
SOME OPEN PROBLEMS ON MULTIPLE ERGODIC AVERAGES
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1. Problems related to polynomial sequences

In this section we give a list of problems related to the study of multiple ergodic averages
involving iterates given by polynomial sequences, and related applications to multiple recur-
rence.

1.1. Powers of a single transformation. Let P := {p1, . . . , p`} be a family of integer poly-
nomials that are essentially distinct, meaning, all polynomials and their differences are non-
constant. First, we consider averages of the form

(1)
1
N

N∑

n=1

T p1(n)f1 · . . . · T p`(n)f`,

where (X,X , µ, T ) is an invertible measure preserving system and f1, . . . , f` ∈ L∞(µ). We
remark that all the mean convergence results stated in this section work equally well for averages
of the form 1

ΦN

∑
n∈ΦN

in place of the averages 1
N

∑
n∈N where (ΦN )N∈N is any Følner sequence

of subsets of N.
Before discussing some problems related to the characteristic factors of the averages (1), we

state a result of B. Host and B. Kra [32] and A. Leibman [35] that gives useful information
about their structure.

Theorem. There exists d = d(P) such that the factor Zd,T is characteristic for mean conver-
gence of the averages (1).

We emphasize that the value of d(P) in the previous statement does not depend on the
system or the functions involved. Given a family of polynomials P, we denote by dmin(P) the
minimal value of d(P) that works in the previous theorem. This value is in general hard to
pin down and depends on the algebraic relations that the polynomials satisfy. For instance,
we know that dmin({n, 2n, . . . , `n}) = ` − 1 ([31, 45]), and dmin(P) = 1 when P consists of
at least two rationally independent polynomials ([22, 24]). But it is not only linear relations
between the polynomials that matter, for instance, we know that dmin({n, 2n, n2}) = 2 while
dmin({n, 2n, n3}) = 1 ([21, 36]). More examples of families P where dmin(P) has been computed
can be found in [21, 36]. Furthermore, in [36] a (rather complicated) algorithm is given for
computing this value. Despite such progress, the following is still open (the problem is implicit
in [11] and was stated explicitly in [36]):

Problem 1. If |P| ≥ 2, show that dmin(P) ≤ |P| − 1.

Date: March 2011.

1



2 NIKOS FRANTZIKINAKIS

The estimate is known when |P| = 2, 3 ([21]) and it is open for |P| = 4. The problem is
even open when one is restricted to the class of Weyl systems, meaning, systems of the form
(Td,BTd ,mTd , T ) where T : Td → Td is a unipotent affine transformation. We denote with
dW

min(P) the minimum value of d(P) such that the factor Zd(P),T is characteristic for mean
convergence of the averages (1) for all Weyl systems (properties of dW

min(P) were studied in
[11]).

Special Case of Problem 1. If |P| ≥ 2, show that dW
min(P) ≤ |P| − 1.

This problem was first stated in [11] (set W (P ) := dW
min(P) + 1 in the remark after Propo-

sition 5.3). The estimate is known when |P| = 2, 3, 4 ([21, 40]) and it is open when |P| = 5.
Interestingly, no example is known where dmin(P) 6= dW

min(P), so it is natural to suspect that
these two values are always equal.

Problem 2. Show that dmin(P) = dW
min(P).

This problem was first stated in [11]. The identity is known when |P | = 3 ([21]) and is open
when |P | = 4. Obviously one has dW

min(P) ≤ dmin(P). Some bounds in the other direction are
given in [36].

Mean convergence of the averages (1) was established after a long series of intermediate
results; the papers [26, 16, 17, 18, 28, 41, 30, 31, 45] dealt with the important case of linear
polynomials, and using the machinery introduced in [31], convergence for arbitrary polynomials
was finally obtained by B. Host and B. Kra in [32] except for a few cases that were treated by
A. Leibman in [35].

Theorem. Let (X,X , µ, T ) be an invertible measure preserving system, f1, . . . , f` ∈ L∞(µ) be
functions, and p1, . . . , p` be integer polynomials. Then the averages (1) converge in the mean
as N →∞.

Furthermore, explicit formulas for the limit can be given for special families of polynomials
[44, 22, 24, 21, 36], but no such formula is known for general families of polynomials.

In most cases, it is still unknown whether mean convergence can be boosted to pointwise
convergence. We mention two particular cases that are open:

Problem 3. Show that the averages

1
N

N∑

n=1

f1(Tnx) · f2(T 2nx) · f3(T 3nx), or the averages
1
N

N∑

n=1

f1(Tnx) · f2(Tn2
x),

converge pointwise.

Pointwise convergence of the averages (1) is known when ` = 1 [12] and is also known when
` = 2 and both polynomials are linear [13] (see also [19] for an alternate proof). In all other
cases the problem is open even for weak mixing systems. Partial results that deal with special
classes of transformations can be found in [1, 2, 6, 7, 20, 34, 38, 39].

1.2. Commuting transformations. Throughout this section (X,X , µ) is a probability space,
T1, . . . , T` : X → X are commuting, invertible measure preserving transformations, f1, . . . , f` ∈
L∞(µ) are functions, and p1, . . . , p` are polynomials with integer coefficients.

We start with the following result of V. Bergelson, B. Host, and B. Kra [9]:
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Theorem. For ergodic systems one has the decomposition∫
f0 · Tnf1 · . . . · T `nf` dµ = N(n) + e(n)

where (N(n)) is an `-step nilsequence and limN→∞ 1
N

∑N
n=1 |e(n)| = 0.

A more general result that uses polynomial iterates in place of the linear iterates was proved
recently in [37]. A key ingredient in the proof of the previous theorem is the fact that the
factor Z`,T is characteristic for convergence of the averages 1

N

∑N
n=1 |

∫
f0 ·Tnf1 · . . . ·T `nf` dµ|.

When one uses commuting transformations in place of powers of the same transformation
an analogous property fails, nevertheless, there are no known examples of multicorrelation
sequences of commuting transformations that are genuinely different than nilsequences.

Problem 4. Is it true that one always has the decomposition∫
f0 · Tn

1 f1 · . . . · Tn
` f` dµ = N(n) + e(n)

where (N(n)) is an `-step nilsequence and limN→∞ 1
N

∑N
n=1 |e(n)| = 0?

The question is open even when ` = 2. Notice that we make no ergodicity assumptions, so
in particular this problem is open even when ` = 2 and T2 = T 2

1 .
We move to some problems related to convergence properties of multiple ergodic averages. A

very natural problem (stated explicitly in [8] but was advertised long before 1996 by H. Fursten-
berg and others) is to extend the mean convergence result involving polynomial iterates of a
single transformation to several commuting transformations:

Problem 5. Show that the averages

(2)
1
N

N∑

n=1

T
p1(n)
1 f1 · . . . · T p`(n)

` f`

converge in the mean as N →∞.

Mean convergence is known when the transformations T1, . . . , T` are powers of the same
transformation ([32, 35]), when the polynomials are linear [42] (with alternate proofs given in
[43, 3, 29]), and when the polynomials have distinct degrees [15]. Convergence is also known
for general families of polynomials if one imposes very strong ergodicity assumptions on the
transformations [33]. See also [4, 5] where techniques from [3] have been refined and extended,
aiming to eventually handle the case of general polynomial iterates. Despite such intense efforts,
convergence is still not known for some simple families of polynomials, for instance, when ` = 2
and p1(n) = p2(n) = n2, or when p1(n) = n2, p2(n) = n2 + n.

As mentioned previously, when all transformations are equal, and the polynomials are essen-
tially distinct, then characteristic factors of the averages (2) can be chosen to have very special
algebraic structure. For general commuting transformations this is no longer the case; if one
chooses p2 = p1 = n, T1 = T2, and f2 = f̄1, then the averages (2) do not converge to 0 unless
f1 = f2 = 0. The same problem persists when two of the polynomials are pairwise dependent,
meaning, some non-trivial linear combination of two of the polynomials is constant. But in all
other cases, there is no obvious obstruction to having “simple” characteristic factors.
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Problem 6. Suppose that the polynomials p1, . . . , p` ∈ Z[t] are pairwise independent. Show
that there exists d ∈ N such that the factors Zd,T1 , . . . ,Zd,T`

are characteristic factors for the
averages (2).

This is known to be the case when the polynomials have distinct degrees [15]. But it is not
known for some simple families of integer polynomials, for instance, for the family {n3, n3 +n}
or the family {n, n2, n2 + n}. Even for weak mixing transformations the problem is open:

Special Case of Problem 6. Suppose that the transformations T1, . . . , T` : X → X are weak
mixing and the polynomials p1, . . . , p` ∈ Z[t] are pairwise independent. Show that

lim
N→∞

1
N

N∑

n=1

T
p1(n)
1 f1 · . . . · T p`(n)

` f` =
∫

f1 dµ · . . . ·
∫

f` dµ.

When all transformations are equal and the polynomials are in general position, characteristic
factors for the averages (2) turn out to be extremely simple [22, 24]:

Theorem. Suppose that the polynomials p1, . . . , p` ∈ Z[t] are rationally independent. Then the
rational Kronecker factor Krat(T )1 is a characteristic factor for the averages (1).

It is very likely that this result generalizes to the case of several commuting transformations:

Problem 7. Suppose that the polynomials p1, . . . , p` ∈ Z[t] are rationally independent. Show
that the factors Krat(T1), . . . ,Krat(T`) are characteristic factors for the averages (2).

This was proved in [15] when ` = 2 and p1(n) = n. In the same article a somewhat weaker
property was proved for all monomials with distinct degrees. We mention also a closely related
multiple recurrence problem:

Problem 8. Suppose that the polynomials p1, . . . , p` ∈ Z[t] are rationally independent and have
zero constant term. Show that for every A ∈ X and every ε > 0, there exists n ∈ N such that

(3) µ(A ∩ T
−p1(n)
1 A ∩ · · · ∩ T

−p`(n)
` A) ≥ µ(A)`+1 − ε.

In fact, the set of integers n for which (3) holds is expected to have bounded gaps. The lower
bounds are known when all transformations are equal [23] and they are also known for general
commuting transformations when the polynomials are monomials with distinct degrees [15].
The result fails if the polynomials are distinct and pairwise dependent; in this case no fixed
power of µ(A) works as a lower bound in (3) for every system and set [9]. On the other hand,
the assumption that the polynomials are rationally independent is not necessary, for instance,
the result is expected to work for the family of polynomials {n, n2, n2 +n} (this is known to be
the case when all transformations are equal [21]). We remark that Problem 7 is solved, then
the conjectured lower bounds of Problem 8 will follow rather easily.

Regarding pointwise convergence of multiple ergodic averages of commuting transformations,
progress has been extremely scarce. Even when one uses two commuting transformations and
linear iterates convergence is not known in general. The following is a well known open problem:

1Given a measure preserving system (X,X , µ, T ) we define Krat(T ) =
∨

d∈N IT d .
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Problem 9. Let (X,X , µ) be a probability space, T, S : X → X be commuting invertible mea-
sure preserving transformations, and f, g ∈ L∞(µ) be functions. Show that the averages

1
N

N∑

n=1

f(Tnx) · g(Snx)

converge pointwise.

For a list of partial results that apply to special classes of transformations see the list after
Problem 3.

1.3. Not necessarily commuting transformations. All problems in the previous sections
were stated for families of transformations that commute. It is very likely that all positive
results extend to the case where the transformations generate a nilpotent group. For instance,
we mention a problem from [10]:

Problem 10. Let (X,X , µ) be a probability space, T1, . . . , T` : X → X be invertible measure
preserving transformations that generate a nilpotent group, and f1, . . . , f` ∈ L∞(µ) be functions.
Show that the averages

1
N

N∑

n=1

Tn
1 f1 · . . . · Tn

` f`

converge in L2(µ).

Convergence is known when ` = 2 [10] and is open for ` = 3. The interested reader should
look in [10] for a list of other closely related open problems. See also [?] for a related multiple
recurrence result.

When one works with arbitrary families of invertible measure preserving transformations the
next result shows that one cannot expect to have similar convergence results:

Theorem. Let a, b : N → Z \ {0} be 1 − 1 sequences. Then there exist invertible Bernoulli
measure preserving transformations T and S acting on the same probability space (X,X , µ)
such that

• for some f, g ∈ L∞(µ) the averages 1
N

∑N
n=1

∫
T a(n)f · Sb(n)g dµ diverge;

• for some A ∈ X with µ(A) > 0 we have T−a(n)A ∩ S−b(n)A = ∅ for every n ∈ N.

To construct such examples it suffices to modify examples of D. Berend (see Ex 7.1 in [6])
and H. Furstenberg (page 40 in [27]) that cover the case a(n) = b(n) = n (the details will
appear in [25]). When a(n) = b(n), it is also known that given any finitely generated solvable
group G of exponential growth, there exist invertible measure preserving transformations T, S,
with < T, S >⊂ G, and such that and the conclusion of the previous theorem holds for those T
and S. It is interesting that despite such negative news, once one introduces an extra variable,
several convergence (and very likely recurrence) results can be extended to arbitrary families
of measure preserving transformations. We mention an example from [14]:
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Theorem. Let (X,X , µ) be a probability space, T1, . . . , T` : X → X be invertible measure pre-
serving transformations, f1, . . . , f` ∈ L∞(µ) be functions, p1, . . . , p` be essentially distinct poly-
nomials, and a ∈ (0, 1/d). Then the averages

(4)
1

N1+a

∑

1≤m≤N,1≤n≤Na

f1(T
m+p1(n)
1 x) · . . . · f`(T

m+p`(n)
` x)

converge pointwise as N →∞.

One can show that the assumption that the polynomials are essentially distinct is necessary.
It was also shown in [14] that there exists d ∈ N such that the factors Zd,T1 , . . . ,Zd,T`

are
characteristic for pointwise convergence of the averages (4). Interestingly, the corresponding
multiple recurrence result (that would generalize the polynomial Szemerédi theorem) remains
open:

Problem 11. Let (X,X , µ) be a probability space, T1, . . . , T` : X → X be invertible measure pre-
serving transformations, and p1, . . . , p` be distinct polynomials with zero constant term. Show
that for every A ∈ X with µ(A) > 0 we have

µ(A ∩ T
−m−p1(n)
1 A ∩ · · · ∩ T

−m−p`(n)
` A) > 0

for some m, n ∈ N.2

The assumption that the polynomials are distinct is necessary since as mentioned before there
exist (non-commuting) transformations T, S, acting on the same probability space (X,X , µ),
and a set A ∈ X with µ(A) > 0 such that µ(TnA ∩ SnA) = 0 for every n ∈ N. The multiple
recurrence property is known to hold when all the transformations are weak mixing [14], but
for general measure preserving systems even some of the simplest cases are open:

Special Case of Problem 11. Let (X,X , µ) be a probability space and T, S,R : X → X be
invertible measure preserving transformations. Show that for every A ∈ X with µ(A) > 0 there
exist m,n ∈ N such that

µ(A ∩ T−mA ∩ S−m−nA ∩R−m−2nA) > 0.
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[20] J-M. Derrien, E. Lesigne. Un théorème ergodique polynomial ponctuel pour les endomorphismes exacts et

les K-systèmes. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), no. 6, 765-778.
[21] N. Frantzikinakis. Multiple ergodic averages for three polynomials and applications. Trans. Amer. Math.

Soc. 360 (2008), no. 10, 5435–5475.
[22] N. Frantzikinakis, B. Kra. Polynomial averages converge to the product of integrals. Isr. J. Math. 148

(2005), 267–276.
[23] N. Frantzikinakis, B. Kra. Convergence of multiple ergodic averages for some commuting transformations.

Ergodic Theory Dynam. Systems 25 (2005), no. 3, 799–809.
[24] N. Frantzikinakis, B. Kra. Ergodic averages for independent polynomials and applications. J. London Math.

Soc. 74 (2006), no. 1, 131–142.
[25] N. Frantzikinakis, E. Lesigne, M. Wierdl. Random sequences and pointwise convergence of multiple ergodic

averages. Preprint, arXiv:1012.1130.
[26] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progres-
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