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Abstract. Szemerédi’s Theorem states that a set of integers with positive upper den-

sity contains arbitrarily long arithmetic progressions. Bergelson and Leibman general-

ized this, showing that sets of integers with positive upper density contain arbitrarily

long polynomial configurations; Szemerédi’s Theorem corresponds to the linear case of

the polynomial theorem. We focus on the case farthest from the linear case, that of

rationally independent polynomials. We derive results in ergodic theory and in com-

binatorics for rationally independent polynomials, showing that their behavior differs

sharply from the general situation.

1. Introduction and results in ergodic theory

1.1. Background. The celebrated theorem of Szemerédi [12] states that a subset of the

integers with positive upper density1 contains arbitrarily long arithmetic progressions.

Furstenberg [4] drew the deep connection between combinatorial questions and ergodic

theory, showing that Szemerédi’s Theorem follows from an ergodic theorem, now known

as the multiple recurrence theorem.

A natural question is to find other configurations that must occur in subsets of the

integers with positive upper density. Furstenberg [5] and Sárközy [11] independently

proved that if Λ ⊂ N has positive upper density and p(n) is an integer polynomial,

meaning it takes integer values on the integers, and if p(0) = 0, then there exist x, y ∈ Λ

such that x−y = p(n) for some n ∈ N. Bergelson and Leibman established a far reaching

generalization of this result. They showed that if Λ ⊂ N has positive upper density and

p1, . . . , pk are integer polynomials with pi(0) = 0 for i = 1, . . . , k, then there exists n ∈ N

such that

(1) d̄
(

Λ ∩ (Λ + p1(n)) ∩ · · · ∩ (Λ + pk(n))
)

> 0 .

As with Furstenberg’s proof of Szemerédi’s Theorem, the Polynomial Szemerédi The-

orem follows from an ergodic theorem:
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1If Λ ⊂ N we define the upper density d̄(Λ) = lim sup

N→∞
|Λ ∩ [1, N ]|/N .
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Polynomial Szemerédi Theorem (Bergelson and Leibman [2]). Let (X,X , µ, T ) be

an invertible measure preserving system and let p1, . . . , pk be integer polynomials with

pi(0) = 0 for i = 1, . . . , k. If A ∈ X with µ(A) > 0, then

(2) lim inf
N→∞

1

N

N−1
∑

n=0

µ
(

A ∩ T p1(n)A ∩ . . . ∩ T pk(n)A
)

> 0 .

Szemerédi’s Theorem (and the ergodic theoretic proof by Furstenberg) corresponds to

the case that all the polynomials are linear. We focus on the opposite case of rationally

independent integer polynomials, meaning a set of integer polynomials such that every

nontrivial integer combination of the polynomials is not constant. In some sense, this

case is typical, since a generic family of integer polynomials is rationally independent.

A particular example is any set of polynomials with pairwise distinct degrees. We prove

several results, some ergodic and some combinatorial, for families of rationally indepen-

dent integer polynomials, focusing on the difference between this case and that of a

family of linear integer polynomials.

1.2. Ergodic Results. Studying the limiting behavior of the multiple ergodic averages

associated with (2) has been a central topic in ergodic theory. Very recently, using

methods from [7] convergence was established for totally ergodic systems in [8] and for

general systems in [10] . The basic approach is to find an appropriate factor system,

called a characteristic factor, that controls the limiting behavior as N − M → ∞ in

L2(µ) of the averages

(3)
1

N − M

N−1
∑

n=M

T p1(n)f1 · . . . · T
pk(n)fk .

A characteristic factor is a factor such that the limit of the averages remains unchanged

when each function is replaced by its projection on this factor. The next step is to

obtain a concrete description for some well chosen characteristic factor in order to prove

convergence. For general polynomials, such a characteristic factor can be described as an

inverse limit of nilsystems (defined in Section 3.1). We show that characteristic factors

for rationally independent integer polynomials have a significantly simpler structure. In

particular, in Section 3.2 we show that a characteristic factor for rationally independent

polynomials can be chosen to be an inverse limit of rotations on finite abelian groups:

Theorem 1.1. Let (X,X , µ, T ) be an ergodic invertible measure preserving system and

p1, . . . , pk be rationally independent integer polynomials. Then the rational Kronecker

factor Krat (defined in Section 3.1) is a characteristic factor for the L2(µ)-convergence

of the averages (3), meaning that if f1, . . . , fk ∈ L∞(µ), the difference

(4)
1

N − M

N−1
∑

n=M

T p1(n)f1 · . . . · T
pk(n)fk −

1

N − M

N−1
∑

n=M

T p1(n)f̃1 · . . . · T
pk(n)f̃k ,
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where f̃i = E(fi | Krat), i = 1, . . . , k, converges to 0 in L2(µ) as N − M → ∞.

For a given measure preserving system (X,B, µ, T ) and functions f0, f1, . . . , fk ∈

L∞(µ), it was shown in [1] that the multicorrelation sequence

an =

∫

f0 · T
nf1 · . . . · T

knfk dµ

can be decomposed as a sum of a k-step nilsequence and a sequence that converges to

zero in uniform density (all notions defined in Section 4). We note that the original

statement in [1] is for f0 = f1 = . . . = fk, but the same proof holds for different

functions. Using Theorem 1.1 we prove an analogous result for the multicorrelation

sequence of independent polynomial iterates. Moreover, in Section 4 we show that a

significantly simpler class of nilsequences suffices for the decomposition:

Theorem 1.2. Let (X,X , µ, T ) be an invertible ergodic measure preserving system and

let p1, . . . , pk be rationally independent integer polynomials with highest degree d. If f0,

f1, . . . , fk ∈ L∞(µ), n ∈ N and

an =

∫

f0 · T
p1(n)f1 · . . . · T

pk(n)fk dµ ,

then {an}n∈
� is the sum of a d-step nilsequence and a sequence that converges to zero

in uniform density. Moreover, the d-step nilsequence can be chosen to be of the form

bn = φ(Sne), where S : Gd → Gd is a unipotent affine transformation, G is a compact

abelian group, φ : Gd → C is continuous, and e is the identity element of Gd.

We also use Theorem 1.1 to prove a multiple recurrence result. We show that for a

family of rationally independent integer polynomials, the measure of the intersection in

(2) is as large as possible “frequently.” More precisely, a set Λ ⊂ N is syndetic if there

exists M ∈ N such that every interval of length greater than M intersects Λ nontrivially.

In Section 3.3 we show:

Theorem 1.3. Let (X,X , µ, T ) be an invertible measure preserving system, p1, . . . , pk be

rationally independent integer polynomials with pi(0) = 0 for i = 1, . . . , k, and A ∈ X .

Then for every ε > 0, the set
{

n ∈ N : µ
(

A ∩ T p1(n)A ∩ · · · ∩ T pk(n)A
)

≥ µ(A)k+1 − ε
}

is syndetic.

We stress that we do not assume ergodicity for this result. This sharply contrasts

the behavior of a family of linear integer polynomials. For example when pi(n) = in

for i = 1, . . . , k, it was shown in [1] that the analogous result fails for certain ergodic

transformations when k ≥ 4 and also fails for certain nonergodic transformations when

k ≥ 2.
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2. Combinatorial Results

Furstenberg [4] established the connection between combinatorial number theory and

ergodic theory, showing that regularity properties of subsets of integers with positive

density correspond to multiple recurrence properties of measure preserving systems. This

is reflected in what has become known as the Correspondence Principle (first introduced

in [4] and given in the form below in [2]):

Furstenberg’s Correspondence Principle . Let Λ ⊂ N. There exist a measure

preserving system (X,X , µ, T ) and A ∈ X such that µ(A) = d̄(Λ) and

d̄
(

Λ ∩ (Λ + n1) ∩ · · · ∩ (Λ + nm)
)

≥ µ(A ∩ T n1A ∩ · · · ∩ T nrA)

for all r ∈ N and all n1, . . . , nr ∈ Z.

As an immediate corollary of Theorem 1.3 and Furstenberg’s Correspondence Prin-

ciple, for rational independent polynomials we have tight lower bounds for the upper

densities in (1) for every k ∈ N. This result is known to be false for k ≥ 4 linear

polynomials (see [1]):

Theorem 2.1. Let Λ ⊂ N and p1, . . . , pk be rationally independent integer polynomials

with pi(0) = 0 for i = 1, . . . , k. Then for every ε > 0, the set

(5) {n ∈ N : d̄
(

Λ ∩ (Λ + p1(n)) ∩ · · · ∩ (Λ + pk(n))
)

≥ d̄(Λ)k+1 − ε}

is syndetic.

We give an example to show that the lower bounds given in (5) are tight. A set Λ ⊂ N

is called normal if its indicator function 1Λ contains every string of zeros and ones of

length k with frequency 2−k. For any such set Λ we have that

d̄
(

Λ ∩ (Λ + n1) ∩ · · · ∩ (Λ + nk)
)

= d̄(Λ)k+1 = 1/2k+1

for all choices of nonzero distinct integers n1, . . . , nk, meaning that (5) cannot be im-

proved.

We remark that Furstenberg’s correspondence Principle and, as a consequence, Theo-

rem 2.1 hold if one replaces the upper density d̄ with the upper Banach density d∗ defined

by d∗(Λ) = limN→∞ supM∈
� |Λ ∩ [M, M + N)|/N (the limit exists by subadditivity).

Szemerédi’s Theorem has the following finite version: given a length k of a progression

and density δ > 0, there exists some N(k, δ) such that for all N ≥ N(k, δ), any subset

of {1, . . . , N} having at least δN elements contains an arithmetic progression of length

k. In [1], the authors asked if one can strengthen this to showing that for all k ∈ N,

δ > 0 and ε > 0, there exists N(k, ε, δ) such that for all N ≥ N(k, ε, δ), any subset of

{1, . . . , N} with at least δN elements contains at least (1−ε)δkN arithmetic progressions

of length k with the same common difference. Their results show that the answer is no

for k ≥ 5 and they show that a weaker condition holds for k = 3 and k = 4. Green [6]
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answered the (stronger) question affirmatively for k = 3 and k = 4 remains open.

Given Theorem 2.1, it is natural to ask whether a similar result holds for independent

polynomial configurations. We show that this is the case:

Theorem 2.2. Let p1, . . . , pk be rationally independent integer polynomials with pi(0) =

0 for i = 1, . . . , k. For every δ > 0 and ε > 0 there exists N(ε, δ), such that for all

N > N(ε, δ), any integer subset Λ ⊂ [1, N ] with |Λ| ≥ δN contains at least (1− ε)δk+1N

configurations of the form {x, x + p1(n), . . . , x + pk(n)} for some fixed n ∈ N.

Proof. Suppose that the result fails. Then there exist δ0, ε0 > 0, an integer sequence

Nm → ∞, and integer subsets Λm ⊂ [1, Nm] such that

(6) |Λm| ≥ δ0Nm

and

(7) |Λm ∩ (Λm + p1(n)) ∩ · · · ∩ (Λm + pk(n))| < (1 − ε0)δ
k+1
0 Nm

for every m, n ∈ N. We construct a measure preserving system that has bad recurrence

properties and then obtain a contradiction from Theorem 1.3.

For m ∈ N set Λ0
m = Λc

m and Λ1
m = Λm. Using a diagonal argument we can find a

subsequence of {Nm}m∈
� , which for convenience we call again {Nm}m∈

� , such that the

limit

lim
m→∞

|(Λi1
m + n1) ∩ (Λi2

m + n2) ∩ · · · ∩ (Λir
m + nr) ∩ [1, Nm]|

Nm

exists for every r ∈ N, n1, . . . , nr ∈ Z, and i1, . . . , ir ∈ {0, 1}.

On the sequence space (X = {0, 1}
�

,X ), where X is the Borel σ-algebra, we define a

measure µ on cylinder sets as follows:

µ({xn1
= i1, xn2

= i2, . . . , xnr
= ir}) =

lim
m→∞

|(Λi1
m + n1) ∩ (Λi2

m + n2) ∩ · · · ∩ (Λir
m + nr) ∩ [1, Nm]|

Nm

where n1, n2, . . . , nr ∈ Z, and i1, i2, . . . , ir ∈ {0, 1}. The finite dimensional statistics are

consistent and so we can extend this to a probability measure on X using Kolmogorov’s

Extension Theorem. Then the shift transformation T defined by

T ({x(j)}j∈
� ) = {x(j + 1)}j∈

�

preserves the measure µ and gives rise to a measure preserving system (X,X , µ, T ). If

A = {x : x(0) = 1}, using the definition of µ we see that

µ(A ∩ T p1(n)A ∩ · · · ∩ T pk(n)A) = µ({x0 = 1, xp1(n) = 1, . . . , xpk(n) = 1})

= lim
m→∞

|Λm ∩ (Λm + p1(n)) ∩ · · · ∩ (Λm + pk(n))|

Nm

,
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for every n ∈ N. Combining this with (6) and (7) we find that

(8) µ(A ∩ T p1(n)A ∩ · · · ∩ T pk(n)A)) ≤ (1 − ε0)δ
k+1
0 ≤ (1 − ε0)µ(A)k+1

for all n ∈ N. This contradicts Theorem 1.3 and completes the proof. �

3. Characteristic factors and multiple recurrence result

3.1. Preliminaries. By a measure preserving system we mean a quadruple (X,X , µ, T ),

where (X,X , µ) is a probability space and T : X → X is a measurable map such that

µ(T−1A) = µ(A) for all A ∈ X . Without loss of generality we can assume that the

probability space is Lebesgue. A factor of the measure preserving system (X,X , µ, T )

can be defined in any of the following three equivalent ways: it is a T -invariant sub-σ-

algebra D of X , it is a T -invariant sub-algebra F of L∞(X), or it is a system (Y,Y, ν, S)

and a measurable map π : X ′ → Y ′, where X ′ is a T -invariant set and Y ′ is an S-invariant

set of full measure, such that µ ◦π−1 = ν and S ◦π(x) = π ◦T (x) for x ∈ X ′. By setting

F = L∞(D), we see that the first definition implies the second. Conversely, given F we

define D to be the σ-algebra generated by F -measurable sets. The equivalence between

the first and third definition is seen by identifying D with π−1(Y). In a slight abuse

of terminology, when any of these conditions holds, we say that Y (or the appropriate

σ-algebra of X ) is a factor of X and call π : X ′ → Y ′ the factor map. If a factor map

π : X ′ → Y ′ is also injective, then we say that the systems (X,X , µ, T ) and (Y,Y, ν, S)

are isomorphic.

If Y is a T -invariant sub-σ-algebra of X and f ∈ L2(µ), we define the conditional

expectation E(f |Y) of f with respect to Y to be the orthogonal projection of f onto

L2(Y). We frequently use the identities
∫

E(f |Y) dµ =

∫

f dµ, T E(f |Y) = E(Tf |Y) .

For each r ∈ N, we define Kr to be the factor induced by the algebra

{f ∈ L∞(µ) : T rf = f} .

We define Krat to be the factor induced by the algebra generated by the functions

{f ∈ L∞(µ) : T rf = f for some r ∈ N} .

The Kronecker factor K is induced by the algebra spanned by the bounded eigenfunctions

of T .

The transformation T is ergodic if K1 consists only of constant functions and T is

totally ergodic if Krat consists only of constant functions. The von Neumann Ergodic

Theorem states that if T is ergodic and f ∈ L2(µ), then

(9) lim
N→∞

1

N

N−1
∑

n=0

T nf =

∫

f dµ ,
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with the convergence taking place in L2(µ).

Every measure preserving system (X,X , µ, T ) has an ergodic decomposition, meaning

that we can write µ =
∫

µt dλ(t), where λ is a probability measure on [0, 1] and µt

are T -invariant probability measures on (X,X ) such that the systems (X,X , µt, T ) are

ergodic for t ∈ [0, 1].

If G is a k-step nilpotent Lie group and Γ is a cocompact subgroup, then X = G/Γ is

called a k-step nilmanifold. There exists a unique probability measure m on X (the Haar

measure) that is invariant under left translations. If a ∈ G, then the measure preserving

system (X,X , m, Ta) defined by the transformation Ta(gΓ) = (ag)Γ is called a nilsystem.

Every unipotent affine transformation on a compact abelian Lie group (with the Borel

σ-algebra and the Haar measure) induces a system that is isomorphic to a nilsystem, but

these are not the only examples of nilsystems.

We say that the system (X,X , µ, T ) is an inverse limit of a sequence of factors

(X,Xj, µ, T ) if {Xj}i∈
� is an increasing sequence of T -invariant sub-σ-algebras such that

∨

j∈
� Xj = X up to sets of measure zero. If in addition for every j ∈ N the factor

system (X,Xj, µ, T ) is isomorphic to a nilsystem of order k, we say that (X,X , µ, T ) is

an inverse limit of nilsystems of order k.

3.2. Characteristic factors. A key ingredient in the proof of Theorem 1.1 is the fol-

lowing result of the authors:

Theorem 3.1 ([3]). Let (X,X , µ, T ) be an invertible totally ergodic measure preserv-

ing system and let p1, . . . , pk be rationally independent integer polynomials. Then for

f1, . . . , fk ∈ L∞(µ) the difference

(10)
1

N − M

N−1
∑

n=M

T p1(n)f1 · . . . · T
pk(n)fk −

k
∏

i=1

∫

fi dµ

converges to 0 in L2(µ) as N − M → ∞.

We note that the result in [3] is only stated for M = 0, but the same proof gives this

uniform version. If k ≥ 2 and the polynomials p1, . . . , pk are not rationally independent

then there exist totally ergodic systems and bounded functions f1, . . . , fk, for which the

limit of the average in (10) is not constant. This can be easily seen by considering the

example of an irrational rotation on the circle.

Before the proof of Theorem 1.1, we prove a Lemma:

Lemma 3.2. Let (X,X , µ, T ) be a measure preserving system with ergodic decomposition

µ =
∫

µt dλ(t). If f ∈ L∞(µ) satisfies E(f | Krat(µ)) = 0, then E(f | Krat(µt)) = 0 for

λ-a.e. t.

Proof. Let σ, σt be the spectral measures of the function f with respect to the systems

(X,X , µ, T ) and (X,X , µt, T ), respectively. It is classical that E(f | Krat(µ)) = 0 if and
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only if σ({r}) = 0 for every r ∈ Q. Since σ =
∫

σt dλ(t), we have that

0 = σ({r}) =

∫

σt({r}) dλ(t)

for every r ∈ Q. Hence, for every r ∈ Q we have σt({r}) = 0 for λ-a.e. t. Since Q is

countable it follows that for λ-a.e. t we have σt({r}) = 0 for every r ∈ Q, and so for

λ-a.e. t we have E(f | Krat(µt)) = 0. �

Every integer polynomial p(n) of degree at most d admits a representation of the form

p(n) =
∑d

i=0 ci

(

n

i

)

for some ci ∈ Q, i = 0, . . . , d. Since p(j) ∈ Z, j = 0, . . . , d, it is

immediate that ci ∈ Z, i = 0, . . . , d. A fact that we frequently use in the sequel is

that whenever p(n) is an integer polynomial of degree at most d, then for every r ∈ Z

the polynomial q(n) = p(d!n + r) has integer coefficients. This follows easily from the

aforementioned representation.

Proof of Theorem 1.1. We begin with some easy reductions. Without loss of generality

we can assume that the polynomials p1, . . . , pk have integer coefficients. Indeed, suppose

that the highest degree of the polynomials p1, . . . , pk is d. Then for every r ∈ Z the

polynomial family {pi(d!n + r)}i=1,...,k satisfies the assumptions of the theorem and also

has integer coefficients. Using the result for r = 0, . . . , d! − 1 and adding, we obtain the

result for the family {pi(n)}i=1,...,k. Furthermore, since E(T jf | Krat) = T jE(f | Krat) for

j ∈ Z, we can further assume that pi(0) = 0 for i = 1, . . . , k.

It suffices to show that if E(f1 | Krat) = 0 then the average (3) converges to zero in

L2(µ) as N − M → ∞. If f is a function with E(f | Krat) = 0 for the measure µ,

then by Lemma 3.2 the same property holds for almost every measure in the ergodic

decomposition of µ. Hence, we can assume that T is ergodic.

From [10] we know that a characteristic factor for L2(µ) convergence of the averages

(3) is an inverse limit of nilsystems induced by some T -invariant sub-σ-algebras {Xj}j∈
� .

Since E(f1 | Krat(X )) = 0 implies that E(f1 | Krat(Xj)) = 0 for j ∈ N, using a standard

approximation argument we can assume that the system is a nilsystem.

The Kronecker factor of an ergodic nilsystem is isomorphic to a rotation on a mono-

thetic compact abelian Lie group G. Every such group has the form Zd1
× Td2 for some

positive integer d1 and nonnegative integer d2, where Zd denotes the cyclic group with d

elements. It follows that Krat = Kr0
for some r0 ∈ N. Hence, every ergodic component of

the transformation T r0 is totally ergodic. Since pi(0) = 0 and pi has integer coefficients,

we have that pi(nr0) = r0qi(n), where qi(n), for i = 1, . . . , k, is again a polynomial with

integer coefficients. From E(f1 | Krat) = 0, it follows that the function f1 has integral

zero on every ergodic component of T r0 . Applying Theorem 3.1 on the (totally) ergodic

components of T r0 with the rationally independent polynomials q1, . . . , qk, we have that

(11)
1

N − M

N−1
∑

n=M

T p1(nr0)f1 · . . . · T
pk(nr0)fk
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converges to 0 in L2(µ) as N − M → ∞. Moreover, E(f1 | Krat) = 0 implies that

E(T jf1 | Krat) = 0 for j ∈ N and so the limit is zero with pi(nr0 + k) substituted for

pi(nr0) in (11) for k = 0, . . . , r0 − 1. Adding these, we have that (3) converges to 0 in

L2(µ) as N − M → ∞. �

3.3. Multiple recurrence. We prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that the highest degree of the polynomials p1, . . . , pk is

d. Then the polynomial family {pi(d!n)}i=1,...,k satisfies the assumptions of the theorem

and has integer coefficients. By applying the result for this family we can assume that

the polynomials p1, . . . , pk have integer coefficients.

Let ε > 0. There exists r ∈ N such that

(12) ‖E(1A | Kr) − E(1A | Krat)‖L2(µ) ≤
ε

k + 1
.

By Theorem 1.1,

lim
N−M→∞

1

N − M

N−1
∑

n=M

µ(A ∩ T p1(nr)A ∩ · · · ∩ T pk(nr)A) =

(13)

lim
N−M→∞

1

N − M

N−1
∑

n=M

∫

E(1A | Krat) · T
−p1(nr)E(1A | Krat) · . . . · T

−pk(nr)E(1A | Krat) dµ .

For every choice of integers a0, . . . , ak, we have

∣

∣

∣

∫ k
∏

i=0

T aiE(1A | Krat) dµ −

∫ k
∏

i=0

T aiE(1A | Kr) dµ
∣

∣

∣

≤

∫ k
∑

i=0

|T aiE(1A | Krat) − T aiE(1A | Kr)| dµ

=

k
∑

i=0

∫

|E(1A | Krat) − E(1A | Kr)| dµ

≤

k
∑

i=0

‖E(1A | Krat) − E(1A | Kr)‖L2(µ) ≤ ε

by (12). It follows that the limit in (13) is greater than or equal to

lim
N−M→∞

1

N − M

N−1
∑

n=M

∫

E(1A | Kr) · T
−p1(nr)E(1A | Kr) · . . . · T

−pk(nr)E(1A | Kr) dµ − ε

=

∫

E(1A | Kr)
k+1 dµ − ε ≥ µ(A)k+1 − ε,
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where the last equality holds since r divides pi(nr) for i = 1, . . . , k, and every Kr-

measurable function is T r invariant. �

4. Correlations of independent polynomial iterates and nilsequences

We now prove the Structure Theorem 1.2 for multicorrelation sequences of independent

polynomials. We start with some definitions from [1]:

Definition 4.1. Let k ≥ 1 be an integer and let X = G/Γ be a k-step nilmanifold.

Suppose that φ is a continuous complex valued function on X, a ∈ G, and x0 ∈ X.

The sequence {φ(anx0)}n∈
� is called a basic k-step nilsequence. A k-step nilsequence is

a uniform limit of basic k-step nilsequences.

Definition 4.2. Let {an}n∈
� be a bounded sequence of complex numbers. We say that

an tends to zero in uniform density, and write UD-lim an = 0, if

lim
N−M→∞

1

N − M

N−1
∑

n=M

|an| = 0 .

Before the proof, we begin with a Lemma:

Lemma 4.3. Let (X,X , µ, T ) be a measure preserving system, p1, . . . , pk be rationally

independent integer polynomials, and f0, f1, . . . , fk ∈ L∞(µ). Then

(14) UD- lim
(

∫

f0 ·T
p1(n)f1 · . . . ·T

pk(n)fk dµ−

∫

f̃0 ·T
p1(n)f̃1 · . . . ·T

pk(n)f̃k dµ
)

= 0 ,

where f̃i = E(fi | K), i = 0, 1, . . . , k and K is the Kronecker factor of the system.

Proof. It suffices to show that if E(fi | K) = 0 for some i ∈ {1, . . . , k}, then the UD-

limit in (14) is zero. Without loss of generality, we can assume that i = 1. We apply

Theorem 1.1 to the product system induced by T ×T acting on X×X. From [5] (Lemma

4.18) we know that f ∈ K(X × X) if and only if it has the form

f(x, x′) =
∑

n∈
�

cn gn(x) · hn(x′)

where gn, hn ∈ K(X) and cn ∈ C for n ∈ N. Since E(f1 | K(X)) = 0, it follows that

E(f1 ⊗ f̄1 | K(X × X)) = 0 which implies that E(f1 ⊗ f̄1 | Krat(X × X)) = 0. Hence, the

average

1

N − M

N−1
∑

n=M

(T × T )p1(n)(f1 ⊗ f̄1) · . . . · (T × T )pk(n)(fk ⊗ f̄k)

converges to zero in L2(µ × µ) as N − M → ∞. It follows that

lim
N−M→∞

1

N − M

N−1
∑

n=M

∣

∣

∣

∫

f0 · T
p1(n)f1 · . . . · T

pk(n)fk dµ
∣

∣

∣

2

= 0 .

and this completes the proof. �
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Proof of Theorem 1.2. By Lemma 4.3, we can assume that X = K. Since the system is

ergodic and coincides with its Kronecker factor we can assume that T is a rotation on a

compact abelian group G. Every compact abelian group is an inverse limit of compact

abelian Lie groups and so using an easy approximation argument, such as the one used

in [1] (see page 296), we can further assume that G is Lie.

Suppose now that G is a compact abelian Lie group with Haar measure m and that

T : G → G is given by T (g) = g + a for some a ∈ G. For j = 0, . . . , d we have that

pj(n) =
∑d

i=0 ci,j

(

n

i

)

for some ci,j ∈ Z. We construct the advertised transformation

S : Gd → Gd and the continuous function φ : Gd → C as follows: S is defined by

S
(

g1, g2, . . . , gd

)

=
(

g1 + a, g2 + g1, . . . , gd + gd−1

)

,

and the continuous function φ is defined by

φ(g1, . . . , gd) =

∫

f0(g) ·
k

∏

i=1

fi(g + ci,0a +
d

∑

j=1

ci,jgi) dm(g) .

Note that S is unipotent since all its eigenvalues are 1. It is easy to check that

Sn(0, . . . , 0) =
(

(

n

1

)

a, . . . ,

(

n

d

)

a
)

,

and so

φ
(

Sn(0, . . . , 0)
)

=φ
(

(

n

1

)

a, . . . ,

(

n

d

)

a
)

=

∫

f0(g) · f1(g + p1(n)a) · . . . · fk(g + pk(n)a) dm(g)

=

∫

f0 · T
p1(n)f1 · . . . · T

pk(n)fk dm = an .

The system (Gd, S) is topologically conjugate to a d-step nilsystem, meaning that there

exist a d-step nilmanifold H/Γ, an a ∈ H, and an invertible continuous map π : Gd →

H/Γ such that S = π−1 ◦ Ta ◦ π, where Ta is defined by Ta(gΓ) = (ag)Γ. It follows that

φ
(

Sn(0, . . . , 0)
)

= φ′(T n
a x0)

where φ′ = φ ◦ π−1 is a continuous function on H/Γ and x0 = π(0, . . . , 0) ∈ H/Γ. This

completes the proof. �

We illustrate the construction of this proof with an example:

Example. Suppose that k = 2 and p1(n) = 2n + 1, p2(n) = n2/2 − n/2, G = T, and

T : T → T is given by T (t) = t + α (mod 1) for some irrational α ∈ T. Then

an =

∫

f0

(

t
)

· f1

(

t + (2n + 1)α
)

· f2

(

t +
(

(

n

2

)

−

(

n

1

)

)

α
)

dt ,
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S : T2 → T2 is defined by

S(t1, t2) = (t1 + α, t2 + t1) ,

and φ : T2 → C is defined by

φ(t1, t2) =

∫

f0(t) · f1(t + α + 2t1) · f2(t − t1 + t2) dt .
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