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KOLMOGOROV’S WORK ON ERGODIC THEORY

By Ya. G. SiNal
L. D. Landau Institute of Theoretical Physics

Apparently the interests of Kolmogorov in ergodic theory had already started
in the 1930s. In mathematical Moscow it was a period of construction of the
foundations of the theory of stationary random processes. One might recall the
paper by Khintchine [11] at that time dedicated to the spectral theory of such
processes. Slightly later there appeared a very important paper by Kolmogorov
[K116]' on regularity and extrapolation of stationary random sequences. The
paper by Khintchine [10], where he gave a purely metric proof of the Birkhoff
ergodic theorem, belonged to ergodic theory itself. In view of this paper the
ergodic theorem on a.e. convergence of time averages is often called the
Birkhoff-Khintchine theorem at least in the Russian literature. In the 1930s,
the well-known paper by Krylov and Bogolyubov [12] on invariant measures for
groups of homeomorphisms of topological spaces was written.

In the beginning of the 1930s, there appeared the famous paper by von
Neumann [21], where the general notion of the metric isomorphism of one-
parameter groups of measure-preserving transformations was introduced. Also in
[21] von Neumann proved a basic theorem of metric isomorphism of ergodic
dynamical systems with pure point spectrum. This theorem showed that for this
class of systems the spectrum is the complete metric invariant. Since that time
the problem of metric classification of dynamical systems became one of the
central ones in ergodic theory.

The scientific activity of von Neumann was always under close attention. It is
not surprising that this problem became well known quite soon in Moscow and
several mathematicians spent a lot of effort trying to make some progress here.
Unfortunately, I have no evidence whether the works of Morse, Hedlund and
Hopf on ergodic properties of geodesic flows and on symbolic dynamics were
widely discussed at that time.

For Kolmogorov the end of the 1930s was the beginning of his classical works
on hydrodynamics and turbulence. His ¢ publication which can be considered
as relating to ergodic theory goes b:s  to 1937 (see [K84, K99]), where he
exposed the Birkhoff-Khintchine theorem in probabilistic terms. At this time
there were contacts between Kolmogorov and Rokhlin who at that time was a
student of the mathematics department of Moscow University. For Rokhlin
ergodic theory was the main domain of investigations at that time. As he
recalled later Kolmogorov understood quite clearly the connections between the
theory of stationary random processes and ergodic theory and, in particular, the
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ergodic properties of Gaussian stationary processes. This was much before the
appearance of Itd’s theory of multiple stochastic integrals which gave the
natural approach to these problems. The ideas of Kolmogorov were realized
much later in the paper of his student Fomin [5]. Also, Kolmogorov had the idea
of the example of the dynamical system with continuous simple spectrum based
on the theory of Gaussian stationary processes; the corresponding construction
was done explicitly by Girsanov only in 1958 (see [7]).

Kolmogorov was very much excited by the fact that many natural examples of
dynamical systems had countable Lebesgue spectrum. It was observed by
Halmos and Rokhlin for the case of ergodic group automorphisms of compact
abelian groups ([8] and [15]) and by Gel’fand and Fomin [6] for the case of
geodesic flows on manifolds of constant negative curvature. The paper by
Gel’fand and Fomin [6] was very important not only for ergodic theory but also
for the theory of group representations and had many important implications.

From the point of view of probability theory the statement that a dynamical
system has countable Lebesgue spectrum means roughly speaking the following.
Assume that a stationary random process has a spectral density. If the dynami-
cal system generated by this process has countable Lebesgue spectrum, then any
process generated by a nonlinear functional of the original process also has a
spectral density. Already in the 1950s before his paper on entropy appeared (see
below), Kolmogorov found a general statement which in a sense explains the
appearance of countable Lebesgue spectrum. He proved that any measure-
preserving mapping generated by a regular stationary sequence has this type of
spectrum. This regularity means that the process satisfies the “0-1” law of
Kolmogorov. One can find a hint of this result in [K280] which we are going to
discuss. The connection of his result with the results of [6], [8] and [15] became
clear only later.

In the autumn of 1957, Kolmogorov organized his famous seminar on dynami-
cal systems and gave a lecture course on the same subject. Among the partici-
pants and listeners there were Alekseev, Arnol’d, Girsanov, Meshalkin, Pinsker,
Sinai, Sitnikov, Tikhomirov and others. Some information about this seminar
can be found in [2].

The lectures by Kolmogorov started with the proof of the metric isomorphism
of dynamical systems with pure point spectrum. He gave an entirely probabilis-
tic exposition of the corresponding theorem by von Neumann. Later it was found
that a similar approach was presented in the book by Blanc-Lapierre and Fortet
[3]. In the seminar the participants discussed in much detail the construction of
1t6’s multiple stochastic integrals and the ergodic properties of Gaussian station-
ary processes. It is well known that such processes can be obtained as natural
limits of quasi-periodic processes, that is, processes corresponding to dynamical
systems with pure point spectrum. A general feeling at that time was that there
exist some boundary separating dynamical systems of probability theory and
dynamical systems appearing in ordinary differential equations, classical me-
chanics and hydrodynamics or, as we call them sometimes, classical dynamical
systems. At the same time Kolmogorov emphasized many times (see his famous
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lecture at the Amsterdam Congress of Mathematicians [K243]) that such a
complicated phenomenon as turbulence should be described by invariant mea-
sures for Navier-Stokes equations with good properties of mixing, that is,
sufficiently regular random fields.

At the end of 1957, quite unexpectedly for all of us, Kolmogorov wrote his
wonderful paper on the entropy of dynamical systems [K280]. Looking back
now, it is clear that this paper had in fact many roots. For several years
Kolmogorov was involved in problems of information theory. He was probably
one of the first mathematicians who realized the importance of Shannon’s paper
for mathematics. His general talk [K272] had a great influence on mathemati-
cians and engineers. During the All-Union Congress of Mathematicians in 1956,
he gave a talk on the joint work with I. M. Gel’fand and A. M. Yaglom on the
notion of information and its properties [K267]. Also during these years
Kolmogorov and Tikhomirov were working on a large program concerning the
estimation of e-capacities of various compacts in functional spaces (see [K285])
and the corresponding notion of dimension in functional spaces. Kolmogorov
intended to connect these questions with the problems of complexity of algo-
rithms and numerical methods.

Returning to his paper on entropy, Kolmogorov first gave, in his lecture, a
proof of the theorem which in modern terms is as follows: Any two Bernoulli
generators have the same entropy. In the text which was prepared for publica-
tion the whole approach and the theorems were quite different. First, Kol-
mogorov introduced the notion of quasiregular dynamical system or as we say
now, of K-systems. (For a short period we used the term “Kolmogorov systems”
but he himself asked to replace it by the abbreviated one hoping to have a
chance to write a paper on K-systems. As he added, it would be inconvenient for
him to write on Kolmogorov systems. Unfortunately this did not happen but the

<abbreviated term remained). The notion of a K-system is a generalization of the
notion of a regular stationary process to ergodic theory. Assume that (£, F, P) is
a probability space. A group {S?} of measure-preserving transformations, ¢ € R!
or Z! is called a K-system if there exists a o-subalgebra F, C F such that

(1) F,=S'F,o F, fort>0,
(2) VF,=F,

t
3) AF, =N,

t

where N is the trivial o-algebra of sets of measure 1 and 0.

The subalgebra Fj is called a K-subalgebra. Kolmogorov defines entropy per
unit of time of the dynamical system to be equal to H(F,|F,), where H(F,|F,) is
the conditional entropy. Then he proves that the H(F,|F,) does not depend on
the choice of the K-subalgebra F,. It seems now that the idea of introducing
K-systems was connected with the idea mentioned above of the difference
between dynamical systems in probability theory and classical dynamical sys-
tems. Later it turned out that the notion of K-systems became very important in
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ergodic theory mainly in connection with classical dynamical systems and the
theory of deterministic chaos.

In [K280] Kolmogorov also proposed some examples of flows (¢ € R') with
finite positive entropy. the positivity was not surprising but finiteness needed
some effort. The examples looked rather strange from the probabilistic point of
view because they belonged to the class of processes with “discrete interference
of randomness.” But as was realized several years later precisely this class of
processes appears if we try to represent classical dynamical systems as random
processes.

After having written the text and submitting it for publication Kolmogorov
went to Paris for half a year. At that time I was puzzled by the fact that any
measure-preserving group of transformations gives rise to stationary random
processes. Based on this, I invented a definition of entropy suitable for an
arbitrary dynamical system. However, it was not clear how one could use it and
whether it coincided with Kolmogorov’s definition. The definition is explained in
detail in Shirayev’s paper (this issue) and I shall not repeat it here. At that time
I met Rokhlin who suggested calculating the entropy of an ergodic group
automorphism of the two-dimensional torus. The theorem on generators played
a significant role in calculating the entropy.

Generators permit one to represent dynamical systems as stationary processes
in a one-to-one correspondence. However, this representation is in no way
unique. The theorem on generators states that for the finite generators, that is,
for representations by processes with a finite number of states and with ¢ € Z'
the value of entropy does not depend on the choice of a generator. The proof
presented in [18] was very close to Kolmogorov’s proof as given in his lecture for
the Bernoulli generators. But at one point we have for Bernoulli generators some
equality which in the general case is replaced by an inequality. Now it looks
fairly trivial but at that time it took some effort to understand that one always
has the corresponding inequality.

Studying group automorphisms of the two-dimensional torus, I tried to prove
that their entropy is 0 because they belong to classical dynamical systems. I did
not succeed and came to Kolmogorov with my drawings. He looked at them and
immediately said that the entropy should be positive. After that I got the final
result very quickly (see [18]).

Group automorphisms of the two-dimensional torus were the first examples of
classical dynamical systems with positive entropy. Afterwards many such sys-
tems, such as geodesic flows on manifolds of negative curvature or, more
generally, Anosov systems, dispersed billiards, systems with strange attractors,
various classes of one-dimensional mappings, and others, were discovered. The
general property of dynamics which leads to the positivity of entropy is the
instability of the motion. The instability means that trajectories which start at
close points diverge exponentially quickly. Entropy characterizes in a sense the
speed of this divergence. Now the theory of classical dynamical systems with
positive entropy is a well-developed branch of ergodic theory. The connections
with equilibrium statistical mechanics are very important here (see [4] and [17]).
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The definitions of entropy showed that entropy is a metric invariant of a
dynamical system. In other words isomorphic dynamical systems should have
the same entropy. Bernoulli shifts or stationary sequences of independent ran-
dom variables have countable Lebesgue spectrum and may take an arbitrary
value of entropy. Thus Kolmogorov had a great breakthrough in the problem of
metric isomorphism of dynamical systems showing that two Beroulli shifts with
different values of entropy are nonisomorphic. This means that entropy is a new
essential invariant independent of the spectrum. Kolmogorov’s result showed
even more. Now the problem of isomorphism at least for systems with positive
entropy looked like a problem of information theory or, more precisely, a
problem of stationary coding and not an algebraic problem.

After Kolmogorov’s paper the natural problem arose whether two Bernoulli
shifts with the same entropy are isomorphic, or, more generally, whether two
K-systems with the same value of entropy are isomorphic. The first explicit
nontrivial example of isomorphism was constructed by Meshalkin [13]. In [19] it
was shown that every ergodic dynamical system has Bernoulli factors with the
same value of entropy. The complete solution of the isomorphism problem for
Bernou!li shifts was given by Ornstein [14] who invented for this a new, very
profound technique. This technique enabled Ornstein and his colleagues to
obtain many important results here. In particular it was shown that there exist
uncountably many nonisomorphic K-systems with the same entropy.

During the active study of dynamical systems with positive entropy Rokhlin
found (see [K284]) that Kolmogorov’s approach to the definition of entropy
contained an error. Namely, Kolmogorov uses the equality

N(4A, V F) = A,.

.Here A, is a K-subalgebra and F, is a family of subalgebras entering the
definition of K-system. Rokhlin gave a concrete example of the A, F, for which
the last equality is wrong and the corresponding conditional entropies have
different values. Now even simpler examples of K-subalgebras F;, are known for
which H(F,|F,) is less than the entropy of dynamical system. But as far as I
know it is still an open question whether there exist K-subalgebras with an
arbitrary value of H(F,|F,) less than the entropy of the whole dynamical system.
Kolmogorov wrote another paper where he suggested a third definition of
entropy but soon Rokhlin showed [16] that this definition in fact coincides with
that given in [18].

Now we shall discuss briefly the papers by Kolmogorov concerning the
behavior of Hamiltonian systems close to integrable ones which had a great
influence in ergodic theory, dynamical systems and the whole field of nonlinear
physics. This part of his activity concerned classical dynamical systems and led
to the discovery of the famous KAM theory (Kolmogorov—Arnol’d—Moser the-
ory).sThe results of Kolmogorov are fully exposed in his talk at the International
Congress of Mathematicians in Amsterdam in 1954 [K243]. The text is extremely
well written in the original style of Kolmogorov. There he not only explains the
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results obtained previously, but also foresees the future development of the
theory. The paper [K243] had a great influence on many generations of mathe-
maticians and physicists. Returning to the content of KAM theory, it was more
or less widely known that the phase space of integrable nondegenerate Hamilto-
nian systems could be decomposed into invariant tori whose dimension was equal
to one-half of the dimension of the whole phase space. On each torus the system
has a pure point spectrum. Now this general fact is explained with the help of
the so-called Liouville-Arnol’d theorem [1]. Bat at that time it was mainly a
general observation. Like Poincaré, Kolmogorov considered small perturbations
of integrable systems and proved that most invariant tori in the measure-theo-
retic sense are preserved under small perturbations. In fact, he invented a special
new perturbation scheme which later became one of the most important and
widely used in all of nonlinear dynamics. Later Arnol’d extended it to some
important cases of degenerate Hamiltonian systems and Moser, among cther
results, has shown how to treat Hamiltonians having only a finite number of
derivatives. One of the important results of KAM theory is the general state-
ment that nonergodic Hamiltonian systems contain a nonempty open subset.
This contradicted claims which one could often see in the physical literature
according to which any typical Hamiltonian system with interaction should be
ergodic.

Later Kolmogorov put forward several times a hypothesis according to which
a typical Hamiltonian system is a mixture of ergodic invariant tori and compo-
nents of positive measure having positive entropy. As far as I know he did not
work seriously on this problem and did not make any concrete suggestions.

Kolmogorov had a great influence on many mathematicians of various genera-
tions proposing very interesting problems and giving some ideas of how to
approach the solutions. For example, the famous problem concerning the asymp-
totic behavior of invariant measures of diffusion processes when the diffusion

“matrix goes to 0 was already proposed by Kolmogorov in the 1950s. The first

results here were obtained by Hasminski [9]. Later the problem was considered
in larger generality by Ventzel and Freidlin (see monograph [20]), Kifer and
others. Kolmogorov made very profound remarks concerning statistical physics
and phase transitions. For all Kolmogorov’s students it was a great pleasure to
collaborate with him, to work in directions of which he approved and to admire
his great personality. These years for each of us are unforgettable.

Acknowledgments. I thank Sh. NeWhouse and C. Series for their help with
the manuscript.
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