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Three related topics

1 Shift invariant configurations on sets of integers of positive density.

2 Multiple recurrence properties of measure preserving systems.

3 Analysis of the limiting behavior of multiple ergodic averages.
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Three related topics (Model case)

1 If d(E) > 0, then for every ` ∈ N there exists n ∈ N s.t.

d(E ∩ (E − n) ∩ · · · ∩ (E − `n)) > 0.

It implies that there exist m,n ∈ N such that

m,m + n, . . . ,m + `n ∈ E .

2 If (X ,X , µ,T ) is a measure preserving system and A ∈ X with
µ(A) > 0, then there exists n ∈ N s.t.

µ(A ∩ T−nA ∩ · · · ∩ T−`nA) > 0.

3 If f ∈ L∞(µ), f ≥ 0, and
∫

f dµ > 0, then

lim sup
N→∞

1
N

N∑
n=1

∫
f · T nf · . . . · T `nf dµ > 0.
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Three related topics (a more general case)

Given sequences a1, . . . ,a` : N→ Z, determine whether

1 For every E ⊂ N with d(E) > 0, there exists n ∈ N s.t.

d
(
E ∩ (E − a1(n)) ∩ · · · ∩ (E − a`(n))

)
> 0.

It implies that there exist m,n ∈ N such that

m,m + a1(n), . . . ,m + a`(n) ∈ E .

2 For every measure preserving system (X ,X , µ,T ) and A ∈ X with
µ(A) > 0, there exists n ∈ N s.t.

µ(A ∩ T−a1(n)A ∩ · · · ∩ T−a`(n)A) > 0.

3 For every f ∈ L∞(µ), with f ≥ 0 and
∫

f dµ > 0, we have

lim sup
N→∞

1
N

N∑
n=1

∫
f · T a1(n)f · . . . · T a`(n)f dµ > 0.
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Multiple ergodic averages

Such problems lead to the study of the limiting behavior (in L2(µ))
of the following multiple ergodic averages

1
N

N∑
n=1

T a1(n)f1 · . . . · T a`(n)f`.

Higher dimensional problems lead to the study of

1
N

N∑
n=1

T a1(n)
1 f1 · . . . · T

a`(n)
` f`

where T1, . . . ,T` are commuting measure preserving
transformations acting on the same probability space.
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Multiple ergodic averages

First goal: Study the limiting behavior of the previous averages in
a depth sufficient to extract multiple recurrence (and hence
deduce results in combinatorics).

Ultimate goal: Show that the limit exists and find an explicit
formula for the limit (in some cases this is the only way we know
how to deduce some combinatorial consequences).

Best case scenario: For every ergodic system

1
N

N∑
n=1

T a1(n)f1 · . . . · T a`(n)f` →L2(µ)

∫
f1 dµ · . . . ·

∫
f` dµ.

But it does not happen very often...
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Three techniques

1 Use the Host-Kra decomposition.

2 Use extensions.

3 Compare with simpler averages.
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First technique: Use the Host-Kra decomposition

Definition (Gowers-Host-Kra seminorms)
Given an ergodic system (X ,X , µ,T ) and f ∈ L∞(µ) we define

|||f |||1 =
∣∣∣ ∫ f dµ

∣∣∣, |||f |||2k+1

k+1 = lim
N→∞

1
N

N∑
n=1

|||̄f · T nf |||2k

k .

Examples

|||f |||42 = lim
N→∞

1
N

N∑
n=1

∣∣∣ ∫ f̄ · T nf dµ
∣∣∣2,

|||f |||83 = lim
M→∞

1
M

M∑
m=1

lim
N→∞

1
N

N∑
n=1

∣∣∣ ∫ f · T m f̄ · T n f̄ · T m+nf dµ
∣∣∣2.

The more seminorms are 0 the more uniformly/randomly distributed f
is for our purposes and the easier it is to deal with f .
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First technique: Use the Host-Kra decomposition

Definition (Nilsequences)
A k -step nilsequence is a uniform limit of sequences (N (n)) of the form

N (n) = F (bnΓ)

where X = G/Γ is a k -step nilmanifold, b ∈ G, and F : X → C is
Riemann integrable (some people prefer F to be continuous).

Examples

(einα), (ei(nα+n2β)), (eiP(n)), P ∈ R[t ].

(ei[nα]nβ), (ei([[n2α]nβ]nγ−[nδ]3nζ)).

There are various tools available to study the distribution of
nilsequences.
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First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))
Let k ∈ N, (X ,X , µ,T ) be an ergodic system, and f ∈ L∞(µ). Then for
every ε > 0 there exist functions fer , fun, fst ∈ L∞(µ) such that

f = fer + fun + fst ;
‖fer‖L1(µ) ≤ ε;
|||fun|||k+1 = 0;
(fst (T nx)) is a k -step nilsequence for a.e. x ∈ X.

Arithmetic variants were proved recently by Green, Tao, Ziegler (11)
and Szegedy (11).
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First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

AN(f1, . . . , f`) =
1
N

N∑
n=1

T nf1 · T 2nf2 · . . . · T `nf`

converge in L2(µ).

Strategy:
1 Apply van der Corput’s lemma to get the seminorm estimates:

‖AN(f1, . . . , f`)‖L2(µ) � min
i=1,...,`

|||fi |||`.

2 Use the Host-Kra decomposition to deduce that

AN(f1, . . . , f`) ∼L2(µ) AN(f1,st , . . . , f`,st ) =
1
N

N∑
n=1

Nx (n).

3 If (N (n)) is a nilsequence, then limN→∞
1
N
∑N

n=1N (n) exists.

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 11 / 30



First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

AN(f1, . . . , f`) =
1
N

N∑
n=1

T nf1 · T 2nf2 · . . . · T `nf`

converge in L2(µ). Strategy:
1 Apply van der Corput’s lemma to get the seminorm estimates:

‖AN(f1, . . . , f`)‖L2(µ) � min
i=1,...,`

|||fi |||`.

2 Use the Host-Kra decomposition to deduce that

AN(f1, . . . , f`) ∼L2(µ) AN(f1,st , . . . , f`,st ) =
1
N

N∑
n=1

Nx (n).

3 If (N (n)) is a nilsequence, then limN→∞
1
N
∑N

n=1N (n) exists.

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 11 / 30



First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

AN(f1, . . . , f`) =
1
N

N∑
n=1

T nf1 · T 2nf2 · . . . · T `nf`

converge in L2(µ). Strategy:
1 Apply van der Corput’s lemma to get the seminorm estimates:

‖AN(f1, . . . , f`)‖L2(µ) � min
i=1,...,`

|||fi |||`.

2 Use the Host-Kra decomposition to deduce that

AN(f1, . . . , f`) ∼L2(µ) AN(f1,st , . . . , f`,st ) =
1
N

N∑
n=1

Nx (n).

3 If (N (n)) is a nilsequence, then limN→∞
1
N
∑N

n=1N (n) exists.

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 11 / 30



First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

AN(f1, . . . , f`) =
1
N

N∑
n=1

T nf1 · T 2nf2 · . . . · T `nf`

converge in L2(µ). Strategy:
1 Apply van der Corput’s lemma to get the seminorm estimates:

‖AN(f1, . . . , f`)‖L2(µ) � min
i=1,...,`

|||fi |||`.

2 Use the Host-Kra decomposition to deduce that

AN(f1, . . . , f`) ∼L2(µ) AN(f1,st , . . . , f`,st ) =
1
N

N∑
n=1

Nx (n).

3 If (N (n)) is a nilsequence, then limN→∞
1
N
∑N

n=1N (n) exists.
Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 11 / 30



Second technique: Use extensions

The main idea is to use suitable extensions of a particular system
to simplify our problem. It originates from a paper of Austin.

Below I explain a variation of this approach that is due to Host.
Suppose we want to show that the averages

AN(f1, f2, f3) =
1

N2

∑
1≤m,n≤N

T mf1 · Snf2 · T mSnf3

converge in L2(µ), where T ,S are commuting mpt.
Applying van der Corput’s lemma we get

‖AN(f1, f2, f3)‖L2(µ) � min
i=1,2,3

|||fi |||T ,S,µ

where

|||f |||4T ,S,µ = lim
M→∞

1
M

M∑
m=1

lim
N→∞

1
N

N∑
n=1

∫
f · T m f̄ · Sn f̄ · T mSnf dµ.
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T mf1 · Snf2 · T mSnf3

converge in L2(µ), where T ,S are commuting mpt.

Applying van der Corput’s lemma we get

‖AN(f1, f2, f3)‖L2(µ) � min
i=1,2,3

|||fi |||T ,S,µ

where

|||f |||4T ,S,µ = lim
M→∞

1
M

M∑
m=1

lim
N→∞

1
N

N∑
n=1

∫
f · T m f̄ · Sn f̄ · T mSnf dµ.
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Second technique: Use extensions

Key idea:

Theorem (Host ’09)

There exists an extension (X̃ , µ̃, T̃ , S̃) of (X , µ,T ,S) such that

|||̃f |||T̃ ,S̃,µ̃ = 0⇔ f̃⊥ IT̃ ∨ IS̃.

(In fact X̃ = X 4, T̃ = (id,T , id,T ), S̃ = (id, id,S,S), and
µ̃ = limM→∞

1
M
∑M

m=1 limN→∞
1
N
∑N

n=1 T̃ mS̃nδ∆X̃
.)

If f̃3 ∈ IT̃ ∨ IS̃, then mean convergence of

1
N2

∑
1≤m,n≤N

T̃ m f̃1 · S̃n f̃2 · T̃ mS̃n f̃3

follows from the mean ergodic theorem, so we are done!
Unfortunately, this approach has not proven as useful for averages with
non-linear iterates. An ongoing project by Austin may change that.
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Third technique: Compare with something easier

Suppose (a(n)) enjoys randomness features (eg primes, random
sequences) and we want to show that the averages

1
N

N∑
n=1

T a(n)f · Sa(n)g

converge in L2(µ).

Such an average is asymptotically equal to a
weighted average

1
N

N∑
n=1

w(n) · T nf · Sng

where the weights (w(n)) (possibly unbounded) are supported on the
range of (a(n)).
Idea: Compare with the un-weighted averages and show that the
difference converges to zero.
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Third technique: Compare with something easier

Applying van der Corput’s lemma twice one expects to get∥∥∥∥∥ 1
N

N∑
n=1

(w(n)− 1) · T nf · Sng

∥∥∥∥∥
L2(µ)

� |||w(n)− 1|||U3(N)

where |||z(n)|||8U3(N) is equal to

lim sup
N→∞

1
N2

∑
1≤m,n≤N

∣∣∣ 1
N

N∑
h=1

z(h) · z̄(h + m) · z̄(h + n) · z(h + m + n)
∣∣∣2.

So we are done if we can show that

|||w(n)− 1|||U3(N) = 0.

Applicable to the primes (F., Host, Kra (08) + Green, Tao (10)) and to
some random sequences of zero density (F., Lesigne, Wierdl (11)).
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Third technique: Compare with something easier

An example:

P = primes, π(N) = |P ∩ [1,N]|, Λ(n) = 1P(n) · log n.

Suppose we want to show that the averages

1
π(N)

∑
n∈P∩[1,N]

T nf · Sng ∼ 1
N

N∑
n=1

Λ(n) · T nf · Sng

converge in L2(µ), where T ,S are commuting mpt.
Main idea: Exploit the randomness of the primes and show that

1
N

N∑
n=1

Λ(n) · T nf · Sng − 1
N

N∑
n=1

T nf · Sng →L2(µ) 0.
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Third technique: Compare with something easier

Two applications of van der Corput’s inequality give∥∥∥∥∥ 1
N

N∑
n=1

(Λ(n)− 1) · T nf · Sng

∥∥∥∥∥
L2(µ)

� |||Λ(n)− 1|||U3(N).

To finish the proof we need a variant of the previous argument and the
following deep result from number theory:

Theorem (Green, Tao (10))

If W = k ! and Λk (n) = φ(W )
W Λ(Wn + 1), then

lim
k→∞
|||Λk (n)− 1|||U3(N) = 0.
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Results and problems: Polynomial sequences

Theorem (Host, Kra (05), Leibman (05))
If p1, . . . ,p` are integer polynomials, then the averages

1
N

N∑
n=1

T p1(n)f1 · . . . · T p`(n)f`

converge in L2(µ).

Key ingredients:
Bergelson-PET to get seminorm estimates.
The Host-Kra decomposition result.
Qualitative equidistribution results on nilmanifolds (Leibman (05)).
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Results and problems: Polynomial sequences

Theorem (Tao (08))
If the mpt T1, . . . ,T` commute, then the averages

1
N

N∑
n=1

T n
1 f1 · . . . · T n

` f`

converge in L2(µ).

Tao’s proof did not use ergodic theory, he worked on a finitary setup.

Infinitary proof by Towsner (09), ergodic proof by Austin (10), a
variant by Host (09).

Key ingredient in the last two proofs: Extensions.
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Results and problems: Polynomial sequences

Theorem (Chu, F., Host (11))
If the mpt T1, . . . ,T` commute, and p1, . . . ,p` ∈ Z[t ] have distinct
degrees, then the averages

1
N

N∑
n=1

T p1(n)
1 f1 · . . . · T

p`(n)
` f`

converge in L2(µ).

Key ingredients:
PET induction to get seminorm estimates. (Hardest step.)
The Host-Kra decomposition result.
Qualitative equidistribution on nilmanifolds (Leibman (05)).
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Results and problems: Polynomial sequences

Problem
If the mpt T1, . . . ,T` commute and p1, . . . ,p` ∈ Z[t ], show that the
averages

1
N

N∑
n=1

T p1(n)
1 f1 · . . . · T

p`(n)
` f`

converge in L2(µ).

For example, the case ` = 2 and p1(n) = p2(n) = n2 is open.

Problem
If p1, . . . ,p` ∈ Z[t ] are rationally independent and have zero constant
term, show that for every ε > 0

µ(A ∩ T−p1(n)
1 A ∩ · · · ∩ T−p`(n)

` A) ≥ µ(A)`+1 − ε

for some n ∈ N.
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Results and problems: Smooth functions

Theorem (F. (10))
For every c ≥ 0 not an integer, and ` ∈ N, the averages

1
N

N∑
n=1

T [nc ]f1 · T 2[nc ]f2 · . . . · T `[nc ]f`

converge L2(µ) and their limit is limN→∞
1
N
∑N

n=1 T nf1 ·T 2nf2 · . . . ·T `nf`.

Key ingredients:
PET induction to get seminorm estimates.
The Host-Kra decomposition result.
Quantitative equidistribution on nilmanifolds (Green, Tao (11)).

The same also holds for Hardy sequences of polynomial growth that
stay logarithmically away from polynomials.
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Results and problems: Smooth functions

Theorem (F. (10))
If c1, . . . , c` ≥ 0 are distinct non-integers, then

1
N

N∑
n=1

T [nc1 ]f1 · . . . · T [nc` ]f` →L2(µ)

∫
f1 dµ · . . . ·

∫
f` dµ

for every ergodic system.

Corollary
For every system and set A ∈ X we have

lim
N→∞

1
N

N∑
n=1

µ(A ∩ T−[nc1 ]A ∩ · · · ∩ T−[nc` ]A) ≥ (µ(A))`+1.
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Results and problems: Smooth functions

Problem
Find an explicit sequence (a(n)) that grows faster than polynomials
(i.e. log(a(n))/n→∞), such that the following averages converge

1
N

N∑
n=1

T a(n)f1 · T 2a(n)f2.

You can try a(n) = [nlog log n].

Problem
Show that for every c ≥ 0 and commuting mpt T1,T2 the averages

1
N

N∑
n=1

T [nc ]
1 f1 · T

[nc ]
2 f2

converge in L2(µ).
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Results and problems: Prime numbers

We denote by P the set of prime numbers and π(N) = N/ log N.

Theorem (Wooley, Ziegler (10))
If p1, . . . ,p` ∈ Z[t ] then the averages

1
π(N)

∑
n∈P∩[1,N]

T p1(n)f1 · . . . · T p`(n)f`

converge in L2(µ).

The proof ultimately relies on the Host-Kra decomposition and also
uses some number theoretic input by Green and Tao:

The modified von Mangoldt function has a pseudorandom
majorant (08).
The modified von Mangoldt function minus 1 is asymptotically
orthogonal to nilsequences (11).
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majorant (08).
The modified von Mangoldt function minus 1 is asymptotically
orthogonal to nilsequences (11).
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Results and problems: Prime numbers

Theorem (F., Host, Kra (11))
If p1, . . . ,p` ∈ Z[t ], T1, . . . ,T` commuting mpt, then the averages

1
π(N)

∑
n∈P∩[1,N]

T p1(n)
1 f1 · . . . · T

p`(n)
` f`

converge in L2(µ) conditionally to the convergence of the averages
1
N
∑N

n=1 T p1(n)
1 f1 · . . . · T

p`(n)
` f`.

Compare with deterministic averages and use PET induction to
estimate the difference.
Use the uniformity of the modified von Mangoldt function minus 1
(Green, Tao, Ziegler (11)).
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Results and problems: Prime numbers

Problem
Show that for every c ≥ 0 the averages

1
π(N)

∑
n∈P∩[1,N]

T [nc ]f1 · T 2[nc ]f2

converge in L2(µ).

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 27 / 30



Results and problems: Random sequences

Form a sequence (an(ω)) by picking, independently, an integer n ∈ N
to be a member of the sequence with probability σn ∈ [0,1].

Theorem (F., Lesigne, Wierdl (11))
If σn = n−c with c ∈ (0,1/14), then ω-almost surely, for all commuting
mpt T ,S, and f ,g ∈ L∞(µ),

lim
N→∞

1
N

N∑
n=1

T nf · San(ω)g = E(f |IT ) · E(g|IS)

where the the convergence is pointwise.

Compare with simpler averages and use van der Corput to
estimate the difference.
Use the randomness of the random variables to show that the
difference converges to 0 pointwise.

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 28 / 30



Results and problems: Random sequences

Form a sequence (an(ω)) by picking, independently, an integer n ∈ N
to be a member of the sequence with probability σn ∈ [0,1].

Theorem (F., Lesigne, Wierdl (11))
If σn = n−c with c ∈ (0,1/14), then ω-almost surely, for all commuting
mpt T ,S, and f ,g ∈ L∞(µ),

lim
N→∞

1
N

N∑
n=1

T nf · San(ω)g = E(f |IT ) · E(g|IS)

where the the convergence is pointwise.

Compare with simpler averages and use van der Corput to
estimate the difference.
Use the randomness of the random variables to show that the
difference converges to 0 pointwise.

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 28 / 30



Results and problems: Random sequences

Form a sequence (an(ω)) by picking, independently, an integer n ∈ N
to be a member of the sequence with probability σn ∈ [0,1].

Theorem (F., Lesigne, Wierdl (11))
If σn = n−c with c ∈ (0,1/14), then ω-almost surely, for all commuting
mpt T ,S, and f ,g ∈ L∞(µ),

lim
N→∞

1
N

N∑
n=1

T nf · San(ω)g = E(f |IT ) · E(g|IS)

where the the convergence is pointwise.

Compare with simpler averages and use van der Corput to
estimate the difference.
Use the randomness of the random variables to show that the
difference converges to 0 pointwise.

Nikos Frantzikinakis (U. of Crete) Multiple ergodic theorems Trends in Dynamics, April 2011 28 / 30



Results and problems: Random sequences

Theorem (F., Lesigne, Wierdl (11))
If σn = n−c with c ∈ (0,1/2), then ω-almost surely, for every mpt T ,
and f ,g ∈ L∞(µ), the averages

1
N

N∑
n=1

T an(ω)f · T 2an(ω)g

converge pointwise to limN→∞
1
N
∑N

n=1 T nf · T 2ng.

Problem
Show that the previous results hold when σn = n−c where c ∈ (0,1).
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Commercial

The key to solving several open problems in this area (including the
ones mentioned previously) could be a structure theorem for multiple
correlation sequences.

For instance:

Problem
Determine the structure (with no errors!) of the sequence

A(n) =

∫
f · T ng · T 2nh dµ.

Is it true that (A(n)) is a mixture of 2-step nilsequences?

Bernard will speak about this problem on Sunday.

An expanded list of open problems can be found on my webpage.

THANK YOU!
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