
SOME OPEN PROBLEMS ON MULTIPLE ERGODIC AVERAGES

NIKOS FRANTZIKINAKIS

1. Some useful tools and observations

1.1. Characteristic factors. A notion that underlies the study of the limiting behavior of
several multiple ergodic averages is that of the characteristic factor(s). Implicit use of this
notion was already made on the foundational article of H. Furstenberg [35], but the term
“characteristic factor” was coined in a paper of H. Furstenberg and B. Weiss [37].

Given a probability space (X,X , µ) and a collection of measure preserving transformations
T1, . . . , T` : X → X, we say that the sub-σ-algebras X1, . . . ,X` of X are characteristic factors
for the averages

(1) AN (f1, . . . , f`) :=
1
N

N∑

n=1

T
a1(n)
1 f1 · . . . · T a`(n)

` f`

if the following two conditions hold:
• Xi is Ti-invariant for i = 1, . . . , `,
• whenever f1, . . . , f` ∈ L∞(µ), we have AN (f1, . . . , f`)−AN (f̃1, . . . , f̃`) →L2(µ) 0, where

f̃i := E(fi|Xi) for i = 1, . . . , `.1

If in addition one has X1 = · · · = X`, then we call this common sub-σ-algebra a characteristic
factor for the averages (1).

1.2. Gowers-Host-Kra seminorms. When analyzing the limiting behavior of the averages
(1), an intermediate goal is to choose characteristic factors that are as simple as possible, and
typically simple for us means that the corresponding factor systems have very special algebraic
structure. Very often this step is carried out by controlling the L2(µ)-norm of the averages (1)
by the Gowers-Host-Kra seminorms. Similar seminorms were first introduced in combinatorics
by T. Gowers [38] and their ergodic variant (that is more relevant for our study) was introduced
by B. Host and B. Kra [44]. For an ergodic system (X,X , µ, T ) and function f ∈ L∞(µ), they
are defined as follows:

|||f |||1 :=
∣∣∣
∫

f dµ
∣∣∣ ;

|||f |||2k+1

k+1 := lim
N→∞

1
N

N∑

n=1

|||f̄ · Tnf |||2k

k .

It is shown in [44] that for every k ∈ N the limit above exists, and ||| · |||k, thus defined, is
a seminorm on L∞(µ). For non-ergodic systems the seminorms can be similarly defined, the

Date: March 2011.
1Equivalently, if E(fi|Xi) = 0 for some i ∈ {1, . . . , `}, then AN (f1, . . . , f`) →L2(µ) 0.
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only difference is that ||| · |||1 is defined by |||f |||1 :=
∥∥∫

f dµx

∥∥
L2(µ)

, where µ =
∫

µx dµ(x) is the
ergodic decomposition of the measure µ with respect to T . If further clarification is needed,
we write ||| · |||k,µ, or ||| · |||k,T . We remark that if a measure preserving system is weak mixing2,
then |||f |||k = | ∫ f dµ| for every k ∈ N.

1.3. The factors Zk and their structure. The seminorms ||| · |||k induce T -invariant sub-σ-
algebras Zk−1 that satisfy

(2) for f ∈ L∞(µ), E(f |Zk−1) = 0 if and only if |||f |||k = 0.

As a consequence, if for some k1, . . . , k` ∈ N one is able to produce an estimate of the form

(3) lim sup
N→∞

‖AN (f1, . . . , f`)‖L2(µ) ¿ min
i=1,...,`

|||fi|||ki,Ti
, 3

then one knows that the factors Zk1−1,T1 , . . . ,Zk`−1,T`
are characteristic for mean convergence

of the averages (1). Under such circumstances, one gets characteristic factors with the sought-
after algebraic structure. This is a consequence of a result of B. Host and B. Kra [44] stating
that for ergodic systems the factor system (X,Zk, µ, T ) is an inverse limit of k-step nilsystems4.
Depending on the problem, it may be more useful to think of the previous structure theorem as
a decomposition result; for every ergodic system (X,X , µ, T ) and f ∈ L∞(µ), for every k ∈ N
and ε > 0, there exist measurable functions fs, fu, fe, with L∞(µ) norm at most 2 ‖f‖L∞(µ),
such that

• f = fs + fu + fe;
• |||fu|||k+1 = 0; ‖fe‖L1(µ) ≤ ε; and
• (fs(Tnx))n∈N is a k-step nilsequence5 for µ-almost every x ∈ X.

Such a decomposition also holds for non-ergodic systems (see Proposition 3.1 in [21]).
Combining the hypothetical seminorm estimates (3) with the aforementioned structure the-

orem (or the decomposition result), the problem of analyzing the limiting behavior of the
averages (1) is reduced to a new problem that amounts to proving certain equidistribution
properties of sequences on nilmanifolds. Tools for handling such equidistribution problems have
been developed in recent years, thus making such a reduction very much worthwhile. Some
examples of equidistribution results of this type can be found in [2, 25, 39, 40, 49, 50, 52, 53].

1.4. A general strategy. Summarizing, when one is against a multiple recurrence problem
in ergodic theory, or more generally any problem that can be solved by analyzing the limiting

2A measure preserving system (X, µ, T ) is weak mixing if the product system (X×X, µ×µ, T ×T ) is ergodic,

or equivalently, if for every f ∈ L∞(µ) with
∫

f dµ = 0 one has limN→∞ 1
N

∑N
n=1 |

∫
f̄ · T nf dµ|2 = 0.

3As a general principle, if one can show that AN (f1, . . . , f`) →L2(µ) 0 when all the transformations are weak
mixing and one of the functions has mean 0, then one can adapt its proof to show (3).

4A k-step nilmanifold is a homogeneous space X = G/Γ where G is a k-step nilpotent Lie group, and Γ is a
discrete cocompact subgroup of G. A k-step nilsystem is a system of the form (X,G/Γ, mX , Ta) where X = G/Γ
is a k-step nilmanifold, a ∈ G, Ta : X → X is defined by Ta(gΓ) := (ag)Γ, mX is the normalized Haar measure
on X, and G/Γ is the completion of the Borel σ-algebra of G/Γ.

5A k-step nilsequence is a uniform limit of sequences of the form (F (bnx)) where X = G/Γ is a k-step
nilmanifold, b ∈ G, x ∈ X, and F is Riemann integrable on X.
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behavior of the multiple ergodic averages (1), very often a useful approach is to try to work
out the following three steps:6

• Produce seminorm estimates like the ones in (3).
• Use a structure theorem or a decomposition result to reduce matters to nilsystems.
• Use qualitative or quantitative equidistribution results on nilmanifolds to end the proof.

The reader can find several examples demonstrating this approach, or variants of it, to prove
multiple recurrence and convergence results, as well as related applications in combinatorics, in
the following articles: [1, 10, 13, 14, 17, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 37, 41, 43,
44, 45, 46, 47, 48, 51, 54, 55, 56, 60, 61, 62]. Depending on the problem, the difficulty of each
step varies; typically the first step is elementary and is carried out by successive uses of the
Cauchy-Schwarz inequality and an estimate of van der Corput7 (or Hilbert space variants of it),
the second step involves the use of (an often minor) modification of the structure theorem of
B. Host and B. Kra, and the third step is a combination of algebraic and analytic techniques.

1.5. The polynomial exhaustion technique. We explain a technique that is often used to
produce seminorm estimates of the type (3). It is based on an induction scheme (often called
PET induction) introduced by V. Bergelson in [?]. Let F := {a1, . . . , a`} be a family of real
valued sequences, and suppose that one wishes to establish seminorm estimates of the form

(4) lim sup
N→∞

‖AN (f1, . . . , f`)‖L2(µ) ¿ min
i=1,...,`

|||fi|||ki

where

AN (f1, . . . , f`) :=
1
N

N∑

n=1

T [a1(n)]f1 · . . . · T [a`(n)]f`.

Variations of this method could also be used to get similar estimates for some multiple ergodic
averages involving commuting transformations.

1.5.1. The method. The main idea is to use some variation of van der Corput’s fundamental
estimate and bound the left hand side in (4) by an expression that involves families of sequences
of smaller “complexity”. Our goal is after a finite number of iterations to get families of
sequences that are simple enough to handle directly. The details depend on the family of
sequences at hand, but typically, after the first iteration, we get an upper bound by an average
over r ∈ N of the L2(µ)-norm of multiple ergodic averages with iterates taken from the family
of sequences

(5) Fa,r := {non-constant polynomials of the form ai(n)−a(n), ai(n+r)−a(n), i = 1, . . . , `}
where a ∈ F is fixed (so in particular independent of r ∈ N) and chosen so that the family Fa,r

has smaller “complexity” than F except possibly for a finite number of r ∈ N.

6This rough plan is already implicit in the foundational paper of Furstenberg [35], the only difference is
that in [35] the role of nilsystems played the much larger class of distal systems. Depending on the problem,
this approach may offer some advantages, but for several recent applications it appears that the class of distal
systems is just too broad to deal with directly.

7This states that if a(1), . . . , a(N) are complex numbers bounded by 1, then for every integer R between 1

and N we have
∣∣ 1

N

∑N
n=1 a(n)

∣∣2 ¿ 1
R

∑R
r=1(1 − rR−1)<(

1
N

∑N
n=1 a(n + r) · ā(n)

)
+ R−1 + RN−1 where <(z)

denotes the real part of z.
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To be able to carry out this plan one first needs to take care of some elementary, but often
not so easy, preparatory steps:

• Define a suitable collection G0 of families of sequences for which the desired seminorm
estimates are easy to obtain directly.

• Define a suitable collection G of families of sequences that contains G0 and the family
{a1, . . . , a`}.

• Define a notion of equivalence and then a partial order ¹ in G so that: (a) every
decreasing sequence (Gn), with Gn ∈ G, is eventually constant, and (b) if G ∈ G \ G0,
then there exists b ∈ G such that Gb,r ∈ G and Gb,r ≺ G for all but finitely many r ∈ N
(Gb,r is defined as in (5)).

These conditions guarantee that there exists d ∈ N and an appropriate choice of sequences
b1, b2, . . . , bd, such that the iteration

G 7→ Gr1 := Gb1,r1 7→ Gr1,r2 := Gr1
b2,r2

7→ · · · 7→ Gr1,...,rd := G
r1,...,rd−1

bd,rd

(not to be confused with an exact sequence!) produces families Gr1,...,rd that belong to G0 for
a set (r1, . . . , rd) ∈ Zd that is big enough for our purposes. Practically, this means that after
applying van der Corput’s estimate a finite number of times, we have good chances to be able
to bound the left hand side in (4) by a much simpler expression for which we can prove the
desired seminorm estimates directly.

This strategy has been employed successfully in several instances and produced seminorm
estimates of the form (4) for linear sequences [44], polynomial sequences [45, 51], block poly-
nomials of fixed degree [34], and some sequences coming from smooth functions of polynomial
growth [9, 26]. Notice a common desirable feature that these sequences share: after taking suc-
cessive differences (meaning iterating the operation a(n) 7→ a(n+r)−a(n))) a finite number of
times we arrive to sequences that are either constant or piecewise asymptotically constant. This
feature is not shared by several other sequences worth studying, for example, random sequences
of integers, the sequence of primes, and the sequences ([nlog n]), ([n sinn]). In such cases one has
to modify the PET induction approach or abandon it altogether and try something different.8

1.5.2. An example. Let F be a family of essentially distinct polynomials, meaning, all polyno-
mials and their pairwise differences are not constant. Then one can define as G0 the collection
of all families consisting of a single linear polynomial, for such families establishing an estimate
of the form (4) is easy, and as G the collection of all families of essentially distinct polynomials.

The tricky part is to define a partial order in G that satisfies the third requirement mentioned
in Section 1.5.1. This is done as follows: First, define the degree d of a family G of non-constant
polynomials to be the maximum of the degrees of the polynomials in the family. Next, let Gi

be the subfamily of polynomials of degree i in G, and let wi denote the number of distinct
leading coefficients that appear in the family Gi. The vector (d,wd, . . . , w1) is going to be
the complexity of the family G. We identify two families that have the same complexity
and we order the set of all possible complexities lexicographically, meaning, (d,wd, . . . , w1) >
(d′, w′d′ , . . . , w

′
1) if and only if in the first instance where the two vectors disagree the coordinate

of the first vector is greater than the coordinate of the second vector. We order the (equivalence

8For instance, for the first two sequences, it turns out to be more effective to utilize the random features of
the sequences at hand, and get seminorm estimates by comparing the corresponding multiple ergodic averages
with other deterministic ones that are better understood.
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classes) of families of polynomials accordingly. One easily verifies that every decreasing sequence
of complexities is eventually constant, and if G ∈ G \ G0, then there exists p ∈ G such that the
family Gp,r is in G and has complexity strictly smaller than that of G for all but finitely many
r ∈ N.

Using this strategy, seminorm estimates similar to those in (4) were established [45] for all
essentially distinct polynomials except for a few cases (one has to dig into the details to see why
this argument misses some cases) that were handled in [51] (for alternate proofs see Lemma 4.7
in [26] or Theorem 1.4 in [20]).

1.6. Equidistribution of polynomial sequences on nilmanifolds. Let X = G/Γ be a
nilmanifold, b1, . . . , b` ∈ G and x ∈ X, and a1, . . . , a` : N → Z be sequences. In several of the
applications we have in mind one is at some point called to prove that the sequence (g(n)x)
defined by g(n) := b

a1(n)
1 · . . . · ba`(n)

` ,9 is equidistributed on some subset Y of X.10

Often Y is X, or a sub-nilmanifold of X, and in a few cases a union of sub-nilmanifolds
of X. Such problems are typically much easier to handle when X = Td, since in this case
one can utilize Weyl’s equidistribution theorem11 in order to reduce matters to estimating
certain exponential sums. Unfortunately, such a convenient reduction is not available for all
nilmanifolds, and checking equidistribution in this broader setup can be very challenging even
for simple sequences.12 Luckily, the situation is much better understood when all the sequences
a1, . . . , a` are given by integer polynomials, in this case we call the sequence (g(n)x) polynomial ;
next, we are going to state some key results.

In the forthcoming discussion we assume that X = G/Γ is a connected nilmanifold. By
G0 we denote the connected component of the identity element in G,13 and we let Z :=
G/([G0, G0]Γ) and π : X → Z be the natural projection. It is important to notice that Z has
much simpler structure than X. Indeed, if G is connected, then Z is a connected compact
Abelian Lie group, hence, a torus (meaning Td for some d ∈ N), and as a consequence every
nilrotation in Z is (isomorphic to) a rotation on some torus. In general, the nilmanifold Z
may be more complicated, but it is the case that every nilrotation in Z is (isomorphic to) a
unipotent affine transformation on some torus14 (see Proposition 3.1 in [29]). Iterates of such
transformations can be computed explicitly15, so one is much more comfortable to be dealing

9Such sequences cover as special cases sequences of the form
(
(c

a1(n)
1 x1, . . . , c

a`(n)
` x`)

)
, defined on the product

of the nilmanifolds X1, . . . , X`. To see this let X := X1 × · · · ×X`, x := (x1, . . . , x`), b1 := (c1, e2, . . . , el), . . .,
b` := (e1, . . . , e`−1, c`) where ei denotes the identity element of the group Gi.

10If X is a nilmanifold we say that a sequence (g(n)) is equidistributed in a sub-nilmanifold Y (suppose that

g(n) ∈ Y for n ∈ N) of X if for every f ∈ C(Y ) one has limN→∞ 1
N

∑N
n=1 f(g(n)) =

∫
f dmY where mY denotes

the Haar measure on Y .
11This states that a sequence (g(n)) is equidistributed on a sub-nilmanifold Y of a torus Td (suppose that

g(n) ∈ Y for n ∈ N) if and only if for every non-trivial character χ : Y → C one has limN→∞ 1
N

∑N
n=1 χ(g(n)) = 0.

12The use of representation theory has not proven to be of much help in this case.
13For technical reasons we assume that G0 is simply connected and that G = G0Γ. When X is connected,

we can always arrange so that G0 has these additional properties.
14A map T : Td → Td is said to be affine if T (x) = S(x) + b for some homomorphism S of Td and b ∈ Td.

The homomorphism S : Td → Td is said to be unipotent if there exists n ∈ N so that (S − Id)n = 0. In this case
we say that the affine transformation T is a unipotent affine transformation.

15If T : Td → Td is a unipotent affine transformation, and x ∈ Td, then one can easily check that the
coordinates of the sequence (T nx) are polynomial in n.
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with equidistribution problems that involve unipotent affine transformations on some torus
than with general nil-transformations.

The following qualitative equidistribution results were established by A. Leibman in [49]:
• A polynomial sequence (g(n)x)n∈N is always equidistributed in a finite union of sub-

nilmanifolds of X.
• A polynomial sequence (g(n)x)n∈N is equidistributed in X if and only if the sequence

(g(n)π(x))n∈N is equidistributed in Z.
The second statement gives a very effective way for checking equidistribution of polynomial
sequences. We illustrate this with a simple example. Suppose that b ∈ G is an ergodic
nilrotation (meaning the transformation x 7→ bx is ergodic) and we want to show that the
polynomial sequence (bn2

x) is equidistributed in X for every x ∈ X. In the case where G is
connected the nilmanifold Z is a torus, therefore, according to the previous criterion, it suffices
to show that if β is an ergodic element of Td (this is the case if the coordinates of β are
rationally independent), then for every x ∈ X the sequence (x + n2β) is equidistributed in Td.
This is a well known fact, and can be easily verified using Weyl’s equidistribution theorem and
van der Corput’s fundamental estimate. If G is not necessarily connected, one needs to show
that if S : Td → Td is an ergodic unipotent affine transformation, then the sequence Sn2

x is
equidistributed for every x ∈ Td.16 Although this is somewhat harder to establish, it follows
again by Weyl’s equidistribution theorem modulo some straightforward computations.

In other cases17 one needs quantitative variants of the previous qualitative equidistribution
results. Such a result was proved by B. Green and T. Tao [39]; we are not going to give the
precise statement here because this would require to introduce too much additional notation.

1.7. Pleasant and magic extensions. Motivated by the work of T. Tao [57], H. Towsner [59],
T. Austin [3], and B. Host [42], introduced new tools that help us handle some multiple ergodic
averages. In particular, a key conceptual breakthrough that first appeared in [3], is that in some
instances by working with suitable extensions of a family of commuting measure preserving
systems (called “pleasant extensions” in [3] and “magic extensions” in [42]), characteristic
factors of the corresponding multiple ergodic averages may be chosen to have particularly
simple structure, a structure that is not visible when one works with the original systems (the
idea of passing to an extension in order to simplify some convergence problems already appears
in [37]). This is a rather counterintuitive statement since characteristic factors of extensions
are extensions of characteristic factors of the original systems, so we going to explain a simple
instance where such an approach works. Suppose that one wants to prove mean convergence
for the averages

AN (T, S, fi) :=
1

N2

∑

1≤m,n≤N

Tmf1 · Snf2 · TmSnf3

16In some cases, for instance, when one seeks to prove equidistribution of a sequence in some unspecified
nilmanifold, one can use a lifting argument in order to reduce matters to the case where G is connected. Such
a simplification does not seem to be possible for the example just presented (the lifting does not preserve the
ergodicity assumption).

17For instance, when one seeks to study equidistribution properties of the sequence (b[n3/2]x), or tries to prove

uniform convergence for the sequence ( 1
N

∑N
n=1 f(bn2

x)) to the integral of f , where b ∈ G is an ergodic element

and f ∈ C(X).
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where T, S are commuting measure preserving transformations acting on the probability space
(X,X , µ) and f1, f2, f3 ∈ L∞(µ). Although an estimate that relates the L2(µ)-norm of these
averages with the Gowers-Host-Kra seminorms of the individual functions with respect to either
T or S is not feasible, the following estimate is valid

‖AN (T, S, fi)‖L2(µ) ¿ min
i=1,2,3

|||fi|||T,S,µ,

where

|||f |||4T,S,µ := lim
M→∞

1
M

M∑

m=1

lim
N→∞

1
N

N∑

n=1

∫
f · Tmf̄ · Snf̄ · TmSnf dµ

(it is shown in [42] that |||f |||T,S = |||f |||S,T ). Now, although factors of the original systems
that control the seminorms ||| · |||T,S,µ may not admit particularly neat structure, it is shown in
[42] that there exists a new system (X∗, µ∗, T ∗, S∗) that extends the system (X, µ, T, S) and
enjoys the following key extra property (the term “magic extension” from [42] alludes to this
property):

|||f∗|||T ∗,S∗,µ∗ = 0 ⇔ f∗⊥ IT ∗ ∨ IS∗

where f∗ ∈ L∞(µ∗) and IT denotes the σ-algebra of T -invariant sets.18 Notice also that mean
convergence for the averages AN (T, S, fi) follows if we prove mean convergence for all averages
AN (T ∗, S∗, f∗i ). Combining all these observations, we can easily reduce matters to proving mean
convergence for the averages AN (T ∗, S∗, f∗i ) when all functions f∗i are IT ∗ ∨ IS∗-measurable.
This is a significant simplification of our original problem, and in fact it is now straightforward
to deduce the required convergence property from the mean ergodic theorem.

This approach has proved particularly useful for handling convergence problems of multiple
ergodic averages of commuting transformations with linear iterates that previously seemed
intractable [3, 42, 4, 18, 19] (see also [7] for an application to continuous time averages). A
drawback is that it does not give much information about the limiting function, and also, up to
now, it has not proved to be as useful when some of the iterates are non-linear (for polynomial
iterates though there is some progress in this direction [5, 6]).

1.8. Furstenberg correspondence principle. We frequently use the following correspon-
dence principle of Furstenberg [35, 36] (the formulation given is from [8]) in order to reformulate
statements in combinatorics as multiple recurrence statements in ergodic theory:

Furstenberg Correspondence Principle. Let `, d ∈ N, E ⊂ Zd be a set of integers, and
v1, . . . ,v` ∈ Zd. Then there exist a probability space (X,B, µ), commuting invertible measure
preserving transformations T1, . . . , T` : X → X, and a set A ∈ B, with µ(A) = d̄(E), and such
that

(6) d̄(E ∩ (E − n1v1) ∩ . . . ∩ (E − n`v`)) ≥ µ(A ∩ T−n1
1 A ∩ · · · ∩ T−n`

` A),

for every n1, . . . , n` ∈ Z. Furthermore, if v1 = · · · = v` one can take T1 = · · · = T`.

We are going to mention several applications of this principle in the next two subsections.

18In fact, one can take X∗ := X4, T ∗ := (id, T, id, T ), S∗ := (id, id, S, S), and define the measure µ∗ by∫
f1 ⊗ f2 ⊗ f3 ⊗ f4 dµ∗ := limM→∞ 1

M

∑M
m=1 limN→∞ 1

N

∑N
n=1

∫
f1 · T mf2 · Snf3 · T mSnf4 dµ.
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1.9. Equivalent problems for sequences. It turns out, and sometimes it is useful to be
aware of this observation, that problems about mean convergence and multiple recurrence in
ergodic theory are intimately related with similar problems involving bounded sequences of
complex numbers. We give some explicit examples below.

Given a collection of sequences of integers {a1, . . . , a`}, it turns out that the following two
properties are equivalent:

• For every invertible measure preserving system (X,X , µ, T ), and A ∈ X with µ(A) > 0,
there exists n ∈ N, such that

µ(A ∩ T−a1(n)A ∩ . . . ∩ T−a`(n)A) > 0.

• For every non-negative bounded sequence (z(n)) with lim supM→∞
1
M

∑M
m=1 z(m) > 0,

there exists n ∈ N, such that

lim sup
M→∞

1
M

M∑

m=1

z(m) · z(m + a1(n)) · . . . · z(m + a`(n)) > 0.

Using the correspondence principle of Furstenberg it is not hard to see that the first statement
implies the second. To see that the second statement implies the first it suffices to set z(m) :=
1A(Tmx) for a suitable point x ∈ X (µ-almost every x ∈ X works) and use the mean ergodic
theorem.

For convergence problems it is convenient to define the following notion: a sequence of
complex numbers (z(n)) is stationary with respect to the sequence of intervals ([1, Mk]), if for
every ` ∈ N and n1, . . . , n` ∈ Z, the averages

1
Mk

Mk∑

m=1

z(m + n1) · . . . · z(m + n`)

converge as k →∞. Using a diagonal argument it is easy to show that any bounded sequence
of complex numbers is stationary with respect to some subsequence of intervals. Given a
collection of sequences of integers {a1, . . . , a`}, it turns out that the following two properties
are equivalent:

• For every invertible measure preserving system (X,X , µ, T ), and non-negative f ∈
L∞(µ), the averages

1
N

N∑

n=1

∫
f · T a1(n)f · . . . · T a`(n)f dµ

converge as N →∞.
• For every bounded sequence (z(n)) of complex numbers, stationary with respect to the

sequence of intervals ([1, Mk]), the averages

1
N

N∑

n=1

(
lim

k→∞
1

Mk

Mk∑

m=1

z(m) · z(m + a1(n)) · . . . · z(m + a`(n))
)

converge as N →∞.
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One can get similar statements for mean convergence, as well as for convergence and recurrence
properties of commuting transformations (in this case one has to use sequences in several
variables).
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Adv. Math. 219 (2008), no. 1, 369–388.
[14] V. Bergelson, A. Leibman, C. Moreira. From discrete- to continuous-time ergodic theorems. Preprint. Avail-

able at http://www.math.osu.edu/ leibman/preprints/
[15] V. Bergelson, A. Leibman, T. Ziegler. The shifted primes and the multidimensional Szemerédi and polyno-
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diagonales. Bull. Soc. Math. France 121 (1993), no. 3, 315–351.

[55] A. Potts. Multiple ergodic averages for flows and an application. Preprint, arXiv:0910.3687.
[56] D. Rudolph. Eigenfunctions of T × S and the Conze-Lesigne algebra. Ergodic theory and its connections

with harmonic analysis (Alexandria, 1993). London Math. Soc. Lecture Note Ser., 205, Cambridge Univ.
Press, Cambridge, (1995), 369-432.

[57] T. Tao. Norm convergence of multiple ergodic averages for commuting transformations. Ergodic Theory
Dynam. Systems 28 (2008), no. 2, 657–688.
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