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1. Problems related to sequences arising from smooth functions

In this section we give a list of problems related to the study of multiple ergodic averages
involving iterates given by sequences arising from smooth functions, and related applications
to multiple recurrence and number theory.

We are going to restrict ourselves, almost entirely, to a class of non-oscillatory functions that
is rich enough to contain several interesting examples. Its formal definition is the following:
Let B be the collection of equivalence classes of real valued functions defined on some half-line
(c,∞), where we identify two functions if they agree eventually. A Hardy field is a subfield
of the ring (B, +, ·) that is closed under differentiation. With H we denote the union of all
Hardy fields. It is easy to check that if a function belongs in H, then it is eventually monotonic
and the same holds for its derivatives, so if a ∈ H, all limits limt→∞ a(k)(t) exist (they may be
infinite). We call a Hardy sequence any sequence of the form ([a(n)]) where a ∈ H.

An explicit example of a Hardy field to keep in mind is the set LE that consists of all
logarithmico-exponential functions (introduced by Hardy in [13]), meaning all functions defined
on some half-line (c,∞) using a finite combination of the symbols +,−,×, :, log, exp, operating
on the real variable t and on real constants. For example, all rational functions and the functions
t
√

2, t log t, t
√

log log t/ log(t2 + 1) belong in LE . Let us stress though that the set H is much
more extensive than the set LE ; it contains all antiderivatives of elements of LE , the Riemann
zeta function ζ, the Euler Gamma function Γ, etc.

The main advantage we get by working with elements of H is that it is possible to relate their
growth rates with the growth rates of their derivatives.1 As a consequence, a single growth
condition encodes a lot of useful information and this enables us to give more transparent and
appetizing statements.

Background material on Hardy fields can be found in [6, 7, 8, 13, 14, 17].

1.1. Powers of a single transformation.

1.1.1. Hardy sequences of polynomial growth. To avoid repetition we remark that in this sub-
section we always work with a family F := {a1(t), . . . , a`(t)} of functions of polynomial growth
(meaning ai(t)/tk → 0 for some k ∈ N) that belong to the same Hardy field. With span∗(F)
we denote the set of all non-trivial linear combinations of elements of F .

Date: March 2011.
1If a ∈ H and b ∈ LE , then there exists a Hardy field that contains both a and b. As a consequence, the limit

limt→∞ a′(t)/b′(t) exists (it may be infinite), and so assuming that a(t), b(t) → ∞, we get (using L’Hospital’s
rule) that the quotients a(t)/b(t) and a′(t)/b′(t) have the same limit as t →∞. We deduce, for instance, that if
a ∈ H satisfies a(t)/t2 →∞, then a′(t)/t →∞ and a′′(t) →∞.
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We first state two problems from [10] related to the mean convergence of multiple ergodic
averages involving iterates given by Hardy sequences. The following result was proved in [10]
(the case ` = 1 was first handled in [9]):

Theorem. Let a ∈ H have polynomial growth. Then the sequence ([a(n)]) is good for multiple
convergence of powers if and only if one of the following conditions is satisfied:

• |a(t)− cp(t)|/ log t →∞ for every c ∈ R and p ∈ Z[t]; or
• a(t)− cp(t) → d for some c, d ∈ R; or
• |a(t)− t/m| ¿ log t for some m ∈ Z.

For instance, the sequences (n2), ([n3/2]), ([n log n]), ([n2 +(log n)2]), ([n2 +n
√

2+log log n])
are all good for multiple convergence of powers, but the sequences ([n2 + log n]), ([n2

√
2 +

log log n]) are not good for 1-convergence. Unlike the case of polynomial sequences, if a ∈ H
satisfies a(t)/tk−1 → ∞, a(t)/tk → 0 for some k ∈ N, then the sequence ([a(n)]) takes odd
(respectively even) values in arbitrarily large intervals. As a consequence, when T is the
rotation by 1/2 on the circle and f := 1[0,1/2], the L2(µ)-limit limN→∞ 1

|ΦN |
∑

n∈ΦN
T [a(n)]f

does not exist for some appropriately chosen Følner sequence (ΦN )N∈N of subsets of N.
The next problem seeks to give similar necessary and sufficient conditions for `-convergence

of arbitrary collections of sequences arising from functions of polynomial growth that belong
to the same Hardy field. We remind the reader that in such circumstances one is seeking to
prove mean convergence for averages of the form

(1)
1
N

N∑

n=1

T [a1(n)]f1 · . . . · T [a`(n)]f`.

Problem 1. Let F be as above. Show that the collection of sequences {([a1(n)]), . . . , ([a`(n)])}
is good for `-convergence of a single transformation if and only if every function a ∈ span∗(F)
satisfies one of the following conditions:

• |a(t)− cp(t)|/ log t →∞ for every c ∈ R and p ∈ Z[t]; or
• a(t)− cp(t) → d for some c, d ∈ R; or
• |a(t)− t/m| ¿ log t for some m ∈ Z.

Convergence was proved in [10] under much more restrictive conditions than those advertised
here. The collection of sequences {([n log n]), ([n2 log n]), . . . , ([n` log n])} is an explicit example
that is expected to be good for `-convergence of a single transformation but this is not known
yet (not even for all weak mixing systems, or all nilsystems).

When the multiple ergodic averages of a collection of Hardy sequences of polynomial growth
converge in the mean one would like to have an explicit formula for their limit. In general, such
a limit formula can be extremely complicated but when the sequences are in “general position”
the limit is expected to be very simple:

Problem 2. Let F be as above and suppose that for every function a ∈ span∗(F) we have
|a(t) − cp(t)|/ log t → ∞ for every c ∈ R and p ∈ Z[t]. Show that for every invertible measure
preserving system (X,B, µ, T ) and functions f1, . . . , f` ∈ L∞(µ) we have

(2) lim
N→∞

1
N

N∑

n=1

T [a1(n)]f1 · . . . · T [a`(n)]f` = E(f1|IT ) · . . . · E(f`|IT )
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where the convergence takes place in L2(µ).

The identity is known when ai(t) = tci , i = 1, . . . , `, where c1, . . . , c` ∈ R \ Z are different
and positive [10] (this was established first in [4] when ci ∈ (0, 1), or when the system is
weak mixing).2 A particular collection of sequences for which the identity is not known is the
one mentioned before: {([n log n]), ([n2 log n]), . . . , ([n` log n])}. If some function a ∈ span(F)
satisfies |a(t)− cp(t)| ¿ log t for some c ∈ R and p ∈ Z[t] with deg(p) ≥ 2, then one easily sees
that (2) fails for T given by an appropriate rotation on T`.

An intermediate step that would help solve the previous two problems is to find suitable
characteristic factors for the relevant multiple ergodic averages. We state a problem from [10]
of this sort that we find of independent interest:

Problem 3. Let F be as above and suppose that ai(t)/ log t →∞ and (ai(t)−aj(t))/ log t →∞
whenever i 6= j. Show that for every invertible measure preserving system (X,X , µ, T ) the factor
ZT :=

∨
d∈NZd,T is characteristic for mean convergence of the averages (1).

This is known when for some ε > 0 we have ai(t)/tε → ∞ and (ai(t) − aj(t))/tε → ∞
whenever i 6= j [10], and the methods of [10] (see the proof of Theorem 2.4 there) can be used
to show that it also holds when ai(t) = ia(t) for i = 1, . . . , ` and a(t)/ log t →∞. On the other
hand, in the generality stated, the problem is open even for weak mixing systems:

Special Case of Problem 3. Let F be as above and suppose that ai(t)/ log t → ∞ and
(ai(t)−aj(t))/ log t →∞ whenever i 6= j. Show that for every weak mixing system the averages
(1) converge in the mean to the product of the integrals of the individual functions.

One can check that the stated assumptions are necessary.
Next we state some problems related to multiple recurrence. The following result was proved

in [10] (see also [11] for a special case):

Theorem. Let a ∈ H have polynomial growth and suppose that |a(t) − cp(t)| → ∞ for every
c ∈ R and p ∈ Z[t]. Then the sequence ([a(n)]) is good for multiple recurrence of powers.

It follows that the sequences ([n
√

2]), ([n log n]), ([n2 + (log n)2]), ([n2 + log n]), ([n2
√

2 +
log log n]) ([n2 +n

√
2]) are all good for multiple recurrence of powers. The previous result does

not handle the case a(t) = cp(t) + d + e(t) where p is an integer polynomial with zero constant
term, e ∈ H is non-negative and converges to zero, and d ∈ R. If d = 0, then one can show
that the sequence ([a(n)]) is good for multiple recurrence of powers. The case where d 6= 0 is
trickier. For instance, the sequence ([

√
5n + 1]) is good for multiple recurrence of powers but

the sequence ([
√

5n + 2]) is not good for 1-recurrence for the rotation on the circle by 1/
√

5.
Next we state a problem from [10] that seeks to give necessary conditions for `-recurrence of

arbitrary collections of sequences arising from functions of polynomial growth that belong to
the same Hardy field. We remind the reader that in such circumstances one is seeking to prove
that whenever µ(A) > 0 we have µ(A ∩ T−[a1(n)]A ∩ · · · ∩ T−[a`(n)]A) > 0 for some n ∈ N.

Problem 4. Let F be as above and suppose that for every function a ∈ span∗(F) we have
|a(t) − cp(t)| → ∞ for every c ∈ R and p ∈ Z[t]. Show that the collection of sequences
{([a1(n)]), . . . , ([a`(n)])} is good for `-recurrence of a single transformation.

2More generally, the identity was shown in [10] when the functions a1, . . . , a` and their pairwise differences
belong to the set LE ∩ {a : a(t)/tk+ε →∞, a(t)/tk+1 → 0, for some k ≥ 0 and ε > 0}.
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As stated above, this is known for ` = 1 [11].
Lastly, we mention an interesting multiple recurrence problem involving a collection of se-

quences not covered by the previous problem. Using consecutive values of positive fractional
powers is expected to produce good multiple return times, a result that fails for integral powers:

Problem 5. Let c be a positive real number that is not an integer. Show that for every ` ∈ N,
the collection of sequences {([nc]), ([(n + 1)c]), . . . , ([(n + `)c])} is good for (` + 1)-recurrence of
a single transformation.

If the integer ` is greater than [c], then some non-trivial linear combination of the functions
tc, (t+1)c, . . . , (t+`)c converges to 0; so in this particular instance the assumptions of Problem 4
are not be satisfied. The conclusion fails trivially when c = 1, to see that it fails for c = 2, 3, . . .
it suffices to consider appropriate rotations on the circle.

1.1.2. Hardy sequences of super-polynomial growth. Despite the fact that multiple recurrence
and convergence properties of Hardy sequences of polynomial growth are relatively well un-
derstood, when it comes down to sequences that grow faster than polynomials, even the most
basic problems are open.

Problem 6. Find an example of a function a ∈ H that grows faster than polynomials, meaning
a(t)/tk →∞ for every k ∈ N, such that the sequence [a(n)] is good for multiple recurrence and
convergence of powers.

The sequences ([n(log n)a
]), ([enb

]), where a > 0 and b ∈ (0, 1), seem to be natural candidates;
unfortunately they are extremely hard to work with. Even when ` = 1 the relevant exponential
sum estimates needed to prove convergence appear to be out of reach in most cases; for the
first sequence such estimates are available only when a ∈ (0, 1/2) [15], and no estimates are
available for the second sequence. On the other hand, a slower growing sequence, like the
sequence ([nlog log n]) may be easier to handle. But even for this sequence, 2-recurrence and
2-convergence is not known for all weak mixing systems or all nilsystems.

1.1.3. Hardy sequences evaluated at the primes. With pn we denote the n-th prime.

Problem 7. Let c ∈ R \Z be a positive real number. Show that the sequence ([pc
n]) is good for

multiple recurrence and convergence of powers.

Proving multiple recurrence is trivial when c < 1 since in this case the sequence ([pc
n]) misses

at most finitely many positive integer values. It is known that if c ∈ R \Z is positive, then the
sequence of fractional parts ({pc

n}) is equidistributed in the unit interval (see [18] or [22] for
c < 1 and [16] for c > 1). Probably the techniques used to prove these equidistribution results
suffice to prove 1-recurrence and 1-convergence (it suffices to show that the sequence ({pc

nα})
is equidistributed in the unit interval for every non-zero α ∈ R), but the problem is open for
`-recurrence and `-convergence when ` ≥ 2.

1.1.4. Oscillatory sequences. All the previous problems deal with sequences that do not os-
cillate. Multiple recurrence and convergence properties of oscillatory sequences are not well
studied and analyzing some simple looking sequences leads to interesting problems:

Problem 8. Show that the sequence ([n sinn]) is good for multiple convergence of powers.
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Quite likely one can say more; the averages 1
N

∑N
n=1 T a(n)f1 ·T 2a(n)f2 · . . . ·T `a(n)f` have the

same limiting value when a(n) = [n sinn] and a(n) = n. This is known for ` = 1, it follows
from equidistribution results in [1] (see also related results in [2, 3]). As far as I know the
problem has not been studied when ` ≥ 2, even for particular classes of measure preserving
systems, like nilsystems or weakly mixing systems.

1.2. Commuting transformations. As mentioned before if a Hardy sequence has polynomial
growth and stays away from constant multiples of integer polynomials, then it is going to be
good for multiple recurrence of powers. The next problem seeks to extend this to the case of
commuting transformations. We remind the reader that in such circumstances one is seeking
to prove that whenever µ(A) > 0 we have µ(A∩T

−[a(n)]
1 A∩· · ·∩T

−[a(n)]
` A) > 0 for some n ∈ N.

Problem 9. Let a ∈ H have polynomial growth and suppose that |a(t)− cp(t)| → ∞ for every
c ∈ R and p ∈ Z[t]. Then the sequence ([a(n)]) is good for multiple recurrence of commuting
transformations.

The proof that any such ([a(n)]) is good for multiple recurrence of powers relies crucially on
the precise algebraic structure of suitable characteristic factors for the corresponding multiple
ergodic averages; an advantage that is lost when one works with commuting transformations.

Problem 10. Let (X,X , µ) be a probability space, T1, . . . , T` : X → X be commuting invertible
measure preserving transformations, and f1, . . . , f` ∈ L∞(µ). Show that for every positive real
number c the following limit exists in L2(µ)

(3) lim
N→∞

1
N

N∑

n=1

T
[nc]
1 f1 · . . . · T [nc]

` f`,

and if c is not an integer, then it is equal to limN→∞ 1
N

∑N
n=1 Tn

1 f1 · . . . · Tn
` f`.

For c = 1 the existence of the limit (3) is known [20]. The case 0 < c < 1 can be easily
reduced to the case c = 1. So the interesting case is when c > 1 in which case the problem is
open even when ` = 2 and all transformations are assumed to be weak mixing.

Problem 11. Let (X,X , µ) be a probability space, T1, . . . , T` : X → X be commuting invertible
measure preserving transformations, and f1, . . . , f` ∈ L∞(µ). Let c1, . . . , c` ∈ R \ Z be positive
and distinct. Show that

lim
N→∞

1
N

N∑

n=1

T
[nc1 ]
1 f1 · . . . · T [nc` ]

` f` = E(f1|IT1) · . . . · E(f`|IT`
),

where the convergence takes place in L2(µ).

The identity is known when all the transformations are equal [10] and is also known when all
the exponents ci are smaller than 1 [10] (in which case the assumption that the transformations
commute is not needed). The interesting case is when ` ≥ 2 and all the exponents are greater
than 1. Easy examples show that the limit formula fails if one of the powers is an integer
different than 1.
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1.3. Configurations in the primes. As we mentioned in the introduction, the theorem of
Szemerédi on arithmetic progressions [19], and its polynomial extension [5], have been instru-
mental in proving that the primes contain arbitrarily long arithmetic progressions [12] and
polynomial progressions [21]. It is then natural to expect that the various available Hardy field
extensions of the theorem of Szemerédi [10, 11] can be used to prove that the primes contain
the corresponding Hardy field patterns. For instance:

Problem 12. Let ` ∈ N and c, c1, . . . , c` be positive real numbers. Show that the prime numbers
contain patterns of the form

{m,m + [nc],m + 2[nc], . . . ,m + `[nc]} and {m,m + [nc1 ], . . . ,m + [nc` ]}.
When all exponents are rational the existence of such patterns follows immediately from [21].
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