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Motivation

Mathematical Modelling of solar cells(semiconductor)

Reference: Semiconductor equations, P. Markowich, C. Ringhofer, C.
Schmeiser, Springer 1990
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Introduction: What/How do we model?

Basic transport equations which model the flow of charge carriers in
semiconductors

They describe evolution of the phase space (position-momentum space) density
function of electrons and/or holes

Kinetic equations :

I Quantum mechanical models : quantum Liouville equation (many body
Schrödinger equation)

I Classical models : motion of particles based on Newton’s second
law(classical Liouville equation)

I Semi-Classical models : modification of the classical Liouville equation
to incorporate quantum effects

Kinetic equations starting point for deriving the Drift-Diffusion semiconductor
model(fluid mechanical model)

Kinetic models : computationally very costly due to high dimensions

Dimension reduction : depends on the properties of the interaction force field

I Long range Columb force : Vlasov equation ( Liouville + Field
equation)

I Long and short range forces : Boltzmann equation
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The Liouville equation - setup

Basic equation which governs the motion of charged particles under a
force (assume classical mechanics)

Motion of single electron in vacum under the action of an electric
field E : let x , v ∈ R3 position and velocity, q is the electron charge
and m its mass

Force on the electron: F = −qE ,
Newton’s second law: F = mv̇

we obtain the initial value problem

ẋ = v , x(t = 0) = x0

v̇ = − q

m
E , v(t = 0) = v0

trajectories in the position-velocity space w(t; x0, v0) = (x(t), v(t))
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The Liouville transport equation - single electron
Instead of a given (x0, v0) we consider the joint probability density
fI = fI (x , v) of the initial position and velocity with

fI (x , v) ≥ 0,

∫∫
fI (x , v)dxdv = 1

Goal: derive a continum equation for the probability density
f = f (x , v , t) which evolves from fI = f (x , v , t = 0)

Reasonable to assume that f does not change along the trajectories:
f (w(t; x , v), t) = fI (x , v), ∀x , v , t ≥ 0

Differentiating with respect to t we get

∂t f + ẋ · gradx f + v̇ · gradv f = 0

and replacing ẋ , v̇ we obtain the famous Liouville equation

Liouville–transport equation

∂t f + v · gradx f −
q

m
E · gradv f = 0
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The Liouville transport equation - ensemble of particles

Assume we have M particles: x = (x1, . . . , xM) ∈ R3M

v = (v1, . . . , vM) ∈ R3M , F = (F1, . . . ,FM) ∈ R3M

Liouville–transport equation

∂t f + v · gradx f +
1

m
F · gradv f = 0

The probability of the ensemble to be in the subset B of the
6M−dimensional position-velocity space at time t is given by

PM(B, t) =

∫∫
B
f (x , v , t)dxdv

The Liouville equation is linear hyperbolic and its characteristics are
the trajectories of the particles

ẋi = vi , v̇i =
1

m
Fi , i = 1, . . . ,M
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The Liouville equation - Moments
Conservation property We assume in the sequel that the force field F
is divergence free :

divvF = 0, x ∈ R3M , v ∈ R3M , t ≥ 0

then by assuming the solution decays as |x | → ∞, |v | → ∞ then it
can shown

d

dt

∫
R3M

x

∫
R3M

v

f (x , v , t)dvdx = 0⇒∫
R3M

x

∫
R3M

v

f (x , v , t)dvdx =

∫
R3M

x

∫
R3M

v

fI (x , v)dvdx = 1, t ≥ 0

Moments: n(x , t)-position density, J(x , t)-current density

n(x , t) =

∫
R3M

v

f (x , v , t)dv

J(x , t) = −q
∫
R3M

v

vf (x , v , t)dv
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The Liouville equation - Moments
The conservation property :∫

R3M
x

n(x , t)dx =

∫
R3M

x

nI (x)dx , t ≥ 0

Integrating formally the Liouville equation w.r.t v we obtain the
macroscopic particle continuity equation

∂tn(x , t)− 1

q
divxJ(x , t) = 0

Solvability: If the maps

w(t; ·, ·) : R3M
x × R3M

v → R3M
x × R3M

v

are sufficiently smooth and 1− 1 and if fI (x , v) is sufficiently
differentiable then there is a unique solution to the Liouville equation
and it is given

f (x , v , t) = fI (w−1(t; x , v)), x ∈ R3M
x , v ∈ R3M

v , t ≥ 0
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The Liouville equation - Dimension reduction

Two fundamental difficulties with the Liouville equation
I There are no models for short range and long range interactions
I The dimension of M−particle ensemble is 6M in phase space which

prohibitively large in practical applications

Dimension Reduction
I Derive the BBGKY-hierarchy(Bogoliubov, Born, Green, Kirkwood, Yvon):

system of equations for the position velocity densities of sub-ensembles
consisting of d−electrons, d = 1, . . . ,M. To do so, we assume a certain
structure of the interaction field i.e. weak two particle interactions,
integrating the Liouville eqn w.r.t. position-velocity of M − d particles, and
take the formal limit M →∞. A particular solution of the hierarchy is
obtained determined by a single function of three positions and three velocity
coordinates and time.

I This is the solution of the Vlasov equation, which can be considered as an
”aggregated” one-particle Liouville eqn.

I In semiconductors the short range interactions of the particles with the
lattice are more important than short range forces between particles. To
account for these one needs to extend the Vlasov equation to obtain the
Boltzmann equation
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The Vlasov equation

The Vlasov eqn is given by

∂tF + v · gradxF −
q

m
Eeff · gradvF = 0, x ∈ R3

x , v ∈ R3
v , t > 0

Eeff (x , t) = Eext(x , t) +

∫
R3

x∗

n(x∗, t)Eint(x , x∗)dx∗, x ∈ R3
x , t > 0

F (x , v , t) = MP(x , v , t), P one particle density

n(x , t) =

∫
R3

v

F (x , v , t)dv

J(x , t) = −q
∫
R3

v

vF (x , v , t)dv

Many body physics through the nonlocal term involving particle
interactions Eint(x , x∗)

Th. Katsaounis (UoC, IACM) Solar Cell Modelling Graduate Seminar 10/11/2021 10 / 27



The Vlasov-Poisson system

A very important long range force acting between two electrons is the
Coulomb force

Eint(x , y) = − q

4πεs

x − y

|x − y |3
, x , y ∈ R3, x 6= y

Then we easily get

div Eeff = div Eext −
q

εs
n ∇× Eeff = ∇× Eext

so if ∇× Eext = 0 then ∇× Eeff = 0 so there potential functions
Veff , Vext such that

Eeff = −gradVeff and Eext = −gradVext =⇒

−∆Veff = −∆Vext −
q

εs
n
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The Vlasov-Poisson system
Assuming that the external field is produced by ions of charge +q(holes)
then by Coulomb’s law

Eext(x , t) =
q

4πεs

∫
R3

y

C (y , t)
x − y

|x − y |3
dy

where C (x , t) is the number density of the background ions. Then

div Eext =
q

εs
C =⇒ ∆Vext = − q

εs
C =⇒

−εs∆Veff = ρ, ρ = q(C − n)

ρ is the charge density of the system consisting of conduction electrons
and positively charged background ions(holes).

Vlason-Poisson system

∂tF + v · gradxF +
q

m
gradVeff · gradvF = 0

−εs∆Veff = ρ
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The Boltzmann equation - Collisions

The Vlasov eqn. neglects short range interactions(collisions) of
particles with other particles in the ensemble or the lattice.

Collisions : particles are scattered from one state to another with
their velocity changing very fast, while their position change slowly

Extension of Vlasov to include a statistical account for the scattering
events, besides the long range interactions.

The Boltzmann equation

∂tF + v · gradxF −
q

m
Eeff · gradvF = Q(F ), x ∈ R3

x , v ∈ R3
v , t > 0

Q(F )(x , v , t) =

∫
R3

v

(s(x , v∗, v)F ∗(1− F )− s(x , v , v∗)F (1− F ∗)) dv∗

F density, Q collision operator, s(x , v∗, v) is the transition rate for an
electron at x to change v∗ to v , Eeff as in Vlasov.
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Fluid Dynamical Models
A compromise between physical accuracy and computational
efficiency: instead of 3 + 3 + 1 we have 3 + 1

Dependent variables are moments(averages) of the phase space
density w.r.t. velocity

Derived from Boltzmann using two techniques
I Perturbation argument(asymptotic expansion): Exploits the smallness

of the mean free path and expands the phase space density function in
powers of this parameter(Hilbert expansion). For semiconductors done
by (F. Poupaud)

I Moments methods:
F An ansatz is assumed for the phase space density function in

Boltzmann eqn
F The ansatz describes the dependence on the velocity containing

parameters depending on position and time
F Inserting this ansatz the Boltzmann eqn is multiplied by linearly

independent functions of velocity and integrated of the velocity space
F We get a hierarchy of p.d.e’s depending on space and time only.

Moments represent macroscopic quantities(mass, momentum, energy,
etc)
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Drift-Diffusion equations
Derived by a two species system of Boltzmann equations (Bi-polar
model)

...using either the asymptotics of mean free path or moments

This is the basic model used for semiconductor modelling, for two
species : electrons n and holes p forming a p − n junction

q∂tn − div Jn = −qR
q∂tp + div Jp = −qR

Jn = qµn(VT gradn + nE )

Jp = −qµp(VT gradp + pE )

R = A(x)(np − n2i )

Dn = µnVT , Dp = µpVT , VT =
κT

q

E = −gradV
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Mathematical Modelling of Solar Cells
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Solar Cells

Commercial PV systems are based on Silicon(crystalline) made solar
cells.

Solar cells have certain architectures: Al-BSF, PERC, Heterojunction,
Perovskite, Organic, Tandem(Silicon+organic)

Most commercial PV systems are based on Al-BSF, PERC,
Heterojunction solar cells. Efficiency around 15-20%.

Perovskite, Organic solar cells are not commercially available yet.
Manufactured, studied and tested only at laboratories. High
efficiencies 22-28%

Each architecture requires different mathematical model.

For Al-BSF, PERC we can assume that we are in the low injection
regime: Diffusion is the dominating force, rather transport. In this
case one of the species can be neglected depending on the type of
solar cell

Mathematical modelling for Perovskite solar cells is recent.
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Basic Principles

Working principle of a solar cell :

Photovoltaic effect: Generation of a potential difference at the
junction of two different materials in response to electromagnetic
radiation.

Photoelectric effect: electrons are emitted from a material that has
absorbed light with a frequency above a material dependent threshold
frequency.
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Basic Principles

Working principle of a solar cell :

Photovoltaic effect: Generation of a potential difference at the
junction of two different materials in response to electromagnetic
radiation.

Photoelectric effect: electrons are emitted from a material that has
absorbed light with a frequency above a material dependent threshold
frequency.

Photovoltaic effect:

1 Generation of charge carries due to absorptions of photons in the
materials that form a junction

2 Separation of the photo-generated charge carriers in the junction

3 Collection of the photo-generated charge carriers at the terminals of
the junction
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Basic Principles

Working principle of a solar cell :

Photovoltaic effect: Generation of a potential difference at the
junction of two different materials in response to electromagnetic
radiation.

Photoelectric effect: electrons are emitted from a material that has
absorbed light with a frequency above a material dependent threshold
frequency.

Loss mechanisms:

1 inability to convert photons to electricity

2 thermal effects

These two losses amount about half the incident solar energy
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Silicon junction, Doping
Silicon(14) is the basic material for solar cells. A junction is created by two layers of
silicon which are doped by two different elements namely Boron(5) and Phosphorus(15).

Phosphorus(donor) donates a free electron. Boron(acceptor) creates a hole.

p-type semiconductor : holes dominate its electrical conductivity

n-type semiconductor : electrons dominate its electrical conductivity

Doping concentration(cm−3) range : 1012 − 1020
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Typical configuration
Geometry of a p-type solar cell : p = 1200µm,w = 180µm, d = %p
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Basic Mathematical Model

Two basic effects : Drift and Diffusion of carriers : n(electron), p(holes)
densities

Drift of carriers

Drift is the motion of a charged particle in response to an electric field.

Diffusion of carriers

Diffusion is the motion of charged particles from regions of high particle
concentration into to regions of low particle concentration due to random
thermal motion
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Basic Mathematical Model
Drift - Diffusion system of equations of semiconductors :

∂n

∂t
= ∇ · Jn + G − R, Jn = µn n E + Dn∇n

∂p

∂t
= −∇ · Jp + G − R, Jp = µp p E − Dp∇p

ε∇ · E = q(p − n + N), E = −∇V

G (z) =

∫
λ
α(λ)I0(λ)

λ

h c
e−α(λ)z , R =

n p − n2i
τn(p + pt) + τp(n + nt)

h, c , q, µn, µp,Dn,Dp, ε, ni , τn, τp, nt , pt ,N, constants : 10−34 − 1016

posing serious computational challenges

Non-equilibrium Boltzmann approximation

n = ni exp
[

V−φn

VT

]
, p = ni exp

[
φp−V

VT

]
=⇒ n p = n2i exp

[
φp−φn

VT

]
φn, φp : quasi-Fermi potentials, VT = kT

q thermal voltage
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Mathematical Model for Al-BSF, PERC cells

We introduce a new model based on two simplifying assumptions

Solar cell operates at steady state : no transient phenomena

Low injection regime : Current transport is dominated by
diffusion(n << p, p ∼= NA >> n2i ). System decouples and 2nd
equation can be neglected. (Most commercial Silicon based solar cells
are in this regime).

To handle the variate of scales we introduce a new change of variables

ξ =
x

Ln
, Ln =

√
Dnτn, n = NA exp

[
V − φn

VT

]
, η =

n

NA

u =
V

VC
, v =

φn

VC
=⇒ η = exp

(
VC

VT
(u − v)

)
VC =

Dn − Dp

µp
= VT

(
µn

µp
− 1

)
, gn(z) = G (z)

L2n
NADn

, j0,np = J0
Ln

qDpNA

VT

VC
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Mathematical Model for Al-BSF, PERC cells
The mathematical model is

−∆η + η = gn(z)

−∆u + η = gn(z)

Vertical sides: x = 0, L, z ∈ (0,w) : ∇η · ζ = 0, ∇u · ζ = 0.

Top side: z = 0, x ∈ (0, L),

ν2A η = exp

(
VC

VT
(Vb + u)

)
− 1,

∇u · ζ = ν2A j0

(
1− exp

(
−VC

VT
(Vb + u)

))
.

Bottom side : z = w , x ∈ (0, L),

∇η · ζ = −sn η,

outside contact : ∇u · ζ = −sn η,

inside contact : u = 0,

where Vb = Vbias
VC

, νA = ni
NA

, j0 = J0
Ln

qDp NA

VT
VC

and sn = S Ln
Dn

. are known. ζ outward

normal to the surface.
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Numerical results : 2D simulations
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Numerical Results : Engineering point of view

IV-Curve

A current-voltage characteristic or IV-curve is a relationship between the
electric current through a circuit or device, and the corresponding voltage.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.01

0.02

0.03

Open Circuit Voltage (Voc)

 

Vmax

Imax

Short Circuit Current (Isc) 

Amps

Volts

Maximum Power = 
Imax * Vmax

Th. Katsaounis (UoC, IACM) Solar Cell Modelling Graduate Seminar 10/11/2021 25 / 27



Numerical Results : Comparison with experiments

Experiments : red line, Simulations : blue line

Effects not included in the model : Resistance, Temperature losses
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Recap

Very challenging field: Modelling, Analysis, Computations, Data Science

Open problems
I Mathematical Modelling, especially for Perovskite solar cells
I Numerical solution of the models, very challenging, parallelization,
I Parameters: many operating parameters are unknown eg. temperature,

resistances

Machine & Statistical learning
I Parameter estimation
I Local weather, Solar effects, Soiling effects
I Energy yield prediction from Solar Irradiance and other factors

Thank You
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