  or "number  per lattice site" will be 

If  this expression has a definite limit p(co), as l tends to oo, it is natural 
to define p(co) to be the gas density in the microscopic state ~o. Now if the 
gas were one instead of three dimensional, the ergodic theorem applied 
to the function co --~ co(0) would at once imply that the limit does indeed 
exist for /x almost all co for every invariant probability measure /~ in 
(F2) z. In other words, the (Borel) set of all co for which the limit does 
not exist is of measure zero simultaneously for all invariant probability 
measures and hence can be neglected once and for all. A corresponding 
result for the three-dimensional case would follow at once if the obvious 
generalization of the ergodic theorem from Z to Z 3 could be proved. 
Such a generalization (from Z to Z ~) was proved by Wiener in 1939. 
Thus,  p(co) is a well-defined Borel function on (F2) z~ except on a subset 
which is of measure zero for all possible tx r . Evidently, the density P0 
to be assigned to any particular macroscopic state ~[L r will be the expected 
value f p(Lo) d/xr(co ) of the random variable p. Notice that if/x r is ergodic 
(and we shall see that it is in many interesting cases), then p(co), being 
invariant under  the Z 3 action, will be equal to its expected value for 
/x r almost all co. 

The three-dimensional ergodic theorem may be used in a similar 
manner to associate an internal energy per lattice site W(co) to almost 
every w. However, the exceptional "universal" null set (and of course W 
as well) will depend upon the interaction function w; and W will only 
exist if w is suitably restricted. In most of the literature, w is assumed to 
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be zero outside of a small finite set, but  it suffices for the present purposes 
to suppose that ~x~z~ I w(x)j < oo. T h e n  when the gas is in the micro- 
scopic state oJ, for each m ~ Z 3 the contr ibution to the potential energy 
of the interaction of a molecule at m with all other molecules will be 
o)(m)(~%z3 w(m)' co(m + m')). T h e  infinite sum clearly converges and 
defines a Borel function co-+E~(co), and it is evident that Em(oJ)=Eo([co]m) 
where [o)]m is the translate of ~o by m. Applying the three-dimensional  
ergodic theorem to E o , one finds that l i m ~  ~.m~/t~ Era(co)~[ ~ l l  exists 
except for a set of ~o's which is of measure zero with respect to all 
invariant probabili ty measures in (Fz) z3. Now ~,n~/t Z E~(~o) is twice the 
contr ibution to the potential energy of ~ill pairs m 1 , m 2 with m 1 and m 2 
both in J d  t plus the contr ibution to the potential energy of all pairs 
rn 1 , m 2 with m 1 in ~ z  and ~ '2  not in ~/~l • Moreover,  an easy argument 
shows that the contr ibut ion of the pairs of the second kind divided by 
]ddzi  goes to zero as l approaches infinity. Thus ,  defining W(~o) = 
1/21imt-~oo ~2mJ~Em(~°)/I ~ t  I, one obtains a Borel funct ion defined 
except on a set which is of measure zero for every possible/z r and which 
may be interpreted as the internal energy per lattice site when the gas is 
in the microscopic state ~o. Correspondingly,  in the macroscopic state 
defined by an invariant probabili ty measure /x, the internal energy of 
the gas will be ~ W(oJ) d/z(~o). 

At this stage, the entropy per lattice site is best thought  of as a proper ty  
of macroscopic states rather than of almost all microscopic states. 
(However,  as will be shown below, one can assign an entropy to almost 
all microscopic states as well.) Recall that when ~ '  is finite, the ent ropy 
of the macroscopic state defined by the probabili ty measure /z  in (F2) ~l 
. . Z 3 • is S(/x)=--~,o~%),~//z({~o}) log/x({co}). Now each co in (Fz) is a 
function on Z 3, and by restriction ot J ~ l ,  defines a member  01(co) of 
(F~) ~ for each l = 1, 2 . . . . .  T h e  function 0t maps (F2) z~ onto (F2) ~Z and 
associates a probabili ty measure/x~ in (F2) :z~ to each probabili ty measure 
/~ in (F~)Z~: /z~(A) = Ix(O-~I(A)). T h e  probabili ty measure /x z describes 
the macroscopic state of that part of the gas whose molecules lie in ~Z//z 
when /x  describes the macroscopic state of the infinite gas. Now S(ixt) 
is well-defined by the formula given above and one may think of 
S(tzt)/] .C/t[ as the entropy per lattice site for tha t  part of the gas. This  
suggests that it should be possible to prove that l i m z ~  S(/xz)/I ~ t  i exists 
and that this limit is the appropriate definition of entropy per lattice 
site for the infinite gas. T h e  analogous question with Z ~ replaced by Z 
(and F 2 replaced by any finite set) arises in information theory (cf. Sec- 
tion 11), and it turns out that in that case, the limit exists and is finite 
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for any invariant probability measure /x. Khinchin has given a short 
elementary proof of this important  fact on pages 47-49 of his book 
"Mathematical  Foundations of Information Theory"  (1957). Since 
Khinehin 's  argument  adapts easily to the n-dimensional case, it follows 
that liml_~ S(/xl)/[ ~/¢{1 I exists and is finite; and one has a well-defined 
"entropy per lattice site" S(I z) for every invariant probability measure/~ 
in (F2) z~. 

There remains the problem of defining the particular invariant 
measure/Xr,oo which describes the macroscopic state when the tempera- 
ture is T and the density (in molecules per lattice site) is po • A natural 
approach to this problem proceeds (as in the case of entropy) through 
a study of the measures (t~r,~o)l in the finite space (F~) "~ obtained from 
tLr,oo by the mappings 0 l . I t  is easy to see that/Xr,,o is uniquely determined 
by the (t~r,Oo)~ and can be described by describing the latter. One's first 
thought  is that (t~T.oo)~ must be just  the Gibbs measure tZr for J/{t with 
N = p0(2l + 1). However, this is wrong--even when Po is such that N 
is always an integer. The  probability measures in the d/l 1 that one gets 
in this way are inconsistent in the sense that the natural map of J/li+ l, 
onto Jg'z does not map one into the other. This is because a portion of 
an infinite gas in equilibrium with the rest of the gas is not the same 
as that same portion when isolated from the rest. In particular, the 
number  of molecules can vary. 

To overcome this and other difficulties, one must do several things. 
First of all, in considering finite systems, one must give up the idea of 
a fixed number  of particles. Instead of fixing the number  of particles 
(or the number  per lattice site), one must  fix its expected value. The  
Gibbs measure ix r which assigns a probability proportional to e-W(°~)/kr 
to each co with ~ co(m) = N and zero to all other co must be replaced by 
a probability measure which assigns a probability proportional to 
e -[w(°~)-ex(°~)llkr to each co in (F2) J/e, where N(co) = 2~ ,~ ,  co(m) and c is 
a real number  chosen so as to make the expected value of N(co) take 
on the desired value. (Note that this may now be nonintegral). One is 
led to an expression of this form if one attempts to maximize the 
"spreadoutness" of/x subject to the conditions that W(co) and N(co) have 
fixed expected values. The  parameter c is called the chemical potential 
and c/T is related to the particle number  much as temperature is related 
to energy. In classical statistical mechanics, replacing the Gibbs measures 
t~r by the two-parameter family tXr,cjUSt defined is referred to as replacing 
the Gibbs "canonical ensemble" by the Gibbs "grand canonical 
ensemble". In cases which occur in practice, the probability distribution 
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which/Zr, c assigns to N is highly concentrated about its expected value. 
Thus, whether one uses tzr,o or the/x r corresponding to ~ N(co) dt~r,c(co ) 
makes very little difference to computed results. However, the "grand" 
Gibbs measure iZr,c has theoretical advantages. 

Given an interaction function w, one has a well-defined family of 
grand Gibbs measures /xZr.c in each F~ ¢¢~. Now fix l and consider the 
natural mapping 0~' of (F2)d¢~+ v on (F2) dt~ for each l ' =  1, 2,.... Via 

l '  the usual formula fi(A) =/~(0-1(A)), these mappings carry the/~r,c into 
~l ' , l  probability measures t~r,c in (F~) ~ ,  and, the larger l' is, the more nearly 

the ~v'z ixr,e are like the images in (Fe)~  of measures in (F2) z~. Moreover, 
it is easy to see that if limz.o~ ~vl exists for all l, T, and c, then the t xr  ,e 

limiting measures fi~'~z ~are consistent and there exists" a unique probabilityo~ l 
measure fir,c in (F2j whose images in the (F~) Cz~ are the fir,'c" The 
measure/~r,c (when it exists) is the (grand) Gibbs measure for the infinite 
lattice gas at temperature T and chemical potential c. To find the Gibbs 
measure/~r for the gas when the density is P0, one chooses c o so that 

f ?(o~) dfi~,o0(~o) = po 

and sets tXr = fiT,% • Of course, it has to be proved that c o is unique. 
~o0,/ While physical intuition suggests that the limiting measures ~r,c 

indeed exist at least whenever zo is a "physically realistic" interaction 
function, the mathematical question remains of proving the existence 
under suitable hypotheses on w. Moreover, the interesting question to 
the practicing physicist is that of finding explicit procedures for com- 
puting the values of fir,c and the integrals f W(co)df~r,c(co) and 

S(co) dfir,c(co) for a given interaction function w. The simplest case 
of course is that in which w ~ 0 so that the gas molecules do not interact 
at all. Here, an easy calculation shows that/xv;~ is independent of l' so 
that the limit -~o. /~r,c exists trivially. The corresponding probability measure 
fir.c in (F2) z~ is a direct product over the lattice sites of that probability 
measure in Fz which assigns the probability ec/kr/1 q- e c/kr to 1 and the 
probability 1/1 q- e c/kr to 0. The functions co --* co(m) are thus inde- 
pendent random variables with a distribution depending on c/kT,  and 
the density of the gas is ec/kr/1 -4- e clef molecules per lattice site. Thus 
the infinite system limit of a "perfect" lattice gas in any given macroscopic 
state is a three-dimensional analogue of a stochastic process with two- 
valued independent identically distributed random variables. In parti- 
cular, the invariant probability measures fir,c are all ergodic. This 
ergodicity is in sharp contrast to the behavior of the ~e under the time 
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translation group as discussed in the last section. Here,  although one 
hopes to prove ergodicity for suitable interactions, it is easy to see that 
it fails for a perfect  gas; that is, when there is no interaction. In  general, 
the ergodicity of the ~ r . e  is much  easier to come by than that of the ~e. 

Another  interesting special case that can be explicitly and exactly 
worked out is that of a o n e - d i m e n s i o n a l  lattice gas for which the inter- 
action w is zero except at ~: 1. This  means that two gas molecules interact 
only when they are on adjacent lattice sites and one speaks of a "nearest  
ne ighbor"  interaction. In  this case, one can show that, f o r  any choice of 

~ l ' , l  l t A = w(1) = w(--1)  the measures /ZT. e converge for all T and c as 
tends to ~ and that the limiting measure defines a stationary stochastic 
process whose underlying action is ergodic. I t  is interesting that the 
stationary process in question is in a sense the next simplest kind after 
the processes whose random variables are independent.  Given a discrete 
two-valued process and a finite sequence a 1 , a s ,..., a~_ x of zeros and 
ones, one can ask for the probabili ty that ~o(n) will be one when it is 
known that oJ(1) --~ a l ,  ~o(2) = a s ... ~ o ( n -  1) = a n _  1 . When the 
random variables are independent ,  this probabili ty is independent  of 
a 1 , a s .... , a~_ 1 and n. By definition, the process is a M a r k o v  p r o c e s s  if 
this probabili ty is independent  of a 1 , a s .... , a~_ 2 and n but  depends on 
a~_ 1 . A two-valued Markov process is uniquely determined by its 
matrix of transition probabilities (1-;p a-qq), where p is the probabili ty 
that oJ(n) will be zero when oJ(n - -  1) is zero and q is the probabili ty that 
~o(n) will be one when ~o(n --  1) is one. Of course, when p = 1 --  q, the 
random variables are independent  so that [p ~ - q -  1[ measures the 
degree of dependence. T h e  measures /2r.c in (F2)  z defined by a one- 
dimensional lattice gas with w ( 1 ) =  w( - -1 ) - - - -A  define stationary 
Markov processes whose transition probabilities p and q are the unique 
real numbers  on the interval 0 < x < 1 which satisfy the equations: 

(p/(1 --p))(q/(1 - -  q)) = e-A~ kr  and q /p  = e(C-a)/kr. 

T o  understand the relationship between two-valued Markov processes 
and one-dimensional nearest-neighbor lattice gases including the above 
formula for p and q, it suffices to compare the formula for computing 
the probabili ty of a fixed finite configuration on a Markov process with 
the corresponding formula for a finite portion of a lattice gas. Consider 
the expression 

P ( a, b) = p(1-a)(1-~) qab(1 - -  p)(1-a)b(1 --  q)a(l=b), 

6o7/I2]2-8 
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where a and b are 0 or 1. Evidently, 

P(1, 1) = q, P(0, 0) = :p  P(1, 0) = 1 -- q, and P(0, 1) = 1 -- p 

so that P(a, b) is the probability that the k ~- 1-st random variable will 
take on the value b given that the kth took on the value a. Moreover, 
P(a,  b) may clearly be written in the form e alab+a2a+aab+a*, where 

Ax = log(pq/(1 --p)(1 -- q)), A2 ---- log((1 q)/p), 

A a = log((1 --p)/p),  and A 4 = log p. 

One simply sets p = elo~v, q = elOgq, etc., and rearranges the result in 
an obvious way. It  follows that the probability that  bx, b~ ,..., b~ will 
occur in that order immediately after b 0 has occurred is just 

P(b o , b~) P(bl , b2) -.. P(b~_t , b~) 

~ e r A 4 e A l ( b o b l + b l b 2 + ' " b r - l b ~ . ) + A s ( b o + b l + ' " b ~ , _ l ) + ~ 3 ( b l + b 2 + . * . + b r )  

i n  particular, if ~o is an arbitrary function from - - j  ~< k ~ j to {0, 1}, 
then the probability that the sequence ~o(--j), o~(--j ÷ 1),..., ~o(j) occurs 
given that ~o(--j --  1) was zero is 

ea4(2s+2) eal(z~=l-~(k)~(~+l)) +(a2+aa) (Z~__jo(k))-a~o(j) 
- -  ° 

Except for the term --)t2oJ(j ) (which becomes relatively less and less 
important  as j increases), the probabilities in questions as functions of oJ 
are proportional to 

The  resemblance of this formula to that provided by the Gibbs measure 
is striking indeed: 

~-1 j 

W(~o) = A Z co(k)~(k -+- 1) and N(co) = ~ co(k) 
k = - j  k= j  

8 0  

- w ( o )  - o N ( c o )  _ 

k T  
J 

A J-1 c F, ~(k). k T  ~=_jZ co(k) co(k + 1) + ~ k=-j 

Thus  the formulas coincide if - - A / k T  = h i and c / k T  = ~2 + A3; that is, 
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iflog(pq/(1 - -  p)(1 -- q)) --- - - A / h T a n d  log((1 -- q)(1 -- p)/p2) _= c lkT .  
Exponentiating both sides and multiplying the resulting equations 
together leads at once to the relations betweenp, q, A, c, and T announced 
above. Of course, when A ----- 0, p = 1 -- q and one is back to the case 
of independent random variables. 

In the general case, it is possible to prove that the -~o z /zr~ c exist and 
define an ergodic invariant measure in (F2) z~ provided that 1/T and c / T  
are sufficiently small; that is, provided that the gas is sufficiently near 
to being perfect. Existence can be proved under much broader conditions 
but as things stand at the moment, some of the restrictions are rather 
artificial and presumably have more to do with inadequate methods of 
proof than with the mathematical facts. On the other hand, one does not 
expect ergodicity except at high temperatures and low densities because 
of the phenomenon of condensation from the gas to the liquid state and 
other so-called "phase transitions". The idea is that the system behaves 
like a gas when T and c are such that ergodicity does hold and that 
failure of ergodicity occurs just when a phase transition sets in. The 
nature of the separation into ergodic parts is no doubt related to the 
character of the phases that result, but the precise nature of the relation- 
ship is still obscure. Traditionally, one has sought to correlate the 
occurrence of phase transitions with discontinuities and other singularities 
in the thermodynamic limit of the free energy and other thermodynamic 
functions. Failure of ergodicity seems to go more deeply into the essence 
of the matter and this is one reason for being interested in infinite system 
limits. 

When conditions are such that/Xr.c is ergodic, one has a very clear sense 
in which the macroscopic state defined by tzr,c is uniquely determined 
by any one of a large number of microscopic states (i.e., points co in 
(Fz)Z~). In fact, the relationship between macroscopic states and micro- 
scopic ones is completely analogous to that between stationary stochastic 
processes and their sample functions. In particular,/xr.~ can be uniquely 
reconstructed from tZr,c almost any point w in (F2) z~ by an obvious 
adaptation of the argument given at the end of Section 5. In other words 
(barring events of probability zero), it suffices to know the actual 
distribution of molecules on lattice sites in an (infinite) sample of the 
gas in order to know the associated tzr,c and hence all thermodynamic 
quantities including the entropy. Of course, many different distributions 
will give the same results. The fact that the entropy of tZr,c can be com- 
puted from /xr. c almost any co allows one to assign a unique entropy 
to each member of a family $2 of points co of (F2) za which is such that 
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t,((Fz) z3 - -  D) is zero for all invariant probability measures/x, Thus, as 
promised earlier, entropy can be regarded as a function defined on the 
points of (F2) z3 as well as one defined on the probability measures on 
(F~) z3. 

The relationship between the infinite system limit of a gas and an 
actual gas is of course analogous to the relationship between an actual 
finite time series in statistics and the hypothetical stationary process of 
which it is a segment. However, the number of molecules in an ordinary 
macroscopic piece of matter is so enormously large that the approxima- 
tion to the hypothetical infinite system is much much better than the 
corresponding approximation in statistics. 

In the very special case of a one-dimensional lattice gas with nearest- 
neighbor interaction, the problem of finding explicit procedures for 
computing the values of/~T,¢ and the associated thermodynamic functions 
reduces to problems about two-valued stationary Markov processes in 
probability theory. More general interactions in the one-dimensional 
case can be studied in a similar fashion using n-valued Markov processes. 
In higher dimensions, the problem becomes much more difficult. For 
the two-dimensional nearest-neighbor lattice gas (with c suitably related 
to the two interaction constants), L. Onsager created a sensation in 1944 
by finding an exact formula for the thermodynamic limit of the free 
energy. No one has ever been able to find such an exact formula in the 
three-dimensional case or to eliminate the restriction on c in Onsager's 
result. On the other hand, much work has been done (and is being done) 
in simplifying Onsager's difficult and ingenious arguments and in using 
similar methods to deal with other two-dimensional problems. One can 
define higher-dimensional Markov processes and relate them to higher- 
dimensional nearest-neighbor lattice gases in a manner that has been 
analyzed by Dobrushin, Averintsev, and Spitzer. However, the theory 
of higher-dimensional Markov processes is both much more difficult and 
much less developed than the one-dimensional theory. In other words, 
the infinite system approach to statistical mechanics suggests a natural, 
interesting, and difficult extension of the classical theory of Markov 
processes which is still in a primitive state of development. 

Of course, physicists do not insist on exact solutions of their problems 
and the literature of statistical mechanics is filled with descriptions of 
more or less successful approximate methods for treating the problems 
outlined above. In particular, series expansions have been worked out 
which are valid for quite general interactions as long as the temperature 
is high or the density low. It would be interesting to examine the implica- 
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tions for ergodic theory of some of these methods in view of the connec- 
tion between ergodic theory and the underlying problems outlined above. 

We have concentrated on lattice gases because of their greater technical 
simplicity. One can develop an analogous theory for the physically more 
realistic continuum models but  we shall not give details here. Suffice it to 
say that the discrete family of two-valued random variables defined on 
Z a must be replaced by a homogeneous, nonnegative, integer-valued 
chaos defined on the Borel subsets of Euclidean space and that the 
theory of a one-dimensional perfect gas is equivalent to the classical 
theory of the Poisson chaos. 

As indicated earlier, the results of classical statistical mechanics are 
in accord with experiment only at relatively high temperatures. At lower 
temperatures, quantum effects become manifest and one has to replace 
classical statistical mechanics by a new theory based on the laws of 
quantum mechanics instead of those of classical mechanics. The relation- 
ship between classical and quantum statistical mechanics is best appre- 
ciated by thinking of classical phase space f2 not as a point set but as the 
orthocomplemented partially ordered set ~q~ of all of its Borel subsets. 
Its analogue in quantum mechanics is the orthocomplemented partially 
ordered set ~q4'~ of all closed subspaces of some separable complex 
Hilbert space. One can define measures and probability measures on any 
orthocomplemented partially ordered set and the analogue of the 
Liouville measure on ~ is the measure M --~ dim M. The analogue of 
a real-valued Borel function H on £2 is a self-adjoint operator A in the 
Hilbert space de', and in the case in which A has a point spectrum, the 
analogue of the set mapping E --~ H-a(E) is E --~ M e ,  where Me is the 
closed linear span of all eigenvectors of A whose eigenvalues are in E. 
(More generally, M e  is the range of the projection Pe n, where E ~ Pe n 
is the projection-valued measure associated with A by the spectral 
theorem.) Thus the analogue of the measure E --> I~(E) = ~(H-I(E)) on 
the real line, which defines the classical partition function via the formula 

p(r)  = f e-*/~T d~(x), 

is the measure E ~ dim(Me) = flq(E). Thus the quantum mechanical 
partition function pq is defined by 

j = l  
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whenever A has a pure point spectrum. Here, the Ej are the distinct 
cigenvalues of A and mj is the multiplicity with which E~. occurs. Just 
as ~(H-I(E)) is finite when H is the Hamiltonian function of a gas in a 
finite volume, so A has a pure point spectrum and e-a~ kr a finite trace 
when A is the Hamiltonian operator for such a gas. The analogue of the 
Gibbs measure e-~/krd~/p(T)  is the probability measure in ~a~r; 
M ~ Tr(e--4/krP~)/pq(T), where P ~  is the projection operator whose 
range is M. The operator e-A/kr/pq(T) ~ e-A/kr/Tr(e-A/kr) is called the 
yon 1Neumann density operator. 

In sum, quantum statistical mechanics differs from classical statistical 
mechanics in replacing the continuous measure fl by the atomic measure 
fiq. It turns out that flq([0, x]) is asymptotically a constant multiple of 
/~([0, x]) for large x. Using this and the elementary theory of the Laplace 
transform, it follows that the classical and quantum mechanical free- 
energy functions agree at high temperatures. 

In order to have a quantum analogue of an infinite lattice gas, one 
needs to define an infinite product of orthocomplemented partially 
ordered sets of the form ~ a  and this is not easy to do. Tensor products 
are not well-defined for partially ordered sets, and while one can con- 
sistently think of ~q~e 1 @) -~e~ as .~e~el®~e ~ , there are difficulties with 
infinite products connected with the fact that ~1 ~) ~ @) ,$fz "'" does 
not have a clear and unambiguous meaning. There seems to be no 
analogue of the fact that a countable product of standard Borel spaces 
is again such. The situation is even worse when one tries to do infinite 
limit quantum statistical mechanics with gas molecules moving in a 
continuum. Recent work of Araki, Woods, Streater, Parthasarathy, and 
Schmidt connecting continuous tensor products of Hilbert spaces with 
"infinitely divisible" probability distributions may be r~garded as 
contributions to the problem of dealing with the continuum case. In 
the approach taken by the French school and treated in Ruelle's book, 
one replaces -~e by ~ ( ~ ) ,  the algebra of all bounded operators on j/D, 
and then uses a C* algebra which is an inductive limit of C* algebras 
of the form ~(aY ~) is a substitute for an infinite product of £e~e's. Their 
method can be used in the classical case as well and it may throw some 
light on what is going on to recast the lattice gas set up in C* algebra 
language. The standard Borel space (F2) z~ is a product of infinitely many 
replicas ofF2 and as such is a compact Hausdorff space. The C* algebra 
in this case is the algebra ~ of all continuous complex-valued functions 
on (F2) z~, and the action of Z a on (F~) z~ defines and is defined by a 
homomorphism of Z 3 into the group of automorphisms of 6L Each 
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probability measure/z on (F~) z~ defines a linear functional l~ on ~ vie 
l~,(f) --- .~f(co)d/z(w), and the l v are precisely the linear functionals l 
such that l ( f f )  ~ 0 and 1(1) = 1. The invariant probability measures on 
(L2) z3 thus correspond one-to-one to the l~ which are invariant under the 
automorphisms of 6~ defined by the members of Z 3. 

In the quantum case, 0/ is  a noncommutative C* algebra but one still 
has a homomorphism of Z 3 (the Euclidean group in the continuum case) 
into the group of automorphisms of 6~ and the macroscopic states of the 
system are described by invariant linear functionals l such that l ( f f*)  ~ 0 
and l ( 1 ) ~  1. This suggests the desirability of developing a sort of 
"noncommutative ergodic theory" in which one begins with a homo- 
morphism of a group G into the group of autom0rphisms of a non- 
commutative C* algebra ~ instead of a standard Borel G space and 
studies invariant nonnegative linear functionals instead of invariant 
measures. Such a theory has been in the course of development since 
1966, beginning with a paper of Kastler, Doplicher, and Robinson. The 
idea of using C* algebras to study systems with infinitely many degrees 
of freedom stems from work of I. E. Segal beginning in the 1940's. 

1]. ENTROPY, INFORMATION THEORY, AND THE CLASSIFICATION 
OF ERGODIC ACTIONS 

As indicated in the last section, a one-dimensional lattice gas in the 
infinite volume limit is mathematically equivalent to a family of two- 
valued stationary stochastic processes--there being one member for 
each value of the temperature T and the chemical potential c. The 
entropy (per lattice site) of the lattice gas at any T and c depends only 
upon the probability measure in (F2) z defining the process, and the 
definition makes sense for any invariant probability measure in (F~) z. 
Thus one can speak of the entropy of any two-valued stationary stochastic 
process. Moreover, the restriction to two-valuedness is quite inessential. 
There is no difficulty in working out a theory of lattice gases with several 
kinds of molecules, and a lattice gas with n molecule types is related to 
an (n -~ 1)-valued stationary stochastic process in just the way that a gas 
with a single molecule type is related to a two-valued process. Thus 
every finite-valued stationary stochastic process has a well-defined 
entropy which is a nonnegative real number. 

While we have chosen to define the entropy of a process in such a way 
as to emphasize its essential identity with the classical entropy of thermo- 
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dynamics, it can also be defined directly and the entropy of a process was 
so defined by Claude Shannon in the fundamental memoir with which 
he founded the subject of information theory in 1948. While Shannon 
was of course aware of the analogy of his notion with the entropy of 
thermodynamics and statistical mechanics, the theory of infinite volume 
limits of lattice gases was almost 20 years in the future when his paper 
appeared. The direct definition is an obvious adaptation of the definition 
for a lattice gas given in Section 10. If  F is the finite set of values taken 
on by the process, one considers for each N = 1, 2,... and each function 
] from {1, 2,..., N} toF  the probability that the sequencef(1),f(2), . . . , f(N) 
will occur. Call this Pi.N. One shows that l imN~ --EI  P1,N log Pi.N/N 
exists an defines this limit to be the entropy of the process. 

From the point of view of stochastic process theory, the entropy notion 
has a fairly straightforward interpretation. It represents the rate at which 
uncertainty is removed (or information gained) as one observes the 
actual values of the random variables one after the other. A priori, the 
sequence f (1 ) , f (2 ) , . . . , f (N)  could have any value in (F) x so that before 
one has made any observations, there is a degree of uncertainty about 
what will happen which (as explained in Section 9) is measured by the 
number - - Z i b , N  log Pl.u" When the N observations have been made, 
all this uncertainty is gone and one has received a corresponding amount 
of information. The amount per observation is --~]1Pt.N log PI,N/N, and 
the entropy H is just the limit of this amount per observation as N -+ oe. 

Let HN = --~4P1,N 10gp1,u " A simple calculation shows that HN = 
N H  1 wherever the random variables are independent and that in any 
case Hw <~ NH1 • Hence the limit H~/N obviously exists and equals HI 
in the independent case and the general case H ~ / 4 1 .  Clearly, 
(H 1 -- H)/H 1 is a sort of measure of the degree of dependence which 
takes on its maximum value of one when the entropy is zero. In this 
connection, it is interesting to look at the entropy notion from the point 
of view of general prediction theory. As explained early, one has an 
(almost everywhere defined) mapping q--+ ~q of one-sided infinite 
sequences q = ..- s_ 2 , s 1 , s o of elements of F into probability measures 
% in F such that o~q(s) is the probability of getting s immediately after 
an infinite past represented by q . . . .  s ~ ,  s_ 1, s 0. The process is 
deterministic or perfectly predictable if and only if % is concentrated 
in a point for/2 almost all q, where/2 is the image in the space of all pasts 
of the invariant measure/~ in F z which describes the process. But to say 
that c~q is concentrated in a point for almost all q is precisely to say that 
Zs~F ~q(s)log ~q(S)= 0 for almost all q. Moreover, it can be proved 



STATISTICAL MECHANICS AND PROBABILITY THEORY 259 

that the entropy H of a process is equal to the expected value 
--~ F~p %(s) log %(s) d~(q) of the degree of uncertainty in %. Hence 
the entropy is zero if and only if the process is deterministic. 

Shannon introduced the entropy concept as an essential tool in devel- 
oping a mathematical theory of the efficient "coding" of messages. As 
everyone knows, ordinary language is redundant in the sense that if one 
alters or omits letters at random (but not too frequently), one can guess 
what was meant. Obviously, one could communicate the same message 
with fewer symbols by eliminating such redundancy. However, if one 
eliminates all redundancy, the smallest error will completely destroy 
the sense of the message, and since errors are impossible to eliminate, 
one has lost more than one has gained. Since one can obviously have 
much more redundancy than is necessary to guard against error, the 
question arises of just how much redundancy is optimal. How does 
one maximize efficiency of transmission while keeping the probability 
of misunderstanding at a tolerable level ? Shannon's "information 
theory" attacks and solves this problem. 

Before describing Shannon's solution, it is necessary to explain the 
sense in which one can think of a message as (a segment of) a sample 
functions of a stationary stochastic process. As mentioned in Section 7 
in relating Wiener's generalized harmonic analysis to the harmonic 
analysis of sample functions, the essential identity of messages and sample 
functions is a notion which goes back to early work of Wiener and one 
which Wiener did much to develop and emphasize. While Wiener was 
concerned with continuous-parameter stochastic processes, the basic 
idea is the same and is technically easier to explain in the discrete case. 

Consider a page of English text. It consists of a sequence of letters, 
spaces, and punctuation signs. If one counts the number of occurrences 
of any particular letter and divides by the total number of symbols, one 
obtains a number which is very nearly the same for one page as it is for 
another and in any event does not fluctuate any more than one would 
expect of different measurements of sample means in probability theory. 
The same is true if one counts two-letter sequences, three-letter se- 
quences, etc., so long as the length of the sequences considered is short 
compared to the total number of symbols in the text. Actually, one finds 
that one can confine oneself to short sequences as the probability of 
getting a particular letter tends to be independent of all but a few letters 
immediately preceding it. Once the frequencies of occurrence have been 
determined, one can construct a stationary stochastic process the 
segments of whose sample sequences will include almost all meaningful 
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English texts. The  value space of the random variables will of course 
be the finite set consisting of all letters and other symbols that occur. 
This  process will have a definite entropy or rate of information trans- 
mission which can be regarded as a characteristic of the English language. 
One can make the same construction with other languages and one finds 
that different languages have different entropies. 

One of the key ideas of Shannon is that there is a very precise sense 
in which the entropy of a language measures the degree of redundancy 
in it. This  relationship depends upon a nontrivial theorem about 
stochastic processes called MacMillan's theorem. In essence, it was 
discovered by Shannon but  MacMillan was the first to give a rigorous 
and general proof. Let  F be a finite set as above, and let/x be an invariant 
probability measure in (F)  z so that the functions fj :  co ~ oJ(j) are the 
F-valued random variables of a stationary stochastic process. Let  #N be 
the natural image of tL in (F) N defined by th e map oJ -+ o J(1), o~(2),..., oJ(N), 
and let ~ON(W) = - - ( l / N ) l o g  f iN(fl(co),f2(co), . . . , fN(oo)).  Then  each ~y is 
a random variable on (F)  z whose expected value is easily seen to be 
H N / N .  Thus  limN_,~ ~ CpN(W) did(co) exists and equals the entropy H of 
the process. MaeMillan's  theorem states that much more is true; that 
there exists an invariant measurable function h on (F)  z such that 
~] 50u(CO)- h(,o)I dtz(oJ)--~ O. In particular, if the action is ergodic, 
then h(co) = H for/~ almost all co. Of course, the function h must  be 
essentially the pointwise entropy introduced in the last section. What  is 
actually used in information theory is the following corollary of 
MacMillan 's  theorem. Let  the underlying action be ergodic, and let 

> 0 and ~ > 0 be given. Then  there exists No such that N > N o 
implies that f ~°N(~°) -- H L ~< E except on a set of measure less than 3. 
In other words, when N is sufficiently large, it is possible to divide all 
sequences s 1 , s~ ,..., SN in (F)  N into two subsets such that 

(1) the sum of the probabilities of the first set is less than 3, and 
(2) for every s 1 , s~ ,..., SN in the second set, 

H - -  ( - -  log#N(Sl ..... sN)) I % E. 
N I 

In  still other (somewhat less precise) terms, when N is sufficiently large, 
there will be a set £Pu of N- term sequences all having a probability of 
occurrence approximately equal to e -Nn and such that the probability 
that at least one occurs is greater than 1 --  3. Of course, the number  of 
sequences in this high-probability set 5PN will be approximately e NH. 
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In terms of messages, this means that if one considers texts of length N, 
then with very high probability (greater than 1 -- 8) the message will be 
one of the set ,9°N and all of the messages in ~9°u will occur with approxim- 
ately the same probability. Now the total possible number of messages of 
length N is of course IF  I N, where J F l denotes the number of elements 
in the set F. Hence, 5¢u contains a fraction (e/~/I F F) ~ of all possible 
messages. When the symbols of F occur independently with equal 
probability, then H ---- log [F I and og°n contains all possible sequences. 
However, in actual languages this is far from the case so H < log [F [ 
and (en/[ F [)N is a small fraction. Let M be the smallest integer greater 
than HN/log t F I. Then the number of sequences of length M will be 
greater than HN/] F i]oglHi = e~/N and, hence, greater than the number 
of sequences of length N in the set ,9°~. Thus there will exist a one-to-one 
correspondence between 5PN and a set of sequences of length M, and, 
by setting up a suitable code, every sequence of length N that is at all 
likely to occur may be transmitted using only M symbols. In other words, 
when the entropy H of a language is less than the logarithm of the cardinal 
number ] F f of its "alphabet" F, then by recoding one may compress the 
length of all messages by the factor H/log J F I- In this sense, the entropy 
H gives a very direct measure of the magnitude of the redundancy. Of 
course, high entropy (relative to log [F J) means low redundancy. 

Now as mentioned earlier, low redundancy is by no means an un- 
mitigated blessing and we are now prepared to see that this is so in a more 
quantitative manner. When H < log IF I so that (eU/I F]N is very small, 
a random error in a message is very likely to change the message from 
one in ocz~ to one in F N -  5PN which will then be recognized as an 
unlikely possibility. On the other hand, when one eliminates all or 
practically all of the redundancy by recoding, then all possible messages 
are approximately equally likely and errors cannot be recognized at all. 

Before turning to a description of Shannon's quantitative theory of the 
relationship of probable error to optimal redundancy,  we pause to 
emphasize the importance of the hypothesis of ergodicity in the corollary 
to MacMillan's theorem. The corollary is simply not true without it. 
For example, if the action decomposed into two ergodic parts, then there 
would be two groups ~ and ~ ,  of approximately equally probable 
N-term sequences, but unless the entropies of the two parts happened 
to coincide, the probabilities of occurrence of the members of the two 
groups would be quite different. Of course, it would be the probability 
of being in 5a~ u 5a~, that would have probability greater than 1 -- 8. 
On the other hand, if all the ergodic parts into which the underlying 
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action decomposed had the same (or nearly the same) entropy, then one 
could argue as before, so the hypothesis is in a sense a bit stronger than 
necessary. As to how restrictive the ergodicity hypothesis is, one can 
make the same remarks made earlier in connection with stochastic 
processes in general. 

It is also perhaps worth noting that the corollary to MacMillan's 
theorem provides a consequence of ergodicity that can be recognized in 
the finite truncations of a process. 

The simplest way to consider the introduction of errors into a message 
being transmitted with an alphabet F is to suppose that for each f in F, 
there is a certain probability measure c 9 in F with the property that f '  
will be received with probability ~1({f'}) when f was sent. If  c 9 gave 
equal probabilities to all members o f f  for all f in F, then what is received 
would be totally unrelated to what was sent and all the information in 
the original process would be lost. Of course, what happens realistically 
is that c 9 gives a probability close to 1 to {f} and low variable probabilities 
to other members of F. Consequently, only some information is lost 
and the next task is to measure how much. 

To this end, one sets up a new stochastic process whose random 
variables are the pairs f , f ' ,  where f is the letter sent a n d f '  is the letter 
received. This will be defined by an invariant measure /2 in (F X F)  z 
which can be easily described in terms of the measure/z in F z defining 
the original process and the family f--~ al of probability measures in F. 
Indeed, for each ~o in (F)  z, let/z~ be the probability measure in F z which 
is the finite product over Z of the probability measures cqo)(n) inF .  
Integrating the/z~ in F z with respect to the measure/z in F z, one obtains 
a probability measure /2 in F z x F z and this may be regarded as a 
probability measure in (F X F)  z via the canonical map of F z × F z on 
(F  × .F) z. It is easy to see that/2 defines the desired process and is ergodic 
whenever /z is. Projecting /2 on the other of the two factors F z, one 
obtains a probability measure/z' which is also ergodic and invariant and 
describes the process whose random variables are the letters received. 
Each of the three processes has an entropy which may be denoted by the 
symbols H , ,  Ha,  and H , , ,  respectively. Of course, H, ~ H a and 
H.. ~ H a , and it is not difficult to show that H.  ~ H., ~ H~ so that 
0 < ~ H a - - H . ,  ~<H.  and 0 ~<H a - H .  ~<H. , .  The information 
emitted by the process defined by/x' represents in part the information 
coming from the sent message and in part that coming from the random 
errors. One can argue that H a - - H . .  is the rate at which the sent 
information is lost so that H.  -- (H a -- H.,) = H.  -k H.. -- H~ repre- 
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sents the net rate at which the sent information is received. The difference 
between this and H,,  represents (uninteresting) information about what 
errors were actually made. 

Now H,  + H,,  --  Hn depends both on the original process (i.e., on/~) 
and on the "channel"f--+ ~1" Moreover, it is bounded above by log I F l- 
Hence it has a finite least upper bound Ca as/z varies over all ergodic 
invariant probability measures in F z. This number Ca depends only on 
the channel f --~ ~t and is called the ergodic capacity of the channel. 

For the special ease in which errors are produced in the simple way 
described above, Shannon's fundamental theorems may be roughly 
stated as follows. If  the entropy of the original message is less than the 
ergodic capacity of the channel, then given any e > 0 the message may 
be recoded into a different alphabet in such a way that the transmitted 
message may be guessed from the received message with a probability 
of error which is less than e. Moreover, this recoding may be done so 
that the entropy of the received message is as close as one pleases to that 
of the transmitted message. For a more exact statement as well as a 
detailed proof, the reader is referred to the book of Khinehin cited in the 
last section. 

Actually, errors can of course be produced in more complicated ways 
in which the mistake made in sending a particular letter may depend 
on several preceding letters. Moreover, the sending and receiving 
alphabets may be different. Quite generally, one starts with two finite 
sets P and G and defines a channel to be any mapping /3 assigning a 
probability measure/3o~ on G z to each point w of (F) z in such a manner 
that/3~(E) is measurable for every Bore1 set E in (G) z. The channel is 
said to be invariant if/3[~o]n(E) = /~ ( [E ]n )  for all n, E, and oJ. Given an 
invariant channel, one may define /2, /~' and the ergodic capacity just 
as before. Shannon's theorems are proved in Khinchin's book for any 
channel which is "non-anticipating" and has a "finite memory". These 
concepts are, of course, just the translations into precise mathematical 
language of the condition that the probability of making any particular 
error should not depend upon future letters and should depend upon 
only a finite number of past letters. The exact formulation is left to the 
reader. Finding the codes whose existence is assured by Shannon's 
theorems is nontrivial and an elaborate and interesting theory has been 
developed to deal with the problem. We shall not attempt to describe 
this theory here. 

As mentioned in the introduction, the notion of the entropy of a 
stochastic process has turned out to be of major importance in the 

6o7]I2/2-9 



264 GEORGE W. MACKEY 

difficult problem of classifying the ergodic actions of the integers. 
Consider a fixed ergodic action of the integers on a standard Borel 
measure space if2, /z and consider the different stochastic processes one 
gets by choosing different finite sets F and different Borel functions f 
from ~ to F. Each will have a well-defined entropy H I which of course 
will depend only on the disjoint sets f - l ( s )  for s ~F;  that is, on the 
partition D = Us~Ff-l(s). Considering all possible finite Borel partitions, 
one obtains a family of possible entropies and this subset of the non- 
negative real numbers is of course an isomorphism invariant of the given 
ergodic action. Conceivably, every nonnegative real number will occur 
for every action but this turns out not to be the case and the invariant 
to be a useful one. The idea of investigating it occurred to Kolmogoroff 
who in 1958 proved the following important theorem. Let E 1 , E~ ,..., Ej 
and F1, F~ ,..., F e define finite Borel partitions of ~,  and let ~ and ~,~ be 
the a fields of sets generated respectively by the translates of the sets 
Ei and the translates of the sets F~, respectively. Then if ~ D_ 5 ,  the 
entropy defined by ~ = El ~3 E~ ... u Ej is greater than or equal to 
that defined by ~ = F 1 u F 2 ... u F k . It follows as a corollary that if @ 
is the family of all Borel subsets of ~,  then the entropy defined by 
~2 = E ~ u E  2 U . . . t A E  3 is equal to the least upper bound of the 
entropies defined by all possible finite partitions. 

Altering somewhat an earlier definition of Kolmogoroff, Sinai then 
proposed that one define the entropy o f  an action to be the least upper 
bound of the entropies of the processes associated with all possible 
finite partitions. This is clearly an invariant of the action which may be 
infinite but is finite whenever there is a finite partition which generates 
the Borel sets. 

The Kolmogoroff-Sinai entropy of an action can easily be computed 
in many cases of interest. For example, when the action has a pure point 
spectrum--or,  more generally, has a spectrum with respect to which 
Lebesgue measure is not absolutely continuous--then every partition 
defines a perfectly predictable process and hence one with entropy zero. 
At the other extreme, consider the so-called "Bernoulli shifts"; that is, 
the actions underlying stochastic processes whose random variables are 
independent, separate points and take their values in a finite set F. 
Such a process and the underlying action is uniquely defined by a 
probability measure a in F. One computes at once that the entropy of 
the process is just --~]s~ ~({s})log ~({s}), that is, the degree of uncer- 
tainty in the probability distribution defined by a. Moreover, since the 
random variables of the process separate points, the entropy of the 
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action coincides with the entropy of the process. In other words, the 
entropy of the Bernoulli shift defined by the probabilities P l ,  P~ ,..., Pk 
in a set with k elements is precisely - - ~ P k  logpk • In particular, when 
all Pk are equal to 1/k so that one has the so-called k shift, then the 
entropy is just log k. 

At the time that Kolmogoroff proved his theorem, it was known that all 
Bernoulli shifts had the same spectrum and it was an open question of 
many years standing as to whether or not they were isomorphic. In 
particular, no one had been able to decide whether the two shift and the 
three shift were isomorphic or not. Kolmogoroff's result settled this and 
many similar questions. Since log n ~ log m unless n = m, the n shift 
and the m shift are isomorphic if and only if m = n. 

Since the Kolmogoroff-Sinai entropy of an action is only at least upper 
bound of an invariant set of nonnegative real numbers, one could hope 
to define other invariants by considering other properties of the set. 
A remarkable theorem announced by Sinai in 1962 and whose proof was 
published in detail in 1964 shows that this hope is essentially illusory 
and has several other interesting consequences. Here is the theorem. 
Let/~ be an invariant ergodic probability measure in the standard Borel 
Z space ~2, and let 0 -~ h ~ m be less than or equal to the entropy of 
the action defined by/~. Let P l ,  P~ ,--- be any finite or infinite sequence 
of positive real numbers such that 

Pl + P2 + . . . .  1 and --(Pl l°gPl + P~ l°gp2 + "") = h. 

Then there exists a Borel func t ionf  from ~2 to the integersj for which Ps 
is defined such that if f~(oJ) is f([oJ]n), then the f,~ are independent 
random variables such that i~(f~l(j))= Pi" It follows immediately 
from this theorem that the entropies defined by the various finite 
partitions of Q fill up the open interval 0 < x < H, where H is the 
entropy of the action. Another consequence is that when an action has 
positive entropy H, then every Bernoulli shift with entropy H or less 
is isomorphic to some quotient action. Still another consequence is that 
the spectrum of an action with positive entropy always includes a 
countable Lebesgue component. 

The zero greatest lower bound of the entropies of nontrivial quotient 
actions may or may not be attained. If it is attained, then any stochastic 
process defined by a function on the corresponding quotient space will 
be deterministic. This implies, in turn, that any stationary stochastic 
process defined on the original space whose random variables separate 
points will be "partially completely predictable". More precisely, certain 
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nontrivial functions of the random variables f l  , f2,  f8 ,-.. can be predicted 
with probability one when the values of ""f-2  ,f-1 ,fo are known. 
Those for which no such quotient action exists may be correspondingly 
thought of as being "completely nondeterministic". For obvious reasons, 
the underlying action is then said to have completely positive entropy. 

That actions with completely positive entropy exist can be seen by 
making use of the concept of K action (where K stands for Kolmogoroff). 
[In the bulk of the literature on the subject, one concentrates on the 
automorphism of t2,/z which generates the action and refers to K auto- 
morphisms.] Given an action, l e t f  be a Borel function from g2 to a finite 
set F, and for each n = 1, 2,..., introduce the following equivalence 
relation 

w ~  if f([w]k)=f([~o']k) for k ~ - - n .  

The Borel subsets of f2 which contain all members of an equivalence 
class when they contain one define a Boolean ~ subalgebra B~ of the 
Boolean algebra of all Borel sets mod/x null sets, and B~+ 1 C B~.  Let 

oo 

Boo = ('ln=l B,~. The action is said to be a K action if Boo is trivial for 
some f whose translates separate points. Notice that if Boo is not trivial, 
then a generating countable family of Borel sets for Boo defines an 
invariant equivalence relation in 52 and hence a quotient action. This 
quotient action is easily seen to have zero entropy. Thus, if an action 
admits a stationary process whose random variables separate points and 
take values in a finite set, then to say that this action is a K action is to 
say that certain quotient actions which would have zero entropy do not 
in fact exist. It follows that such an action must be a K action if it has 
completely positive entropy, and in 1961, Pinsker proved the converse 
of this result. Every K action has completely positive entropy. It is 
trivial to verify that Bernoulli shifts are K actions and it follows that 
every Bernoulli shift has a completely positive entropy. In the same 
paper, Pinsker proved that any ergodic action which does not have 
completely positive entropy admits a unique quotient action with zero 
entropy which is maximal in the sense that all other zero-entropy 
quotient actions are quotients of this quotient. Using Pinsker's results, 
Rohlin and Sinai proved that any action with a completely positive 
entropy necessarily has a finite generator and hence is a K action. The K 
actions are thus identical with the actions having completely positive 
entropy; that is, which are such that every associated stationary stochastic 
process is completely nondeterministic. 
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It was conjectured for a while that every ergodic action with positive 
entropy is the product of one with zero entropy and one with completely 
positive entropy and that every K action is isomorphic to some Bernoulli 
shift. However, both conjectures have been shown to be false by D. S. 
Ornstein. On the positive side, Ornstein in 1971 proved the following 
very remarkable converse of Kolmogoroff's theorem on the entropy of 
Bernoulli shifts. Two Bernoulli shifts with the same entropy are iso- 
morphic. He dealt at first with the case of a finite number of p j ,  but 
managed the general case soon afterwards with the help of Smorodinsky. 
Since many ergodic actions which are not so defined can be shown to be 
isomorphic to Bernoulli shifts, this result makes it clear that the classifica- 
tion problem for ergodic actions is not so hopeless as was once supposed. 

Except, of course, for the pure point spectrum case, next to nothing has 
been done toward classifying the ergodic actions of Z k with k >/2.  
However, infinite system statistical mechanics makes it clear how to 
extend the entropy notion to this case, and is it natural to wonder whether 
the results of Kolmogoroff, Sinai, Ornstein, and others may be corre- 
spondingly extended. One thing seems clear at the outset and that is that 
entropy will not suffice to classify the k-dimensional analogues of the 
Bernoulli shifts. To see this, consider those ergodic actions of Z ~ of the 
form (oJ1, oJz)(n, m) = [O~l]n, [~o2]m, where wl e Ol,  °J2 e I2z, and E1 
and/zz are ergodic invariant probability measures in the standard Borel Z 
spaces ~21 and ~2~. If  the two component Z actions are Bernoulli shifts, 
the Z z action will be a generalized Bernoulli shift whose entropy can 
presumably be proved to be the sum H 1 -k/ /2  of the entropies of the 
two component actions. On the other hand, the two component actions 
are invariants of the Z ~ action and can be recovered from it by restriction 
to Z × e and e × Z and considering the action of each group on the 
space of ergodic parts of the action of the other. Since H 1 + H 2 = 
(H 1 -- t) + (Hz + t), there will be many nonisomorphic product actions 
with the same entropy. 

Given a general ergodic action of Z ~, one can associate two actions of Z 
with it by the restriction process just described, and the entropies of 
these two Z actions will be invariants of the Z ~ action. However, these Z 
actions are far from determining the Z 2 action. This is made quite clear 
by looking at the situation from the virtual group point of view. If  H is 
a subgroup of a product group G × G, one may consider the subgroups 
H 1 and H~ of G consisting of all x in G such that x, y is in H for some y 
in G and all y in G such that x, y is in H for some x in G. Then 
H C H 1 × H~, but H 1 and H~ are far from determining H. On the other 
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hand, the two Z actions are the direct analogues of the transitive actions 
of G on G / H I  and G / H  2 . 

Classifying the ergodic actions of Z ~ (and afortiori of Z k) is clearly a 
considerably more difficult problem than that of classifying the ergodic 
actions of Z. 


