Some new multiple ergodic theorems and related open problems

Nikos Frantzikinakis
University of Crete, Greece

Trends in Dynamics, April 2011

Three related topics

(1) Shift invariant configurations on sets of integers of positive density.

Three related topics

(1) Shift invariant configurations on sets of integers of positive density.
(2) Multiple recurrence properties of measure preserving systems.

Three related topics

(1) Shift invariant configurations on sets of integers of positive density.
(2) Multiple recurrence properties of measure preserving systems.
(0) Analysis of the limiting behavior of multiple ergodic averages.

Three related topics (Model case)

(1) If $d(E)>0$, then for every $\ell \in \mathbb{N}$ there exists $n \in \mathbb{N}$ s.t.

$$
d(E \cap(E-n) \cap \cdots \cap(E-\ell n))>0
$$

It implies that there exist $m, n \in \mathbb{N}$ such that

$$
m, m+n, \ldots, m+\ell n \in E
$$

Three related topics (Model case)

(1) If $d(E)>0$, then for every $\ell \in \mathbb{N}$ there exists $n \in \mathbb{N}$ s.t.

$$
d(E \cap(E-n) \cap \cdots \cap(E-\ell n))>0
$$

It implies that there exist $m, n \in \mathbb{N}$ such that

$$
m, m+n, \ldots, m+\ell n \in E
$$

(2) If (X, \mathcal{X}, μ, T) is a measure preserving system and $A \in \mathcal{X}$ with $\mu(A)>0$, then there exists $n \in \mathbb{N}$ s.t.

$$
\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-\ell n} A\right)>0
$$

Three related topics (Model case)

(1) If $d(E)>0$, then for every $\ell \in \mathbb{N}$ there exists $n \in \mathbb{N}$ s.t.

$$
d(E \cap(E-n) \cap \cdots \cap(E-\ell n))>0
$$

It implies that there exist $m, n \in \mathbb{N}$ such that

$$
m, m+n, \ldots, m+\ell n \in E
$$

(2) If (X, \mathcal{X}, μ, T) is a measure preserving system and $A \in \mathcal{X}$ with $\mu(A)>0$, then there exists $n \in \mathbb{N}$ s.t.

$$
\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-\ell n} A\right)>0
$$

(3) If $f \in L^{\infty}(\mu), f \geq 0$, and $\int f d \mu>0$, then

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int f \cdot T^{n} f \cdot \ldots \cdot T^{\ell n} f d \mu>0
$$

Three related topics (a more general case)

Given sequences $a_{1}, \ldots, a_{\ell}: \mathbb{N} \rightarrow \mathbb{Z}$, determine whether
(1) For every $E \subset \mathbb{N}$ with $d(E)>0$, there exists $n \in \mathbb{N}$ s.t.

$$
d\left(E \cap\left(E-a_{1}(n)\right) \cap \cdots \cap\left(E-a_{\ell}(n)\right)\right)>0
$$

It implies that there exist $m, n \in \mathbb{N}$ such that

$$
m, m+a_{1}(n), \ldots, m+a_{\ell}(n) \in E
$$

Three related topics (a more general case)

Given sequences $a_{1}, \ldots, a_{\ell}: \mathbb{N} \rightarrow \mathbb{Z}$, determine whether
(1) For every $E \subset \mathbb{N}$ with $d(E)>0$, there exists $n \in \mathbb{N}$ s.t.

$$
d\left(E \cap\left(E-a_{1}(n)\right) \cap \cdots \cap\left(E-a_{\ell}(n)\right)\right)>0
$$

It implies that there exist $m, n \in \mathbb{N}$ such that

$$
m, m+a_{1}(n), \ldots, m+a_{\ell}(n) \in E
$$

(2) For every measure preserving system (X, \mathcal{X}, μ, T) and $A \in \mathcal{X}$ with $\mu(A)>0$, there exists $n \in \mathbb{N}$ s.t.

$$
\mu\left(A \cap T^{-a_{1}(n)} A \cap \cdots \cap T^{-a_{\ell}(n)} A\right)>0
$$

Three related topics (a more general case)

Given sequences $a_{1}, \ldots, a_{\ell}: \mathbb{N} \rightarrow \mathbb{Z}$, determine whether
(1) For every $E \subset \mathbb{N}$ with $d(E)>0$, there exists $n \in \mathbb{N}$ s.t.

$$
d\left(E \cap\left(E-a_{1}(n)\right) \cap \cdots \cap\left(E-a_{\ell}(n)\right)\right)>0
$$

It implies that there exist $m, n \in \mathbb{N}$ such that

$$
m, m+a_{1}(n), \ldots, m+a_{\ell}(n) \in E
$$

(2) For every measure preserving system (X, \mathcal{X}, μ, T) and $A \in \mathcal{X}$ with $\mu(A)>0$, there exists $n \in \mathbb{N}$ s.t.

$$
\mu\left(A \cap T^{-a_{1}(n)} A \cap \cdots \cap T^{-a_{\ell}(n)} A\right)>0
$$

(3) For every $f \in L^{\infty}(\mu)$, with $f \geq 0$ and $\int f d \mu>0$, we have

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int f \cdot T^{a_{1}(n)} f \cdot \ldots \cdot T^{a_{\ell}(n)} f d \mu>0
$$

Multiple ergodic averages

- Such problems lead to the study of the limiting behavior (in $L^{2}(\mu)$) of the following multiple ergodic averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{\ell}(n)} f_{\ell}
$$

Multiple ergodic averages

- Such problems lead to the study of the limiting behavior (in $L^{2}(\mu)$) of the following multiple ergodic averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{\ell}(n)} f_{\ell}
$$

- Higher dimensional problems lead to the study of

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{a_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{a_{\ell}(n)} f_{\ell}
$$

where T_{1}, \ldots, T_{ℓ} are commuting measure preserving transformations acting on the same probability space.

Multiple ergodic averages

- First goal: Study the limiting behavior of the previous averages in a depth sufficient to extract multiple recurrence (and hence deduce results in combinatorics).

Multiple ergodic averages

- First goal: Study the limiting behavior of the previous averages in a depth sufficient to extract multiple recurrence (and hence deduce results in combinatorics).
- Ultimate goal: Show that the limit exists and find an explicit formula for the limit (in some cases this is the only way we know how to deduce some combinatorial consequences).

Multiple ergodic averages

- First goal: Study the limiting behavior of the previous averages in a depth sufficient to extract multiple recurrence (and hence deduce results in combinatorics).
- Ultimate goal: Show that the limit exists and find an explicit formula for the limit (in some cases this is the only way we know how to deduce some combinatorial consequences).
- Best case scenario: For every ergodic system

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{\ell}(n)} f_{\ell} \rightarrow^{L^{2}(\mu)} \int f_{1} d \mu \cdot \ldots \int f_{\ell} d \mu
$$

Multiple ergodic averages

- First goal: Study the limiting behavior of the previous averages in a depth sufficient to extract multiple recurrence (and hence deduce results in combinatorics).
- Ultimate goal: Show that the limit exists and find an explicit formula for the limit (in some cases this is the only way we know how to deduce some combinatorial consequences).
- Best case scenario: For every ergodic system

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{1}(n)} f_{1} \cdot \ldots \cdot T^{a_{\ell}(n)} f_{\ell} \rightarrow^{L^{2}(\mu)} \int f_{1} d \mu \cdot \ldots \int f_{\ell} d \mu
$$

But it does not happen very often...

Three techniques

(1) Use the Host-Kra decomposition.
(2) Use extensions.
(3) Compare with simpler averages.

First technique: Use the Host-Kra decomposition

First technique: Use the Host-Kra decomposition

Definition (Gowers-Host-Kra seminorms)

Given an ergodic system (X, \mathcal{X}, μ, T) and $f \in L^{\infty}(\mu)$ we define

$$
\|f\|_{1}=\left|\int f d \mu\right|, \quad\|f\|_{k+1}^{2+1}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|\bar{f} \cdot T^{n}\right\|_{k}^{2_{k}^{k}} .
$$

First technique: Use the Host-Kra decomposition

Definition (Gowers-Host-Kra seminorms)

Given an ergodic system (X, \mathcal{X}, μ, T) and $f \in L^{\infty}(\mu)$ we define

$$
\|f\|_{1}=\left|\int f d \mu\right|, \quad\|f\|_{k+1}^{2+1}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\|\bar{f} \cdot T^{n}\right\|_{k}^{2_{k}^{k}} .
$$

Examples

$$
\begin{gathered}
\|f\|_{2}^{4}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|\int \bar{f} \cdot T^{n} f d \mu\right|^{2}, \\
\|f\|_{3}^{8}=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=1}^{M} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|\int f \cdot T^{m} \bar{f} \cdot T^{n} \bar{f} \cdot T^{m+n} f d \mu\right|^{2} .
\end{gathered}
$$

The more seminorms are 0 the more uniformly/randomly distributed f is for our purposes and the easier it is to deal with f.

First technique: Use the Host-Kra decomposition

Definition (Nilsequences)

A k-step nilsequence is a uniform limit of sequences $(\mathcal{N}(n))$ of the form

$$
\mathcal{N}(n)=F\left(b^{n} \Gamma\right)
$$

where $X=G / \Gamma$ is a k-step nilmanifold, $b \in G$, and $F: X \rightarrow \mathbb{C}$ is Riemann integrable (some people prefer F to be continuous).

First technique: Use the Host-Kra decomposition

Definition (Nilsequences)

A k-step nilsequence is a uniform limit of sequences $(\mathcal{N}(n))$ of the form

$$
\mathcal{N}(n)=F\left(b^{n} \Gamma\right)
$$

where $X=G / \Gamma$ is a k-step nilmanifold, $b \in G$, and $F: X \rightarrow \mathbb{C}$ is Riemann integrable (some people prefer F to be continuous).

Examples

$$
\left(e^{i n \alpha}\right), \quad\left(e^{i\left(n \alpha+n^{2} \beta\right)}\right), \quad\left(e^{i P(n)}\right), \quad P \in \mathbb{R}[t] .
$$

First technique: Use the Host-Kra decomposition

Definition (Nilsequences)

A k-step nilsequence is a uniform limit of sequences $(\mathcal{N}(n))$ of the form

$$
\mathcal{N}(n)=F\left(b^{n} \Gamma\right)
$$

where $X=G / \Gamma$ is a k-step nilmanifold, $b \in G$, and $F: X \rightarrow \mathbb{C}$ is Riemann integrable (some people prefer F to be continuous).

Examples

$$
\begin{gathered}
\left(e^{i n \alpha}\right), \quad\left(e^{i\left(n \alpha+n^{2} \beta\right)}\right), \quad\left(e^{i P(n)}\right), \quad P \in \mathbb{R}[t] . \\
\left(e^{i[n \alpha] n \beta}\right), \quad\left(e^{i\left(\left[\left[n^{2} \alpha\right] n \beta\right] n \gamma-[n \delta]^{3} n \zeta\right)}\right) .
\end{gathered}
$$

There are various tools available to study the distribution of nilsequences.

First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be an ergodic system, and $f \in L^{\infty}(\mu)$. Then for every $\varepsilon>0$ there exist functions $f_{e r}, f_{u n}, f_{s t} \in L^{\infty}(\mu)$ such that

First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be an ergodic system, and $f \in L^{\infty}(\mu)$. Then for every $\varepsilon>0$ there exist functions $f_{e r}, f_{u n}, f_{s t} \in L^{\infty}(\mu)$ such that

- $f=f_{e r}+f_{u n}+f_{s t}$;

First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be an ergodic system, and $f \in L^{\infty}(\mu)$. Then for every $\varepsilon>0$ there exist functions $f_{e r}, f_{u n}, f_{s t} \in L^{\infty}(\mu)$ such that

- $f=f_{e r}+f_{u n}+f_{s t}$;
- $\left\|f_{e r}\right\|_{L^{1}(\mu)} \leq \varepsilon$;

First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be an ergodic system, and $f \in L^{\infty}(\mu)$. Then for every $\varepsilon>0$ there exist functions $f_{e r}, f_{u n}, f_{s t} \in L^{\infty}(\mu)$ such that

- $f=f_{e r}+f_{u n}+f_{s t}$;
- $\left\|f_{e r}\right\|_{L^{1}(\mu)} \leq \varepsilon$;
- $\left\|f_{u n}\right\|_{k+1}=0$;

First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be an ergodic system, and $f \in L^{\infty}(\mu)$. Then for every $\varepsilon>0$ there exist functions $f_{e r}, f_{u n}, f_{s t} \in L^{\infty}(\mu)$ such that

- $f=f_{e r}+f_{u n}+f_{s t}$;
- $\left\|f_{e r}\right\|_{L^{1}(\mu)} \leq \varepsilon$;
- $\left\|f_{u n}\right\|_{k+1}=0$;
- $\left(f_{s t}\left(T^{n} x\right)\right)$ is a k-step nilsequence for a.e. $x \in X$.

First technique: Use the Host-Kra decomposition

Theorem (Host, Kra (05))

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be an ergodic system, and $f \in L^{\infty}(\mu)$. Then for every $\varepsilon>0$ there exist functions $f_{e r}, f_{u n}, f_{\text {st }} \in L^{\infty}(\mu)$ such that

- $f=f_{e r}+f_{u n}+f_{s t}$;
- $\left\|f_{e r}\right\|_{L^{1}(\mu)} \leq \varepsilon$;
- $\left\|f_{u n}\right\|_{k+1}=0$;
- $\left(f_{s t}\left(T^{n} x\right)\right)$ is a k-step nilsequence for a.e. $x \in X$.

Arithmetic variants were proved recently by Green, Tao, Ziegler (11) and Szegedy (11).

First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, \ldots, f_{\ell}\right)=\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{\ell n} f_{\ell}
$$

converge in $L^{2}(\mu)$.

First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, \ldots, f_{\ell}\right)=\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{\ell n} f_{\ell}
$$

converge in $L^{2}(\mu)$. Strategy:
(1) Apply van der Corput's lemma to get the seminorm estimates:

$$
\left\|A_{N}\left(f_{1}, \ldots, f_{\ell}\right)\right\|_{L^{2}(\mu)} \ll \min _{i=1, \ldots, \ell}\left\|f_{i}\right\|_{\ell} .
$$

First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, \ldots, f_{\ell}\right)=\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{\ell n} f_{\ell}
$$

converge in $L^{2}(\mu)$. Strategy:
(1) Apply van der Corput's lemma to get the seminorm estimates:

$$
\left\|A_{N}\left(f_{1}, \ldots, f_{\ell}\right)\right\|_{L^{2}(\mu)} \ll \min _{i=1, \ldots, \ell}\left\|f_{i}\right\|_{\ell}
$$

(2) Use the Host-Kra decomposition to deduce that

$$
A_{N}\left(f_{1}, \ldots, f_{\ell}\right) \sim^{L^{2}(\mu)} A_{N}\left(f_{1, s t}, \ldots, f_{\ell, s t}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathcal{N}_{x}(n)
$$

First technique: Use the Host-Kra decomposition

Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, \ldots, f_{\ell}\right)=\frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{\ell n} f_{\ell}
$$

converge in $L^{2}(\mu)$. Strategy:
(1) Apply van der Corput's lemma to get the seminorm estimates:

$$
\left\|A_{N}\left(f_{1}, \ldots, f_{\ell}\right)\right\|_{L^{2}(\mu)} \ll \min _{i=1, \ldots, \ell}\left\|f_{i}\right\|_{\ell}
$$

(2) Use the Host-Kra decomposition to deduce that

$$
A_{N}\left(f_{1}, \ldots, f_{\ell}\right) \sim^{L^{2}(\mu)} A_{N}\left(f_{1, s t}, \ldots, f_{\ell, s t}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathcal{N}_{x}(n)
$$

(3) If $(\mathcal{N}(n))$ is a nilsequence, then $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{N}(n)$ exists.

Second technique: Use extensions

- The main idea is to use suitable extensions of a particular system to simplify our problem. It originates from a paper of Austin.

Second technique: Use extensions

- The main idea is to use suitable extensions of a particular system to simplify our problem. It originates from a paper of Austin. Below I explain a variation of this approach that is due to Host.

Second technique: Use extensions

- The main idea is to use suitable extensions of a particular system to simplify our problem. It originates from a paper of Austin. Below I explain a variation of this approach that is due to Host.
- Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, f_{2}, f_{3}\right)=\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} T^{m} f_{1} \cdot S^{n} f_{2} \cdot T^{m} S^{n} f_{3}
$$

converge in $L^{2}(\mu)$, where T, S are commuting mpt.

Second technique: Use extensions

- The main idea is to use suitable extensions of a particular system to simplify our problem. It originates from a paper of Austin.
Below I explain a variation of this approach that is due to Host.
- Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, f_{2}, f_{3}\right)=\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} T^{m} f_{1} \cdot S^{n} f_{2} \cdot T^{m} S^{n} f_{3}
$$

converge in $L^{2}(\mu)$, where T, S are commuting mpt.

- Applying van der Corput's lemma we get

$$
\left\|A_{N}\left(f_{1}, f_{2}, f_{3}\right)\right\|_{L^{2}(\mu)} \ll \min _{i=1,2,3}\left\|f_{i}\right\|_{T, S, \mu}
$$

Second technique: Use extensions

- The main idea is to use suitable extensions of a particular system to simplify our problem. It originates from a paper of Austin.
Below I explain a variation of this approach that is due to Host.
- Suppose we want to show that the averages

$$
A_{N}\left(f_{1}, f_{2}, f_{3}\right)=\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} T^{m} f_{1} \cdot S^{n} f_{2} \cdot T^{m} S^{n} f_{3}
$$

converge in $L^{2}(\mu)$, where T, S are commuting mpt.

- Applying van der Corput's lemma we get

$$
\left\|A_{N}\left(f_{1}, f_{2}, f_{3}\right)\right\|_{L^{2}(\mu)} \ll \min _{i=1,2,3}\left\|f_{i}\right\|_{T, S, \mu}
$$

where

$$
\|f\|_{T, S, \mu}^{4}=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=1}^{M} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int f \cdot T^{m} \bar{f} \cdot S^{n} \bar{f} \cdot T^{m} S^{n} f d \mu
$$

Second technique: Use extensions

- Key idea:

Theorem (Host '09)

There exists an extension ($\tilde{X}, \tilde{\mu}, \tilde{T}, \tilde{S})$ of (X, μ, T, S) such that

$$
\|\tilde{f}\|_{\tilde{T}, \tilde{S}, \tilde{\mu}}=0 \Leftrightarrow \tilde{f} \perp \mathcal{I}_{\tilde{T}} \vee \mathcal{I}_{\tilde{S}} .
$$

(In fact $\tilde{X}=X^{4}, \tilde{T}=(i d, T, i d, T), \tilde{S}=(i d, i d, S, S)$, and $\left.\tilde{\mu}=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=1}^{M} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \tilde{T}^{m} \tilde{S}^{n} \delta_{\Delta_{\dot{x}}}.\right)$

Second technique: Use extensions

- Key idea:

Theorem (Host '09)

There exists an extension $(\tilde{X}, \tilde{\mu}, \tilde{T}, \tilde{S})$ of (X, μ, T, S) such that

$$
\|\tilde{f}\|_{\tilde{T}, \tilde{S}, \tilde{\mu}}=0 \Leftrightarrow \tilde{f} \perp \mathcal{I}_{\tilde{T}} \vee \mathcal{I}_{\tilde{S}} .
$$

(In fact $\tilde{X}=X^{4}, \tilde{T}=(i d, T, i d, T), \tilde{S}=(i d, i d, S, S)$, and
$\left.\tilde{\mu}=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=1}^{M} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \tilde{T}^{m} \tilde{S}^{n} \delta_{\Delta_{\tilde{\chi}}}.\right)$

- If $\tilde{f}_{3} \in \mathcal{I}_{\tilde{T}} \vee \mathcal{I}_{\tilde{S}}$, then mean convergence of

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \tilde{T}^{m} \tilde{f}_{1} \cdot \tilde{S}^{n} \tilde{t}_{2} \cdot \tilde{T}^{m} \tilde{S}^{n} \tilde{f}_{3}
$$

follows from the mean ergodic theorem, so we are done!

Second technique: Use extensions

- Key idea:

Theorem (Host '09)

There exists an extension $(\tilde{X}, \tilde{\mu}, \tilde{T}, \tilde{S})$ of (X, μ, T, S) such that

$$
\|\tilde{f}\|_{\tilde{T}, \tilde{S}_{, \tilde{\mu}}}=0 \Leftrightarrow \tilde{f} \perp \mathcal{I}_{\tilde{T}} \vee \mathcal{I}_{\tilde{S}} .
$$

(In fact $\tilde{X}=X^{4}, \tilde{T}=(i d, T, i d, T), \tilde{S}=(i d, i d, S, S)$, and
$\left.\tilde{\mu}=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{m=1}^{M} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \tilde{T}^{m} \tilde{S}^{n} \delta_{\Delta_{\tilde{\chi}}}.\right)$

- If $\tilde{f}_{3} \in \mathcal{I}_{\tilde{T}} \vee \mathcal{I}_{\tilde{S}}$, then mean convergence of

$$
\frac{1}{N^{2}} \sum_{1 \leq m, n \leq N} \tilde{T}^{m} \tilde{f}_{1} \cdot \tilde{S}^{n} \tilde{f}_{2} \cdot \tilde{T}^{m} \tilde{S}^{n} \tilde{f}_{3}
$$

follows from the mean ergodic theorem, so we are done!
Unfortunately, this approach has not proven as useful for averages with non-linear iterates. An ongoing project by Austin may change that.

Third technique: Compare with something easier

Suppose (a(n)) enjoys randomness features (eg primes, random sequences) and we want to show that the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a(n)} f \cdot S^{a(n)} g
$$

converge in $L^{2}(\mu)$.

Third technique: Compare with something easier

Suppose $(a(n))$ enjoys randomness features (eg primes, random sequences) and we want to show that the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a(n)} f \cdot S^{a(n)} g
$$

converge in $L^{2}(\mu)$. Such an average is asymptotically equal to a weighted average

$$
\frac{1}{N} \sum_{n=1}^{N} w(n) \cdot T^{n} f \cdot S^{n} g
$$

where the weights $(w(n))$ (possibly unbounded) are supported on the range of $(a(n))$.

Third technique: Compare with something easier

Suppose $(a(n))$ enjoys randomness features (eg primes, random sequences) and we want to show that the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a(n)} f \cdot S^{a(n)} g
$$

converge in $L^{2}(\mu)$. Such an average is asymptotically equal to a weighted average

$$
\frac{1}{N} \sum_{n=1}^{N} w(n) \cdot T^{n} f \cdot S^{n} g
$$

where the weights $(w(n))$ (possibly unbounded) are supported on the range of $(a(n))$.
Idea: Compare with the un-weighted averages and show that the difference converges to zero.

Third technique: Compare with something easier

Applying van der Corput's lemma twice one expects to get

$$
\left\|\frac{1}{N} \sum_{n=1}^{N}(w(n)-1) \cdot T^{n} f \cdot S^{n} g\right\|_{L^{2}(\mu)} \ll\|w(n)-1\| U_{3}(\mathbb{N})
$$

where $\|z(n)\|_{U_{3}(\mathbb{N})}^{8}$ is equal to
$\limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{1 \leq m, n \leq N}\left|\frac{1}{N} \sum_{h=1}^{N} z(h) \cdot \bar{z}(h+m) \cdot \bar{z}(h+n) \cdot z(h+m+n)\right|^{2}$.

Third technique: Compare with something easier

Applying van der Corput's lemma twice one expects to get

$$
\left\|\frac{1}{N} \sum_{n=1}^{N}(w(n)-1) \cdot T^{n} f \cdot S^{n} g\right\|_{L^{2}(\mu)} \ll\|w(n)-1\| U_{3}(\mathbb{N})
$$

where $\|z(n)\|_{U_{3}(\mathbb{N})}^{8}$ is equal to

$$
\limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{1 \leq m, n \leq N}\left|\frac{1}{N} \sum_{h=1}^{N} z(h) \cdot \bar{z}(h+m) \cdot \bar{z}(h+n) \cdot z(h+m+n)\right|^{2}
$$

So we are done if we can show that

$$
\|w(n)-1\|_{U_{3}(\mathbb{N})}=0
$$

Third technique: Compare with something easier

Applying van der Corput's lemma twice one expects to get

$$
\left\|\frac{1}{N} \sum_{n=1}^{N}(w(n)-1) \cdot T^{n} f \cdot S^{n} g\right\|_{L^{2}(\mu)} \ll\|w(n)-1\| U_{3}(\mathbb{N})
$$

where $\|z(n)\|_{U_{3}(\mathbb{N})}^{8}$ is equal to

$$
\limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{1 \leq m, n \leq N}\left|\frac{1}{N} \sum_{h=1}^{N} z(h) \cdot \bar{z}(h+m) \cdot \bar{z}(h+n) \cdot z(h+m+n)\right|^{2} .
$$

So we are done if we can show that

$$
\|w(n)-1\|_{U_{3}(\mathbb{N})}=0
$$

Applicable to the primes (F., Host, Kra (08) + Green, Tao (10)) and to some random sequences of zero density (F., Lesigne, Wierdl (11)).

Third technique: Compare with something easier

An example:

Third technique: Compare with something easier

An example:
$\mathbb{P}=$ primes $, \quad \pi(N)=|\mathbb{P} \cap[1, N]|, \quad \Lambda(n)=\mathbf{1}_{\mathbb{P}}(n) \cdot \log n$.

Third technique: Compare with something easier

An example:

$$
\mathbb{P}=\text { primes, } \quad \pi(N)=|\mathbb{P} \cap[1, N]|, \quad \Lambda(n)=\mathbf{1}_{\mathbb{P}}(n) \cdot \log n .
$$

Suppose we want to show that the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T^{n} f \cdot S^{n} g \sim \frac{1}{N} \sum_{n=1}^{N} \wedge(n) \cdot T^{n} f \cdot S^{n} g
$$

converge in $L^{2}(\mu)$, where T, S are commuting mpt.

Third technique: Compare with something easier

An example:

$$
\mathbb{P}=\text { primes }, \quad \pi(N)=|\mathbb{P} \cap[1, N]|, \quad \Lambda(n)=\mathbf{1}_{\mathbb{P}}(n) \cdot \log n .
$$

Suppose we want to show that the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T^{n} f \cdot S^{n} g \sim \frac{1}{N} \sum_{n=1}^{N} \Lambda(n) \cdot T^{n} f \cdot S^{n} g
$$

converge in $L^{2}(\mu)$, where T, S are commuting mpt. Main idea: Exploit the randomness of the primes and show that

$$
\frac{1}{N} \sum_{n=1}^{N} \wedge(n) \cdot T^{n} f \cdot S^{n} g-\frac{1}{N} \sum_{n=1}^{N} T^{n} f \cdot S^{n} g \rightarrow^{L^{2}(\mu)} 0 .
$$

Third technique: Compare with something easier

Two applications of van der Corput's inequality give

$$
\left\|\frac{1}{N} \sum_{n=1}^{N}(\Lambda(n)-1) \cdot T^{n} f \cdot S^{n} g\right\|_{L^{2}(\mu)} \ll\|\Lambda(n)-1\| U_{3}(\mathbb{N})
$$

Third technique: Compare with something easier

Two applications of van der Corput's inequality give

$$
\left\|\frac{1}{N} \sum_{n=1}^{N}(\Lambda(n)-1) \cdot T^{n} f \cdot S^{n} g\right\|_{L^{2}(\mu)} \ll\|\Lambda(n)-1\| U_{U_{3}(\mathbb{N})}
$$

To finish the proof we need a variant of the previous argument and the following deep result from number theory:

Theorem (Green, Tao (10))

If $W=k!$ and $\Lambda_{k}(n)=\frac{\phi(W)}{W} \Lambda(W n+1)$, then

$$
\lim _{k \rightarrow \infty}\left\|\Lambda_{k}(n)-1\right\|_{U_{3}(\mathbb{N})}=0
$$

Results and problems: Polynomial sequences

Theorem (Host, Kra (05), Leibman (05))

If p_{1}, \ldots, p_{ℓ} are integer polynomials, then the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \cdot \ldots \cdot T^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.

Results and problems: Polynomial sequences

Theorem (Host, Kra (05), Leibman (05))

If p_{1}, \ldots, p_{ℓ} are integer polynomials, then the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} f_{1} \ldots \ldots \cdot T^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.
Key ingredients:

- Bergelson-PET to get seminorm estimates.
- The Host-Kra decomposition result.
- Qualitative equidistribution results on nilmanifolds (Leibman (05)).

Results and problems: Polynomial sequences

Theorem (Tao (08))

If the mpt T_{1}, \ldots, T_{ℓ} commute, then the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{n} f_{1} \cdot \ldots \cdot T_{\ell}^{n} f_{\ell}
$$

converge in $L^{2}(\mu)$.

Tao's proof did not use ergodic theory, he worked on a finitary setup.

Results and problems: Polynomial sequences

Theorem (Tao (08))

If the mpt T_{1}, \ldots, T_{ℓ} commute, then the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{n} f_{1} \cdot \ldots \cdot T_{\ell}^{n} f_{\ell}
$$

converge in $L^{2}(\mu)$.

Tao's proof did not use ergodic theory, he worked on a finitary setup. Infinitary proof by Towsner (09), ergodic proof by Austin (10), a variant by Host (09).

Key ingredient in the last two proofs: Extensions.

Results and problems: Polynomial sequences

Theorem (Chu, F., Host (11))

If the mpt T_{1}, \ldots, T_{ℓ} commute, and $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$ have distinct degrees, then the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.

Results and problems: Polynomial sequences

Theorem (Chu, F., Host (11))

If the mpt T_{1}, \ldots, T_{ℓ} commute, and $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$ have distinct degrees, then the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.
Key ingredients:

- PET induction to get seminorm estimates. (Hardest step.)
- The Host-Kra decomposition result.
- Qualitative equidistribution on nilmanifolds (Leibman (05)).

Results and problems: Polynomial sequences

Problem

If the mpt T_{1}, \ldots, T_{ℓ} commute and $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$, show that the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.
For example, the case $\ell=2$ and $p_{1}(n)=p_{2}(n)=n^{2}$ is open.

Results and problems: Polynomial sequences

Problem

If the mpt T_{1}, \ldots, T_{ℓ} commute and $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$, show that the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \ldots \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.
For example, the case $\ell=2$ and $p_{1}(n)=p_{2}(n)=n^{2}$ is open.

Problem

If $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$ are rationally independent and have zero constant term, show that for every $\varepsilon>0$

$$
\mu\left(A \cap T_{1}^{-p_{1}(n)} A \cap \cdots \cap T_{\ell}^{-p_{\ell}(n)} A\right) \geq \mu(A)^{\ell+1}-\varepsilon
$$

for some $n \in \mathbb{N}$.

Results and problems: Smooth functions

Theorem (F. (10))
For every $c \geq 0$ not an integer, and $\ell \in \mathbb{N}$, the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{\left[n^{c}\right]} f_{1} \cdot T^{2\left[n^{c}\right]} f_{2} \cdot \ldots \cdot T^{\ell\left[n^{c}\right]} f_{\ell}
$$

converge $L^{2}(\mu)$ and their limit is $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{\ell n} f_{\ell}$.

Results and problems: Smooth functions

Theorem (F. (10))

For every $c \geq 0$ not an integer, and $\ell \in \mathbb{N}$, the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{\left[n^{c}\right]} f_{1} \cdot T^{2\left[n^{c}\right]} f_{2} \cdot \ldots \cdot T^{\ell\left[n^{c}\right]} f_{\ell}
$$

converge $L^{2}(\mu)$ and their limit is $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \ldots \cdot T^{\ell n} f_{\ell}$.
Key ingredients:

- PET induction to get seminorm estimates.
- The Host-Kra decomposition result.
- Quantitative equidistribution on nilmanifolds (Green, Tao (11)).

The same also holds for Hardy sequences of polynomial growth that stay logarithmically away from polynomials.

Results and problems: Smooth functions

Theorem (F. (10))

If $c_{1}, \ldots, c_{\ell} \geq 0$ are distinct non-integers, then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{\left[n^{c_{1}}\right]} f_{1} \cdot \ldots \cdot T^{\left[n^{\left.c_{\ell}\right]}\right.} f_{\ell} \rightarrow^{L^{2}(\mu)} \int f_{1} d \mu \cdot \ldots \int f_{\ell} d \mu
$$

for every ergodic system.
Corollary
For every system and set $A \in \mathcal{X}$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-\left[n^{\left.c_{1}\right]}\right.} A \cap \cdots \cap T^{-\left[n^{\left.c_{\ell}\right]}\right.} A\right) \geq(\mu(A))^{\ell+1}
$$

Results and problems: Smooth functions

Problem

Find an explicit sequence $(a(n))$ that grows faster than polynomials (i.e. $\log (a(n)) / n \rightarrow \infty$), such that the following averages converge

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a(n)} f_{1} \cdot T^{2 a(n)} f_{2}
$$

You can try $a(n)=\left[n^{\log \log n}\right]$.

Results and problems: Smooth functions

Problem

Find an explicit sequence $(a(n))$ that grows faster than polynomials (i.e. $\log (a(n)) / n \rightarrow \infty$), such that the following averages converge

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a(n)} f_{1} \cdot T^{2 a(n)} f_{2}
$$

You can try $a(n)=\left[n^{\log \log n}\right]$.

Problem

Show that for every $c \geq 0$ and commuting mpt T_{1}, T_{2} the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{\left[n^{c}\right]} f_{1} \cdot T_{2}^{\left[n^{c}\right]} f_{2}
$$

converge in $L^{2}(\mu)$.

Results and problems: Prime numbers

We denote by \mathbb{P} the set of prime numbers and $\pi(N)=N / \log N$.

Results and problems: Prime numbers

We denote by \mathbb{P} the set of prime numbers and $\pi(N)=N / \log N$.

Theorem (Wooley, Ziegler (10))

If $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$ then the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T^{p_{1}(n)} f_{1} \cdot \ldots \cdot T^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.

Results and problems: Prime numbers

We denote by \mathbb{P} the set of prime numbers and $\pi(N)=N / \log N$.

Theorem (Wooley, Ziegler (10))

If $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t]$ then the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T^{p_{1}(n)} f_{1} \cdot \ldots \cdot T^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$.
The proof ultimately relies on the Host-Kra decomposition and also uses some number theoretic input by Green and Tao:

- The modified von Mangoldt function has a pseudorandom majorant (08).
- The modified von Mangoldt function minus 1 is asymptotically orthogonal to nilsequences (11).

Results and problems: Prime numbers

Theorem (F., Host, Kra (11))

If $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t], T_{1}, \ldots, T_{\ell}$ commuting mpt, then the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$ conditionally to the convergence of the averages $\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}$.

Results and problems: Prime numbers

Theorem (F., Host, Kra (11))

If $p_{1}, \ldots, p_{\ell} \in \mathbb{Z}[t], T_{1}, \ldots, T_{\ell}$ commuting $m p t$, then the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}
$$

converge in $L^{2}(\mu)$ conditionally to the convergence of the averages $\frac{1}{N} \sum_{n=1}^{N} T_{1}^{p_{1}(n)} f_{1} \cdot \ldots \cdot T_{\ell}^{p_{\ell}(n)} f_{\ell}$.

- Compare with deterministic averages and use PET induction to estimate the difference.
- Use the uniformity of the modified von Mangoldt function minus 1 (Green, Tao, Ziegler (11)).

Results and problems: Prime numbers

Problem

Show that for every $c \geq 0$ the averages

$$
\frac{1}{\pi(N)} \sum_{n \in \mathbb{P} \cap[1, N]} T^{\left[n^{c}\right]} f_{1} \cdot T^{2\left[n^{c}\right]} f_{2}
$$

converge in $L^{2}(\mu)$.

Results and problems: Random sequences

Form a sequence $\left(a_{n}(\omega)\right)$ by picking, independently, an integer $n \in \mathbb{N}$ to be a member of the sequence with probability $\sigma_{n} \in[0,1]$.

Results and problems: Random sequences

Form a sequence $\left(a_{n}(\omega)\right)$ by picking, independently, an integer $n \in \mathbb{N}$ to be a member of the sequence with probability $\sigma_{n} \in[0,1]$.

Theorem (F., Lesigne, Wierdl (11))

If $\sigma_{n}=n^{-c}$ with $\mathbf{c} \in(\mathbf{0}, \mathbf{1} / \mathbf{1 4})$, then ω-almost surely, for all commuting $m p t T, S$, and $f, g \in L^{\infty}(\mu)$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f \cdot S^{a_{n}(\omega)} g=\mathbb{E}\left(f \mid \mathcal{I}_{T}\right) \cdot \mathbb{E}\left(g \mid \mathcal{I}_{S}\right)
$$

where the the convergence is pointwise.

Results and problems: Random sequences

Form a sequence $\left(a_{n}(\omega)\right)$ by picking, independently, an integer $n \in \mathbb{N}$ to be a member of the sequence with probability $\sigma_{n} \in[0,1]$.

Theorem (F., Lesigne, Wierdl (11))

If $\sigma_{n}=n^{-c}$ with $\mathbf{c} \in(\mathbf{0}, \mathbf{1} / \mathbf{1 4})$, then ω-almost surely, for all commuting $m p t T, S$, and $f, g \in L^{\infty}(\mu)$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f \cdot S^{a_{n}(\omega)} g=\mathbb{E}\left(f \mid \mathcal{I}_{T}\right) \cdot \mathbb{E}\left(g \mid \mathcal{I}_{S}\right)
$$

where the the convergence is pointwise.

- Compare with simpler averages and use van der Corput to estimate the difference.
- Use the randomness of the random variables to show that the difference converges to 0 pointwise.

Results and problems: Random sequences

Theorem (F., Lesigne, Wierdl (11))

If $\sigma_{n}=n^{-c}$ with $\mathbf{c} \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$, then ω-almost surely, for every mpt T, and $f, g \in L^{\infty}(\mu)$, the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{n}(\omega)} f \cdot T^{2 a_{n}(\omega)} g
$$

converge pointwise to $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f \cdot T^{2 n} g$.

Results and problems: Random sequences

Theorem (F., Lesigne, Wierdl (11))

If $\sigma_{n}=n^{-c}$ with $\mathbf{c} \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$, then ω-almost surely, for every mpt T, and $f, g \in L^{\infty}(\mu)$, the averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{a_{n}(\omega)} f \cdot T^{2 a_{n}(\omega)} g
$$

converge pointwise to $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f \cdot T^{2 n} g$.

Problem

Show that the previous results hold when $\sigma_{n}=n^{-c}$ where $\mathbf{c} \in(\mathbf{0}, \mathbf{1})$.

Commercial

The key to solving several open problems in this area (including the ones mentioned previously) could be a structure theorem for multiple correlation sequences.

Commercial

The key to solving several open problems in this area (including the ones mentioned previously) could be a structure theorem for multiple correlation sequences. For instance:

Problem

Determine the structure (with no errors!) of the sequence

$$
A(n)=\int f \cdot T^{n} g \cdot T^{2 n} h d \mu
$$

Is it true that $(A(n))$ is a mixture of 2-step nilsequences?

Commercial

The key to solving several open problems in this area (including the ones mentioned previously) could be a structure theorem for multiple correlation sequences. For instance:

Problem

Determine the structure (with no errors!) of the sequence

$$
A(n)=\int f \cdot T^{n} g \cdot T^{2 n} h d \mu
$$

Is it true that $(A(n))$ is a mixture of 2-step nilsequences?

Bernard will speak about this problem on Sunday.

Commercial

The key to solving several open problems in this area (including the ones mentioned previously) could be a structure theorem for multiple correlation sequences. For instance:

Problem

Determine the structure (with no errors!) of the sequence

$$
A(n)=\int f \cdot T^{n} g \cdot T^{2 n} h d \mu
$$

Is it true that $(A(n))$ is a mixture of 2-step nilsequences?

Bernard will speak about this problem on Sunday.

An expanded list of open problems can be found on my webpage.

Commercial

The key to solving several open problems in this area (including the ones mentioned previously) could be a structure theorem for multiple correlation sequences. For instance:

Problem

Determine the structure (with no errors!) of the sequence

$$
A(n)=\int f \cdot T^{n} g \cdot T^{2 n} h d \mu
$$

Is it true that $(A(n))$ is a mixture of 2-step nilsequences?

Bernard will speak about this problem on Sunday.

An expanded list of open problems can be found on my webpage.
THANK YOU!

