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Preface

The following notes grew out from a seminar on the classification of real Lie algebras,
held at the University of Crete in the WS 1988/89. This seminar was considered as a conti-
nuation to the excelent lectures on Lie groups and Lie algebras, given by my friend Hans
Samelson, one semester before. The notes were prepared by a non-expert in the field (that’s
me), to serve as a help, for those which wanted to learn quickly, how the simple real Lie al-
gebras are classified. This, of course, is not an excuse for the errors they contain *, but a
warning to the innocent reader.

The reader, which, among other things, has to be patient with the different verses and
motos from poets and philosophs figuring everywhere in the text. Incidentaly, 1988 was the
200-th aniversary of Byron’s birth, so it was reasonable to honor this great poet (and some
others as well) and remember his immortal verses not less than the details of the structure of
the Lie algebras.

The list on the next page indicates, I hope, the contents and the way we get to our aim,

Paris Pamfilos, Paleochora, Crete, the 23 February 1991

* 1 would be very greatefull to those readers (if any) which would point out to me errors and suggestions, to
make the text better. They can contact me, writing to: University of Crete, Department of Mathematics,
Iraklion-Crete-Greece, P.O. Box 1470, (or call 0030-81-246428)
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Complexification, real forms

Relations, between real and complex vector spaces. Additional material in the
books of Nomizu[1] and Samelson[2].

Realification

Same content, same reference.

Complex structures

Same reference.

Bilinear forms

Rank, nullity, nullspace or radical, non-degenerate bilinear forms, symmetric,
skew symmetric. Conjugate or orthogonal space, positive definite, diagonaliza-
tion. Same reference.

Complex quadratic forms )

Inner product, Hermitian inner product, length, distance, Schwarz inequality,
self adjoint, anti-self-adjoint Hermitian forms. Same reference.

Pairs of quadratic forms and Jordan normal form

Some reference on simultaneous diagonalization.

Schur’s lemma

Following Nomizu’s exposition.

The general linear Lie algebra gl(n;C)

The standard basis, the corresponding (Lie bracket) multiplication table, the cen-
ter. A first encounter with Lie algebras.

Ad and ad of gl(n;C)

The associative algebra End(C"), the automorphism group Aut(End(C")), deri-
vations and the (Lie) subalgebra Der(gl(n;C)).

Lie algebras, general facts.

Lie algebra

Definition, some examples, structure constants, homomorphism, normalizer,
centralizer, quotient, direct product, semi-direct product, the two-dimensional
non-abelian example, some interesting exercises.

Adjoint representation and Killing form

Representation, faithful, adjoint representation, Killing form, trace form of a rep-
resentation, irreducible representation, compl etely reducible, induced, direct sum
and tensor product of representations.

sl(n;C)

Simplicity of -, Killing form of -, study of diagonal subalgebra.

Irreducible representations of s1(2;C)

A key for many details later. Following closely Samelson.

[1] K. Nomizu . Linear algebra, Academic Press 1978
[2] H. Samelson. Notes on Lie algebras, Springer 1990
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Solvable Lie algebras

Derived series, solvability, upper triangular matrices, radical, the most general
solvable subalgebras of gl(n;C), intereting exercises.

Nilpotent Lie algebras

Lower central series, nil-radical, nilpotent subalgebras of gl(n;C).

Cartan’s first criterion

Used to prove its second. Uses the Jordan-Chevalley decomposition theorem of
linear algebra (Jordan normal form).

Semi-simplicity, Cartan’s second criterion

Definition, non-degeneracy of Killing form, following Samelson.

The Casimir element

Needed only for a short proof in the next §, following Humphreys(3].

Complete reducibility and semi simplicity

Following Humphreys and Samelson. Mainly interested in the representations
of s1(2;C).

Reductive Lie algebras

Following Humphreys. Compact Lie algebras are special cases of -,

The classical Lie algebras

gl(n;C), sl(n;C), o(n) and sp(n;C). "Natural" bases and structure constants.
Computation of their Killing form. Nice exercises, table.

Structure of complex semi simple Lie algebras

Cartan subalgebras and roots

Definition of Cartan subalgebras and their roots. First properties, following
Samelson.

Strings of roots, coroots

Main properties of roots and their corresponding root vectors, same reference.
Cartan integers and Weyl group

Two-dimensional root systems and definition of the Weyl group, same refer.
Coxeter-Dynkin diagrams

By which the root systems are classified, which in turn classify all semi simple
complex Lie algebras, same reference.

Weyl group and Weyl chambers

Study of root systems in their abstract setting, following Samelson and Hum-
phreys. The rest of the chapter deals with construction of models for the differ-
ent classes of simple complex Lie algebras.

The structure of sl(n+1;C) A,
Including an important Lemma.

The structure of sp(n;C) C,
The structure of 0(2n;C) D,
The structure of 0(2n+1;C) B

o
Freudenthal’s construction ‘
Following Hausner Schwarz[4] andChow[5].
The structure of G,

The structure of Eg

With a table of all its roots .
The structure of E, and E

[3] Humphreys. Introduction to Lie algebras and Representation Theory, Springer 1972
[4] M. Hausner and J. Schwarz. Lie groups, Lie algebras, Gordon and Breach 1968
[5] Chow. Lie groups and Lie algebras. 2 Vols.
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The structure of F,

A table of all roots of this Lie algebra.

The order of the Weyl group

The order of the Weyl groups of the exceptional Lie algebras.

Weyl-Chevalley normal form

Final normalization of the most simple bases of semi simple complex Lie alge-
bras, following Samelson. Important exercises stated as theorems in Jacobson [6]
Existence and conjugacy of Cartan algebras

Regular, singular elements, following Seminaire Sophus Lie[7]

Structure of real semi simple Lie algebras

Automorphisms

For complex Lie algebras, following Samelson and Wan(s]
Real forms, Cartan decomposition

How to find all real forms of a simple complex Lie algebra.
Real semi simple Lie algebras

Intensive study of the relations to their complex brothers.
Compact Lie algebras

Structure and roots, diagram, various latices, all real.
Automorphisms of compact Lie algebras

Copying and adapting §39 to our real needs.

Diagram and latices

With trhee nice drawings.

Inner involutions of simple compact Lie algebras
Following Borel [9] and Murakami [10,11]. Table of maximal roots and extended
Dynkin diagrams of the 9 types of simple complex Lie algebras.
Simple real Lie algebras of inner type

Following Borel, de Siebenthal and Murakami [12]
Canonical representation of automorphisms [12]

Real Lie algebras of outer type

Following Murakami. :

Real forms of A ;

Real forms of B,
Real forms of D d
Real forms of C d

Signature and normal real form

Catalog of simple real Lie algebras

Table must be completed by realifications of simple complex Lie algebras.
End of the tale.

[6] N. Jacobson. Lie algebras, Dover 1979

[7] Seminaire Sophus Lie, Ecole Norm. Sup. 1955

[8] Z.X. Wan. Lie algebras, Pergammon Press 1975

[9] A.Borel and J. de Siebenthal. Les sous groupes fermés de rang maximum .... Comm. M. Hel. 23(1949)
[10] 8. Murakami. On the automorphisms of a real semi simple Lie algebra. J. Math. Soc. Japan 4(1952)
[11] S. Murakami. Supplements and corrections to [10]. J. Math. Soc. Japan 5(1953)

[12] S. Murakami. Sur la classification des algébres de Lie réelles et simples. Osaka J. Math. 2(1965)
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That is the usual method, but not mine-

My way is to begin with the beginning;
The regularity of my design

Forbids all wandering as the worst of sinning,
And therefore I shall open with a line

(Although it cost me half an hour in spinning)
Narrating somewhat of Don Juan’s father,
And also of his mother, if you’d rather.

Byron, Don Juan, Canto I, 7

1. Complexification, real forms

The vector spaces, we are concerned here, are real (R) or complex (C). For areal
vector space V, the complexification V¢ is a complex vector space defined as the set of
formal sums

Vo= {XHY |X,YeV,ii=-1}. (1)

In V. one defines addition and multiplication by complex numbers through the formulas
(XHY)+(X'+Y") = (X+X)+(Y+Y"), )
(u+iv)-(X+Y) = (uX-vY)+i(vX+uY). (3)

Exercise-1 ~Show that V- is a complex vector space, with respect to these operations and
the C-dimension of this vector space is equal with the R-dimension of V. More precisely,
show that a R-basis of V is also a C-basis of V. '

Exercise-2 Show that a R-linear map F: V— V can be extended to a C-linear
Fai Vi = V-, through the definition:
F (X+1Y) = F(X)+F(Y). 4

Exercise-3  Each basis of V is a basis of V. (identify X with X+i0). Show that the matri-
ces of F and F (-, with respect to such a basis, are identical.

Given a complex vector space W, there are many real vector subspaces V of W, whose
complexification V - = W. These are called real forms of W and are constructed as follows:

Take a C-basis e = {e ..., e,} of W and consider the real linear spann v,
V. =<e,,...,e,> =setof all R-linear combinations of {e ..., e} (5)

Exercise-4 Show that V is a real vector subspace of the same dimension as W. Show fur-
ther that (V )c = W.

Obviously, different bases of W give different real forms V.. When, however, the C
bases of W {e,,..., e}, {€',,..., ¢ } have a real change-basis matrix T, then the corresponding
real forms are identical.

Question-1  Given a C-vector space W and some real form V of W, when is a complex li-
near map F: W — W, the complex extension of a real linear F_: V — V?

Question-2  Fix a real form V of W. When is the complex linear F : W — W, the complex
extension of a real linear F :V — V?



1-2 Complexification, real forms

Exercise-5 Show that a linear F : W — W is extension of the real F,:V — V,if and only
if F(V) ©V. [When this happens, then F|V = F, is the R-linear V — V.] Equivalently,
there is a basis of V, with respect to which, F is represented by a real matrix.

Question-3  Find the structure of the set of all linear F : W — W, which are extensions of
some R-linear F : V — V, for some real form V of W.

Fix a basis e ={e,..., .} of W. Then, all other bases of W are given by bases e' re-
sulting from e, by right multiplication with a matrix g € GL(n, C):

e' =e-g, geGL(n,C). (6)

The matrix of the C-linear F, with respect to this basis, is given by he GL(n,R), if F is exten-
sion of some real linear map on the real form defined by e' .

F(e') =¢€'-h.

Thus, such an extension is defined by a pair of two matrices (g,h) € GL(n, CJXGL(n R). Two
pairs (g,h) and (g',h") define the same extension if and only if, the matrix t = g1.g' is real and
h'=tl.ht.

(g.h) =(gh) = t=glg'isreal,andh' =t ht, (7
defines an equivalence relation in the set of pairs of matrices and shows that each extension
of a real linear map on some real form of W, corresponds to some orbit of
GL(n,C)>*GL(n,R), under the action of GL(n R)

(t,(gh) — (g'=gt,h'=tLh). ®
Thus, the set of complex extensions of real linear maps on real forms of W, is in one-to-one
correspondence with the space of orbits of this action:

GL(n,C)*GL(n,R)/GL(n,R). )

Real forms are in 1-1 correspondence with conjugatiations i.e. involutive conjugate-
linear maps of the complex vector space V:

DV -V,

® (X+aY) = ¢(X)+ad(Y) , forevery a€ C, (10)

Do =1,

Given ®, the corresponding real form V is the (real) vector space of fixed points of &:

Vo = {XeV| &(X) =X}

Inversely, given the real form W, one defines the corresponding conjugation by:

F(X+iY) =X-iY, forevery X, Ye W.

Notice that the composition ®od' of two conjugations is a complex isomorphism of
the vector space V. Consequently, every conjugation @' of V is of the form &' = dog, where
g is an isomorphism of V and @ is some fixed conjugation of V.



Nothing so difficult as a beginning

In poesy, unless perhaps the end;
For oftentimes when Pegasus seems winning

The race, he sprains a wing, and down we tend,
Like Lucifer when hurl’d from heaven for sinning;

Our sin the same, and hard as his to mend,
Being pride, which leads the mind to soar too far,
Till our own weakness shows us what we are.

Byron, Don Juan, Canto [V

2. Realification

Each complex vector space W is at the same time a real vector space, with respect to
the same addition and multiplication by scalars (the only difference is that we restrict our-
selves to real scalars). When e = {e,,....e } is a basis of W, then

ettt } )
is a basis of W, considered as a real vector space. We denote this vectorspace by W, and
call it the realification of W. Obviously

dim W = 2dimeW . Q

Exercise-1 Show that "multiplication by i" in Wy, defines a R-linear map
T:Wp— Wy, with J2=-1, 3
The matrix of this linear map, with respect to the basis (1) is

0
0

Each C-linear map F : W— W, may be considered as an R-linear Fr: Wp— W,
which satisfyies

FRri-X) =i-Fg(X), forall XeW, (5)
which, by the definition of J, is equivalent with
Fpl=1Fg (6)

Exercise-2 Let g=X+Y €GL(n,C) be the matrix of the linear map F : W — W, with re-
spect to the basis e (X, Y are real matrices, but not necesserily in GL(n,R)) . Then the corre-
sponding Fg : W — Wp , has with respect to the basis (1), the matrix
X —Y)

ng(YX (7

Exercise-3  Show that the matrices of the form (7) are precisely the real 2n x2n matrices,
which commute with J, defined by (4).

Exercise-4  Show that each matrix of the form (7) defines a C-linear map F : W— W,



2.2 Realification

having, with respect to the basis e, the matrix g = X+iY.
Exercise-5 With the previous notations, show that

det(g ) = det(X+Y)|2 ®
X YV _ o (RAY Y vnger (XY Y _ e (GXCY Y
get (Y x) ‘d?t(wix x)‘(l)"d‘“'t (Y+1X 0 ) ‘(‘)“da( 0 X+iY)

Exercise-6 Let V be a real vector space of dimension m and assume that there is a linear
mapJ:V— V, withJ2=-1. Show that there is a basis of V, such that J, with respect to this
basis, has the matrix representation (Jordan form)

0 -1
10

0 -1
1 0

Conclude that dimV=2n. Changing to a suitable basis, show that the same linear map has
the matrix representation given by (4). '

Exercise-7 With the assumptions of the preceding exercise, show that V=W, where Wis a
suitable complex vector space (namely V with complex multiplication (u+iv)X =
uX+vI(X)).

An R-linearJ : V— V, with J? =-1, is called a complex structure on the real vector
space V. From the preceding Exercise, we see that V, having a complex structure, must
have even dimension. The exercises give also the proof of the

Theorem  Each realification Wy, of a C-vector space W, has a complex structure and in-
versely, if a real vector space has a complex structure, then it is the realification of a com-
plex vector space.



In mathematics, when we discriminate between lines,
planes, and solids, we find that rectangular planes result
from straight lines, and cubic magnitudes from rectangular
planes. The Receptive accomodates itself to the qualities
of the Creative and makes them its own. Thus a square de-
velops out of a straight line and a cube out of a square.
This is compliance with the laws of the Creative; nothing
is taken away, nothing added. Therefore the Receptive has
no need of a special purpose of its own, nor of any effort;
yet everything turns out as it should.
I Ching, The Receptive, p. 13

3. Complex structures

Let V be a real vector space of 2n dimensions andJ : V— V a complex structure, i.e.
a linear map satisfying J?=-1. We define a multiplication of the elements of V by complex
numbers, through the rule
(u+iv)-X = uX+vJ(X). (1)
The same set V, with the old addition and the new multiplication becomes a complex vector
space of dimension n. Denote this vector space by V I

Exercise-1 Show that V| is actually a complex vector space of dimension n.

Exercise-2 Each complex linear F: V; — V; defines an R-linear Fp: V-V, with the

property
Fp J=1Fg. @

And inversely, each Fy satisfying (2), defines a C-linear F on the corresponding V .
Exercise-3  Given two complex structures J, I' on the real vectrospace V, show that there
exists an R-linear and invertible F : V — V, with the property
FI=IF. 3
[Use Ex-2,V, = V;=Cn
If we choose a C-basis {e,...e } of V|, <ey,...e >g is areal form of V:
<€ >p® <le,...Je >p = V. 4)
If however the e,...e  are only real independent, the last equation may be false.

Furthermore, a C-basis {e,,....e } of V; may be not a C-basis of V y» for another structure J'
of V. F.e. it may happen thatJ'e ) =e, .

Question-1  Find the structure of the set of all possible complex structures on a real vector
space of dimension 2n.

Question-2  Find the structure of the set of all possible complex structures J, which admit a
given set of n linearly independent vectors {e,,...e,} in V, asa C-basis for the correspond

ingVj.
The first question is easy to answer. In fact, identify by means of a basis, V with R2",



32 Complex structures

Ex-3 shows that GL(2n,R) operates, by conjugation, transitively on the set S of complex
structures. Taking asJ the matrix (2) in §2, we find that the isotropy group of the operation,
at this point, coincides (Ex-2 - Ex-4 in §2) with GL(n,C). Thus, the set of all complex struc-
tures on V is isomorphic with the homogeneous space GL(2n,R)/GL(n, C), where the com-
plex matrices in GL(n,C) are identifyied with the real matrices of the form

X -Y]

( ¥ X

in GL(2n,R). We proved the
Theorem-1  The set of complex structures on the real 2n-dimensional vectorspace V, is
isomorphic to the homogeneous space GL(2n, R)/GL(n,C).

The second question may be handled as follows. Fix a complex structure J and let {el,...,en}
be a C-basis of V;. Let J' be another complex structure. Then, the same basis is also C-ba-
sis of V ;. if and only if, {e,,...,e, }U{J'e,,....J'e_} is a basis of V. Thus, the change bases ma-
trix from {e,,....e }U{Je ... e } to {e,,....e_}U {F'e ,...J'e_}, which has the form

IS

0T
must be invertible, which is equivalent with the condition det(T)#0. Looking the n last col-
umns of the preceding matrix, we see that they define an open subset of the Stiefel manifold

of n-frames in R?". Thus, the set, we are looking for, is isomorphic with such an open sub-
set (a chart) of this manifold.



Dieser Mann arbeitete an einem System der Naturge-
schichte, worin er die Tiere nach der Form der Exkremente
geordnet hatte. Er hatte drei Klassen gemacht: die zylin-
drischen, sphérischen und kuchenférmigen.

Lichtenberg, Sudelbiicher, p. 344

4. Bilinear forms

So are called the bilinear maps F of a K-vector space V (K = C, R):
F:VxV-=K.
The main problem of this section is the "reduction to canonical form". This is connected
with the matrix representations of the bilinear form, with respect to the various bases of V.

Givenabasis a={a,,..,a } of Vand x= (Xy5..,X,) identifyied with x a +..+x a_, we
have
F(x,v) = x-A-y', with the matrix A = [F(aj,ak)] (D
and y' denoting the column vector or transpose of (¥{s--Y,). A is the representation matrix
of the bilinear form, with respect to the basis a. Changing from the basis a to another basis
b, b=a.g, with geGL(nK) (ie. b,=Y a;°g;; ), we get for the corresponding matrix repre-
sentations the relation
‘B=[F(b.b)]=g'Acs. @
Problem-1  Find the simplest possible matrix representation for a given bilinear form.
Problem-2  Find the simplest possible matrix representation of the bilinear form F, allow-
ing not all g €GL(n,K), but only those which belong to some subgroup G of GL(n,K).
Problem-3  Given the bilinear form F, find the group of all linear endomorphisms of V,
which preserve the form, i.e. all linear f: V— V, which satisfy
F(f(a),f(b)) =F(a,b), for all a,be V. . 3

The rank of F is defined to be the rank of the matrix A. The transformation rule (2)
shows that this definition is independent of the particular basis used.
Let V* denote the dual vector space of V. V* is the set of all linear h : V— K. Given
a bilinear form F, there is a natural linear map
ig V= V* given by ip(a)(b) =F(a,b), for all a,beV. (4

Exercise-1 Let a={a,,..a_} bea basisof V and {a,*....a *} be the dual basis in V* (i.e.
ai*(aj) = 6ij ). Show that the matrix representing ig, with respect to these bases coincides
with A. Conclude that the rank of the bilinear F is identical with the rank of the linear ip

The dimension of the kernel of i is called the nullity of the bilinear form. The vector
subspace:
kemip={a€V|F(ab)=0,forall beV}, (35)
is called nullspace or radical of the bilinear form.
F is called non-degenerate, when it has zero nullity or equivalently, its rank = dimV, hence
the map ig: V— V* is an isomorphism.



4-2 Bilinear forms

Exercise-2  Show that the nullity = dimV - rank F. Complete a basis {a,,,,...a_} of the
nullspace to a basis {a,,...,a,} of V. Show that the corresponding representation matrix of F
has the form

- B - § %
A=l ay "I aw |- ©)
 J— 0

The restriction of F on a complement W of the nullspace of F, isn’t in general non-de-
generate. When however F has symmetry properties, the restriction on such a complement
is non-degenerate. The most important cases are the following:

-F symmetric : F(a,b) = F(b,a), forall a, beV, V real or complex vector space.

- F skew-symmetric : F(a,b) = - F(b,a), forall a, be V, V real or complex vector space.

- More general : F(a,b) = F(A(b),a), for all a, beV, V real or complex vector space and A
is a linear automorphism of V (usually an involution A = I), which necessarily preserves F
(F(a,b) = F(A(a),A(b)), forall a, b).

Exercise-3 Show that for symmetric blinear forms, (6) becomes:

a, a. |0 0

o, a_ .a_|0 O

0 0 (0 0O
0 0 {0 0

in which the matrix A' is symmetric and non-singular.

Exercise-4 Show that for skew-symmetric bilinear forms the matrix in (6) takes the pre-
ceding form, where A’ is now antisymmetric and non singular, hence k is even.
[Skew-symmetric matrices of odd dimensions are singular]

The two preceding exercises show, that the restriction of a symmetric or skew-sym-
metric bilinear form on a complement of the nullspace of the bilinear form, defines a non-
degenerate bilinear form, of the same kind, on that complement.

Given a subspace W of V, the conjugate space or orthogonal space of W, denoted by

W is the subspace of V defined by _
W' = {a€ V| F(a,b) = 0 for every he W} . @)

Note that W+ may contain the whole W, f.e. when W = nullspace of F, then W=V, A sub-
space W which satisfies WC W is called isotropic with respect to F.
Exercise-5 Show that the conjugate of a subspace W contains always the nullspace of F.
Exercise-6 Show that dim(Wl) 2n-dimW (n=dimV). [look at the homogeneous sys-
tem of linear equations corresponding to a basis of W]
Exercise-7  Show that the restriction of F on W is non-degenerate, if and only if
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WNW" = {0}. ®)
Exercise-8  Show that, when the restriction of F on W is non-degenerate then
Wewt=Vv, ©)

[use dim(W+W')=dimW + dim(W™) - dim(W nW~>) and Ex-67]

Of particular interest are the positive (negative) definite symmetric forms, which, by
definition, satisfy

F(x,x) > 0 (resp. < Q) forall x # 0. (10)
A positive definite symmetric form on V is called an inner product or a metric on V.
Exercise-11  Show that <X,Y>=trace(X'Y), defines an inner product on M(n,n;R) (= the
vector space of nxn real matrices). Show that the subspaces of symmetric M (n,n;R) and
skew-symmetric matrices M, (n,n;R) are orthogonal complements of each other, with re-
spect to this metric.
Theorem-1 When F is symmetric, we can split V in a direct sum of a positive subspace, a
negative subspace and the nullspace of F.

By "positive" (resp. negative) we mean a subspace, where the restriction of F is posi-
tive (resp. negative) definite.

To prove the theorem consider a positive subspace W™ of maximal dimension and de-
note by W' the conjugate of W*. Then F(v,v) < 0, for all veW'. In fact, if there where
ve W' with F(v,v) 2 0, then for all ue W* we would have F(u+v,u+v) = F(u,u)+F(v,v) > 0,
and the dimension of the positive W* wouldn’t be maximal. Consider now the restriction F'
of F on W' and take there a negative subspace W- of F', of maximal dimension. Finally take
W to be the conjugate of W™ in W' (with respect to F'). It is trivial to show that

F(v,v) =0, for all veWe, (2
It is also trivial to show that
WewWawe=V. (**)

By construction, W is maximal positive and the splitting is orthogonal. Using this splitting
we see easily that W? is the nullspace of F. W~ is maximal negative in V. In fact, if there
where some W* negative with more dimensions than W-then the intersection W~ @W°n W=
would be non zero. This gives a contradiction and completes the proof.

Although the spaces W™ and W~ are not uniquely defined, their dimensions n, and n_
are invariantly defined. These numbers enter into the following

Theorem-2  Given a symmetric bilinear form F on the real n-dimensional vectorspace V,
there is a basis, with respect to which, F has diagonal form. The number of positive entries
in the diagonal is n, and the number of negative is n_. The remaining entries in the diago-
nal are zero and their number is n_= dim We.

The theorem is a consequence of The-1, and the well-known diagonalization theorem
for symmetric matrices. This reduction is obtained by orthogonal matrices, which satisfy g

=g-l.

Exercise-9 With the previous notations, show that W*@W" can be any complement of the
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nullspace of F.

Skew-symmetric real bilinear forms have an analogous theory to the symmetric ones.
Ex-4 shows that such bilinear forms have even rank. The same exercise shows also that any
complement of the nullspace has even dimension and the restriction of the bilinear form on
that complement is a non-degenerate skew-symmetric bilinear form.

Exercise-10  Show that the eigenvalues of a real skew-symmetric matrix A are pairs of
conjugate pure imaginary numbers {+ip}.
For each such pair, and corresponding eigenvectors (of the complexification C"of R")
X, X define the real vectors
U= (112)(X+X), V= (1/2i)(X-X), for which
AU = (112)(AX+AX) = (1/2)(juX-iuX) = -uV,
AV = (121)(AX-AX) = (12i)(iuX+ipX) = uU,
and <U,V>=0 (for the canonical inner product of R"). For the orthogonal complement W of

the vector subspace, spanned by U and V, we have AWCW. Thus, inductively, as in the
symmetric case, one proves the

Theorem-3  For every real skew-symmetric matrix A, there is an orthogonal marrix g,
such that the matrix g'Ag has the form
O0-p,

u, 0
1 0-

w0
N 0|,
0-p,
u 0
0 0

where tiu, are the non-zero eigenvalues of the matrix and 2k is its rank.

Diagonal matrices and skew-symmetric matrices of the previous kind can be simpli-
fied by transforming A to g'Ag, for a convenient g, thus giving the proof of the

Theorem-4  For every real symmetric bilinear Jorm F : VxV— R, there is a basis of V,
with respect to which the representation marrix of F has the diagonal canonical form
1

1 n,= number of +1,
-1 n_=number of -1,
N " n, =number of 0,

Analogously, when F is skew-symmerric, then there is a basis of V, with respect to which the
representation marrix of F has the canonical form
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0-1
10
0-1 k = number of blocks,
10 n,= number of 0.
’ N
0
Corollary Two symmetric (resp. skew-symmetric) nxn real matrices are equivalent

(B=g'Ag, for some g€ GL(n;R)) if and only if they have the same diagonal (resp. block-diag-
onal) canonical form.
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Besonders aber haben die Hegelianer, in Folge ihrer aus-
gezeichneten Unwissenheit und philosophischen Rohheit,
ihn, unter dem, aus der vorkantischen Zeit wieder her-
vorgeholten, Namen "Geist und Natur”, von neuem in
Gang gebracht, unter welchem sie ihn ganz naiv aufti-
schen, als hitte es nie einen Kant gegeben und giengen wir
noch, mit Allongenperiicken geziert, zwischen geschore-
nen hecken umher, indem wir, wie Leibnitz, im Garten zu
Herrenhausen (Leibn. ed. Erdmann p. 755), mit
Prinzessinen und Hofdamen philosophirten, iiber "Geist
und Natur", unter letzterer die geschorenen Hecken, unter
ersterem den Inhalt der Perticken verstehend.
Schopenhauer, Parerga ... I, p. 117

5. Complex quadratic forms

In C", the canonical hermitean inner product is defined by
<KY>=X,§ XY, . €))
It is linear with respect to the first variable and conjugate-linear with respect to the second
variable. More general, a hermitian quadratic form on the complex vectorspace V, is a
map F:VxV— C, which is linear with respect to the first variable and satisfyies
F(y,x)=F(x,y), hence is conjugate linear with respect to the second variable. Analogously a
skew-hermitian quadratic form on V is a map F:V xV— C, which is linear with respect to
the first variable and satisfies F( y,x)z-?(x,_v), hence is conjugate-linear, with respect to the
second variable.
Given a basis a={a,,..,a_ } of Vand x= (X 5-X,) identified with x,a, +..+x a_, we
have
F(x,y) = x-A-§*, with the matrix A = [F(aj,ak)] 2
and ¥* denoting the column vector or transpose of (¥;5r¥y) Aisthe representation matrix
of the quadratic form, with respect to the basis a. Changing from the basis a to another basis
b, b= a-g, with geGL(n,C) (i.e. b=} a;-g;; ), we get for the corresponding matrix repre-
sentations the relation :
B = [F(b,b)] =g'A-E. 3)
Exercise-1 ~Show that F is hermitian (resp. skew-hermitian) if and only if, the above ma-
trix A is hermitian symmetric i.e. a;; = g;; (resp. hermitian skew-symmetric a;=-&;).

Exercise-2  Show that the set of hermitian M, (n,n;R) (resp. skew-hermitian M (nn;R))
n*n matrices is a real n>dimensional subspace of M(n,n;C)=set of nxn complex matrices.
Show further that "multiplication by i" is a real isomorphism of M (n,n;R) onto M, (n.n;R).
Show that M, (n,n;R) and M, (n,n;R) are real forms of M(n,n;C), and that each complex ma
trix A €M(n,n; C) can be uniquely written as a sum A=(1/2)(A+AY+(1/2)(A-A") of a hermi-
tian and a skew-hermitian matrix.

The subset U(n) of matrices in GL(n;C), which preserve (1) is a group, called the uni-
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tary group. This group is characterized by the following equivalent conditions :

D) <AxAy>=<x,y>, for every x,ye C™. €

) A=Al )

3)  the columns of A build an orthonormal basis of C™. (6)
Theorem-1  For every hermitian matrix A, there is a unitary matrix g, with the property

glAg = M = diag(u by (diagonal matrix). (7)

The entries of M are the eigenvalues of A, and the columns of g are corresponding eigenvec-
rors.

To prove the theorem, take u to be unit eigenvector of A. Then A leaves <u>* (the or-
thogonal complement of u) invariant. Proceed, by induction, with the restriction of A on
this complement.

Of particular interest are the positive (negative) definite hermitian forms, which by
definition satisfy

F(x,x) > 0 (resp. <0) for all x = 0. (8
A positive definite hermitian form on V is called a hermitian inner product or a hermitian
metricon V.

Exercise-3  Show that <X,Y>=trace(X'Y), defines a hermitian inner product on M(n,n;C) .
Show that the subspaces of hermitian matrices M, (n,n;R) and skew-hermitian matrices
M, (n,n;C) are orthogonal complements of each other, with respect to this metric.

Theorem-2  When F is hermitian, we can split V in a direct sum of a positive subspace, a
negative subspace and the nullspace of F.

By "positive” (resp. negative) we mean a subspace, where the restriction of F is posi-
tive (resp. negative) definite. The proof is analogous to that of Theorem-1 in §4. We get
again a splitting of V

WieaW&Wo=V, )

W™ is a positive subspace of maximal dimension, W- is a negative subspace of maxi-
mal dimension and W¢ is the nullspace of F.

Although the spaces W* and W are not uniquely defined, their dimensions n,andn_
are invariantly defined. These numbers enter into the following
Theorem-3  Given a hermitian form F on the complex n-dimensional vectorspace 'V, there
is a basis, with respect to which, F has diagonal form. The number of posirive entries in the
diagonal is n, and the number of negative is n_. The remaining entries in the diagonal are
zero and their number is n = dim We.

The theorem is a consequence of The-2 and The-1. This reduction is obtained by uni-
tary matrices, satisfying g'=g"!. Simplifying further with diagonal matrices we get the

Theorem-4  For every hermitian form F : VxV— C, there is a basis of V, with respect to
which the representation matrix of F has the diagonal canonical Jorm

diag(l, ..., 1,-1,..,-1,0,..,0),
where n =number of +1’s, n_= number of -1’s, n o= humber of 0’s.

Exercise-4 With the previous notations, show that W*@&W- can be any complement of the
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nullspace of F.
Exercise-5 Show that with each eigenvalue p of a skew-hermitian matrix A, also -[I is an
eigenvalue of A.
Theorem-5 Let A be a skew-hermitian matrix. Then there is a unitary matrix g, such that
g'Ag = i-M, where M is a diagonal matrix, as in the The-4.

The proof follows from The-1, by noticing that iA is hermitian.

A complex space V, endowed with a hermitian inner product <x,y>, is called a Hermitian
vector space. In such a space we can define and use geometric concepts such as the length
or norm ||x|| = <x,x>!2 | distance ||x-y|| etc. The following exercises formulate the main
properties of these notions.

Exercise-6 (Schwarz inequality) Show that for any pair of vectors holds
l<x,y>| < [Ix|lIvll (10)
and the equality holds precisely in the case where y is a complex multiple of x.

[Start with <px-y, px-y>20, for real t and p=t( <X,y>/|<x,y>|), when <x,y>#0. The case
<x,y>=0 is trivial].

Exercise-7 (Triangle inequalities) Show that for any pair of vectors hold the inequalities
Ix+yll < 1x1l + iyl (11)
LIl - Nyl < =yl (12)

The analogon of hermitian (resp. skew-hermitian) matrices in a hermitian vector space
are the self-adjoint (resp. antiself-adjoint) operators A:V —V. In general for every (com-
plex) linear A:V —V, there is a unique operator A* satisfying <Ax,y> = <x,A*y>. The op-
erator is called self-adjoint precisely when A*=A (resp. antiself-adjoint, when A*=-A).
Exercise-8 Show that the matrix representing A* with respect to an orthonormal basis of
V is the conjugate traspose of the matrix representing A, with respect to the same basis.
Conclude that an operator A is self-adjoint (resp. antiself-adjoint) if his matrix-representa-
tions with respect to orthonormal bases of V are hermitian (resp. skew-hermitian).

Symmetric and skew-symmetric bilinear forms on a complex vectorspace V can be
"diagonalized" as in the real case. Suppose first that F :VxV — C, is a symmetric bilinear
form. Then, there is some v for which F(v,v)#0 [else we would have F(x,y)=0 for all x,y].
Then F is non-degenerate on <v>, hence, according to Ex-8, p. 4-2, the conjugate space (or-
thogonal with respect to F) <v>Tisa complement of <v>. Repeating the reasoning with the
restriction of F on this complement, we proceed inductively to the proof of the

Theorem-6  For every complex bi- 1

linear symmetric form F on the com- \

plex space V, there is a basis, with 1 . k= the number of 1°s
respect to which F has the represen- 0 = the rank of F.

tation marrix \

0
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Suppose now that F is skew symmetric. Then there are non-zero x, ¥y such that
F(x,y)#0 (unless F=0). Then F restricted on the space W, spanned by these two vectors, is
non-degenerate, hence the conjugate space wltoWisa complement of W. Proceeding
with the restriction of F on this complement, as in the symmetric case, we prove in an analo-
gous way the

Theorem-7  For every skew-symmetric complex bilinear Jorm F on a complex vector
space V, there is a basis, with respect to which F has the representation matrix

N

10

0-1 , k=number of blocks,
10 (2k=rank of F).
) n,= number of 0’s
N = nullity of F.




Je mehr nun aber Einem die Furcht Ruhe lift, desto mehr
beunruhigen ihn die Wiinsche, die Begierden und
Anspriiche. Goethes so beliebtes Lied, "ich hab’ mein’
Sach auf nichts gestellt” [»Vanitas! Vanitatum vanitas! «]
besagt eigentlich, daB erst nachdem der Mensch aus allen
mdglichen Anspriichen herausgetrieben und auf das nack-
te, kahle Daseyn zuriickgewiesen ist, er derjenigen Geistes-
ruhe theilhaft wird, welche die Grundlage des menschli-
chen Gliickes ausmacht, indem sie néthig ist, um die Ge-
genwart, und somit das ganze Leben, geniefibar zu finden.
A. Schopenhauer, Aphorismen p. 454

6. Pairs of quadratic forms and Jordan normal form

The main problem for two quadratic forms F;:VxV— C, (i=1,2), is that of simulta-
neous diagonalization. Even in the case of two hermitian forms, the problem is non-trivial.
A general result in this direction is the following:

Theorem-1'  If for two hermitian matrices A, B and all x # 0 in C*, we do_not have both
<Ax,x> = 0 and <Bx,x> = 0 (<...,...> denoting the standard hermitian product in C") si-
multaneously, then A and B are simultaneously diagonable.

There is a special case where the two forms can be simultaneously diagonalized. This
happens when one of them, say F=F,, is hermitian and positive definite and the other G=F 2,
is normal with respect to F. By this we mean the following: V endowed with F becomes a
hermitian space, we change from F to the notation <x,y>. Then .

G(x,y) = <Axy>, (1

defines a linear operator A :V— V. G is called normal with respect to F (=<...,...>), when
A*A=AA*. In elementary linear algebra these operators are characterized by the fact, that
they are completely diagonalizable, with respect to an orthonormal basis of V. Thus, we
"proved” the
Theorem-2 When F, :VxV— C, (i=1,2), are two forms, one of which is hermitian positive
definite and the other is normal with respect to the first, then there is a basis of V, with re-
spect to which, both forms have diagonal matrix-representations.
Important special cases of the preceding theorem are these for which the normal form is,
more specific, hermitian, skew-hermitian, symmetric or skew-symmetric. In all these cases
the corresponding operators A are normal and we have more specific diagonalization theo-
rems,

I turn now to a brief discussion of the "Jordan normal form". This is closely related to
the "Jordan-Chevalley" decomposition A = S+N of an operator A in a (unique) commuting
pair S, N of a semi simple S and a nilpotent operator N. The standard example is

A=S+N= (%\\ld) = (d\d) + (?\\10) , SN=NS.

The general case is reduced to this one by finding a basis, with respect to which, the given

1. Becker R. 1., Necessary and sufficient conditions for the simultaneous diagonability of two quadratic
forms. Linear Algebra and its applications 30(1980), pp. 129-139.
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operator is represented by blocks A, as above. We recall that semi simple is a linear opera-
tor A:V—V which has the property: for every A-invariant subspace W of V, there is an A-
invariant complement W'. For Complex vector spaces, we can prove, by induction, that
semi simplicity is equivalent to diagonability of the operator. For real vector spaces, diago-
nable operators are of course semi simple, but not the inverse. For example, orthogonal ma-
trices represent obviously semi simple operators, but aren’t diagonable. Any way, nilpotent
are called operators which satisfy AX = 0, for some positive integer k (called degree of nil-
potency of A). A key ingredient in the proof of Jordan’s normal form theorem is the decom-
position of the vectorspace V in A-invariant cyclic subspaces W(a) of a nilpotent operator
A. By this we mean subspaces which have a basis of the form
a, A(a), ..., A%a)=0, A%1(a)=0, with d+1< k=degree of A.
With respect to such a basis, the operator A[W(a) is represented by a matrix of the form

N
(\10)

and considering a decomposition of V in such subspaces we get a representation of A in
"block-diagonal-form" A=diag(A - » A), where each block has the preceding form.

If A is not nilpotent, then we use the minimal polynomial p(x) = ax™ ... +a,, which is
the minimum-degree polynomial satisfying p(A)=0. When V is complex, P(x) decomposes
into linear factors:

p(x) = (x-A ) -2 %2 . (x-2_)%m,
and V itself decomposes into the direct sum of "generalized eigenspaces"
V(r) =kem [(A-2,D% ],
V(1) is an A-invariant subspace in which the operator B=A-A ¢ 1s nilpotent, with nilpotency
degree d, and we apply the preceding analysis to B. This is roughly the way we get the
Jordan normal form. More details can be found in the book of NomizuZ.

2. K. Nomizu, Linear Algebra, Academic Press, 1978.



Aber sollte die Natur, aus bloBer Verstocktheit, ewig vor
unserer Frage verstummen? Ist sie nicht, wie alles Grofe,
offen, mittheilend und sogar naiv? Kann daher ihre
Antwort je aus einem andern Grunde fehlen, als weil die
Frage verfehlt war, schief war, von falschen Vorausse-
tzungen ausgieng, oder gar einen Widerspruch herbergte?
Schopenhauer, Parerga ... II, p. 106

7. Schur’s lemma

This lemma deals with families of linear maps F = {A: V— V} on a vector space V.
V is called irreducible with respect to F, when there is no non-zero subspace W, different
from V, such that ACW)CW, for all A in F. We call also a subspace W, with A(W)CW, for

all AinF, an F-invariant subspace of V. The following formulation is due to Nomizu®.

Lemma (Schur) Ler V, (i=1,2) two rreducible spaces with respect to the Jamilies F,
(i=1,2). Let also C: V,— V, be a linear map, such that the equation
CA = BC, (1)
i) has asolution BEF , for every given A€ F,, and
ii) has a solution A€ F, for every given BEF ,
Then, C is either the zero map or an isomorphism.

The lemma is a direct corollary of the fact, that W, =KemnC and W, = ImC are, cor-
respondingly, F,-invariant and F,-invariant. In fact, XeEW,, A€F, = CAx = BCx =0 (for
some B), hence Axe W, and analogously the invariance of W,. The irreducibility of the
two families implies W, = {0} or W, =V, etc.

A special case is the one with V, =V, =V, F, =F,=F and C: V— V a linear map
commuting with every A€F. Then, every eigenspace of C is F-invariant. In fact,
(C-ul)x=0 and A€F =
(C-uDAx = A(C-ul)x=0.
Thus, when V is irreducible an eigenspace of C is either {0} or V. We proved

Proposition-1  Ler V be irreducible with respect to F and C:V— V a linear map commu-
ting with every member of the family F. If C has an eigenvalue y (in the field of V) then C is
a multiple of the identity C = ul.

What can be said for C, when the field K of V is not algebraicaly closed? (f.e. when
K=R) In this case the minimum polynomial of C is still irreducible (but no more linear). In
fact, if it where

flx) = f, (Of o(x),
then there should exist a decomposition
V=V eV,={xeV|f (Ox=0}0{xcV| £,(Ox =0},
in two F-invariant subspaces (because of the commutativity). Then, one of these subspaces
would be {0}, which gives a contradiction. With these preliminary remarks, we can prove
the analogon of proposition-1, for real vector spaces.

3. K. Nomizu, Linear Algebra, p. 209
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Proposition-2  Ler V be a real vector space, irreducible with respect to the family F. Let
also C:V— V be a linear map commuting with every A€F. Then,
C=yl JordimV = 2k+1, and
C=al + bJ, with J? = -I, JordimV = 2k,

When dimV=2k+1, there is a real eigenvalue of C and we can repeat the arguments of
Prop-1.

In the second case the minimum polynomial of C is at most quadratic, hence C satis-
fies an equation of the form

(C-al)?+b>1=0. = [(C-aDb]*=-L
Take then, J = (C-al)/b = C=al+b].

The Schur’s lemma has important applications in the context of bilinear forms. In
fact, suppose that <...,..> and g{...,...) are two bilinear forms and the first is non-degenerate.
Then there is a unique operator C, such that

q(x,y) = <Cx,y>. 2
Suppose now that <...,...> and ¢{.......) are invariant with respect to a family F, for which V is
irreducible. Then, for each A€F we’ll have
g(Ax,Ay) = <CAX,Ay> = <Cx,y> = <ACx,Ay>.

Since <Ax,Ay> = <x,y>, the non-degeneracy of <...,...> implies, AC=CA, for every A€F.
Thus, from Prop-2 we’ll have

C=pl,if V is complex or if V is real and C has a real eigenvalue,

C = pul+p*],if V is real and C has no real eigenvalues.
We proved:

Theorem Assume that <...,...> and q(...,...) are two bilinear forms and the first is non-de-
generate. Assume further that <...,...> and g(...,...) are invariant with respect to a family F,
Jor which Vis irreducible. Then

i) q(xy)=u<xy>, forall x,y when V is complex or real of odd dimension,

ii) qix,y) = Q<xy> + u*<Jx,y>, with real |, u*, when V is real of even dimension.
In this case J is a complex structure for V.

Notice that in the case of real V and symmetric q(...,...) and <...,...>, holds i), since in
that case C is symmetric, consequently has real eigenvalues. F is usually a group and the
theorem implies, that there is (up to scalar multiples) at most one bilinear form invariant

under this group. We'll have below the occasion to examine many bilinear forms and their
"related" groups.



Oh that T had the art of easy writing

‘What should be easy reading! could I scale
Parnassus, where the Muses sit inditing

Those pretty poems never known to fail,
How quickly would I print (the world delighting)

A Grecian, Syrian, or Assyrian tale;
And sell you, mix’d with western sentimentalism,
Some samples of the finest Orientalism.

Byron, Beppo, 51

8. The general linear Lie-algebra gl(n;C)

The vector space M(n,n;C) of complex nxn matrices, has a natural associative-algebra
structure with respect to the matrix product AB. The commutator

[AB] = AB-BA, o))

defines another kind of product on M(n,n;C), satisfying the properties
i)  [AB] is bilinear and skew-symmetric in A, B. 2
i) [[AB]CI+[[BCJA]+[[CA]B]=0, forall A, B, C. (3)

We call M(n,n;C) endowed with this product, the general linear Lie algebra acting on (",
and denote it by gl(n;C). (3) is reffered to as Jacobi-identity.

gl(n; C) is the most important example of a Lie algebra, which is defined as a vector
space endowed with a product [AB] with the formal properties (2) and (3). We’ll see below
several other examples of similar Lie algebras, which are, mainly, Lie-subalgebras of
gl(n; C) i.e. vector subspaces, closed under the commutator [...].

A basis for gl(n;C) is given by the n? matrices

E.= 1 , 1 in the i-row, j-column
0 everywhere else.

The elements of E;; are given by

(Eimn = Opmi O - (4)
The product of these matrices is given by

E E, =6, E; , (5)

[B; Ey]=0; B;s - 05 By - ©

For an arbitrary matrix A we have then,
(AE)mn = 8y Oj,  (only the j-column = i-column of A, all other =0), (7)
(EijA) Y o, (only the i-row = j-row of A, all other =0). (8)
Center of gl(n;C) is called the subset of matrices A, commuting with every
Begl(n;C) ([AB]=0).
Exercise-1 Show that the center of gl(n;C) coincides with the subspace of scalar diagonal
matrices {ul}.
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Exercise-2  Show that the subspace diag(n) of diagonal matrices is an Abelian Lie-subal-
gebra of gl(n;C) i.e. [AB]=0, for diagonal A,B. Show also that [A,diag(n)]<diag(n), implies
the matrix A itself is also diagonal.

Exercise-3 Let

0

0
_{ 10 el (2 D
N, = N, =
' 10 =1 1500
Bl NS
10 10
Show that N, = N X,

0 1

Exercise-3 Show that BN;=N,B = B=Y a N.+al = B={(N,)=a polynomial in N,.
[Examine BN;=N,B using (7) and (8)]



Well-well, the world must turn upon its axis,
And all mankind turn with it, heads or tails,
And live and die, make love and pay our taxes,
And as the veering wind shifts, shift our sails;
The king commands us, and the doctor quacks us,
The priest instructs, and so our life exhales,
A little breath, love, wine, ambition, fame,
Fighting, devotion, dust, -perhaps a name.
Byron, Don Juan, Canto II, 4

9. Ad and ad of gl(n;C)

We denote by End(C") the associative algebra of nxn matrices, endowed with the
usual product of matrices AB (more general End(V) = associative algebra of endomor-
phisms of a vector space V).

We denote by Aut(End(C™) the group of automorphisms of End(C?) i.e. linear in-
vertible maps f: End(C"—End(C") with the property f(AB) = f(A)f(B). For a
g€ GL(n;C), the map _

fo () =gAg, ()
is an automorphism of End(C") and is called an inner automorphism. It can be proved? that
any automorphism of End(C™) is of that form. In analogy with the associative algebra, we
define the corresponding notions for the Lie-algebra gl(n;C):

Aut(gl(n; C)) = group of automorphisms of gl(n;C) i.e. linear invertible maps

f: gl(n;C)—gl(n;C) with the property f[AB] = [f(A)f(B)]. 2

In particular, the maps f (A) = gAg?, can be easily seen to be automorphisms of
gl(n;C). We continue to call these automorphisms inner and denote them by Ad,.
Obviously Ad is an homomorphism of GL(n;C) into Aut(gl(n;C)). }

A derivation D of an algebra W with product "" is a linear map D:W—W, satisfying
the identity
D(A-B) = D(A)-B + A-D(B). (3)
In the Lie-algebra gl(n;C) we have some natural derivations related to the inner automor-
phisms. In fact, fixing some X €gl(n;C) we define the adjoint transformation with respect
to X:
adX: gl(n; C)—gl(n;C), with adX(Y) = [XY]. (4
One verifies easily (using Jacobi identity) that this is indeed a derivation, which we call
inner.

Theorem-1 For each derivarion D: gl(n; C)—glin; C), exp(tD) = ¥, (tD)*/n! defines an au-
tomorphism of gl(n; C), for all real numbers t.
This can be proved using the uniqueness of solutions of linear differential equations.
In fact, the two curves of gl(n;C), a(t) = exp(tD)[XY] and b(t) = [exp(tD)X, exp(tD)Y], for
t=0, go through the same point [XY]. They satisfy also the same linear differential equation
z'=Dz. (%)

3. H. Flanders, Methods of proof in linear algebra, Amer. Math. Monthly, 1956 p. 1
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This is obvious for a(t) and follows directly from (3,) for b(t). Thus, the uniqueness theorem
implies that a(t)=b(t), for all t, which means that exp(tD) is an automorphism.

Theorem-2  For each X €gl(n;C) holds the equation
exptadX) = Ad exp(iX) * (6)
The proof may be given by an argument similar to that of Th-1, and by applying the
two sides of (6) on an arbitrary matrix Y. Asa corollary, we obtain the equation
(0/t) | Ay sy Y = [XY1. v
Exercise-1  Show that the set Der(gl(n;C)) of derivations of gl(n;C) is a vector space

closed under the operation of commutator i.e. [DD']=D-D'-D"-D is again a derivation, if D
and D' are.

Problem Determine the automorphism group Aut(gl(n;C)) and the vector space
Der(gl(n; C)).
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Thus saith the Preacher; ‘nought beneath the sun
Is mew', yet still from change to change we run.
What varied wonders tempt us as they pass!
The Cow-pox, Tractors, Galvanism, and Gas
In turns appear to make the vulgar stare,
Till the swoln bubble bursts-and all is air!
Byron, English bards and scotch reviewers, 70

10. Lie-Algebras

Lie-Algebra is called a vector space g endowed with a product [...], called Lie-brack-
et, and satisfying
[XY] is bilinear and skew-symmetric, )
[[AB]C]+[[BCJA]+[[CA]B] =0, for all A,B,C€g. 2
(2) is reffered to as Jacobi-identity. The typical example is gl(n;C), examined in the prece-
ding paragraph. This is a special case of the more general Lie-algebras gl(V), consisting of
all endomorphisms of a vector space V with [...] defined by the commutator of two endom-
orphisms [AB]=A-B-B-A. .
Lie-subalgebra hcg, is called a vector subspaceh of g, which is closed under the
[..]. Lie-ideal hCg, is called a Lie-subalgebra h of g, which in addition satisfies
[hgl < h. ©)
Obviously g and {0} are ideals . We call them trivial.
Exercise-1 Show that R? endowed with the usual exterior product
XXY = (X, Y5Y X3 X3Y 1Y 3X s X1 Y2Y 1 X0), ©)
is a Lie-algebra. Show that this Lie-algebra has no non-trivial ideals.
Exercise-2 Select a basis e=(e,, ..., e » Of the Lie-algebra g. Expressing [el,ej] in terms
of the basis e, we get the so-called structure constants Ciz » defined by the equations

{ei,ej] =y Cijk € - (3)
Prove that (1), (2) are correspondingly equivalent with the equations

C'ljk = —Cjik 4 (6)

¥ pl cirs+ckircjrs+cijrchs)=0. (7)

Exercise-3 Show that by a basis change €' =eg (i.e.g'= €,g;; summation over indices ap-
pearing twice), the corresponding structure constants are related by the equations

[eiaej] = Cix Cx»

[e'e'1=cgy s

ik = Comr gnigmjhkr , where h is the inverse matrix of g. €]
The two last exercises show that the problem of classification of Lie-algebras (of finite di-
mension, tacitly assumed throughout the lectures) is equivalent with the determination of

equivalence classes of three-dimensional arrays Cige satisfying (6) and (7), the equivalence
relation being defined by (8).
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Exercise-4 Let gbea Lie-algebra and V a vector-subspace of g containing the set [gg] =

vector-subspace spanned by all [XY]. Show that V is a Lie-ideal of g. In particular [gg] it-
self is an ideal of g.

The center ¢ of a Lie-algebra g is defined to be the set of all elements "commuting” with
every element of g

¢={Xeg, [XY]=0, forall Yeg}. ©
Exercise-5 Show that the center of every Lie-algebra is an ideal.

A linear mapping f:g,—g, between two Lie-algebras is called an homomorphism of Lie-
algebras, if it "respects” the corresponding products, i.e. forall X, Ying .

JIXY], = [fX.fY], . (10)
When g,= g,= g, we call endomorphism. An invertible endomorphism is called auto-
morphism. We use the notation End(g) and Aut(g), correspondingly, for the associative al-
gebra of endomorphisms of g and for the group of automorphisms of g.
Exercise-6  Show that the inverse mapping of an automorphism of g is an automorphism
too. Show also that the Kernf of an homomorphism is an ideal in g,, and that the Imf is a
subalgebra in g,,.
For each Lie subalgebra hcg, the normalizer ni(h) is defined to be the set

n(h) = {Xeg, [Xh]ch}. (11)
Exercise-7 Show thatn(h)isa subalgebra of g, and his an ideal in n(h).

For each Lie subalgebra hcg, the centralizer c(h) is defined to be the set

c(h) = {Xeg, [Xh]=0}. (12)
Exercise-8 Show that c(h) isa subalgebra of g, and h is an ideal in c(h)+h. Show also
that ¢(h)n(h).
Exercise-9  Show that subalgebras are mapped, by homomorphisms f, onto Subalgebras,
but ideals are mapped, in general, in subalgebras (and not ideals). Show that the inverse
image f*1(h) of a subalgebra (ideal) is again a subalgebra (ideal).

For each ideal hcgofa Lie-algebra g, the quotient vectorspace g/h admuis the struc-
ture of a Lie-algebra by defining the product on g/h via the natural projection
p:g—gh, p(X)=X+h,
[P(X),p(Y)] = p[XY]. (13)
With this structure, p becomes an homomorphism of Lie-alge- bras. We call g/h, endowed
with this structure the quotient Lie-algebra of g by h.

Exercise-10  Show that for an homomorphism f:g 1~ 9, of Lie-algebras, there is a natural-

ly defined "induced” homomor- phism f:g,/Kernf—g, , which is 1-1 and makes the nearby
diagram commutative (p the projection onto the quotient).

Exercise-11 Show that for ideals acbcg, there is a natural isomorphism
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f:glo—(gla)/(bla) given by
f(X+b) =p(X)+bl/a, where p(X) = X+a. (14)

Exercise-12  Let a, b be ideals of the Lie-algebra g. Show that a+b and [ab] are ideals
too. When a, b are only subalgebras, then, in general, a+b and [ab] are not Lie-subalge-
bras. If however one of them, say b, is an ideal, then [ab] is a subalgebra, bNais an ideal in
a and there is a natural homomorphism

f:allbna) — (a+b)/b, given by

f(X+bna)=X+h. (15)
All these formal things are boring but necessary, like the rules of grammar. Except the sub-
algebras-and quotients one can construct other examples of Lie-algebras as follows:

The direct product of two Lie-algebras a®b with bracket defined on decomposable
elements by
XeY, X'aY']=[XX18[YY'], (16)
and by bilinear extension for the other elements.

Exercise-13 Show that a, b are naturally embedded as ideals in a®b.

A semi-direct-product a®_b, of two Lie-algebras is defined by means of a repre-

sentation of Lie-algebras i.e. using an homomorphism
c:a — gl(b),

where gl(D) denotes the Lie-algebra of endomorphisms of b, with bracket equal to the com-
mutator of linear operators on b. One verifies easily that the subspace Der(b) of derivations
of b is a Lie-subalgebra of gl(b). For the representation o, used in the definition of semi-di-
rect-product, we postulate that it takes values into Der(b). Then, as a vector-space, we de-
fine a® b to be identical with the vector-space-direct-sum a®b. But the product on a® Ob
is deﬁned by the rules

1) [...] restricted on aca® b and on bca® b, coincides with the old brackets,

i)  for "mixed" products, [XY] = o(X)Y = -[YX], for all X€a, Y € b.

Exercise-14  Show, using the characteristic property of derivations ((3) in §9), that a® D
is indeed a Lie-algebra, which coincides with the direct product, when o= 0. Show further
that, in general, only b is an ideal of a® _b.

Abelian are called the Lie-algebras, which have a trivial product: [XY]=0, for all X, Y. Any
vector-space V can be considered as an Abelian Lie-algebra. Considering V as Abelian Lie-
algebra and taking any representation ¢:a — gl(V), we get a new Lie-algebra a® oV

Exercise-15 Show that every two-dimensional non-abelian Lie-algebra g has one-dimen-
sional [gg] and there is a basis e, e, of g, such that [e,.e,]=¢,. Conclude that all these Lie
algebras (over a fixed field) are isomorphic. Thus, we are legitimate to say the two-dimen-
sional non-abelian Lie-algebra . Show that the Lie-subalgebra

aff(1,C) = {(; g) %, y€eC}

of gl(2;C), is such an example and find e 1» € in this case.
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Exercise-16 ~ Show that the center of an n-dimensional Lie-algebra, cannot have n-1 di-
mensions,

Exercise-17 Show that for every Lie-algebra g, [gg] is an ideal and g/[gg] is Abelian.
Exercise-18 Let gbea Lie-algebra with one dimensional [99] = <e>. Show that there is a

skew-symmetric f: gxg—K (K is the field of g) such that [XY]=/(X,Y)e, for all X, Y and f
and g have the properties :

) JXDIXe)+AZX)f(Ye)+f(X,Y)f(Ze) =0, forall X, Y, Z and

i) [eg]=0,0r

iif)  there is a basis of €p> -y €, Of g, such that f has corresponding representation
matrix '

,with A =0,

o> o
oo >

0

Sy

0

In the last case, the Lie-subalgebra h, spanned by {e,, ..., e }, is an Abelian ideal in g.
Hence in the case [eg]#0, e¢g = €=, e *...+u e, with p,, 1, not both = 0, say u,#0.
Then, the Lie-subalgebra h', spanned by {e., €}, is an ideal of gand g=h&Hh.

Exercise-19 (Continuation of 18) In the case ii) above, there is a basis, such that f has the
representation matrix

0 -2y , with A, # 0,

0

and g 1s the direct sum of an Abelian ideal h and of an odd-dimensional Lie-subalgebra I,
spanned by vectors {e,, f,, €y, f}omnny €48, }, such that [e;, f;]=e, for all i=1,...k, all other prod-
ucts being zero.



Reader! I have kept my word,-at least so far

As the first Canto promised. You have now
Had sketches of love, tempest, travel, war-

All very accurate, you must allow,
And Epic, if plain truth should prove no bar;

For I have drawn much less with a long bow
Than my forerunners. Carelessly I sing,
But Phoebus lends me now and then a string,

Byron, Don Juan, Canto VIII, 138

11. Adjoint representation and Killing form

A representation of the Lie-algebra g on the vector-space V, is an homomorphism
f:g—gl(V) of Lie-algebras. Using a representation and some basis of V, we "see" the Lie-
algebra g as a set of matrices with the commutator as product. A famous theorem of Ado
says, that every Lie-algebra (over the field of complex numbers C) has a faithful (i.e. 1-1)
representation on some vector-space V.

Given a Lie-algebra g, there is a special representation of g on itself (viewed as a vec-
tor-space) which generalizes the adjoint representation of gl(n;C) :

ad:g — gl(g),
adX(Y) =[XY], forall X, Yeq. (D
This is called the adjoint representation of g. The Jacobi identity is easily seen to be equiv-
alent with the ‘
ad[XY] = adX-adY - adY-adX = [adX, adY], forall X, Ye g, 2
which shows that ad is indeed a representation. _
Despite the fact that this representation is not faithful, and
Kern(ad) = center of g=c¢, 3)
it is very useful for the study of the structure of Lie-algebras. Besides, from the Jacobi iden-
tity follows that adX is a derivation of g: ‘
adX([YZ]) = [adX(Y),Z]+[Y,adX(Z)], forall X, Y, Zeg. 4)
Derivations of this kind (D=adZ, for some Z€g) are called inner. We will see many exam-
ples of Lie-algebras (Semi-simple) having all their derivations inner.
Exercise-1 Show that all the derivations of the two-dimensional non-abelian Lie-algebra
(with a basis {el,ez} s.t. [e,,e,]=€, , see §10) are inner.
[If De =ae,, De,=be,, show D=ad(be,-ae,)]

The Killing form of a Lie-algebra g is a very useful symmetric bilinear form on the
Lie-algebra, defined through the adjoint representation by

K(X)Y) = tr(adX-adY), forallX,Y,Zeg. ®)
Theorem-1 For every automorphism f: g — g, we have
K(fX.fY) = KX,Y). ©)

Theorem-2  Each derivation D: @ — g, is skew-symmetric, with respect to K:
K(DX,Y}+K(X,DY) = 0. @)
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The first theorem is a consequence of the easily proved formula

ad(fX) = fadX.f-! , for every automorphism f €Aut(g), (8)
and the invariance of tr(ABCD), under a cyclic permutation of the letters. The second theo-
rem follows from Th-1, by differetiating K(exp(tD)X,exp(tD)), and the following theorem,
which is proved by applying verbatim the argument in Th-1, §9:
Theorem-3  For each derivation D: g — g, exp(tD) = Y (tD)"/n! defines an auromor-
phism of g, for all real numbers t.

These propositions show that X is strongly related to Aut(g). Unfortunately K is in
general degenerate. f.e. the center ¢ of g is allways contained in the nullspace of K. As
we'll see below, non-degeneracy of K is a drastic restriction on the Lie-algebra, and defines
the so-called semi-simple Lie-algebras, which are our main object of study. In this context,
the Killing form becomes an indispensable tool in the investigation of the structure theory.
Exercise-2  Show that in every Lie-algebra g the nullspace r of K is an ideal of g. ris
called the radical of g.

One may ask, wether there is a complementary space of the radical, which is a subal-
gebra. The famous theorem of Levi answers this question affirmatively.

Exercise-3 Show that for each ideal h of the Lie-algebra g, the orthogonal complement h™
with respect to K, is again an ideal of g. _ .
Exercise-4 Show that for each ideal h of the Lie-algebra g, the Killing form K, of hcoin-
cides with the restriction of K on g. [Consider a basis {e € of h and extend it to a basis
of g. Examine then the matrix representing adX, for Xeh)]

For every representation f: g — gl(V), one can define the traceform
T AX.Y) = trace(f(X)-f(Y)), ©)
which specializes to the Killing form, in the case f=ad.
Exercise-5 Show that for every representation f: g — gl(V),andevery X, Y, Z €Q:
r {[ZX],Y) + tr AX,[ZY]) = 0. (10)
Formulate and prove the analogous of exercises -2, -3 and -4, for tr sinstead of K.

The representation f is called irreducible, when there is no (non-trivial i.e. different
from {0} and V) subspace W of V, invariant under all f(X) (we say short "g-invariant sub-
space W"), for X€g. The representation is called semisimple or completely reducible,
when every g-invariant subspace W, admits a g-invariant complement. When W is a g-in-
variant subspace for the representation f, then one can define in a natural way the induced
representation .

Trg— gl(viw),
FOO(v+W) = f(X)v+W, forall veV. (11)
Exercise-6 ~Show that the representation of the one-dimensional Abelian Lie-algebra C on

C?, given by
' 00
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is not completely reducible. [There is no g-invariant complement of {(0,z), z€ C}.]

Given two representations f;: g — gl(V,), for i=1, 2, the direct sum is the representa-
tion defined (on decomposable elements) through

£18f,19 — gl(V,@8V,),
18/, XV, 8v,) = F1 (X)(v 1 )8f, (X)(v,). (12)

The tensor product is defined to be the representation defined (on decomposable elements)
£18f,:9 = g(V,8V,),
F18f, X)v,®v,) =f 1 (X)(v, )@V, +v @ F (X)(v,).  (13)
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But now I will begin my poem.-"Tis
Perhaps a little strange, if not quite new,
That from the first of Cantos up to this
I’ve not begun what we have to go through.
These first twelve books are merely flourishes,
Preloudios, trying just a string or two
Upon my lyre, or making the pegs sure;
And when so, you shall have the overture.
Byron, Don Juan, Canto XII, 54

12. sl(n;C)

This is the most important example of "semi-simple" Lie-algebra. It is the Lie-subal-

gebra of gl(n;C), consisting of matrices A, which have tr(A)=0. Obviously, we have
gl(n;C) =sl(m;O)& <I>, (0

where <I> is the center of gl(n;C). This is a direct sum of Lie-algebras, which contains the
two summands as ideals.
Theorem-1 si(n; C)is simple i.e. it has no non-trivial ideals.
In fact, a basis of sl(n;C) is given by the matrices E,, for i+, defined in §8, together with the
diagonal matrices H;= E;-E_, fori=1,...,n-1. Notice the condition for diagonal matrices,

nn’
n n
YAEi€dmC) = Ya=0.
=1 =1

From the formulas of §8 we get

(B Es] =9, E; -8 E;, 2
which for diagonal matrices M gives

[Ej; BE;1=56, E,-8,E;

ME_ 1= (ur HIE; . 3

From these formulas we can see, by simple calculations, that if an ideal h of sl(n;C) contains '
an element

n
X=Zl~liEij + E?\ijEij% 0,
=1 17
then, it contains all the elements of sl(n;C). In fact, if some :’L # (), for i#j, then

u _]J’X] E)\rs@:.r—6 ] Z?\ISEL" Z)\JJEIJ
“ -U’ )\IE‘J Z}\ISE’S’

rLs%

[EgE;, x - [EgEy.x] = -2 AEy-
Thus, E_€h. Then, it follows that all E, with r#s, belong to I
h. In fact, from (2) we have i)
[Ey; Ejl = Ekjeh , for k=j, and [E; Byl = E; €h, for k#i.
Formaly, this means that if for some pzur (i,j) the correspond-
ing EijE h, then we have also E_€h, for all pairs (r,s) belong-
ing to the same row or column with (i,j).
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This implies also [Eg Eyl = Eﬁ-Eij h.
Exercise-1 Complete the preceding proof and examine what happens when hy; = 0, for all
#*

o We turn now to the computation of the Killing form of gl(n; C) and si(n; C).
Exercise-2 Show that for a,b > 0, the bilinear form on gl(n;C) defined by

t(AB) = atr(AB) + b(trA)(trB), (€}
1s symmetric, Ad-invariant and satisfies also (ad-invariance, by "differentiating” the Ad-in-
variance relation)

t([XA]B) + t(A,[XB]) = 0. 5)
Furthermore show that t is non-degenerate (for a,b>0). [Compute t(AA*), where A*=A"
Exercise-3  Show that the ideals sl(n;C), <I> of gl(n;C) are orthogonal with respect to t
and that the restriction of t on sl(n;C) is a non-degenerate symmetric bilinear form, for
which (5) holds. .
From these exercises we can conclude a formula for the easy computation of the Killing
forms of gl(n;C) and sl(n;C). In fact, sl(n; C) and <I> are also orthogonal with repect to the
Killing form X of gl(n;C). Hence decomposing an element X of gl(n;C), we get

X=X'+X"=(X-(1/mt(X)I) + (1/n)tr(X)1,

K(X,Y) =KX, Y. (6)
X', Y' are elements of sl(n;C), and in the right side of (6) K is the Killing form of sl(n;C).
Lemma There is no subspace h of sl(n;C), invariant under all Ads, geGL(n,C).

In fact, if there were such a subspace, differentiating Adexptx(Y), for Y € GL(n;C), we
would get ((7) in §9),

adX(h)ch, for all X € GL(n;C).
In other words h would be an ideal of sl(n;C). This proves the lemma.

Now, Schur’s lemma implies that the bilinear form K 1s a constant multiple of t on
sl(n;C), K = ¢-t. In order to compute ¢, we choose special matrices f.e. for X = IxE; with
2x.=0, we have tr(XX) = inz_ On the other side, computing directly the Killing form,

[XE ]=(x,-x)E_,
[XH] =0, for diagonal H.
Thus,
radXadX) = ¥ fx;x .
1%

Exercise-4 Prove the following identity between elementary symmetric functions:

n

E (xi—xj-)2= ZHixiE—Z(ixi) :
=1 1

i#. L =1
Conclude that the K:E]ling‘F f;m of sl(n;C) is given by

K(X,Y) =2n tr(XY). (7
Exercise-5 Prove that the Killing form of sl(2;C) is given by

K(X,X) =-8 detX: ®

Exercise-6 Show that the Killing form of gl(n;C) is given by
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K(X)Y) =2n tr(XY) - 2 tr(X)tr(Y). 9
We notice the role played by the set A of diagonal matrices. A is an abelian (n-1)-dimen-
sional subalgebra of sl(n;C). The linear operators adX, for X in A, commute with each other

and they are completely diagonalizable, the E,_being their common eigenvectors.
Exercise-7 Show that A is self-normalizing i.e. [XA]CA = X €A. Show that A is maximal
abelian i.e. there is no other abelian subalgebra A' #A, containing A.

In the following sections we’ll see that all these facts generalize for "semi-simple"
Lie-algebras i.e. algebras whose Killing form is non degenerate.

Exercise-8 Show that the Killing form of g = sl(n;C) is non-degenerate and [gg 1=g.
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My Muses do not care a pinch of rosin
About what’s called success, or not succeeding:
Such thoughts are quite below the strain they have chosen;
*Tis a "great moral lesson" they are reading.
I thought, at setting off, about two dozen
Cantos would do; but at Apollo’s pleading,
If that my Pegasus should not be foundered,
I think to canter gently through a hundred.
Byron, Don Juan, Canto XII, 55

13. TIrreducible representations of sl(2;C)

10 01 00
H = = X —
[o3) = (o) = [15)-
We compute easily the multiplication table of this basis:
HX,]=2X,,[HX]=-2X_,[X,X]=H. (D
Exercise-1 Show that, with respect to this basis, we have the matrix representations:

sl(2;C) = {(i yx) ,X%,y,26C } , has a basis consisting of the matrices

200 0-20 000
adH={0-00 ) ,adX.= 1001],adX =(-100
00-2 000 020

Let now f: s1(2;C) — gl(V) be a representation. We write Xv, instead of f(X)v, for all X in
s1(2;C) and all v in gl(V). The following lemma is very simple and important.

Lemma Ler the vector v of V be an eigenvecror of H (we mean f(H)), with respect to the
eigenvalue 1. Then, the vectors of V, X v and X.v are either zero or eigenvectors of H, with
respect 1o the eigenvalues |1 +2 and -2 respectively.

In fact,
Hv = v, implies

HX ,v)=(HX,]+X Hyv=2+1)X,v, and
HXv)= (HX]+XHv =(-2+)X, v.

The lemma leads to the complete classification of irreducible representations of
s1(2;C) as follows.
We start with an eigenvector of H (exists, since V is complex),
Hv=pv,
and consider the eigenvectors of H:
¥ Hii K2 K™V K v
Since these vectors correspond to different eigenvalues, they are independent (the non-zero
of them). Thus, since V has finite dimension, there must be some
vp* 0, with Hvy =av, and X v, =0. 2
We consider the eigenvectors of H:
vi=XVg,
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v,=Xv,,

V=X v,,

Vr=er1 #0, with v, =X v =0. 3)
Such anr exists, since V is finite dimensional. Applying the lemma, we get:

Hv =(a-2kv,,fork=0,1,..,r. 4
Defining also

v,=0,

we get inductively
XV =byv,, , for certain constants b, k=0,1, ..., . (5)

We compute the constants easily:
X, =X, Xv, = ([X.X]+XX, v,

=H+XX,)v,,
=((a-2G-D)vy +b X v,
=(a-2(i-1)+b_ v, . =
b, =(a-2(k-1)+b,,), and by=0. (6)
Exercise-2 Solve the inductive relation (6) and show that, for all positive integers k:
b, =k(a-k+1). 7

[Write b, = (a +2)-2k+ b, ;, and b,=0.]

For the special case k= r+1, 0=X v, =b_ v_,implies a=r (positive integer!).

+ '+l r+l 'r?
Thus,
b, =k(r-k+l),for k=0,1,..r. (8)
and the eigenvalues of H are:
1, -2, r4,.,r-2k,.., -T. )]

Thus, the subspace W, of V, spanned by {v, v, , ..., v.} is sl(2;C)-invariant, and, with re-
spect to this basis of W _,;» we have the matrix representation (we mean f(H), f(X.), ...):

o (— 0 T 0 VR 0
0r20...0 00 by 0 10 0o 0

H= [00r40.0 |, X, = [000b;..0|,X =][0100...0 (*)
...................... oI
VR . [ 0 (- 010

When the representation is irreducible, then W_,, = V.

Exercise-3  Show that the preceding matrices satisfy (1) and define a representation of
sl(2;C). Show for this representation, that one can find a vector v, s.t. X,v = pv, # 0.
Conclude that this representation is irreducible.

Exercise-4 Show that for r=1, the preceding procedure gives the standard representation of
s1(2;C), described in the first line of this paragraph. Show also that for r=2, the preceding
procedure gives the adjoint representation, described in Ex-1.

From this short investigation, we notice that for every positive integer t, there is an (r+1)-di-
mensional irreducible representation, for which f(H) has r+1 different eigenvalues, which
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are given by (9). The dimension of the representation is related to the highest ei genvalue of
Jf(H). Changing the lengths of {Vor VY 5 i Vr}, we can find for f(X,) and f(X) more sym-
metric matrix-representations (f(H) remains the same, since its eigenvalues don’t depend on
the basis). In the following exercises we construct such bases, for which f (X.)and f(X) are
transpose to each other.

Exercise-5  Change from {vq, v, , .., v} to {uve, n,v,, .., U v.}. Show that the corre-

sponding matrices for f(X,)and f(X ) are transpose to each other, if and only if,
Bifis =~ Mo =1, ...z (10)

and for these values of ., the corresponding matrices to f(X ,)and f(X ) have the form:

0 c, .0 0.. 0
00 ¢, 0 N — 0

X, = 000c,...0 , X = {0 c, 0 ;
1 P——— . RO
O, 0 (O c. 0

with
Ci=Milyy =vb;=Vi@+1-1).

Physicists use often a different notation, writing r = 2J, with J integer or half-integer,
1=0, 1/2, 1, 3/2, 2, 5/2, ..., and denoting the representation W, by D; . Using the basis of
the previous exercise and the indices i = J-k, we get the easy to memorize

4, =c,=(JU+1) - k(k+1)) 12, for k=7J-1,J-2,....,-],  (11)
for which
Xowe=dpwyy,
Xwe=dwy,,
where
Wi = My Vi -
Exercise-6 Show that a 1-dimensional representation of a Lie-algebra g is a linear form on
g which vanishes on [gg]. Conclude that a 1-dimensional representation of sl(2;C) vanishes
identically [Ex-8, §12].
Our brief discussion gives the proof of the following

Theorem  For every integer r 2 0, there is, up to isomorphism, a unique (r+1)-dimensional
representation on a space W, with a basis {v,, v, , ..., v,}, with respect to which, the marri-
ces f(H), f(X,) and f(X_) have the form (*). The integer r is the heighest eigenvalue of

S(H).
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But I am apt to grow too metaphysical:

"The time is out of joint,"-and so am I;
I quite forget this poem’s merely quizzical,

And deviate into matters rather dry.
I ne'er decide what I shall say, and this I call

Much too poetical. Men should know why
They write, and for what end; but, note or text,
I never know the word which will come next.

Byron, Don Juan, Canto IX, 41

14.  Solvable Lie-algebras

For every Lie algebra g one can define the derived series of ideals
g =lggl. ¢'=1991 g®=[g"g"}, .., g™ =[gMg™], .... )
Exercise-1 Show thatall g™ are characteristic ideals i.e. they are invariant under endo-
morphisms and derivations of the Lie algebra g.
Exercise-2 Show that an ideal h' of an ideal h of g, is also an ideal of g.

g is called solvable, when g{" = {0} for some n. Notice that g™ cg( hence, as-
suming finite dimensions, we’ll have, for an arbitrary Lie algebra, either g™ = {0} or g =
[9™g™ ] for some n. The most important example of solvable Lie algebra is the set of
upper triangular matrices of gl(n;C) ,

t(n; C) = {X egl(n; C), with x;=0, forall i > j}. 2)
Exercise-3  Show that [t(n;C),t(n;C)] = {Xegl(n;C), with x; =0, foralli2 j}. Compute
the derived series of t(n; C) and show that it is solvable. ;

In every Lie algebra g there is a maximal solvable ideal r, called the radical of g. A
famous theorem of Malcev says that there is a complementary semi-simple Lie-subalgebra

hin g, s.t. gis a semi direct product of rand h.

Exercise-4  Show that solvable Lie algebras g contain always abelian ideals. [If g = {0}

with minimal n, then g™ is an abelian ideal of g.]

Exercise-5 Show that g s solvable, if and only if, there is a sequence of ideals
99=920,29,>..2g,={0}, st g/g,, isabelian.

Exercise-6 Show that a subalgebra hcg of a solvable Lie algebra g, is also solvable.

Show that the quotient g/h of a solvable algebra with some ideal h is also solvable.
Exercise-7 Let 0 — a — b — ¢ — 0 be an exact sequence of Lie algebra homomor-
phisms. Show that b is solvable, if and only if a and c are solvable. [b® is mapped in ¢,
which for big k vanishes, hence b{® is contained in the image of a etc....]

From the preceding exercise we conclude that the sum of two solvable ideals a, ¢ of a
Lie algebra g, is a solvable ideal too. In fact, it suffices to use the exact sequence
0—~a— atc — (a+c)c — 0,
and the isomorphism (a+c)/c =a/anc. We "proved" the

Proposition In every Lie algebra g there is a maximal solvable ideal r, called the radical
of g. ris simply the sum of all solvable ideals of g.
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Exercise-8 Show that the radical of gl(n; C) coincides with its center, Show, more general,
hat the center of a Lie-algebra is contained in its radical.

The following theorem, due to Dynkin, leads to a conveniant description of solvable
subalgebras of gl(n;C).
Theorem Let g be a solvable subalgebra of gl(V). Then there is q non-zero vector vev
and a linear form u: g — C, with the property (common eigenvector to all X €g)

Xv=p(X)v, forevery Xe g 3
We use induction on the dimension of g. For dimg=1 it is obvious. Suppose the theo-

rem is true for dimg=k. Let dimg=k+1. There is an ideal hcg of codimension 1([ggl=g
and take a hyperplane h containing [gg]). Let now Y bea complementary vector to h, s.t.

g=h ®<Y> asavector Space. (4)
Then, h is also solvable, and, from the induction hypothesis, there is a prh— C,andve v
s.t.

Xv=uX)v, for every X eh, 5
Consider now the vectors of V:
Vo=V, Vi=Yv, v,= Y, .., v, =YH,

where p is the minimal integer, s.t. Vo Vs s vp} are independent. The subspace spanned:
V'= Ve Vis e s V>,

1s, obviously, Y-invariant. We show that it is also h-invariant. More precisely :
qu = ]J(X)Vq mod<v,, v,, ..., Vo1, forevery X eh. (6

(6) is proved by induction. For q=0, this is the definition of v. Suppose (6) is true for some
q. Then [XY]eh, forall X €h and

qu+1 = Xqu =([XY] + YX)Vq =
= J.L([XY})\/q mod<y,,, Vis s Vo >+ Y(p(X}vq mod<yv,, Vis ey Vg >y =
= 1.1(15()vq+1 mod(v,, Vi o ,vq).
This proves (6). Thus V'is g-invariant and from the preceding formulas we get
T(XV) = u(X)dimy* = H([XY]) =0, forevery X, Yeg, *
since dimV" = Q,
We improve inductively (6) to the
qu = p(X)vq , forevery X eh. (7
In fact, Xv = y(X)v by assumption. Let Xv o= u(X)vq , forevery X€h. Then from ™), (D
quJ,l S Xqu =([XY] + YX)Vq = ;.L(X)qu = ;.J.(X)vq+1 .
To prove the theorem, take now some eigenvector v of Y|V'. Then, from (7) we’ll have
Xv =u(X)v, for every Xeh, and Yv = Lgv.
Hence the linear function p* defined on g by its restrictions on hand <Y> :
H*, with p*|h = p, and pX(Y) = Lo,
satisfies the requirements of the theorem.

Notice that the solvability hypothesis is used in the very beginning of the proof, when
we consider an ideal of codimension 1.
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Corollary-1  For every solvable subalgebra gcgl(V), there is a basis of V, with respect to
which all the elements of g are represented by upper triangular matrices. In other words
the subalgebra is isomorphic ro a subalgebra of t(n; C).

To prove the corollary take v, €V, u,: g — C, as in the theorem. In Vi<v,> use the
induced representation, which deﬁnes a solvable subalgebra g of gl(V/<v,>). Take again
V,€V/<v > u,: g — C, as in the theorem. Choose v ,€ V, which projects under the canoni-
cal projection onto V,. Repeat the procedure with the induced representation on V/ <V, Ve
One gets inductively a basis {v,, v, ..., v_} of V, satisfying the requirements. The matrices
representing the elements of g, with respect to this basis, have the form (using somewhat
liberally the notation "u,(X)"):

gl(X) ............

0 p(X) . *

(URUNTING IR I )
L u (X

Corollary-2  For every representation f:g — gl(V), of a solvable Lie-algebra g, there is a
basis of V, with respect to which all f(X) take the form (8).
Corollary-3  Every irreducible representation of a solvable Lie-algebra is either one-di-
mensional or trivial (zero).
Corollary-4 A complex Lie-algebra g is solvable, if and only if there is a sequence of ide-
als

9/ g, <...C g, = g, withdimg, = k.

The condition holds for solvable Lie-algebras. This is proved by applying the preced-
ing corollaries to the adjoint representation ad:g — gl(g). For the inverse we notice that
[9,9 =g, 4» which is a consequence of the hypothesis that Oy.1 is of codimension 1 in g,.
Corollary-5 A Lie-algebra g is solvable, if and only if there is a basis of g, with respect to
which, all adX, X € g, are represented by upper triangular matrices.
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Die Mathematik ist eine gar herrliche Wissenschaft, aber
die Mathematiker taugen oft den Henker nicht. Es ist fast
mit der Mathematik, wie mit der Theologie. So wie die der
letztern Beflissenen, zumal wenn sie in Amtern stehen,
Anspruch auf einen besondern Kredit von Heiligkeit und
eine nihere Verwandschaft mit Gott machen, obgleich sehr
viele darunter wahre Taugenichtse sind, so verlangt sehr
oft der so genannte Mathematiker fiir einen tiefen Denker
gehalten zu werden, ob es gleich darunter die gréBten
Plunderképfe gibt, die man nur finden kann, untauglich zu
irgendeinem Geschift, das Nachdenken erfordert, wenn es
nicht unmittelbar durch jene leichte Verbindung von
Zeichen geschehen kann, die mehr das Werk der Routine,
als des Denkens sind.
Lichtenberg, Sudelbiicher p. 471

15. Nilpotent Lie-algebras

For every Lie-algebra g one can define the lower central series of ideals of g:

g' =g, g% =gg], g* =gg?, ..., g*" =[gg"]. 6
Obviously the series, either will have gi*! = g¥, for some k, or will terminate with {0}. In
the later case we say that gis nilpotent.
Exercise-1 Show that the g¥, are characteristic ideals of g (i.e. invariant under endomor-
phisms and derivations of g). .
Exercise-2 Show that g9 cgK, where g the ideals of the derived series of §14.
Corollary  Every nilpotent Lie-algebra is also solvable.
Exercise-3 Show that the Lie-algebra of upper triangular matrices t(n; C) 1s solvable, but
not nilpotent.
Exercise-4  Show that t'(n; C) = [t(n;C),t(n; C)] = {X gl(n;C), with x = 0, for i>j} is a nil-
potent Lie-algebra. Notice that all elements of t'(n;C) are nilpotent matrices.

We'll see below that the last property is quite characteristic for nilpotent Lie-subalge-
bras of gl(n; C) i.e. every nilpotent subalgebra of gl(n;C) consists of nilpotent matrices.
Exercise-5 Show that every Lie-subalgebra of a nilpotent Lia-algebra is nilpotent too.
Show also that the quotient g/h of a nilpotent by an ideal is nilpotent too.

Exercise-6 Show ;hat for nilpotent ideals a, b of g, a+b is nilpotent ideal too.

The last exercise shows that the sum of all nilpotent ideals of a Lie-algebra g is a max-
imal nilpotent ideal of g, which we call the nil radical of g. The nil radical of g is, obvi-
ously, contained in the radical of g. The example of t¢(n;C) which has t'(n;C) as mlradlcal

and itself as radical, shows that the two radicals can be different.
The next exercise relates the operator X €gl(V) with adX € gl(gl(V)).
Exercise-7 Show by induction, that for all X, Y € gl(V), holds the formula
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n
@x)"Y=Y (—1)“""(3) XPYX™P, )
p=0
Conclude that if X is a nilpotent operator of V, then adX is a nilpotent operator of gl(V) .

Proposition-1  Ler g be a Lie-subalgebra of gl(V), which consists of nilpotenr operators
(X"=0, n=dimV) of V. Then, there is a subspace W#{0} of V annihilated by all X in g.

‘We use induction on the dimension n of g. For dimg=1, this is obvious, since all oper-
ators are then multiples of a single nilpotent operator. Let the theorem be true for dimg=k.
Let dimg=k+1 and take a maximal subalgebra m of g which is different from g. Such sub-

algebras exist. Start f.e. by a 1-dimensional (abelian) <Z> and consider the maximal dimen-
sional subalgebra containing <Z>,

Under the hypothesis of the proposition, we can prove that m is an ideal of codimen-
sion 1. In fact, for X em, adX mcm, hence one has the induced operator on the quotient

adx : g/m — g/m, considering g/m as a vector space.
According to Ex-7, adX is nilpotent and the same will be true for adX . Hence, by the in-
ductive hypothesis, there is a non-zero vector U, of g/m, annihilated by all adX, X em.
This means that [m, U,]J=m, hence m&<U,,>, is a subalgebra and by maximality me&<U,>
=g. This completes the proof that codimm=1. To prove the proposition, consider the sub-
space W of V, which is annihilated by all X ém (inductive hypothesis). For all X em, we
have

XUW)=(UX+[XUH)W=0 = UWCW,
Then U,|W is a nilpotent operator, hence there is some non-zero vector v in W, with
Uy(v)=0. Then Xv=0, for every X in g. This proves the proposition.

Exercise-8 Let f: g — gl(V) be a representation, s.t. f(X) is nilpotent operator of V, for
every X in g. Show that there exist a subspace W # {0} annihilated by all f(X).
Proposition-2  For every Lie-subalgebra g<gl(V) consisting of nilpotent operators of v,
there is some basis of V, with respect to which, all ellements of g are represented by upper
triangular matrices (which are nilpotent, hence elements of t'(n;C)).

This is obvious. In fact, take v,in Vst Xv, =0, forall Xin g. Take then v, in
Vi<v > st Xv, =0, forall Xin g. Take v,in V/<v,v,> s.t. Xv, = 0, etc (the somewhat

liberal use of of the same symbol, for operators and vectors in V and quotient spaces of V,
can be made easily precise). In this way we construct a basis of V, with the desired proper-

ties. Using such a basis, we see that g is isomorphic to a subalgebra of t'(n;C), so we get the
proofs of the theorems :

Theorem-1  Every Lie-subalgebra of gl(V) consisting of nilpotent operators of V, is nilpo-
tent.
Theorem-2 (Engel) Ler g be a Lie-algebra, for which all operators adX are nilpotent,
then g is nilpotent.
For the proof of The-2 consider the exact sequence
0 — ¢c— g — adg — 0, where adg < gl(g), ¢ the center of g.
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By The-1, adg is a nilpotent subalgebra of gl(g), hence g*co, for some k. Then gl =,
Exercise-9 Show that the Lie-subalgebras of gl(n;C) consisting of matrices of the form :
Uy *

0”1

p‘k *

O}lk

are nilpotent, but they do not consist of nilpotent matrices only.

The following theorem shows that the subalgebras of this form are, essentially, all nil-
potent subalgebras of gl(n;C). We need an identity analogous to (2), expressing XY ip
terms of adX. We use induction for X, Y in gl(n; C):

XY =adX(Y) + YX,
X2Y =(adX)2(Y) + 2 adX(Y)X + YX2,
X3Y =X((adX)X(Y) +2 adX(V)X + YX?) =
= (adX)*(Y)+(adX)* (V)X
+2((@dX)*(Y) + (adX)*(M)X)
+ (@adXY)X*+ YX3 =
= (adX)3(Y) + 3(adX)%(Y)X + 3(adXY)X2 + YX3 .
Exercise-10  Show that for every X, Y €gl(n: C), holds the identity

n = n
X Y=):(k
k=0

Proposition-3  Ler g<gi(V) be a nilpotent Lie-subalgebra and fixan X in g. Let VH be the
generalized eigenspace of X, with respect to some eigenvalue nofXie.

v, = {v eV (X-ul)Pv = 0, for some p}.
Then V., is a g-invariant subspace of V.

(@dX)™ )X, with @dx)% =Y. 3)

In fact, g nilpotent = g+<I> nilpotent = (ad(Z-xD))k = 0, for sufficiently big k.
Then, for arbitrary Y € g and ve V., » we have, using (3),

) (¢ acocun™ ) ocun*

k=0

(X" Yv =

v,

and for suffciently big n, k either (ad(X-pI))™* = 0, or (X-uI)* v = 0, hence Yv €V,.qed,

Fix now X € g as in the proposition. Consider the direct sum decomposition of V into
the generalized eigenspaces of X.
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V=8,V,.
Each V|, is g-invariant subspace of V, hence fixing some v, and taking an X'€ g, linearly
independent from X, we can decompose V ,in the eigenspaces of X'
vV, =8V, .
Continuing in this way with some X", X" etc. we obtain (by finiteness of dimension) a de-
composition of V into g-invariant subspaces V, , s.t. each X € g has exactly one generalized
eigenvalue u; (X) on V,:
(X-u;(X)Dkv=0, for sufficiently big kandall vin V.
From the Jordan-form of X in V', we see that
a(XIV,) = dim(V; )y (X).
Thus y; (X) is linear in X and vanishes on [gg]. Thus it defines a 1-dimensional representa-
tion of ginto C. Besides, each (X-u. (X)I)[V, is a nilpotent operator, hence, according to
Prop-2, there 1s a basis in V; s.t. (X-u; (X)I)[V, is represented by nilpotent upper triangular
matrices and consequently , with respect to this basis :

H(X) *
XV, = \
0 },li(X)
We proved the

Theorem-3  For each nilpotent Lie-subalgebra g of gl(V) there is a basis of V and 1-di-
mensional representations of g, 0 g = C,i =1, 2, ..., k, such that every X in g is repre-
sented, with respect to this basis, by an upper triangular matrix of the form:

LX) =

AN

¢ 1 (X

1 (X) *

(X




Puisque’on ne peut étre universel en sachant tout ce qui se
peut savoir sur tout, il faut savoir peu (peu, ¢’est-a-dire un
peu, et non trop pew.) de tout. Car il est bien plus beau de
savoir quelque chose de tout que de savoir tout d’une
chose; cette universalité est la plus belle. Si on pouvait
avoir les deux, encore mieux, mais s'il faut choisir, il faut
choisir celle-14, et le monde le sent et le fait, car le monde
est un bon juge souvent.
Pascal, Pensées, 37

16. Cartan’s first criterion

This is a criterion to judge wether a given Lie-algebra is solvable. The method is sug-
gested by the solvable Lie-subalgebras of gl(V), wich are represented by upper triangular

matrices (§14). Then, the elements of [gQ] are represented by proper upper triangular matri-
ces, hence, for X,Y in [gg], we have tr(XY) = 0, which by (7) §12 gives for the Killing form
K(X,Y)=0. Cartan’s first criterion says that K(X,Y)=0, for all X, Y in [gg], is a necessary
and sufficient condition, for g to be solvable. For the proof we need some basic facts about
the (Jordan-Chevalley) splitting of an operator in semi-simple and nilpotent parts.

Lemma-1 Let S, Negl(V) be respectively a semi-simple and a nilpotent operator, then adS
and adN are respectively semi-simple and nilpotent.

The statement for the nilpotent part is identical with Ex-7, §15. For the semisimple

part consider a basis {v,, ..., v_} of eigenvectors of S (since we work in C, semi-simple =
diagonalizable). Suppose Sv; = u,v; and define the operators E;;, through
E;vi= 0y v;. ¢y

The Eij build a basis of gl(V) and we have
[SEij Jv= SEU. Vi - Eij Sv = 6jk My, - Eij My vy
= (ili Hj )E]J Vi .
Thus,
ac{S-Eij = (pi—uj E

which means that Eij are eigenvectors of adS. g.e.d.

ij 2

Lemma-2 IfX =S8 + Nis the Jordan-Chevalley decomposition of X €gl(V) in semi-simple
and nilporent part, then adX = adS + adN is the Jordan-Chevalley decomposition of adX.
The Jordan-Chevalley decomposition X = S + N, in a semi-simple S and a nilpotent
operator N, with [SN] = SN-NS = 0, is unique. By Lemma-1, adS, adN are respectively
semi-simple and nilpotent. Besides [adS, adN] = ad[SN] = 0. Thus, by uniqueness of the
decomposition, adX = adS + adN is the J-C-decomposition of adX.
Lemma-3 Ifg=gl(V}is a Lie-subalgebra, for which tr(XY) = 0, for all X, Y in g, then the
derived subalgebra g' = [gg] is nilpotent.

We start with the Jordan-Chevalley-decomposition of some X € gl(V). It is well-
known that the semi-simple and nilpotent parts may be expressed by polynomials in X:

S =p(X), N =q(X).
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Then, the complex conjugate S* of S, which is defined in the basis of eigenvectors of S, is a
polynomial in S (take the interpolation-polynomial, which maps the eigenvalues i, of S onto
) hence also in X. Thus S* commutes with X, N and we have
r(S*X) = tr(S*S) = ¥ I,
since, by commutativity, (S*N)% = S*XNk = 0, for large k. Similarly adS* is a polynomial
with respect to adX, hence [S*g]cg. We consider now an X¢€ [gg], which will be of the
form
X=Y[AB]
For each summand we’ll have
tr(S*[AB]) = tr(S*AB-S*BA)
= r(S*AB-AS*B-[S*B,A])
=tr(S*AB-AS*B)
= tr([S*A]B) = 0,
since [S*A] € gand by hypothesis tr(XY)=0, for all X, Y in g. Thus, for X€[gg] we’ll have
L Wit = tr(S*8) = tr(S*(S+N)) = tr(S*X) = tr(S*L[A B ]) = 0,
hence X will be nilpotent and, by The-1,§15, [gg] will be nilpotent. g.e.d.

Lemma-4 The Lie-algebra g is solvable, if and only if [gg] is nilpotent.

In fact, if g is solvable, then there is a basis of g, with respect to which all adX are
upper triangular. Thus ad[XY]=[adX, adY] are proper upper triangular, hence nilpotent.
Thus [gg] is nilpotent. Inversely, if [gg] is nilpotent, then it is also solvable, hence the defi-
nition of solvability is satisfied for g too.

Theorem (Cartan’s first criterion) The Lie-algebra g is solvable, if and only if its Killing
Jorm is identically zero on [gg].

In fact, g solvable, implies the existence of a basis in g, s.t. all adX are represented by
upper triangular matrices. Thus ad[XY]=[adX, adY] are proper upper triangular, hence nil-
potent and consequently tr(adZ-adW) = 0, for Z, W €[gg].

For the inverse, we apply lemma-3 on q = ad([gg]) <gl(g). The hypothesis implies
that [gq] is nilpotent, hence q is solvable. Now consider the exact sequence

0 — cCggl) — [g9] — g=ad(fgg) — O.
Applying Ex-7, §14, we see that [ gg] is solvable, hence g is solvable too.



Le quelque chose qui est 13 et qui me parle, me dit:
Rameau, tu voudrais bien avoir fait ces deux morceaux-la;
si tu avais fait ces deux morceaux-13, tu en ferais bien deux
autres; et quand tu en aurais fait un certain nombre, on te
jouerait, on te chanterait partout; quand tu marcherais, tu
aurais la téte droite; la conscience te rendrait témoignage a
toi-méme de ton propre mérite; les autres te désigneraient
de doigt. On dirait: C’est Iui qui a fait les jolies gavottes
(et il chantait les gavottes; ...)
Diderot, Le Neveu de Rameau, p. 34

17. Semi-simplicity, Cartan’s second criterion

Semi-simple is called a Lie-algebra g, when it contains no solvable ideals; conse-
quently its radical is {0}.
Exercise-1 Show that the quotient g/r of a Lie-algebra by its radical r, is a semi-simple
Lie-algebra. [Use Ex-7, §14, taking a solvable ideal in g/r ]
Exercise-2 Show that gis semi-simple, if and only if it contains no abelian ideals.
[Ex-4, §14]
Exercise-3 Show that the radical of gl(n;C) is its center <I>. Show further that the quo-
tient gl(n; C)/<I> is isomorphic with sl(n;C), through the isomorphism of Lie-algebras
FX) =X - (Un) (XL (1)
Cartan’s second criterion is a criterion of solvability and its proof relies on his first criterion.
Theorem (Cartan’s second criterion) A Lie-algebra g is semi-simple, if and only if its
Killing form K is non-degenerate.
In fact, if g is not semi-simple, then it contains some abelian ideal a. Then for Xeg
and A € g we’ll have '
adA-adX-adA =0.
Hence adA-adX is nilpotent (of order 2) and consequently K(A,X) = 0; which shows that K
is degenerate. Inversely, if K is degenerate, then
gt = {X €g, K(X,Y)=0, for every Yeg},
is easily seen to be an ideal of g (the null-space of K) and K[gl = (. By Cartan’s first crite-
rion, gJ‘ is solvable, hence g is not semi-simple. g.e.d.
A semi-simple Lie-algebra which contains no ideals is called simple.

Exercise-4 Show that gissimple < g has no non-trivial ideals and its dimension is >1,

Exercise-5 Show that for every ideal hcg of a semisimple Lie-algebra g, the restriction of
the Killing form of g on h is the Killing form of h and is non-degenerate there, Conclude
(Ex-8, §4) that

g=heo hl,
where h™ is the orthogonal complement of h in g, with respect to the Killing form K.
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Exercise-6 Show that a Lie-algebra is semi-simple, if and only if it is the direct sum of
simple ideals.
Exercise-7 Show that for semi-simple Lie-algebras g, [gg] = g.

Mgl is an abelian ideal]

Exercise-8 Show that if hcg is an ideal s.t. the restriction K|h is non-degenerate, then
(Ex-5) g = heh" and his a semi-simple Lie-algebra.

Using the last exercise, we can study the derivations of a semi-simple Lie-algebra g.
Remember that a derivation is a linear endomorphism D: g — @ with the property

D[XY]=[DX,Y]+[X,DY]. The set of all derivations Der(g) of a Lie-algebra is a Lie-subal-
gebra of gl(g). The endomorphisms adX : g — g, are easily seen to be derivations called

inner. The kernel of ad is the center of g. Hence, when g is semi-simple, then the center is
{0} and ad is an isomorphism. We can easily see that ad(g) is an ideal of Der(g):

[adX,D]Y = adX-DY - D[XY] = [X,DY]-(IDX,Y]+[X,DY])

=-[DX,Y] = - ad(DX)-Y.

Hence ad(g) is a semi-simple ideal of Der(g), consequently there will be an orthogonal com-
plement h of ad(g), with respect to the Killing form of Der(g):

Der(g) = ad(g)®h.
Then, for an X €g, D €h we’ll have

[adX,D] = - ad(DX) € ad(g)nh = {0}.
Hence DX=0, for every X € g, hence D= 0 and consequently h ={0}. We proved the
Theorem-2 All derivations of a semi-simple Lie-algebra are inner.
Exercise-9 Let g= ©g. be the decomposition of a semi-simple Lie-algebra in simple ide-
als. Assume further that f: g — gl(V) is a representation of Lie-algebras with corresponding
trace-form tf(X,Y)ztr(f (X)-f(Y)). The relation t J(X,Y)=K(A AX)Y) defines linear operator
Agg—g Show that A -adX = adX-A for every Xeg. Prove then, that A ((g,)<g, for
every simple ideal g; . Conclude that A =} u, (Idig).
Exercise-10 Show that there is a non semi-simple Lie-algebra g, s.t. [9g]=g.

[Take the semi-direct-product sl(2;C)x fCZ, where f is the standard representation fo s1(2;C)
and the product satisfies [Ax] = - [xA] = Ax. Verify that C?is an abelian ideal and [gg]=g]



The heart is like the sky, a part of heaven,
But changes night and day too, like the sky;
Now o'er it clouds and thunder must be driven,
And darkness and destruction as on high:
But when it hath been scorch’d, and pierced, and riven,
Its storms expire in water-drops; the eye
Pours forth at last the heart’s-blood turn’d to tears,
Which make the English climate of our years.
Byron, Don Juan, Canto II, 214

18. The Casimir element
Let f: g — gl(V) be a faithful (kernf={0}) representation and t {X.Y)=tr(f(X)of(Y))

be non-degenerate (the trace form of f). For each basis of g, {e,, ... ,¢,} one can define the
dual basis by the equations {e'}, ... ,¢'_}

tdeye) = Bij . (D
The Casimir element of the representation f is the element of gl(V), defined by
C=1% fle)f(ey. @

Exercise-1 Let f = eg (ie. f; = e;.g;) be a change of basis, by the invertible matrix g.
Show that the corresponding dual bases are related by

f=e ()L ©)
Conclude that the definition of C is independent of the basis.

Exercise-2 Consider the bases of g, e= {e,, ... e}, € = {¢',, ... ,¢' }, as before. LetadX
have matrix representations with respect to these bases, correspondingly A= (aij), A= (a’ij):
[Xel=a;e;, [Xe']=a';¢; (summation).
Show that a; +ay=0. [t([Xele')+t(e;,[Xel]) = 0, Ex-5, §11]
Proposition-1  The Casimir element C commutes with every endomorphism f(X).
In fact, [f(X),C] =¥ [f(X).f(e)Sf(e'D] = L [f(X)-f(e)-f(e}) - f(e)-f(e')FX)]
=¥ ([f(X).f(epl-fle") + f(&)-[F(X).f(e)D
=Y (f(IXeD-fe') + fle)-f(IX. i)
=¥ a,f(e)f(e,) + fleyafie) =0,
according to the preceding exercise.
Proposition-2  trace(C) = n = dimg.
In fact, trace(C) = tr(E f(e)f(e)) = ¥ tle €} =n.
The proposition shows that C is never zero. The kernel of C is g-invariant. In fact, v €kerC
implies C-f(X)v = f(X)-Cv=0. Thus, we proved
Proposition-3  When the representation f: g — gl(V) is irreducible, then C is an automor-
phism of V.
More is true. When f is irreducible, then C = ul. In fact, take an eigenspace of C. By
g-invariance, this must be the whole V, thus trace(C)=pdimV. Thus, combining with Pro-2:
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Proposition-4  For the Casimir elemenr C of an irreducible representation f: g — glv)
we have C = ul, with u = dimg/dimV,

Exercise-3 Let f: g — gl(V) be a faithful representation of a semi-simple Lie-algebra. Let
also g= &g, be the decomposition of gin simple ideals. Show that the corresponding trace
form of f, satisfies te=%; 1K, where K ; the Killing forms of the g; [Ex-9, §17]

Exercise-4 With the same assumptions as in Ex-3, prove that the Casimir operator C of f,

and the Casimir operators C; of f1g; , satisfy the relation C = HILUE



Wenn man die richtigen Schuhe hat, so vergiBt man seine
Fiifie; wenn man den richtigen Giirtel hat, vergiBt man die
Hiiften. Wenn man in seiner Erkenntnis alles Fiir und
Wider vergiBt, dann hat man das richtige Herz; wenn man
in seinem Innern nicht mehr schwankt und sich nicht nach
andern richtet, dann hat man die Fahigkeit, richtig mit den
Dingen umzugehen. Wenn man erst einmal so weit ist,
daB man das Richtige trifft und niemals das Richtige ver-
fehlt, dann hat man das richtige Vergessen dessen, was
richtig ist.
Dschuang Dsi, p. 205

19.  Complete reducibility and semi simplicity

We will prove here that every representation f: g — gl(V) of a semi-simple Lie-alge-
bra is completely reducible i.e. for every g-invariant subspace W of V, there is a g-invari-
ant complement W'. We do this in three steps:

a) When W is a g-invariant and irreducible hyperplane of V (lemma-1).
b) When W is a g-invariant hyperplane of V (not irreducible, lemma-2).
c) The general case, for arbitrary g-invariant subspace W (theorem-1).

f can be assumed to be faithful. Otherwise kern(f) is an ideal of g, and f restricted on
the orthogonal complement h of kern(f), with respect to the Killing form, is faithful. The
proof of a), b), ¢) is divided in three lemmata.

Lemma-1 Let f: g — gl(V) be a faithful representation of a semisimple Lie-algebra and
WCYV a g-invariant and irreducible hyperplane of V. Then W has a g-invariant comple-
ment.

Notice first that the trace form is non-degenerate, since in the contrary f(g) would be
solvable (Lemmata-3, 4, §16). The one dimensional complement, we are seeking for, is the
kernel of the Casimir element C of the representation. From Pro-4, §18, we see that the in-
tersection W Nkern(C) = {0}. dim(kern(C)) = 1 follows from the triviallity of the induced
representation f: g — gI(V/W) (see Ex-1), hence f(X)VCW and C(V)CW, which by the
identity dim(ImC) + dim(kernC) = dimV complete the proof of the lemma.

Exercise-1 For each representation f: g — gl(V) of a semi-simple Lie-algebra show that
trf(X)=0, for all X in g. In particular, wenn dimV=1, then f is the trivial (zero) represen-
tation. [g=[gg], for semi-simple g]

Lemma-2 Let f: g — gl(V) be a faithful representation of a semisimple Lie-algebra and
WCV a g-invariant hyperplane of V. Then W has a g-invariant complement.

We use induction on dimW. For dimW=1, f is the trivial representation and the in-
duced on V/W is also trivial, thus X(V)CW, for all X in g. Thus X?= 0, and f(g) is a nilpo-
tent subalgebra of gl(V), hence f(g) = {0} and every complement of W does the work.

Assume now that the lemma holds for dimW <k and that dimW = k. If W is irreduc-
ible subspace, we apply lemma-1, if it isn’t then there is some proper g-invariant subspace
W'CW and in the induced representation on V/W' we have the g-invariant hyperplane
W/W', with dim(W/W')<k. By the induction hypothesis, there will exist some g-invariant
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complement W"/W' s.t. V/W'=W/W'@W"/W'. In the induced representation on W", W' is
a g-invariant subspace and dimW" <k, hence by induction, there will exist a g-invariant 1-di-
mensional complement of W' in W', say U, W" = W'@U. It follows immediately that
V=W&U, since WNU = {0}. Thus U is the complement we are seeking for. g.e.d.
Theorem-1 Ler f: g — gl(V) be a Jaithful representarion of a semisimple Lie-algebra and
WCV a g-invariant subspace of V. Then W has a g-invariant complement.

Let WCV be g-invariant subspace of V. Using W, we define another representation
on the vector space
V'={A€End(V), A(V)CW and A[W=uId/W, with p € C},
through X'=adf(X). For Ac V', we W, we have
X(A) = [fX),AIW) = fX)AW-AF(X)W = uf(X)w - pf(X)w =0,
by the g-invariance of W. We deduce that
X'(V) CW' = {A €End(V), A(V)CW and A[W=0} C V.
Obviously dim(V/W"=1. Thus, using X' we have a representation f' : g —gl(V") and W'is
a g-invariant hyperplane of V'. By lemma-2, there is a g-invariant complement W" of W',

which is 1-dimensional, hence of the form <F>CV'. Multiplying by a constant, we can as-

sume that FIW = Id|W. From this follows that V= W®kernF. <F> is g-invariant, thus .
0=[f(X),F]= f(X)F - F-f(X),

which implies that the kernF is a g-invariant complement of W, g.e.d.

From this theorem we can deduce a characterization of semi simple Lie algebras.
Theorem-2 (Weyl) A Lie algebra is semi simple, if and only if every representation of it is
completely reducible.

When g is semi simple the result follows from the preceding theorem. Inversely, if
every representation is completely reducible, then the same will be true for ad: g — gl(g). If
g is not semi simple there will exist an abelian ideal h (Ex-4, §14). By assumption, there
will exist also a complementary ideal h' and the first natural projection

p:g—h,
will be a representation of g onto the abelian h = <€, ..., &.>. Then the projection onto the
i-th coordinate and the composition with the representation
x 0

will define a representation of gin gl(2;C). In this representation {0} xC<C?= is a g-invari -
ant subspace (in a trivial way) but it has no g-invariant complement. In fact, if this were
true, then such a complement should be of the form W = <ae, +be:>, with a#0 and e =(1,0),
e,=(0,1). But then, we should have XW = <ae,> * W. This contradiction shows that g must
be semi simple.

We turn now to applications concerning representations of s1(2;C) (§13). Consider a

representation f: sl(2;C) — gI(V). From Th-2, we know that
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f=%n Dy

i.e. f is direct sum of the irreducible representations D,, n; (the multiplicity of D,) showing
how many copies of D; are contained in f. We notice that for each D, the corresponding op-
erator H (diagonal) either has the eigenvalue 0 when 1 is integer and dimD = 2i+1, or H has
the eigenvalue 1, when i is half-integer and dimD = 2i+1 is even. Since the eigenvalues of
the operators H are simple, we have:
Proposition-1  Lez f: sl(2;C) — gl(V) be a representation and f = ¥, n;D; its decomposi-
tion in irreducible factors. Then § n, = dimV +dimV,, where VJ. the eigenspace of f(H),
with respect to the eigenvalue j = 0, 1.
Proposition-2  Ler f: 51(2;C) — gl(V) be a representation, s.t. f(H) has pairwise differenr
eigenvalues whose differences are even numbers. Then f is irreducible.

Obviously if we assume only the simplicity of eigenvalues of f(H), then f can be ei-
ther irreducible or of the form D,@&D ; with one of the {i,j} integer and the other half-integer.

Proposition-3  For the tensor product D @D of two irreducible representations of si(2, C)
holds the formula .

D,®D, =D, ®D,.;.;® ... &D

k- 4]
In fact, the eigenvectors v; of Hin D ;build a basis of D ;- Analogously, the eigenvec-

tors w; of H in D,. Thus, the vectors v;®w, which build a basis of Dj @D, are also eigen-
vectors of H : ‘

H(v;ew, ) =Hv®w, +v,®Hw, =(u,; + M v, @w.
The biggest eigenvalue is 2j+2k and shows that D,y is among the irreducible components
of D;®D,. Assuming j<k, we can arrange the eigenvalues of D,®D, in a matrix:

2k 2k-2 -2k

2j |2j+2k @
2j2 @

2j-4

2§ [2K-2j,.m.nny 252K

Band 1 contains the eigenvalues of H in D i+ - The next biggest remaining eigenvalue, out-
side band 1, is 2j+2k-2 and shows that Dj-i-k—l is among the irreducible components of
D®D,. Band 2 of the matrix contains all the eigenvalues of D,,,. Continuing with the
other bands of the matrix we can construct a proof by induction.

Another application of the complete reducibility is the decomposition of a Lie algebra
g, with respect to a semi simple subalgebra h. In fact, the restriction of ad: g — gl(g) to h,
s a representation of h, for which h is h-invariant. Thus, there will exist some complemen-
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tary h-invariant subspace m (vector subspace). We proved the
Proposition-4  For each semi simple Lie subalgebra h=g, there is a vecror space comple-
ment m of h, s.t. [hm JCm.

We call such a complement m of a semi simple subalgebra h, a reductive comple-
ment of hin g. Asa concrete example we can consider the Lie subalgebra o(n;C) of skew-
symmetric matrices in gl(n;C). Later we’ll prove that o(n;C) is semi-simple (actually, sim-
ple) and a reductive complement of it consists of the vector subspace sym(n;C) of symmet-
ric matrices.

In the first two lemmata in §16 we saw that the adjoint representation for matrices re-
spects the Jordan-Chevalley decomposition in semi simple and nilpotent parts. For semi

simple Lie subalgebras of matrices, we can see that the components belong to the Lie subal-
gebra too.

Proposition-5 Let gCgl(V) be a semi simple subalgebra and for eachXeg,X=S§ + N, the
Jordan-Chevalley decomposition of X. Then §, N< g.
In fact, by pro-4, there will exist a reductive complement mcgl(V),
g(V)=gem, [gm]cm. (*)
Thus, for X €g, adX(g)< g, adX(m)Cm and ad$ is polynomial in adX, hence adS(m)<m,
adS(g)cg. Consider now the decomposition
S=8s+8,, with S,€g and S ,€m.
For gach g-invariant subspace W, since g=[gg], we have tr(S|W) =tr(S gEW) =0, hence also
tr(S /W)=0. Notice that W is also S-invariant, since S is polynomial in X and §  -invariant, -
since Sm=S—Sg.

Now, for each Yeg, [S,,Y]€g (using Sm=S-Sg) and [S,Y]€m (using (*)), hence
[S,Y1=0 and S, commutes with every Y €g. Let W be a g-invariant and irreducible sub-
space of V. Then, because of the commutativity [Sp, Y]=0, S [W will be a multiple of the
Id/W (§7) and since tr(S |W)=0 we’ll have S W=0. Since V can be decomposed in such g-
invariant irreducible subspaces W on which S |W=0, we’ll have S =0. This means
5=S,€9 and consequently N=X-S €g. g.e.d.



There is only one slight difference between

Me and my epic brethren gone before,
And here the advantage is my own, I ween;

(Not that I have not several merits more,
But this will more peculiarly be seen)

They so embellish, that’tis quite a bore
Their labyrinth of fables to thread through,
Whereas this story’s actually true.

Byron, Don Juan, Canto I, 202

20. Reductive Lie algebras

So is called a Lie algebra g, whose radical r = ¢ = center of g. Examples of such alge-
bras are the abelian Lie algebras, the semi simple and all gl(V). We saw in the preceding §
that semi simple Lie algebras have all their representations completely reducible. We'll see
here that a Lie algebra which has some completely reducible representation is reductive.
First we shall take delight in some easy exercises.

Exercise-1 X €gl(V) is a nilpotent operator, if and only if r(X) = tr(X?) =... = tr(X® = 0.

[p(X)=a X"+ .. +a X +a,]=0,if p(x) is the characteristic polynomial of X.
tr(p(X))=0 implies det(X)=a;=0, hence there is some e €V with Xe_=0. Complete e, toa
basis of V, write X with respect to this basis

X, 0 iy
X= ( N 0) , (X)) =t(X,?) =... =tr(X*!) =0,

and proceed by induction.] .
Exercise-2 Let Z=7};[A;B]€egl(V)and [ZA;]=0, for all these A,. Then Z is a nilpotent
operator of V.

[Z[AB,]= ZAB;ZB A, =AZB-ZBA

A, hence tr(Z[A,B]]) =0 = u(Z?) =0.
Analogously tr(Z3) = 0, etc... Ex-1]
Exercise-3 Let f: g — gl(V) be a representation and h an ideal of g, then hV is a g-invari-
ant subspace of V.

Exercise-4 Let f: g — gl(V) a faithful and irreducible representation and h an ideal of g
s.t. all f(X) are nilpotent operators. Then h ={0}.

[ hV is a proper g-invariant subspace (Th-2,§15), apply Ex-3.]
Exercise-5 Let V be a complex vector space irreducible, with respect to a family F of mu-
tually commuting operators. Then V is one dimensional.

[ All X in F operate on V as multiples of the identity (consider some eigenspace of X)]
Exercise-6 Let A€gl(V) and WSV be an A-invariant subspace s.t. A|W is nilpotent and
the induced A: V/W — V/W is also nilpotent. Then A is nilpotent too.

Let now gbe a reductive Lie algebra with radical r = ¢ = the center of g. Then g/c is
semi simple (Ex-1, §17) and ad induces a faithful representation

ad: glc — gl(g).
Since g/c is semi simple (hence completely reducible) there is a g/c-invariant complement h
of ¢ s.t. g = ¢®h. h is isomorphic with g/c under the natural projection, hence h is semi
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simple, [hh]=h and [hh]=[gg]. Thus
g =c®[gg] and [gg] is semi simple. (D
Inversely, if (1) holds, then the radical of g coincides with ¢. We prove more general:

Proposition-1  If g is a Lie algebra with center ¢, then the following conditions are equiv-
alent: 1) en[gg] = {0} and every abelian ideal of g is contained in c.
2) g =c®[gg] and [gg] is semi simple.

Given 2), every abelian ideal h of g is projected in g/c, onto {0}, hence hce.

Given 1), complete [gg] to a subspace h=2[gg] s.t. c®h = g. his an ideal. An abelian
ideal of h will be also abelian ideal of g, hence (hypothesis) will be contained in ¢, hence it
will be the {0}. Thus h is semi simple and [gg] = [hh] = h. Combining with the remarks
preceding formula (1), we see that

Proposition-2 g is a reductive Lie algebra, if and only if for its center ¢ holds

g =c&[gg] and [gg] is semi simple.
Lemma-1 Let {h} be a family of ideals of the Lie algebra g, s.t. Nh; = {0} and g, = g/h,
are reductive. Then g is a reductive Lie algebra.

We assume that 1) of Pro-1 holds for every h,. We’ll prove that it holds for g too. In
fact, an X € cN[gg] is projected by the canonical projections onto ¢;N[g;g;] = {0}, hence X €
h, for each i, hence X = 0. We check the other condition of 1) Pro-1 in a similar way. If ais
an abelian ideal in g, then it is projected into an abelian ideal in g, thus [ag]<h, for each i
hence [ag] ={0} and acc.

Proposition-3  Ler f: g — gl(V) be a faithful, completely reducible representation of g.
Then g is reductive and for X€c, f(X) are semi simple operators of V.

We work again with 1) Pro-1. Let us assume that f: g — gl(V) is a faithful, complete-
ly reducible representation of g and X = ¥ [A;B]Jecn[gg]. Then [f(X),f(A)]=0, hence
(Ex-2) f(X) is nilpotent. If V is g-irreducible, then (Ex-4) cN[gg] = 0. On the other side,
for an abelian ideal a of g and an X € [ag] we’ll have X=Y[A B;] with A.€a. For the same
reason, as before, we see that f(X) is nilpotent and [ag] = 0, hence acec.

If the representation is not irreducible, then by assumption, V is decomposable in g-ir-
reducible subspaces V = @W,. Then h, = kern(f|W,) are ideals with Nh, = {0} and the in-

duced representation f: g/, — gl(W) is faithful and irreducible. The result follows, in this
case, from the lemma.

?

In every g-irreducible component W of V the operators f(X) are multiples of the iden-
tity (Schur), since they commute with each other and with the elements of g. q.e.d.

Proposition-4 A Lie subalgebra g of gi(V) is completely reducible in V, if and only if it is
reductive and the elements of the center are semi simple operators of V.

One part of the proposition is a consequence of the preceding one. For the remaining
inverse, let g=c®[gg] and X be semi simple whenever X ec = center of g. Then V can be
decomposed in the common eigenspaces W of all X€¢. Since the elements of ¢ commute
with each other and with the elements of g, the spaces W are g-invariant, hence also [gg]-in-
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variant. Since [gg] is semi simple, W will decompose into [gg]-invariant subspaces Vi
These are also g-invariant and irreducible and give the complete reducibility of V, with re-
spectto g.

Exercise-7 Let f: g — gl(V) be a faithful, completely reducible representation of a solva-
ble Lie algebra g. Then g is abelian.

Exercise-8 Let g be a solvable Lie subalgebra of gl(V), A, BEgand A be nilpotent. Then
BA is nilpotent.

The last exercise is used below to give a characterization of solvable Lie algebras.

Lemma-2 Ler r be the radical of the Lie algebra g. Then in every representation f: g —
gl(V) of g, [rg] is represented by nilpotent mairices.

For the proof, we consider first the case of irreducible V. Let h=kemf,g=g/h, T
theradical of gand J: g — gl(V) the induced faithful representation. By Pro-4, g is reduc-
tive g= c®[gg] and rcc. By the natural projection r is mapped in T<C, hence [rgch and
J([rg]) = 0. For the general case we use induction, with respect to dimV. Let WCV be a g-
invariant subspace. By the inductive assumption, [rg] will be represented (with respect to
the induced representations) with nilpotent operators in W and in V/W. From Ex-6, follows
that [rg] will be represented in V by nilpotent operators too.

Applying this lemma to ad and using Engel’s theorem §15 we have the

Corollary Let r be the radical of the Lie algebra g, then [rg] is a nilpotent ideal of g.

Lemma-3 Let f: g — gl(V) be a representation, r the radical of g and 1 the trace form of
the representation. Then t(fgg],r) = O.

For X, Ye g, A€r we must show that t([XY],A) = 0 or t(X,[YA]) = 0. For the sub-
space ' = r + <X> holds [r",r'|Cr, hence r' is a solvable subalgebra. By lemma-2, f([XA])
will be nilpotent. Applying then Ex-8 on f(r), f(X), f([XA]), we conclude that
JCX)-f([YA]) is nilpotent hence t(X,[YA]) = trace(f(X)-f([YA] =0.

Theorem  The radical of a Lie algebra g is the orthogonal complement of [gg], with re-
spect to the Killing form K. gis solvable, if and only if K({XY],Z) = 0, forall X, Y, Z in g.

Applying the lemma to f = ad, we have K([gg],r} =0, hence rC[gg]J“. Inversely, let h
= [gg]J'. We have K([gg],h) =0 = K([hg],g) = 0. Hence, by Cartan’s first criterion, [hg] is
a solvable ideal, hence [hh] and h are solvable too, hence hr. The last statement of the the-
orem is a cosequence of the previous.
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But let me change this theme, which grows too sad,
And lay this sheet of sorrows on the shelf;
I don’t much like describing people mad,
For fear of seeming rather touch’d myself-
Besides I've no more on this head to add;
And as my Muse is a capricious elf,
We’ll put about, and try another tack
With Juan, left half-kill’d some stanzas back.

Byron, Don Juan, Canto IV, 74

21. The classical Lie algebras

For every invertible matrix J € GL(n; C) one can define a Lie algebra
L;={A¢€ gl(n;C), AT +JA =0}. 6)
Exercise-1 Show that L, is indeed a Lie subalgebra of gl(n;C).

The classical Lie algebras (except sl(n;C), §12) are examples of Lie algebras defined
by special J as in (1). There are four different types, denoted by Cartan with A , B, C, and

D respectively.
A denotes the isomorphism class of sl(n+1;C), forn=1,2,3, ....
B, denotes the isomorphism class of o(2n+1;C), forn=2, 3, ....
- C, denotes the isomorphism class of sp(n;C), forn=3,4,....
D, denotes the isomorphism class of o(2n;C), forn=4,5,....

o(m;C) denotes the Lie subalgebra of gl(m;C), consistirig of skew-symmetric matrices.
They are defined by (1), for J =1, and they comprise two isomorphism classes B, andD_.
o(m;C) is called the orthogonal Lie algebra in m parameters. sp(n;C) is called the sym-
plectic Lie algebra in n parameters and is defined by (1), for

0 -1
10

0 -1
10

Exercise-2 Show that all four types of Lie algebras are subalgebras of some sl(m;C).

Exercise-3 For an invertible J € GL(n;C) symmetric or skew-symmetric matrix, show that
the mapping

Jisl(n;C) — sl(n;C)

f(A) =- (ITHAY, (2
is an automorphism of Lie algebras of order 2 (involution) and has two eigenvalues =1.
Show also that L, coincides with the +1-eigenspace of f, and that the -1-eigenspace,

m; = {A&sl(n;C), AT -JA =0}, 3)
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is a reductive complement (see remarks following Pro-4, §19) of L in sl(n;C). Show finally
that

[m,! m;] L. 4
The last property of the exercise shows that (L,M) is a symmetric pair of sl(n;C).

More generally, we call symmetric pair of a Lie algebra g, a pair (h,m) s.t.

hcg is a Lie subalgebra,

mcg is a reductive complement of h ([hm]< m), and

[mm]ch. ®)
Symmetric pairs are heavily used in the classification of the symmetric spaces of Cartan.
Exercise-4 For every J€ GL(n;C) (not only symmetric or skew-symmetric as in Ex-3) for-
mula (2) defines an automorphism of sl(n;C) and the corresponding L, coincides with the
+1-eigenspace of f. In this more general case f is not of order 2 (involution).

Exercise-5 Show that for the invertible 2n x2n matrix

10 0 0] 0 Ousnincieas 0
I — 0110 0. 0
L 0 I P ) (I [ O— 0
E= | 0 Do 0{0100....0 | >
00 1. 010 Qe 0
LR 0100 Bisacnns 1

holds
g']Jg =(? _(I))=.T‘, where J is the matrix on p. 21-1.
Conclude that sp(n; C) is isomorphic with the Lie algebra
L, ={Ac€ gl(n;C), AT +T'A=0}.
Splitting A in blocks, we can write the last relation AT + J'A = 0:

A'C’ (0 -1]+ 0 —I)(AB)zo
BtDl 10 I10/ICD
%cL‘AL
. +(“§"g)=0 = {ct=c, D=-A', B‘:B}.
Thus, we can idéntify
B . :
sp(n;C)=\ At) , where B and C are symmefric matrices [ .
We have
(H 0) A B HA-AH , HB+BH
0-H’\ c-AY| |\HCCH HA'AH |’

which for diagonal matrices H (adopting the notations of §12, for the nxn matrices A, B, ...)
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I 0-H/’l 0o -E; 0  (h)E; :

[(HO) [0 Ej+E\| [0 (y+h )(EIJ‘*EJJ
[0 a{o %57 (o 7).

[(H 0 0 0 0 0
0 H/’ ( 0) ((h+h )(E1J+E51) 0/’

which follow from
H'_E =h; E;, E;H=hE;.
Exercise-6 Show that the matrices
e 0 'H)’ AU—(O _Eij ’ Blj - 0 0 ’ C]J T-(E'ljl"E'_]l O)’
build a basis of sp(n;C) (more precisely of L, which is isomorphic to sp(n;C)) whose di-
mension is nZ+n(n+1).

Fxercise-7 Show that
Ay Ag1=05 Ap-B; Ay, [By
[AU,B ]=6 B1k+53kB

[A;, Ca1=-8,Cy -8, C, [By, By 1=IC,

ij? Cr}(-l = 6}1‘ Aik + arAJk + aﬂcAir * 61chJr ’

C,1=0.

ij?
Exercise-8 The preceding model for g = sp(n; C) shows that

a) The set of diagonal matrices is an abelian subalgebra hof g.

b) This subalgebra is self-normalizing: (X h]ch = Xe¢h.

c) Every element X of h has adX semi simple.

d) There is a basis of @ s.t. adX are simultaneous diagonal, for all X in h.

These results for sp(n;C) will be generalized below for arbitrary semi simple Lie alge-
bras. The basic ingredient will be the existence of a subalgebra h, as the subalgebra of diag-
onal matrices above. Notice that for every abelian subalgebra hof a Lie algebra g, the oper-
ators adX, for X in h, are similtaneous diagonalizable, since they commute [adX, adY] =
ad[XY] = 0. The other properties, beyond commutativity, have to do with the bracketing of
elements of the different eigenspaces.

For the orthogonal matrices we compute separately the cases n = even and n = odd.

In the even case, o(2n;C) is isomorphic to L, , where

J=(0 I) , =1,

10
In fact, the invertible 2n x2n matrix
1{1 il . t
g_ﬁ I —i-I]’ satisfies g Jg=1I,,.

We have then,
A'gUe)+(gJg) A=0 = (gAg)T+J(gAgH=0 = BY+JB=0,for B=gAg?!
Thus, L; and o(2n;C) are conjugate. Splitting the matrices into blocks, we see that
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A'c .(0 I

B'D 10

Hence o(2n;C) may be identified with the set of matrices

{(A Bt) , B, C skew-symmettic, Aaxbitxary} :
C-A

For the subalgebra of diagonal matrices we have
A B

922 -

Exercise-9 Compute as in Ex-6, for

10

+(0 I)-(é‘ [B))=0 = {C'+C=0, A'+D=0, B'+B=0}.

HA-AH, HB+BH
HC-CH, HAA'H

- ; E;E; 0
H’=(g_§) (diagonal) Aﬁ:(%u —gﬁ ’ Bij:( 8 IJ0 Jl)’ Cij:(Eij-Eﬁ 8 )’
and prove the relations

[, Ayl=(0;-h,) Ay, Ay, Al =05 Ay -85 Ay,
[H,B;]=(h;+h,)B; [A;» Byl =0, By - 0 By »
[, Cyl=- (h;+h,) Cy;, (A Cad =0y Cpp- 8, Gy

By, Cyl= Oi Ay~ Oy Ay - By Ay #05 Ay,
[Bij s Bﬂ(] =0,
[C;;» Cyl =0.

DO

10
The Lie algebras o(n2+1;C) can be identified with Ly, for J = (0 0 )
01

Exercise-10 Show for the preceding J and the invertible matrix

1 0 0
1 i
= 0 —._:I,?:I 5
e ¥2 0 v2
1 4
0 :I,TI
2 V2

that gg=1,,., , hence o(2n+1;C) and the corresponding L; are conjugate.
L, can be described by matrices of blocks

t

(a3

a e
, which satisfy | b* A", C
B', D

o o
QP o
]
=

Ywo

1
0
0

—O O
OO

i

OO =
[ o X )
O

o A
O » o
gwo

t
t t

o]
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fo:: \

= Ly = <'A, B |, where C, B skew-symmetric, A arbitrary ; .
\ b'C,A' /

Exercise-11  Show that o(2n;C) is a subalgebra of o(2n+1;C). The basis of o(2n;C), con-
sidered in Ex-9, extends in a natural way to an independent set in o(2n+1;C), which can be
completed to a basis of the later by the addition of the 2n matrices:

,D ei O 0 O ei
A;=10 0 0}, B;= ,ez 0 0/, & =0,.,1,..,0)=ith vector of the standard basis,
<0 0 000

Denoting by the same letters the extension of the basis of o(2n;C), the relations of Ex-9 hold
also in o(2n+1;C). In addition we have the relations

[H,A]=-h A, A, Al=0, A,
[H,B,]=hB,, [B,,B_1=0,
[A;,Al=-Cy, [A,,B =3B,
[A;,B]=- Ay, [A,,C]=0,
B;,Bl=By, - By, Cl=044,,

[B;, Al =- 0 By.
Exercise-12 Show that the orthogonal Lie algebras o(2n;C) and o(2n+1:C) contain abelian
subalgebras of dimension n(n-1)/2. [ Generated by the B jj - The same is true for sp(n;C)]
Notice that the orthogonal Lie algebras are not self-normalizing in the appropriate
gl(m; C). For the diagonal (abelian) subalgebras however we have:

Exercise-13  Show that the diagonal abelian subalgebras of sp(n;C) and o(n;C) are self-
normalizing. Conclude that the center of these algebras is the {0}.

Exercise-14  Show that the matrices of sp(n;C) and <I> generate the associative algebra

End(C>"). Analogously the matrices of o(n; () and <I> generate End(C"). [Start with
10} (10} (210 H 0{(I0} (HO 2 00 2
(0 -1)‘”(01]" . 0), then(o _HJ(OO)- oo) € End(C™). Analogously(OH)e End(C™).

Thus, all diagonal matrices are generated by sp(n;C) and <I>, ... ]
Exercise-15  Let gCgl(V) be a Lie subalgebra and WCV a g-invariant subspace. Show
that W is also invariant with respect to the associative algebra A(g)CEnd(V), generated by g
and <I>. Conclude that when A(g) = End(V), then V is g-irreducible. [No (non-trivial) sub-
space of V is End(V)-invariant.]
Exercise-16 ~ Show (using Ex-15) that C*" is sp(n;C)-irreducible. Analogously C® is
o(n;C)-irreducible. Conclude (Pro-4, §20) that these Lie algebras are reductive and, by Ex-
13, even semi simple.

Later we’ll prove that the classical Lie algebras are simple. Anticipating this fact, we
shall produce now some formulas for the easy computation of the Killing form of the classi-
cal Lie algebras. As in the case of sl(n;C) (§12), the Killing form and tr(AB) are both sym-
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metric non-degenerate bilinear forms f(X, Y) on the Lie algebra g, satisfying

AIXY)Z) + f(Y, [XZ]) = 0. (©)
The equation

K(X,Y) = r(AX, Y), @)
defines a linear operator A: g — g, which, using (6) for K and tr, is seen to satisfy

A[XY]=[X,AY], forallX, Ying. ®)

From this, follows easily that an eigenspace of A is also an ideal of g. Thus, when g is sim-
ple, A = ul. We compute p1 in each case separately.

a) In sp(n;C) we consider the matrix A = diag(l, 0, ..., 0, -1, 0, ..., 0) which has
tr(AA) = 2. On the other side K(A, A) = tr(adA-adA) may be computed by Ex-9. In fact,
using the formulas there, we see that adA-adA is diagonal with eigenvalue 1, and 1-eigen-
pace of dimension 2(n-1)+2(n-1)+ 8 (8 comming from B, , C,, ). Thus, in this case:

K(X,Y) = (2n+2) tr(XY). )
b) Ino(2n;C) we consider the same matrix A and analogous calculations to obtain
K(X, Y) =2(n-1) r(XY). (10)
¢) Ino(2n+1;C), using the same A we obtain analogously '
K(X,Y)=(2n-1) r(XY). (11
The table below summarizes the results.
Cartan’s notation Model Dimension Killing form
An=152; sl(n+1;C) n2+2n 2(n+1) tr(XY)
B,.n=2,3,.. o(2n+1;C) 2n%+n (2n-1) tr(XY)
C,,n=3,4,.. sp(m; C) 2n%+n (2n+2) tr(XY)
D .n=4,5, .. o(2n;C) 2n%-n (2n-2) w(XY)

n is the dimension of the abelian diagonal subalgebra and is called the rank of the Lie alge-
bra. The restrictions on n are posed in order to avoid coincidences in the different classes.

Exercise-17 Show that D, is abelian (1-dimensional).
Exercise-18  Looking at the bases of A, , B, , C, , constructed in this §, prove that these
Lie algebras (3-dimensional) are isomorphic..

Remark For other coincidences between (real or complex) Lie algebras see in §54.
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Das ErgebniB derselben ist, dal} der Werth der Mathematik
nur ein mittelbarer sei, namlich in der Anwendung zu
Zwecken, welche allein durch sie erreichbar sind, liege; an
sich aber lasse die Mathematik den Geist da, wo sie ihn ge-
funden hat, und sei der allgemeinen Ausbildung und
Entwickelung desselben keineswegs forderlich, ja sogar
entschieden hinderlich.
A. Schopenhauer, Die Welt als ... ,II p.154

22. Cartan subalgebras and roots

Our prototype in this § is the abelian subalgebra of diagonal matrices of the classical
Lie algebras. The operators adX, for X in this subalgebra commute with each other and are
simultaneously diagonalizable. A basis of this subalgebra together with the common eigen-
vectors of adX build a basis of the whole Lie algebra, with respect to which the structure
constants are relatively simple and allow the comparison and the classification of the Lie al-
gebras. The analogon of the diagonal subalgebra in the general case is the Cartan subalge-
bra.

We call Cartan subalgebra h, of a Lie algebra g, a nilpotent Lie subalgebra of g,
which is self normalizing (i.e. [Xh]ch = Xeh).

In general, for a nilpotent Lie subalgebra h of g, we can apply The-3, §15 to the nilpo-
tent subalgebra ad(h)Cgl(g). According to that theorem, there is a basis of g, s.t.

aX)
%
E a(X)
ad¥ = N ,forall Xin h. *)
w(X{ .
0 (%)

The linear functions o(X), ..., w(X) on hare called roots of the nilpotent subalgebra h
and their set is denoted by A. g decomposes in a direct sum of generalized eigenspaces g;

called root spaces of the nilpotent subalgebra h :
9=0,89, - ®g_, ()
where ,
g,= {Xeg, (adY - u(Y)I)? (X) = 0, for all Y€h and sufficient large p}. (2)
The algebraic structure of gimplies the nice property of the root spaces g, :
[gu b g‘;‘[] = gu+ﬂ' = (3)
In this relation we understand that g, ., = {0}, when u+m isnot a root of g. The proof of
this relation relies on a simple consequence of the Jacobi identity:

Exercise-1 Show inductively, that in every Lie algebra and for arbitrary constants a, b:
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[(adX -b)' Y, (adX -a]™ 7] .

(adX - @) [Y Z]= (‘;
i=0

Obviously 0 is a root of h and we denote the corresponding root space by g, . Because of the
nilpotency of h, we see immediately that

hcg,. )
Besides, (3) implies that g is a subalgebra of g. The additional condition of self-normaliza-
tion, for Cartan subalgebras, implies h = Jo- In fact, by the definition of the root space 9o
and considering arbitrary H,,..,H in h, dim g =nand X in g, we’ll have (since adX|g, is
nilpotent for all X in h, see Pro-2, Ex-11 §15 ):

M, MHI.. [Hn,X}...]=0,foreveryH1,...,Hninh =

HoH [..[H,X]..]¢€ h,foreversz,...,Hn inh =

[H,,X] € h,foreveryH_in h =

Xe h
Inversely, if g,=h, then his self normalizing. In fact, if Yegand [HY]€h, for all Heh,
then decomposing Y in the root spaces, we have

el |k (R VLS, (N

[HY]=[HY ] + [HY ] + .. + [HY ].
By assumption, [HY]€h = g, [HY,] €Q, . Thus,adHY =0, forevery Hehand p=0 =
Y, =0, for u=0, hence Y = Y, €h . We proved the

Proposition-1 A nilpotent Lie subalgebra h of the Lie algebra g is self-normalizing (i.e. a
Carran subalgebra), if and only if its zero root space gy,=h

Proposition-2  For every nilpotent Lie subalgebra h of the Lie algebra g, with Killing form
K, we have
K(9,. 9,) = 0, when the corresponding roots p + 1 # 0. ©)

Infact, [g,,[9;,9, 1 € Oyereq - Hence for Xeg, ,Yeg , Zeg,, we have,
(adX-adY)™ (Z)€ g, .2+ = 10}, for sufficiently large n,

since |4 + 7 # 0 and since there are finitely many roots. This shows that (adX-adY) is nilpo-
tent, hence tr(adX-adY) =0. q.e.d. We get also immediately the corollary :

Proposition-3  For every nilpotent Lie subalgebra of a Lie algebra g, the restriction of the
Killing form K on the root spaces 9, » with u#0, vanishes identically.

For the restriction of K on the nilpotent subalgebra h we get, considering the triangular
form of adX, for Xin h :
K(X!Y) = Epaa() n“ “‘(X)M(Y)? n“ = dlm(g“)' (6)

Some easy corollaries for Cartan subalgebras of a semi simple Lie algebra are the following:

Proposition-4  Ler h be a Cartan subalgebra of the semi sim;}le Lie algebra g and Xeh. If
wX) =0, for all roots of h, then X = 0.



Cartan subalgebras and roots 22-3

Proposition-5  Let g, h be as before. Then the set A of roots of h contains a basis of the
dual space h* .

Proposition-6  Every Cartan subalgebra of a semi simple Lie algebra is abelian.

Proposition-7  The restriction of the Killing form on a Cartan subalgebra h, of a semi sim-
ple Lie algebra g, is non-degenerate.

Proposition-8  For every Xe h, where h a Cartan subalgebra of the semi simple Lie alge-
bra g, the operator adX is semi simple and adX) g,=u (X)Id|g , hence

a(X) 0
o\
a(X)
adX = N (diagonal), forall X in h. @)
0
3%
w(X)

Proposition-9  For every root p of the Cartan subalgebra h of the semi simple Lie algebra
g the linear form - is also a root of h.

Here are the proofs :
Pro-4 : follows from (6), the orthogonality K(h, g,) = 0, and the semi simplicity of g.
Pro-5 : immediate corollary of Pro-4.
Pro-6 : follows from Pro-4 and the fact p([hh]) =0, for every root u of h.
Pro-7: again the non-degeneracy of the Killing form and the fact g, L g, , for p=0.
Pro-8 : this important proposition is a consequence of Pro-5, §19. According to that propo-
sition and since ad(g)Cgl(g) is semi simple, the semi simple part of the Jordan-Chevalley
decomposition of adX = § + N will be S €ad(g), hence S = adY, for some Y in g. Then, for
arbitrary H € h, (and since X¢€ h) the equation adX(H) =0 = S(H)=0 < [YH]=0 =
Y eh. Finally, for every root i of h we’ll have p(X-Y) and we conclude the result by Pro-4.
Pro-9 : this is certainly true, since in the contrary case 8,1 g forp + 7 #0, would imply
that K is degenerate.

Before to proceed to the analysis of the structure by means of a Cartan subalgebra, we
should perhaps spend some time on the existence of such subalgebras and their relations.
These questions however will be considered later in §36. Among other things, we’ll prove
there, that all Cartan subalgebras of a complex semisimple Lie algebra have the same di-
mension, which we call the rank of the Lie algebra. Here we content ourselves with another
aspect of the Cartan subalgebras of semi simple Lie algebras.

Proposition-10 A subalgebra h, of a semi simple Liealgebra g, is a Cartan subalgebra, if
and only if the following conditions are true:

a) his a maximal abelian subalgebra, and

b) for every X€h, the operator adX is semi simple.

Notice that condition a) has a relative meaning. It means that there is no other abelian
subalgebra, containing h as a proper subspace. Note also that in the case of classical Lie al-
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gebras we encountered abelian subalgebras with more dimensions than their Cartan (diago-
nal) subalgebras. Now to the proof. The preceding propositions show that a), b) are true for
such Cartan subalgebras.

Inversely, if h satisfies a), b), then h is in particular nilpotent, g = 9099,® ... @g,
will be the splitting in the root spaces of h, and [XH]¢ h, for all H € h, will imply, by the
semi simplicity of adH, X € h. In fact,

X=Xo+ X+ ..+ X, = HX]=[HX,]+ al X, +..roEX, =
aH)X + ..+ wH)X, =0, foreveryH etc. ...

Exercise-2 LetX =S + N be the Jordan Chevalley decomposition of X €g1(V) and assume

that Xv = 0. Show that Sv = 0. [v belongs to the generalized eigenspace of the eigenvalue
0, where S =0]



Here my chaste Muse a liberty must take-

Start not! still chaster reader-she’ll be nice hence-
Forward, and there is no great cause to quake;

This liberty is a poetic licence,
‘Which some irregularity may make

In the design, and as | have a high sense
Of Aristotle and the Rules, "tis fit
To beg his pardon when I err a bit.

Byron, Don Juan, Canto I, 120

23. Strings of roots, coroots

We continue here the analysis of structure of a semi simple Lie algebra g, based on the
roots of a Cartan subalgebra h. For two such roots a, f : h — C, we define the a-string of
the root B, to be the {vector) subspace of g

[0
gﬂ = 613v€Z gf3+va : (H
‘We use the same name also for the sequence of the roots
{p+va | veZ}.
In the dual space h*, the a-string consists of a finite number of points on the line f+to of
this space.

B+3a ,
r U v C Ao —or—
B
* 0

We’ll see below that the characteristics of all possible such strings describe the structure of
the whole Lie algebra.

Proposition-1  For every root u=0 of h consider the hyperplane ut= {Xeh | uX) =0}

a (9,9, J<h, has dimension one.

b (g, 9,Jnu"= {0}
To prove a), we note that each X €g has nilpotent adX. In fact for every other root

we’ll have adX(gx)CgMi and more generally, (ad){)“(gx)cgI+nLl = {0}, for sufficiently
large n. Consider now two vectors X €9, Ye 9, with [XY] =0. This implies [adX,adY] =
0, hence adX, adY are nilpotent and commuting operators. Thus, adX-adY is nilpotent too
and consequently K(X,Y) = 0. Since K is non-degenerate for semi simple g, there must be
some X€g,, Y€ g, with [XY] = O (see Pro-2, §22). The statement on the dimension fol-
lows now from b).

To prove b), we consider the operation of adX, Xeg”, adY, Ye g, and ad[XY],
[XY]€h on the string g_* , which is invariant under these operators. We compute the traces
of the restrictions on g_* of these operators, in two different ways.

tr(ad[XY]) = tr(adX-adY-adY-adX) = 0.
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tr(@d[XYD) = L , (dim g_..,, v ([(XY]) =
L (dim g ., )7((XY] + ¥, (dim g, ) vi(IXY]).
Thus, if u([XY]) = 0, then we’ll have also n([XY]) = 0, for every root m, hence (Pro-4, §22)
[XY]=0. This completes the proof of the proposition.
Because of the non-degeneracy of K on h, each root p €h* defines a corresponding
vector of h € h through the equation
r(X) =K(h,,X), for all X€h . (2)
Proposition-2 For Xe 9, Y€g , such that K(X,Y) = 1, follows [XY] = hll .
In fact, for Z€ h we have K([XY],Z) = - K(Y,[XZ]) = u(Z)K(X,Y). Note also that
[9,. 9, 1N = {0} implies

K(h,,) = (h,) 0. ©
The coroots of the Cartan subalgebra h are the vectors of h
Hu=ﬂ(%ljh“,foreveryroot peh. 4)
Note that
HH)=2. &)

Note also that each root pn€ h* generates a copy of sl(2;C) (as subalgebra of g). In fact,
choosing X € 9 Y€ 9, such that [XY]=H e have
H,X]=2X, [H,Y]=-2Y, [XY]=H,. (6)
Proposition-3  For each root y €eh*, dim g, =1and 2y, 3y, .., are not roots.
To prove this, we choose X, Y as in (6) and compute again in two different ways the

trace of ad[XY], restricted on the ad[XY]-invariant subspace

CY@CHHGB[eNgm )

0= tr(ad[XY]) = tr(ade)
=2 X Tien'td (dimgm)
2(-1+ dimg, + 2clirngEJJ + 3dimg3;l Fals
The only possibility for that is

di.mgu =l dimgm = dimg311 =..=0.

1l

Choosing for each root y € h* the root-vectors X,=X andX_ =Y, asin (6) and denot-
ing by A the set of roots of h, we get the decomposition of the Lie algebra

g=he  CX . | ©)

Exercise-1 Adopting the notation of §12, prove the following facts for g = sl(n:C):

a)  The subalgebra of diagonal matrices is a Cartan subalgebra h of g.

b) p.ij(H) =h,- hj , for i#j, and diagonal H = diag(h,, ... , h,)), are the roots of h.

)  [HEyl=py(HE;, shows p;=-p;; and <Ej;> is the root space of i jj (1-dimensional).

d) I-Iij = [EijEji] =E,;- EJJ , hence E,lj, Eji and Hij are as in (6).



All these things will be specified in time,
With strict regard to Aristotle’s rules,
The vade mecum of the true sublime,
Which makes so many poets, and some fools,
Prose poets like blank-verse, I'm fond of rhyme,
Good workmen never quarrel with their tools,
I've got new mythological machinery,
and very handsome supernatural scenery.
Byron, Don Juan, Canto I, 201

24. Cartan integers and Weyl group

We continue here the analysis of the structure of a semi simple Lie algebra g in terms
of a Cartan subalgebra h with corresponding set of roots A root-vectors X, and coroots H,
as in (6) in the preceding §. Cartan’s integers are connected with the "length" of strings of
roots and contain all the information needed for the reconstruction of the Lie algebra.
We denote in the sequel by g+ the copy of sl(2;C) corresponding to the root p:
gt = CHHGBCXU€BCX‘“ . (D
This subalgebra of g operates via ad on the string g and leaves it invariant. Thus,

we have a representation of s1(2;C) for which we know that
a)  the root-vectors X 14y are eigenvectors of adHli with corresponding eigenvalues:
(m+tw)(H,) = n(H ) + 2, @

b)  the multiplicities of the elgenvalues are 1 and their pairwise differences are even
numbers.

We conclude, that this representation of g is irreducible (§13) and coincides with some Dy,

whose eigenvalues are known to run from 27 to -2J, with step 2. Applying this to (2) we oet

¢) theintegerst€ Z, for which m+tu is a root, cover an interval [-q,p] without gaps,

the string g_* has no gaps

d  the extremal eigenvalues are opposite (+2J) hence
n(H ) +2p =- (m(H,) - 2q)
n(H ) are integers, m(H D= (3)
The integers ¢ u ar€ called Cartan integers. Using the duals h}1 of the roots instead of the
COoTOOtS Hu( =2h H/I((h ,h )) we obtain
=n(Hy) =2K(h,h )/K(h h - )

Theorem-1 For every non zero root m€A the only multiples of m, which are again roots are
b o
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In fact, if 4 = dmr were a root, then we should have
W(H,) = dn(H,) = 2d is integer and n(Hu) ={( lld)u(H“) = 2/d is integer. The only possibili-
ties for d are +1, 2, +1/2, from which the two last are ruled out by Pro-3 of §23.

Using the non-degeneracy of the Killing form K on h (Pro-7, §22), we can define a bi-
linear form on the dual h* of the Cartan subalgebra. In fact, each linear form (the roots are
special cases) o€ h* defines a dual vector h, € h, by the equation

a(X) =K(h,,X), forall Xeh. ®)
We define the inner product on h* by duality i.e. so that . — h;, becomes an isomorphism.
<0,f> = K(hg,hp). (©)
Theorem-2 For every non zero root €A, the linear map S ,: h* — h?,
s, 0=x-22% ¢, )
<a,0>

is a reflexion on the hyperplane <o x> = 0, and has the property S,(A)JCA.

In fact, we have a reflexion since S ,(a) = -atand <ox> =0 = §,(x) = x. The second
property is a consequence of (4) since fEA =
Sq(B) = B - 2(<a,B>/<at,0>)at = B -C g0 and

-q<-(g-p)<p.
The last inequality means that

Sa(B)=B-cpt @)
belongs to the string gg*. g.e.d.

Theorem-3 Let h%= <A>p C h* be the real linear span of the set of roots A. Then the re-
striction of <...,...> on h*%, defines an inner product on it. Thus, h%, becomes in a natural
way a Euclidean space.
In fact, by (6) of §22, the restriction of the Killing form on his given by
KXY) =¥ gea *(X)a(Y), )
which for X =H, and Y = Hgimplies that
KHHp) =¥ ;4 aHy)aHg) is an integer =
K(HH,) = 4K(hy,h)/K(h o,h,)? = 4/K(h,hy) is an integer =
K(hg.hg) isarational = afhp) isrational =
o(X) is real for every real combination of the h,’s.
The last assertion together with (9) and the fact that {h, |o€ A} contains a basis of h (Pro-5
of §22), shows that <...,...> is positiv definit on h%.
Having the inner product at our disposal, we can use the geometric language. The
group of isometries of h% generated by the reflexions {S, |a€ A} is called the Weyl group

of the Lie algebra. Also, we can see that the angles and relative lengths of the roots are
strongly restricted by the integrality of the ¢ g . In fact,

e = PHy) = g-p=2<fa>/<a,a> =
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2

<i3,a>— B )
Cpg" Cop= 4 —————=4cos%p isan integer. (10)
<c{,q><ﬁ,ﬁ>
p

0

The angle ¢ between o,p may be assumed to be > 71/2, since in the contrary case, we can re-
flect o by Sgand obtain o = Sg(ay), which forms then an obtuse angle with B.

% B
o o)
0
Condition (10) means that the only possibilities are
CpyCop =4cos?h=0, 1,2, 3 and 4, (11
which produce the following table:
CopCoo | Cpa | Cop | & |IBPla? =cpuleeg|  vector configuration
p
1 1 |1 | 2 1 1

o

2 2 |1 | 34 g PW e
a
3 3 |1 | swe 3 P W»
(04

0 ? ? 72 9 B 90°
[0

4 ) ) T 1 180°
f —

Let us see the systems of rank two i.e. the root systems for Cartan subalgebras of dimension
two:

A,: All the roots are equal and their pairwise angles are 60°. The Cartan integers are Cpy =
g-p=-1, hence =0, p= 1. The Weyl group coinsides with the symmetric group of three
elements and has 6 elements.
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B, : g-p=-2,q=0,p =2 ie. the o-string of § contains three elements. The Weyl group
coincides with the dihedral group D, and has 8 elements.

1

G, : g-p=-3,q=0,p=3. One determines the a-string of P and gets all other roots by re-
flexions and symmetries. The Weyl group in this case is the dihedral group D of 12 ele-
ments. Note that the corresponding Lie algebra has 2+12 = 14 dimensions and, as we’ll see,
its structure is completely described by the diagram below.

a-string of 8

There is only one system of rank one, this of A, = sl(2;C) = <H, X, X > (in the nota-
tion of §13) with Cartan subalgebra CH and root diagram
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- o
T, A a(cH) = ca(H) = 2.
From this results one more diagram of rank 2, which corresponds to a direct sum of
two copies of s1(2;C) : A ®A,

p

-p
Note that in a Cartan subalgebra h of arbitrary dimension, the plane spanned by two
non zero roots &, f€ A will define a subset of A (the roots contained in that plane), which
will have one of the four configurations A,,B,.G, and A, ®A,.
This happens because the restrictions which imply these four possibilities, hold for any
system of roots contained in some two dimensional plane.

Exercise-1 Let h, be the real subspace of h generated by {hyla€A}. Show that the re-
striction of the Killing form on h,, defines an inner product <...,...> s.t. the map & — h, be-
comes an isometry of euclidean spaces. The set of roots A, may be identified through this
isometry, with the set of vectors {h |a €A}, and the reflexions S , may by identified with the
reflexions (of hy) on the hyperplanes aJ“, defined by the equations a(X) = 0.

Exercise-2  Show that, with the preceding identifications, the Weyl group becomes a group
of isometries of h,, and its elements f have the property f(A)CA.
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Nicht die bewiesenen Urtheile, noch ihre Beweise; sondern
Jjene aus der Anschauung unmittelbar geschopften und auf
sie, statt alles Beweises, gegriindeten Urtheile sind in der
Wissenschaft das, was die Sonne im Weltgebidude: denn
von ihnen geht alles Licht aus, von welchem erleuchtet die
andern wieder leuchten.

A. Schopenhauer, Die Welt als ... I, p. 103

25. Coxeter - Dynkin diagrams

The classification of the configurations of the root systems A (considered as finite sub-
sets of vectors of some euclidean space) or their dual vectors {h ja€ A} we obtained for the
case of rank two in the preceding §, may be generalized to arbitrary rank. Our analysis so
far suggests the following formal definition:

We call Root system a pair (V, A) consisting of a euclidean vector space V, with inner
product denoted by <...,..> and a finite subset A of V which generates V and whose ele-
ments are called "roots" and have the properties :

a) cpy=2<B,a>/<a,a> is an integer for all a,f in A,
b) apfeA = P-cgya € Aforall o, finA,
c) PeAandpuPeA = p==I1.

The direct sum of two root systems (V', A", (V", A"Y is the root system (V'&V",
A'®A"), which trivially verifies the above conditions, with respect to the metric
e >'E<,.>" Of V'@V, Note that <o,f> = 0, with respect to this metric, when a€A'
and BE€A". A root system is called simple, when it is not the direct sum of two other. We'll
see that simple root systems correspond to simple Lie algebras, whereas semi simple Lie al-
gebras define root systems which are direct sums of other simple systems.

Exercise-1 Let (V, A) be a root system and W a vector subspace of V. Show that (W,
AN'W) is again a root system.

Exercise-2  Show that the root system (h%, A) of a simple Lie algebra g (with respect to
some Cartan subalgebra h of g) is a simple root system in the preceding sense.

We pass now to the classification of simple root systems. Condition ¢) implies that
root systems are symmetric with respect to the origin 0. The following trick reduces to the
"half" of the root system. For this, we consider a vector v € V not contained in any hyper-
plane ot orthogonal to a root a€A i.e. <v,a> # 0, for every o€ A. The hyperplane vt sepa-
rates A in two subsets, A* = { a€A |<o,v> > 0} and A" = {a€A |<a,v> < 0}.

v

N
N

A

Obviously A*, A" are disjoint and their union is A. The elements of A* are called positive
roots (write a>0), those of A~ negative (write a<0). A root a€A* is called simple when it
cannot be written as a sum o = o+ a", with o', a"€ A*. Obviously there are simple roots
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(Start f.e. with some positive root and decompose successively in other positive roots).

Proposition-1 For rwo simple roots o, BEA™ we have <a,p> < 0.

The proof of this follows from the table of two dimensional root systems of the pre-
ceding §. This table is valid also in the present abstract setting, since it uses only the inte-
grality of the ¢ 5. Looking at this table and supposing <o,f> > 0 and o = £, we see that
Cop = 1 Or cgy = 1. In the first case we have (by b)) a-BeA* and a = (a-P) + B i.e. a is not
simple, contradiction. Similarly in the second case, a-B€ A” = B-a€ A" and § = (B-0) +
o, hence f is not simple, contradiction. q.e.d.

Proposition-2  The set of simple roots T1={a,, &, ..., &y} is independent and every root
can be uniquely written as a linear combination with integer coefficients :
o = 7,0 +1y O+ ... ¥Ry Oy, With all n; 2 0, when o€ A%, and all n,<0, when qeA",

Decomposing successively a positive root, we see immediately that it can be written as
a linear combination of simple roots. For a negative root, we work similarly with -a.
Uniqueness follows from independence and independence from the following:
Lety r,a,=0. Separate the summands in positive and negativer;:
O=Yra=XYr,q -}:r"j oy = rr o = };r"jaj =y (r’i,r"jZO) =
0L <y,y>= ):ij r'ix“j<0ti,aj> <0 =
y=0 =
0= <v,y> =} r',<v,a;> , which by <v,o>> 0 =r,=0.
Similarly ;= 0. This completes the proof of the proposition.

AsetIT={q, &, .., 4}, as in the preceding proposition is called a fundamental
system of roots. The number d is called the rank of the root system. It corresponds (in the
present abstract setting) to the dimension of the Cartan subalgebra. We proceed now to the
classification of the fundamental systems by means of their corresponding Dynkin dia-
grams, which are defined from IT in the following way :

A)  To each vector p of IT we correpond a vertex.

B)  We connect two vertices corresponding to the roots o, B by Cg,Cqp lines.

Thus, there are the following four possibilities for connections between two points of
the graph:

(o] o : O—0O » o0 [o=——s]

e} Q
e} Q
o o

is a possible Dynkin diagram, corresponding to some fundamental system of roots. We’ll
see that this is impossible. In fact there are severe restrictions, which allow only a few con-

One could ask if f.e. the diagram:
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figurations. These restrictions result from the fact that IT is a basis of the vector space V and
the number of lines connecting two vertices o, f is related to the angle ¢ between these vec-
tors (CpuCup = 4cos?), thus considering unit vectors in the direction of the roots we get a
matrix representing the inner product of V whose entries are directly related to the diagram.
This matrix must define an inner product (positive definite). This is the restriction!
Exercise-3 Show that a root system is simple if and only if, its Dynkin diagram is connect-
ed.

We proceed now to the classification of the fundamental systems of roots by assuming
that their corresponding Dynkin diagrams are connected. The method is to consider the cor-
responding basis of unit vectors, rule out the impossibilities which lead to negative lengths
and check the remaining cases.

1) When the diagram contains the subdiagram

=0
then it contains nothing else.

In fact, in the contrary case the diagram should contain a subdiagram of the form

=0 ... o
o, 05

which for the corresponding unit vectors of the basis would give the inner products:
<00, = 312,
<0n,05> £ =172,
<0,,05> < 0.
Then the vector o =V’ 3o, +2a,+ oy would have square length

<, 0> = 3| o P o P oy P+ 4v3<a,0,>42V3< 0 0>+ <00, 05>
€3+4+1-6+0-2=0,
a contradiction.
2) Each diagram contains at most one subdiagram of the form
o===0
In fact, in the contrary case the diagram should contain also a subdiagram of the form

Gy e O Oy Ky O
which gives the inner products for the corresponding unit vectors:
<Q,0> = <0y, 6> =-1/2,
<00, >=-1/2 for r=2,... k2.
Then the vector a = 1/Y2a 0,*...+ oy + 1/¥2a, has square-length
<a,0>=1/2+ 1+ ..+ 1+ 12+ (-2(1/2) - 2(1/2) - ... - 2(1/2)y - 2(1/2)) =0

a contradiction.
3) There is no subdiagram of the form

In fact, in the contrary case the vector
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o= 120 +ot.t ot 1200 + 1120

would have square length <o,0> < 0.
4) For the diagrams containing o——g remain the possibilities:

4.1)
0y
% (closed)

which is impossible, since in the contrary case the root vectors a,, @, should have equal

lengths (since they are joined by simple lines, see the table of §24).

4.2)
C=—=0—0 e o—o0
% G5 B O B
which exists and is the Dynkin diagram of the classical Lie algebras of type B, and C,.
4.3) Diagrams containing the subdiagram
o

=0 O O
al (12 0(3 Cl4 a5

which is impossible since the vector o= /20, +2v20,* 305+ 20, + &5 has <a,0> < 0.
4.4) There remains the possiblity

o——0—SN——0

o, Oy Oy oy
which actually occurs and corresponds to the exceptional Lie algebra of type F .

Connected Dynkin diagrams comprising only simple lines are the following:

5)
OO0 ... Bty
Oy

Uy B Gy Oy

which corresponds to the Lie algebra of type A .

6)

(closed)

which is impossible since the vector a = o +o,+...+ o, has <o,0>< 0.

7) A subdiagram of the form
S e
a3 Apa g

Oy

]
is impossible since the vector o = (o, +0, )2 +0+...+ @y o + (0 ; + @ )/2 has <o,0>< 0.

8 A subdiagram of the form
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is impossible since the vector = 3, +2(a, +a,+@,)+ As+ A+ @, has <a,0>< 0.

9) Finally, there is no subdiagram of the form

since the vector a = (o) +00, +ou F o)/ 2+ (o g+ ag+ o)+ 320, has <a,o> < 0.

Thus, all possible diagrams are the following:

ES s, Cr O O I Cr O

The arrows in By and C, point from the shorter to the longer roots. As we’ll see in the
following, the first four types correspond to the classical Lie algebras whereas the remaining
five types correspond to the exeptional Lie algebras of respective dimensions 14, 52, 78, 133
and 248. Instead of verifying that the matrix (< ;,04>); ; corresponding to each of the 9 pre-
ceding diagrams, defines actually a positive definite inner product on V, we’ll do much
more in the next paragraphs, namely we'll construct explicit models of Lie algebras, in
which the preceding 9 configurations appear as the Dynkin diagrams of their root systems.
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The following exercise formulates in the abstract setting of root systems a property al-
ready proved in the case of the root system of a semi simple Lie algebra (see c), p. 24-1).

Exercise-4 Let (V,A) be a root system and o,B€ A, p #ta, then <a,f> >0 = a-feA,
and <a,8> <0 = o+BeA. [atleast one of cpy OF Cop 18 +1 (seE P 243)]

Exercise-5 Let (V,A) be a root system, o,B€ A, f #£a and p, q the largest non negative in-
tegers such that Bqo, B+po€ A. Show that

a) Prkae A, for all k with -q<k<p,

b) cpq =2<0p>/<a,0>=q-p.

[Apply the preceding ex. to the extremal roots of a maximal gap lying inside the
string. To prove b) notice that S, leaves the string invariant and that S, (f+pa) = pqa ]
Exercise-6 Let I1= {0, &, ... , &y} be a subset of the root system A. Show that this is a
fundamental system of roots if and only if

1) {ay, &, ..., @4} are independent, and

2) every root can be written as a linear combination with integer coefficients :

O =100+, Gyt ... +0y &, Withalln; 20, oralin, <0.

[Consider the "duals” of the a.’s, <f3,, o> = 611'- Define v=} B,, < v,a;>=1, for all i.]

Exercise-7 Show that a set of roots {a, B, Y, ... } lying strictly on one side of a hyperplane
of V, and having all pairwise products <a,b> <0, is independent. [imitate the proof of Pro-2]

The classification of fundamental systems implies the classification of simple root sys-
tems, and this in turn implies the classification of simple complex Lie algebras. To prove
this, we must still show that the different fundamental systems are isometric and indepen-
dent of the particular Cartan subalgebra. The question of the congruence of the different
fundamental systems of the same root system, will be handled, in the abstract setting of root
systems, in the next paragraph. The question of the independence from the different Cartan
subalgebras will be tackled in § 38.



La nature a mis toutes ses vérités chacune en soi-méme,
notre art les renferme les unes dans les autres, mais cela
n’est pas naturel, chacune tient sa place.

Pascal, Pensées, 21

26. Weyl group and Weyl chambers

We continue here the analysis of abstract root systems initiated in the preceding §.
Our main concern is to find out all the fundamental systems of a given simple root system
and their relations. The corner-stone of the subject is proved to be the Weyl group of the
abstract root system (V,A), which is defined (as for a root system of a Lie algebra, §24) to be
the subgroup of isometries of V, generated by the reflections

>
S0 =x-2—2 &, aeA &)
<a,a>
By the axioms of root systems (see p. 25-1) we know that for any pair of roots «, P€ A the
numbers cg, = 2<0,f>/<0,a> are integers and S, (A) = A. Consequently the Weyl group is
a subgroup of permutations of the elements of A, hence it is finite.

Proposition-1  Any vector v€V not contained in any hyperplane at orthogonal to a root
a€A ie <vo> # 0, for every A€ A, defines a fundamental system 11 = {a,, ay, ... , o }
uniquely, up to a permutation of its elements.

In fact, the first two propositions of §25 give the way to construct IT out of v. We
prove here the uniqueness. If there were two such systems, IT and IT, then the matrices A, B
which change from one basis to the other, should have both only non-negative elements and
satisfy AB=I (inverses). The rows a; of A and the columns b; of B should satisfy <a; b> =
6 and consequently, for i#] the b, ’s should have zeroes at the places where a; has non- zero
coordmates By independence, a, has one non-zero coordinate, and in fact exactly one, since
in the contrary case the bj’s with i#j would spann a subspace of dimension <n-2. The non-
zero coordinate must be 1, since simple roots are not multiples of other roots. The argument
shows that A is a permutation matrix and completes the proof.

Given a root system (V,A), the union of planes
{a'| a€A} separates V into connected components
which are called Weyl chambers.

Exercise-1 Show that the Weyl chambers of a root
system are connected, open and convex subsets of
V. Show also that two points x,y €V, belong to the
same chamber C, if and only if the product
<o,x><o,y> > 0, for every o€ A,
Exercise-2 Show that a fundamental system I1=
{oy, &y, ..., 04} defines a chamber
C={xeV|<a,x> >0, for i=1,...,d} .
This is called fundamental chamber for I1.

The maximal dimension faces of the Weyl
chamber C are defined to be the subsets of the closure cI(C), having <a,x> = 0, for exactly
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one root €A

The hyperplane ot containing such a face of C is called 2 wall of the Weyl chamber C. Let
I={ay, Oy .., &4} bea fundamental system and denote by S, the reflections on the hyper-
planes ail, which are the walls of the fundamental chamber C for T1. The following is a
technical fact, used repeatedly in the arguments below.

Proposition-2  For each positive (negative) roor a#a (A#*0j ), S;(at) is again a positive
(negative) root.

In fact, S;(c) is again a root and (expressing it in terms of the basis II) contains some
o0y with positive coefficient, hence all the coefficients in a =% n, &, will be positive (see
Pro-2, §25).

Proposition-3  Let TI = {a;, &y, ..., oy bea fundamental system and C, the correspond-
ing fundamental chamber. For each other chamber C, there is an element S of the Weyl
group W such that S(C) = C,, Thus, the Weyl group operates transitively on the set of Weyl
chambers.
In fact, inside C there isa special element:
Bo= (112) ¥ .
a€A )
To prove this, notice that for each i =1,...,d we have (using Pro-2):
Si(Bp = (112) E,‘ S;(a) + (172)8;(0y) = (112 2+ a - (172)a; = Bo-0 .
QEL ~C; . acA’-oy

On the other side Si(ﬁoj = Py
2< B, 0>/< 04, 04> O, hence 2<f,0,>/< 0, 04>
=1 > 0. This proves that B, is indeed in C,.
Let now x€V and consider the orbit Wx =
{S(x)ISe W}. By the finiteness of W, there is
some point Tx of the orbit nearest to By, for
which <B,Tx> is a maximum (angle
L(ByTx) is a minimum). Then <f,,Tx> =
<Bp.SIx> = <SPpTx> = <Py, Tx>
<Py, Tx> - <0, Tx>. Hence

Il

<o, Tx> 2 0.
Thus, for each x€V there is some Tin W,
such that Tx€cl(C,). Givena chamber C take
then some x in C and as before find a T in W,
such that Txecl(C,). Since T(A)=A we’ll have T(C)<C, which implies T(C) = C,. qed

Theorem-1  The fundamental systems I1 of a root system (V.A) are isometric by elements

of the Weyl group W. Each of them consists of the roots which are orthogonal to the walls
of some Weyl chamber C and point to the side of the wall containing C. C is then the funda-

mental chamber for this system.
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In fact, each fundamental system is defined by some v €V, such that <v,o> = 0 for all
a€A. Then v defines a Weyl chamber C and the fundamental system consisting of the roots
orthogonal to the walls of C. The rest follows from the preceding proposition.

Exercise-3 Foreach «€A let S be the corresponding reflexion defined as in (1). Then
for T in the Weyl group and the root B=T(c) we have Sg=Te Sq°T 1. [examine the opera-

tion of ToS ,oT-! on B and on B ]

Exercise-4 Let a€Aand IT={a,, a,, ..., o} a fundamental system of A. Then there is a
T in the Weyl group W, such that T( o) €I1. [consider a Weyl chamber having ot asa wall]

Exercise-5 With the previous notations, show that for every a€A" there is some a,€Il,
with <a,0;> > 0. [if <a,0> <0 forall i, then <a,0> = § n;<a,0> £0]

Proposition-4 Ler a€A™ and I1={a,, a,, ..., o} be a fundamental system of roots. Ler
also S; be the reflection corresponding to a; . Then there are indices i, ..., i, such that
(Sio-0S; Jo)€eTl .

In fact, if a€Il then we are done. Let a¢Il and v€C,. Then by Ex-5, there is some i
such that <a,0;> > 0. Hence by Pro-2, S(a@)€A™ and <S(a),v> < <q,v>. If S(x)€IL then
we are done, else by the same reasoning there will be some j such that S j(S () eA”
<Sj(Si(a)),v> < <§,(a),v> < <a,v>. Continuing in this way, by the finiteness of A”, we find
i;=i, i,=j, ... , as required.

Theorem-2  Let Il = {a,, 0, ..., A4} be a fundamental system of roots. Then the Weyl
group W is generated by the corresponding "fundamental” reflections{S,, ..., S .

The proof is contained in the previous proposition and the exercises. Since S_ = S
we consider only o€ A*. By Pro-4, thereisa T = Si,?--- oSiI , such that T(a) = ajEH . Then,
by Ex-3, Sy =ToSeT. g.e.d.

Proposition-3 shows that the Weyl group operates transitively on the set of Weyl
chambers and on the set of fundamental systems. These two sets are intimatelly connected,
as is proved by theorem-1. The next theorem shows that this operation of the Weyl group is
"simple transitive".

Theorem-3  The Weyl group W operates simply transitively on the set of Weyl chambers
i.e ifTe Wand T(C)=C for a Weyl chamber C, then T= Id.

To prove the theorem we consider a fundamental system of roots Il = { e ST S { d}
and denote the fundamental Weyl chamber for I1 by C. We assume further that T(C)=C.
By the previous theorem T can be written T = S;0... oS; , hence T(II) =I1. We show that in
the preceding decomposition of T, we can reduce the factors from k to k-2. To do this we
observe the orbit of the root  , under the successive reflections:

o - T - - T(ail) eIl.
Sil Si: aer Sik
Let §; be the first reflexion, after which the root S;o..oS; (a.;l) becomes again positive. We
have the formula:
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Sir-zo'“ OSiz(_ ail) = — air' (*)

In fact, by the hypothesis for 1, all the roots
Si?‘(— (Iil), SiHOSiz(" (111) g mae y S'EHO---OSEZ(_ all) = ﬁ 3
are negative. If p# — a, then by Pro-2, S, (B ) should be again negative. Thus (¥) is true.

Then, by Ex-3 we’ll have for

P= Si,lo'"OS'lz . Si‘.=P0 Si]DP_‘l‘ = Si,°P= Po Sil
T= §jo-0(;0P)oS; = So.0(PoS;)e§; = Sjo-oP ’(( 51)2= Id) _

i.e. we reduced the factors of T by two. Repeating the procedure we land at T = Id, which
gives the proof or at T=S; for some i. But the last case gives the contradiction T(C)#C.

Tv
o

Cr

o

g.e.d.

The theorem implies that (fixing some funda-
mental Weyl chamber) the group elements of W are
in one-to-one correspondance with the Weyl cham-
bers. It follows also that for every point v of a
Weyl chamber, the points of the orbit W(v) lie, each
in a different Weyl chamber.

Exercise-6 If the roots &, 0, ... , &, are simple
(but not necessary different) and S, ..., S, are the
corresponding reflexions, show that if
(S0... 0S4 X o) is negative,
then for some k, 1<k< t, we’ll have
S,0... 08, =S 0. 08y 40§, 0. oS, -
[see the proof of theorem-3]

Fixing a fundamental system of roots Il = {0, 0y s @ &> every element T of the

Weyl group can be written as a product of "fundamental reflections”

T= Sif"’ OSil .

The smallest k with this property is called the length of the element T (with respect to II).
Obviously, if in the preceding expression, k is the length of T, then every "partial" product

Ts = S'lkU e © Si,

will have length k-s+1 and, according to Ex-6 we’ll have

To(;) = (S0 0 51);) > 0.

Thus, if v is in the closure cl(C,) of the fundamental Weyl chamber, then

But

B
1 1 <T ), &y =
S,Tow) = Tov) - 2———

<v, a> 2 0, for every positive root a, and
W,Ts(ai)>=<r;l(v), a; >20. =

1

a; , with positive coefficient <T ;l(v), a, >.

<(1.l!, C(i.>
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ST.0) = T,4), thusT,()= Toy) + @, and inductively
T'W)=v+Yy uga, with p 0.

This equation holds for every element T of the Weyl group. We conclude that for T(v)#v,
T(v) cannot belong again to the closure cl(C, ), since in that case we’ll have

v =T']T(v)=(v + E“sai,) +Y A o with p, A, 20.
Hence, u = A, =0 and T(v) = v, a contradiction. We proved the theorem :

Theorem-4  For every veV, the orbit of v under the Weyl group, intersects the closure
cl(C,) of a Weyl chamber in exactly one point.

Exercise-7 Show that the roots of a simple fundamental system IT have at most two differ-
ent lenghts. [apply Ex-4 and inspect the Dynkin diagrams in p. 25-6]

Exercise-8 Show that every root of a simple root system A belongs to some fundamental
system of A,

A very importand object, associated to each simple fundamental system, is the so-
called highest or maximal root. This is characterized by the following theorem :

Theorem-5 Let 11 ={a,, a,, ..., 04} be a fundamental system of the simple root system
A. Then there is a unique positive root o with the properties : -

) a=no, +..+ nyQy, with alln, > 0 and

2) for every other positive root B=m oy + ... + myo,, m,<n,forall i

In fact, call h(P) = ¥ m, the height of the positive root feA*. Choose then o to be of
maximal height. This is the desired highest root. To see this, divide IT in two different sub-
sets IT'= {a; | a has a;-component} and IT" = { o | & has not a,-component}. By simplicity
of I, there is some root B€ <IT"> non-orthogonal to <IT">. i.e. there is some o'€I1" such that
<a',>#0. Then <o',p> <0, by Pro-1, p.25-2, and consequently <a,f> < 0 too. But then
(by Ex-6, §25) a+B€A would be higher than «, a contradiction. Thus II" = &, and we
proved 1).

To show uniqueness of @, notice first that <> > 0, for every root a€ A, since in the
contrary case a+P€A™ would contradict the maximality of a. Also <a,a> > Q, for some i,
since I1 spans V. If B were another root of maximal hight, then <f,a.> > 0 and since <0,0>
> 0, for some i, we would have <f,o> > 0, which implies that a-p is a root and either a =
(a-P)+ P or P= (B-a)+x would be higher, a contradiction unless o=p. Thus, there is a unique
positive root of maximal hight.

2) is immediate, since every positive root §§ different from the heighest a, leads to a
by adding «,’s until we reach a.

Exercise-9 Show that the maximal root, with respect to the fundamental system IT, lies in
the closure of the corresponding fundamental Weyl chamber.

Exercise-10  Show that the integers {n,, ..., n,} entering as coeficients of the highest root
o, with respect to the fundamental system II={ a;, &, ... , & }, are, up to permutation, in-
variants of the simple root system (A,V), and do not depend on the particular fundamental
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system II. [all Weyl chambers are isometric under the Weyl group, which permutes the
roots]

Exercise-11  Prove that the maximal root is a long root. [suffices to show that <o,0> 2
<B,B>, for every root in the cl(C,) (The-4). For such a §, <y,oa-p>20, for every vy in cl(Cy).
Apply this for y=a and y=£.]

Exercise-12  Show that every positive root o, with respect to some fundamental system IT
= {6l Dy 4}, can be written as a sum a = Oyt O .t O in such a way that every
"partial sum" o, , 0+ &, .. , 04 O+ ... + O is again a root. [use Ex-5, and (Ex-6, §25)]

Exercise-13 Prove 2) in The-5, by showing that, for every root B, different from the maxi-
mal one a, there is some fundamental root v, such that f+y is also a root.

[If <PB,y>=0, for every root y, then, show by contradiction, that IT"(B), constructed as in
the proof of The-5, must be empty. Then, both o and P belong to cl(C,), and a reasoning
like that of the proof of The-5, would show that a—f is a root etc. ...]



Eine Regel beim Lesen ist die Absicht des Verfassers, und
den Hauptgedanken sich auf wenig Worte zu bringen und
sich unter dieser Gestalt eigen zu machen. Wer so liest ist
beschiftigt, und gewinnt, es gibt eine Art von Lektiire
wobei der Geist gar nichts gewinnt, und viel mehr verliert,
es ist das Lesen ohne Vergleichung mit seinem eigenen
Vorrat und ohne Vereinigung mit seinem Meinungs-
System.
Lichtenberg, Sudelbiicher p. 321

27. The structure of sl(n+1;C) (A)

To prove the properties of the concrete models of Lie algebras that follow, we need
the lemma:

Lemma Ler g be a complex Lie algebra, h<g be a subalgebra, ACh*-{0} be finite and
such that, for every A€ A there is a subspace g, of g with the property
9u = {X€ gl adH(X) = a(H)X, for every Hin h}.
Suppose moreover that the following conditions hold:
a)  <A>=h*,
b  A=-Aand[g.,9,] # 0, forevery a€A,
¢) g=h+¥seaGe
Then g is semisimple, h is a Cartan subalgebra and A is the set of roots of g, with resp. to h.
Obviously in ¢) we have a direct sum, h = g, hence, by Pro-1 §22, h is a Cartan subal-
gebra and a€A are its roots. It remains to show that g is semisimple. Obviously [g,.9,]<
Jq+p and we can choose X, €9y, X €9 , H=[X X, ] which generate a copy of sl(2;C).
Then we can repeat the proofs of §§23, 24 and show that dimg,=1. B(H,) = q-p, etc.
Letnow r be the radical of g. Since this is adh-invariant ideal it must satisfy
r=rnh @Y, (rngy,).
But rng,#{0} = X €r = the copy of s1(2;C) <X,.X_,H,> C 1, a contradiction, hence
rch. If now for some Xer, a(X)#0, then X, =a(X)[X X,]€h, again a contradiction.
Thus a(X)=0, for every a €A, hence X=0. ' g.e.d.
The rest of this § is a continuation of §12. We use the notation of that § and denote by

h the abelian subalgebra of diagonal matrices H=diag(h,, ..., h ;). The n linear forms de-
fined on hby

a;(H)=h;-h,,, ,fori=1,..,n (D)
build a basis of h* and equation (3) of §12 becomes
[HE 1= h)E_, 2)
which shows (applying the lemma) that the linear forms
o=t Ok i.o 0, for isBn (3
and their negatives are the roots of the Lie algebra. IT= {a, ..., @ } is a fundamental sys-

tem of roots and the Dynkin diagram is that of A .
An o—1C—0 ..... o—0
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We compute immediately that [E_,E_ 1=E_-E =H_ andsince p (H )=2
H_=E_-E

. » for r#s, are the coroots. (4)

For the reflection S  with respect to the root B, we compute explicitly fora Heh :
S (H)=H-2(<HH_>/<H_H_>H_ =H - 2(trf(HH ))/tr(H 7)H ; = H-(h -h )H .
Which means that S  operates on H by interchanging the r-th and s-th coordinates of H and

leaving all other coordinates fixed. Thus the Weyl group of sl(n+1;C) is isomorphic to the
permutation group S_, of n+1 objects.



So wie gewisse Schriftsteller nachdem sie ihrer Materie
erst einen derben Hieb versetzt haben hemach sagen sie
zerfalle von selbst in zwei Teile.

Lichtenberg, Sudelbiicher p. 149

28. The structure of sp(n;C) (C,)

In §21 we saw a model for the complex symplectic Lie algebra sp(n;C), consisting of
2nx2n complex matrices :

sp(n; C) = {(é -i‘) | B, C symmetric matrices }

In the same § we saw that the matrices

_(HO E, 0 0 E,+E; 00
H: ) A..: 1 " B]: [J 1 . Cl=
(6.0 ) 2 (oJ-Eji) . (0 o) G (E15+Eji o)

build a basis of sp(n;C), and it is obvious that the set h of diagonal matrices H' is an abelian
subalgebra. The relations

"(H 0 )(Eu. 0 )] _ ({hi—hj)Elj 0 )
0-H J\o “E; /1T 0 -(hzh)E; ’

7H 0 (0 E;+E; (0 (hy+h;)(E;+Ey)
(O-H) 0 0 = \0 0 ’

(59 (6.2, 9)]

I

( 0 0
(b;*hy) (Ey*Ep) 0) '

suggest that the roots are expressible by the linear forms on h :

A(H)=h;, fori=1,..,n ()
In fact, we see easily that
Q= AR, O = A A, @ =2A (2)

are simple roots of hand build a fundamental system of roots. The positive roots are

Ai—}\j= a;+ ..+ q, for i<j,and

7‘1"75 = (0o )+ aj+...+an) , for i<j. (3)
Applying the lemma of the preceding § and the preceding calcutations, we see that sp(n;C)
is semisimple. In order to find the Dynkin diagram and the corresponding Weyl group. we
compute the positive coroots :

H' ;= Aj; - Ay, corresponding to A-dy, forisj,

H"ij =A;tA i corresponding to 7\i+7\j, for i#], and

H™, = A, , corresponding to 2, . (4)

112

Using this we compute the Cartan Integers :
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2<0,0, /<000 = 2tr((A A Ao l+li+2))/u((Aﬁ-Aiﬂ_iﬂ)ﬁ)

=2<0,0,>/<a, >=-1, for i=1,...,n-2.

1+1’ i+1
2<an-l ’an>/<an-1’0“nvl> = 2tr((An—1,n-1"A )/H((An 1n-1 Ann)z) =-L

o >/<o 0> = 2tr((A —Ann)Ann)/tr((Ann) y=-2.

By a(Hq)=2, we know the lengths of roots are inverse proportional to the lengths of coroots.
A has length shorter than Ay-A,) ;-1 - hence a is longer, in the corresponding Dynkin dia-
gram. Thus the Dynkin diagram is that of C_.

2=

a-l? n-1,n-1

n
C(n a

We compute now the reflections, with respect to the different roots. For the case of AN,
for i<j, the corresponding reflection is

S(H) = H' -2w(H'(A;-A )V (AyrA )(A Ay

=H -(hh))(A;-Ay. &)

This operates on H' by interchanging i-th and j-th coordinates and leaving all other coordi
nates of H' fixed. Thus, these S; generate a group isomorphic to the permutation group S_
of n objects. Analogously, we have for the reflection corresponding to the root A+hs, for
i<

S (H) =H -(h#h )(A Ay, ©
and for the root corresponding to 2,
S;HH=H 2hlAn . @

The first of them operates on H' by interchanging the i-th and j-th coordinates and simulta-
neously myltiplying these coordinates by (-1). The second operates by changing only the
sign of the i-th coordinate of H'. We conclude that (6) can be written as a composition of (5)
and (7). The group generated by (7) has 2” elements and the Weyl group is the product of
this and the permutation group S . Thus the Weyl group of sp(n; C) has n!2" elements.

Exercise-1 ~Show that the subgroup K of the Weyl group W, generated by the transforma-
tions (7), is abelian and isomorphic to (Z,)".

Exercise-2  Show that the Weyl group is a semi direct product of K and S by proving
that:

a) Every subset] C{e,, ..., e } defines an element f; € K., and inversely.

b) For two subsets J, J' as before, fiof,. =f,,., where J#I'=JUJ-INJ'.

c) Every S € W is written uniquely as a product S = fjoT, with f;€K_and T€ S

d) (f;0To(f0T) = fy,7y, o(ToT) .



Wenn es der Himmel fiir nétig und niitzlich finden sollte
mich und mein Leben nocheinmal neu aufzulegen, so wol-
lte ich ihm einige nicht unniitze Bemerkungen zur neuen
Auflage mitteilen, die hauptsichlich die Zeichnung des
Portrits und den Plan des Ganzen angehen.

Lichtenberg, Sudelbiicher p. 397

29. The structure of 0o(2n;C) D,

In §21 we saw that the complex orthogonal Lie algebra o(2n;C) may be described by
the set of 2nx2n complex matrices:

/ B Bl » B, C skew-symmetric, Aa:bit[ary\.
|lca
A "natural" basis of this Lie algebra consists of the matrices
_ H 0 : _ Elj O . O Elj—Ejl _ 0 O
" ‘(0 H) (diagonal), Aﬁ‘( oE = o o | &T E;E; 0 |’
for which the following relations hold:
[H, Agl=(h;-h) A,
‘[H,Byl=(b;+h;) By,
[H,Cl=-(h; +h; ;) Cy» foris. (1)
It follows that the linear forms on the subalcebra h of diagonal matrices:
AMH)=h, ., A H)=h,
build a basis of h* and the roots of the Lie algebra are expressible through them. In fact, we
see easily that

T for i#j,

for i<j,

0y =A g, Gy =Ry ey Oy Ay Ay, B =hy A, @
is a fundamental system of roots, the correspondjng positive roots being:

Arh= oo, +. ji, for i<j, and

Pxi+:r\j=(c:;i+ozi+1 e PO HG HOG ), for s 3

Applying the lemma of §27 and the relations of (1) we see easily that o(2n;C) is semi sim-
ple. We compute the Dynkin diagram via the coroots which correspond to (3):
Ay - H,= Aii—Ajj , for i<j, and
Aty = HYy= AgtAy , for i<, 4
The Cartan integers are easily computed by
2</':O(i’c'(i+1:"'{‘<a‘i’c‘ﬁ‘ - 2':1'((A AI+I 1+1)(A1+1 i+l i+" h_n,))/t['((A Al""l 1+1) ) - -1
and analogously
2=ay,0,,, >/<a;

i+1 i+l?

a.,.>=-1,fori=1,..,n-2.

1+1
We have also

2{C‘(n 1:% >/<a 1= 2t1”{(An-i,n-l _Ann)(A n-1,n-1 +Ann))/tr((A n»l.n—l'A nn)z) =0,
2< an—'l ’an >[< an’an = Ztr((An-E,n-Z -An~l,n-1)(A n-1,0-1 +A nn)}hr(( An-l.n—l +Ann)2) =l *

and for all other cases

n—l’
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<0;,04> = 0.
The result of these calculation is the Dynkin diagram D,.
At
D, g .. o O<O
o, a, n2 o) 5

It is here important to notice some coincidences with other types of Lie algebras, in the case
ofn=2andn=3. Forn =2, we have

O =Aphy s 0 =M +hy, <a,0,>=0,
and the Dynkin diagram is not connected and consists of two separate points.

A BA, °© o
One copy of A is generated by {A. A, A -A,,} and the other by {B,,, Ci0, Aj;+ALn).
For 1: = 3 the Dynkin diagram becomes 1somorphic to A;.

A;=D, o——o0—0
The corresponding isomorphisms between the Lie algebras will be discussed later.

The reflexions corresponding to the different roots and generating the Weyl group are
computed easily by using the coroots. The reflexion S j corresponding to the root A-Mis
§;(H') =H'-2tr(H'(A;-A PVeE((A-A jj)3)(1L\ii—A i =H'-(h-h A A )

This operates on H' by interchanging i-th and j-th coordinates and leaving all other fixed.
For the reflection S’ corresponding to the root A+2; we have analogously

S'ij(H') =H '(hi+h_j)(Aii+Ajj)' (6)
This operates on H' by interchanging i-th and J-th coordinates, changing also simultaneously
their signs, and leaving all other coordinates of H' fixed. Thus the simultaneous change of
the sign of two coordinates of H' is an isometry of h contained in the Weyl group. The total-
ity of these transformations generates an abelian subgroup G of the Weyl group with 2™! e]-
ements. The Weyl group is the semi direct product of this group and the permutation group
S_, hence it has 2™ n! elements.

Exercise-1 ~Show that the elements of G can be described by the group of diagonal matri-
ces diag(x, ..., x,), with x, = £1, and the number of (-1)’s is even. Conclude that |G| = 27!,

Exercise-2  Show that the Weyl group W is the semi direct product of S and G.
[Use arguments analogous to those of Ex-2, §28]



L’ hommme est visiblement fait pour penser; ¢’ est toute
sa dignité et tout son mérite; et tout son devoir est de pens-
er comme il faut. Or 1’ ordre de la pensée est de commenc-
er par soi, et par son auteur et sa fin.

Or 4 quoi pense le monde? Jamais 4 cela; mais 4 danser,
a jouer du luth, a chanter, & faire des vers, & courir la
bague, etc., 4 se battre, 4 se faire roi, sans penser 4 ce que
¢’ est qu’ étre roi, et qu’ étre homme.

Pascal, Pensées, 146.

30. The structure of o(2n+1;C) (B))

In §21 we saw that the complex orthogonal Lie algebra o(2n+1;C) may be described
by the set of 2n+1) *(2n+1) complex matrices:

/O'bc

\

-C[A, B |, wher C, B skew-symmettic, A ambitrary [ :

, € =(,...,1,...,0) = i-th vector of the standard basis,

o@2n+1;C) =
\ b'C,-A'
A "natural" basis of this Lie algebra consists of the matrices
0e 0y . [00 g
Ai=19200|,Bi=|20 0
€00 000
together with the matrices
000 0
Aj=| 0E; 0 |,By=| 0
0 0-E; 0

0
0
0

0 0 0 0
E‘l_]_E;l 5 C1.1= O 0 0
0 0 EyE; 0

Denoting by H' the diagonal matrices, which build an abelian subalgebra h, we easily see

(§21) that the following relations hold

[H,A]=-h;A,,

[H',B;]=h; B;,

[H, Ayl = (h;-hy) Ay, for ix,

[H', Bl =(h; +h;) B, forisj,

[H, Cj=-(h;+ ;) Cy, fori<j. (1)

It follows that the linear forms on the subalgebra h of diagonal matrices:
Af(H)=h, .., A (H)=h,
build a basis of h* and the roots of the Lie algebra are expressible through them. In fact, we

see easily that

oy =)‘1_?\‘1 2 0 =My s Gy =7\n-l ﬁ}\n Oy =;\n * 2)
is a fundamental system of roots, the corresponding positive roots being:

A= O+, . T

n?
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APA= 0 +0G + .t for i<), and

7\;+7\j = (0 +0,y * e T H( OO,y + +a ), for i<j. (3)
Applying the lemma of §27 and the relations of (1) we see easily that o(2n+1;C) is semi
simple. We compute the Dynkin diagram via the coroots which correspond to (3):

A = H,=2A;,

Arly = Hy=Ag+A,, for i, 4
The Cartan integers are easily computed as in the preceding §:

2<q,0, >/, 0> =-1, fori=1, ..., -1,

for i<j, and

204,04,y ><0, 1,0, > =<1, fori=1, .., n-1.
We have also
2< ®n ,an>/< & 0y >= Ztr((An_Ln_l-Ann)Ann)/tr(Annl) =2,
2< an—l ’an>/< anfl ’(IIH == wl B
and for all other cases
<a;,0,> = 0.

Comparison of the coroot lengths gives _

<H', H' >/<H';, |, H};,,> =t@A ) r((AzAL L) =2
Thus H', is longer than H';.,, hence, by a(H,)=2, the root o is shorter than the roots a.
The result of these calculation is the Dynkin diagram B .

i+l 5 i+l

B, O—0 - O——C===0
C(] g &y
The reflexions corresponding to the different positive roots are again easily computed:

A= Su(H) =H 2r(HA AEA)2A, = H -2h A,

1 Lol 2
AA = SH) =H -(hA)(A-A)),
AN = S"(HY) = H' (b +h (A +AL).
The first of them operates on H' by changing the sign of the i-th coordinate and leaving all
other coordinates of H' fixed. The other two operate as the corresponding reflections of

o(2n;C). We conclude that the Weyl group of B is isomorphic with that of C_ and has n!2"
elements.



Einige kommen auf einen Gedanken, andere srofen darauf,
andere fallen darauf, andere verfallen darauf (hier fehlt
noch das zerfallen), auch gerdr man darauf. Man sagt
nicht, ich habe mich nach dem Gedanken hinbegeben. Das
wire via regia.

Lichtenberg, Sudelbiicher p. 403

31. Freudenthal’s construction

This is a method to construct Lie algebras, which gives as special cases models of the
exceptional Lie algebras G, and E;. The other three simple complex exceptional Lie alge-
bras, corresponding to the Dynkin diagrams E.,, E;and F,, can be found as subalgebras in E;.
Freudenthal’s construction proceeds as follows :

Given are the following data:

g : asimple Lie algebra,

V :acomplex vector space,

V*: the dual of V,

S g — gl(V) arepresentation of g,

f¥ 1@ — gl(V*) the dual representation of f, defined by

(X ()v) =-a(f(X)v), forall ve V and e V=, (1)
J being fixed we write often Xv and X « instead of the longer notation f(X)v and f*(X)( ).
The right side of (1) defines by the equation

<oev,X> = a(f(X)v), for all X €g, (2)
an element a*v€g. <...,...> denotes here the Killing form of g, which by assumption is non-
degenerate.
Exercise-1 Show that the map V*xV — g defined by (o.,v) — v (and depending on f) is
bilinear.

A further fundamental assumption for this construction is that our spaces V and V* are
endowed with fixed trilinear antisymmetric forms

[ sy VxV=Y = C,
[y, ] D VEXVEXYF = C,
which are invariant with respect to all automorphisms of V (respectively of V*) of the form
exp(f(X)) (resp. exp(f*(X))). In other words eguations
[exp(f(XNV . exp(f(X))V,, exp(f(X))V4] = [V}, Va, V3l
[exp(/*(X)) a1y, exp(f*(X)) o, exp(f*(X)) 03] = [0}, G, O3], 3
hold forall X€ g, v,€V and o€ V*.
Exercise-2 Show by differenciating (3) that the following "infinitesimal” invariance of the
trilinear forms is true:
[XV s Vo, Vo] + [V, XV, Vo] # [V, V5, Xv5] =0,
XKap, 0, 03] + [0, X0, 5] + [0, &, Xa,]' =0, 4
forall X€g, v;€ V and o € V¥,

Using these trilinear forms we can define in V(resp. V*) something like the exterior
product of R :
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V=V — V* with
(V,,Va) = V%V, € V¥, defined by the property
Vxv)(va) =[Vy, Vo, V4], forevery v;€ V. 5
Analogously we define
VExV* — V, with
(0y,0,) = 0 %0, €Y, defined by the property
(o xa,X o) =[ay, 0y, 03], for every €V 6)
In (6) we use the natural isomorphism V** = V.
Finally we assume that, in addition to g-invariance, the trilinear products are related to

the structure of the Lie algebra through the relation

(V1 2V X Oy X0) = <0 *V,, 0V >=<0 7V, Bn Vo> 0
With all these beautiful assumptions and constructions we can define a bracket on the vector
space g® V@V* which turns it into a Lie algebra!

Gradso wie manche Menschen das fiir gottlich halten was
keinen verniinftigen Sinn hat. Das Vergniigen an dem
Anblick unniitzer algebraischer Rechnungen, die man selb-
st gemacht hat, gehort mit in diese Klasse.

Lichtenberg, Sudelbiicher p. 403

In fact, we define the bracket on g& V@ V* to be a bilinear map

[, ] (@BVEVH) x(gBVEVH) — gaVeVvH
which satisfies (under the natural identification of X €g, with X&080 in g&VeV* etc.) :
i) [XY]=[XY], asing, forall X, Yeg,
i) [Xv]=-[vX]=Xv, for all Xegand vev, g |V | V¥
i) Kal=-[aX]=Xu (=*X)a), for all Xe g, aeV*, glglv |ve
iv)  [vw]l=-[wv]=vxweV*, forall v, we V, v vl g
v)  [oB]=-[Bal= axPeV, for all o, PE V¥,
vi)  [av]=-[va]= a-vEg, forall k€ V*,vEV. vV VH g

Obviously the skew-symmetry of [.......] is involved in the
definition. The truble is with the Jacobi identity, which we verify in 10 different cases. For
brevity I use the notation
@[XI[YZ]1 = [X[YZ]] + [Y[ZX]] + [Z[XY]].
The 10 different cases are :
1)  @[X[YZ]] =0, forall X,Y,Zeg, which is obvious.
2 @[X[YV]] = [X[YV]] + [Y[VX]] + [VIXY]] = XYV - YXv - [XY]v=0. (v€V).
3)  @[X[Y «]] =0, analogous to the preceding (€ V*).
4 @KV, V,ll = [(X[vyvall + v, [V, XTT + [vo[Xv )]
=X(v;*V,) - v X(Xv,) - (v )xv,= 0, because of the g-invariance of "
5 @[X[a,a,]] =0, analogous to the preceding.
6 @[X[vall=[X[val] + [v[eX]] + [a[XV]] = [Xaev] + (Koo + oeXv =2
To show that Z = 0, take now an arbitrary Y € g and compute using the Killing form:
<Y, Z> =<y, [XY]> + <(Xa)*v, Y> + <a*(Xv),Y>
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=a([XY]v) + X)«(YV) + a(YXV) = a([XY]v - XYV + YXv) =0.
@[VI[V2V3]} = [V][V3V3]] + [VQ[V3V1]] g IV3[V1V3]]
= [V Vaxva] + [V vaxv ]+ [,V *xv,] =Zeg.
To show that Z = 0, take again an arbitrary Y € g and compute using the Killing form:
= <Z,Y> = <(VyxVa) oV, Y> + (VX 1oy, Y2 + <(v xV,)ev,, Y>
= (Vo XV3)*(Zv,) + (V43 xv)*(Zv,) + (v V) (Zvy)
= [Zv Vo, V3] + [V, Zv,, V5] + [v,v,, Zvs] =0.
@[a,[a,04]] =0, analogous to the preceding.
@[vla, 0,11 = [vio,0,]] + [ogaav]] + [asfva,]] = [v,a; xa,] + [0),0.0V] - [0, V] =
= VX0 %A - (V) ay + (0 V)0, = BEVE,
To see that f = 0, we apply thisona we V.
B(w) = [V, &t xt0w] + oty (00 V)W) - &y (V)W)
=-(VXW)(a; *0) + <A W, 0, V> - <0V, 0, w> = 0.
@[afv v ]1=[ofv vol] + [v [Vl + [vplov 1= ax(v xv,) + [V ,00v,] - [V,.aev, ] =
= 0X(V (XV,) (A V)V - (QeV v, = WEV,
To see that w = 0, we apply thisona fe V=,
P(w) =[a,v xvo,w] + <Bev,,aev,> - <fev,a0v >
=-(v xvoaxf) + <Bev,,aevy> - <Bev,,a0v >=0.

Exercise-3 Complete the proof by examining the remaining cases.



314 Freudenthal’s construction



But let me to my story: I must own,

If I have any fault, it is digression;
Leaving my people to proceed alone,

While I soliloquize beyond expression;
But these are my addresses from the throne,

Which put off business to the ensuing session:
Forgetting each omission is a loss to
The world, not quite so great as Ariosto.

Byron, Don Juan, Canto III, 96

32. The structure of G,

We carry out Freudenthal’s construction with the following data:
g =sl(3;0),
V=C3 (column vectors),
V*=(C3)*=C3 (row vectors),
f 1@ — gl(V) the "natural" representation of sl(3:C),
Xv = matrix product of matrix X by the column vector v,
f*:g — gl(V*) the dual representation of f, defined by
F*(X)(a) =-aX = matrix product of the row vector — by the matrix X.

Obviously
FHX) (o) (v) =-a(Xv) (on the right side matrix products). (N
The trilinear products are defined via the determinant of the column vectors (resp. row vec-
tors): ’
[V 15 Vo V3] = det(vy, Vo, V3),
[ay, oy, 0g] = pdet(a,, a., o). (2)
The factor p will be determined below (u=2/9), so as to satisfy an identity of Freudenthal’s
construction. The product a-v turns out to be the most natural one. By its definition it must
satisfy the equation
<@y, X> = a{ f(X)v), forall Xe g,
<...,..> denoting the Killing form of s1(3;C),which is (§21) <X,Y> = 6tr(XY).
Thus (2}, in the present case, takes the form
o(Kv) = 6tr(( aev)X) = 6( oev) inji = ai(Xijvi) = oV, - 6§Gt-v}ij)XJ.i =0.
For i#] we get (aev); = (1/6)viaj ; '
The diagonal elements of the matrix a-v satisfy
(o, -6(a=v);X;, =0, for all X with ¥ X,;=0,
which implies that the (av; - 6(a*v),,) are all equal, say to d. Then the condition tr{asv) =0
implies
a(v)=3d = (awv),;=(U6)ay, - (1/18)a(v),
asv = (1/6)(vea - (1/3)a(v)I). (3)
The v xv,€V* has coordinates given by the usual exterior product. The same is true also
for o, xa, €V up to the factor u. The well-known formula for the exterior product gives

(VI*VZ)((II"GE)= }.1(0(1(\"1)(12(\’2) - GI(VE)CIZ(VI)). {4’)
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On the other side we compute
<0y Vo, 0V > = (6/6T((v, 801, - (1/3) 0y (v )V, 80, - (1/3) 0t )D))
= (U6){ 04V ) ay(v,) - (1/3)0t; (V) o(v ;) - (13)atv ) (V) + (1930t (v )ou(v )}
= (1/6)(oy (v )oy(v,) - (173)o,(vo)on (v ).
Analogously

<O VUV, > = (L6) (@ (Vo) s (V) - (173)a (v ), (v ).
If follows

SOy Vo, 00"V > = <0V, 0oV, = (LE) (1+(13) { & (v Doy (v,) - o, (V) (v )}
In view of (4), to satisfy the identity

(V2val(ay*a) = <04 oV, 0,V > - <0y V0,0V 5> )
we must have p = (1/6)(1+(1/3)) = 2/9. We are now ready to prove the
Proposition  With the preceding definitions the corresponding Freudenthal construction
sl(3; C)®C* @ (C?)* is a simple Lie algebra of type G .

That this is a Lie algebra, is already checked in the preceding §. To prove the rest we
find a Cartan subalgebra and apply the lemma of §27, which we used also in the study of the
structure of classical Lie algebras.

We denote by h the abelian subalgebra of sl(3;C)(identified with the corresponding

subalgebra in s1(3;C)®C3®(C?)*) which consists of the diagonal matrices. The roots of
s1(3;C) are expressible in terms of the linear forms on h

AMH)=h,,i=1,2,3,
and as we saw in §27 they are exactly the
HA A H(A-R) , H(A5-2).
From the definition of the bracket in s1(3; C)®C>&(C3)* we see that
[He,]=2,(He,, [He,*] =-2,(He*,
[He,] =2 (He,, [He,*] =-A,(H)e,*,
[He;]1=25He,, [He;™] = -A;(H)e,*,
[e;e,*] = -e*+e,=-(1/6)(e;®e;* - (1/3)]) # 0. (6)
Thus applying the lemma of §27 we conclude that sl(3;C)&C3*®(C3)* is semi simple, and
that h is also a Cartan subalgebra of sl(3;C)®C35(C3)* of dimension 2, and finaly that
HA ;A B MAy) , EAgA,) , A, 1=1,2,3,
are the roots of h.
Obviously a fundamental system of roots consists of the two roots
Oy = ARy, Oy =h,.
The a,-string of the root a is easily computed:
a,-0, is not a root,
a +a, = A isaroot,
200, = Ayt A =-), is aroot,
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o, *3a, = A+2h=M-Ay  isaroot,
a;+Ha, 1s not a root.

From the preceding list we see that the Cartan integers is

C1n =290 ,0,>/<0,,0,> = -3, ¢y, =-1.
Thus o, = A-2, is the long root, the Dynkin diagram is connected and the Lie algebra is
simple of type G, . Notice that the 6-th root (by which we complete the explicit construc-
tion of the positive roots) 2a,+3a,, = A -2, is the maximal root .

G, ===
- o A,

Formulas (6) show also that the coroots corresponding to «,, &, are respectively
H, =diag(1,-1,0) and H,=diag(-1,2,-1).
The Killing form on h is
XY>=} aXa(Y)=2 L o X (Y)
= 2X, Y+ X Yo X5 Yo+ (X XY Y )+ (XX ) (Y oY)+ (X X )(Y5-Y )
=8(X,Y *X,Y,*X,Y,). (since ¥ X.=YY,; =0)

By The-2 in §26. we know that the Weyl group is generated by the reflections 558,
corresponding to the roots a,, a,. From this we see easily that the Weyl group is isomor-
phic to D¢ which has 12 elements. These are the 6 reflexions corresponding to the roots, and
the 6 rotations (kn/3)mod(2m).

I therefore do denounce all amorous writing,
Except in such a way as not to attract;
Plain-simple-short, and by no means inviting,
But with a moral to each error tack'd,
Form’d rather for instructing than delighting,
And with all passions in their turn attack’d;
Now, if my Pegasus should not be shod ill,
This poem will become a moral model
Byron, Don Juan, Canto V, 2
(turn the page)
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Kroklokwafzi? Semememi!
Seiokrontro - prafriplo:
Bifz, bafzi; hulalemi
quasti bast bo ...

Lalu lalu lalu lalu Ia!

Hontraruru miromente
zasku zes rii rii?
Entepente, Leiolente
klekwapufzi 1ii?

Lalu lalu lalu Ialu la!

Simarar kos malzipempu
silzuzankunkrei(;)!
Marjimar dos: Quempu Lempu
Siri Suri Sei []
Lalu lalu lalu lalu la!
Chr. Morgenstern, Das grofie Lalula
Werke, p. 226

The structure of Eg

Here we carry out Freudenthal’s construction with the following data:

g =3l%;0), (Ayp),

V = the vector space of skew-symmetric contravariant tensors of C°.
= {viﬂ(ei®ej®ekl vik skew-symmetric, (e,)the canonical basis of C%}.
A basis of V consists of the (g) = 84 tensors e, ne; Ay, for i<j<k.
u= uiﬂ‘ei®ej®ek can be written in this basis u = T4 ﬁ"ﬂ‘eif\ejf\ek ’
which by the relation eing A=Y sgn(me ; ®e . ®e ., gives
4tk = (1/31)Y sgn(mu ™% The last two sums run over 7€ Sy =
set of permutations of 9 elements, and sign(m) is the signature of .

V*= the vector space of skew-symmetric covariant tensors of C°.
= {vye'®eige! Vi Skew-symmetric, (e?)the canonical basis of (C%)*}.
A basis of V* consists of the (g) = 84 tensors el Aei AeX, for i<j<k.
u= uijkzeit@ejtzaek can be written in this basis u =¥ ; 4 ﬁiﬂeia\ einek,
which by the relation e'relnef= ¥ sgn(me™oe™@e™™) gives
g = (13D sgn(mu g 2o oo

f g — gl(V) the "natural" representation of s1(9;C):
SOV [ AVAAV,) =XV AVLAV, + VAKXV, AV, + VAV, AKXV,

f*:g — gl(V*) the dual representation of f, defined by

SR IAVIAY) = vIXAVIAVE - vIAVEX AV - vIAvIAVEX,

The trilinear products are defined using the determinant of the column vectors (resp.

row vectors) for decomposable elements (of the form v,Av,Av,) and extending linearly to
the whole tensor space V:
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[u, AU, AU,V AV, AV, W AWLAW, ] = det(Uy, Uy, UV, Vi, Vo, W |, Wa W )
[ulau? Aud viIavZAvE, wlaw2aw?] = pdet(ul, u?, v vi, v2, v w! w2 wl).
The factor p will be determined below (u=432), so as to satisfy an identity of Freudenthal’s

construction. The duality between V and V* is expressed in the two kinds of components
by the relation
a(u) = aijkuijk =3!T éiﬂ(ﬁiﬂ", forevery a€V*andueV.
The product a-u, by its definition, must satisfy the equation
<a-u, X>=a(f(X)v), forall Xe g,
<...,...> denoting the Killing form of s1(9;C),which is (§21), <X,Y> = 18tr(XY).
a(Xu) = 18tr((a°w)X) = 18(a"u);X; =2, (Xw)¥*. (1)
Xu = uiJk(Xei®ej ®e, + e®XeBe, + €, ®e,®Xe,)
= uiﬂ‘(Xmiem®ej e, + X8
aXu)=uX g+ X + Xgdyn) = 30X a0 = 18(@wu), X,

mi g

Qe _®e, + kael®ej®em) =

= (uiﬁ‘amjk - 6(aru), )X . =0.
For i#m we get :
(@, = (1/6)u*a, , .
The diagonal elements of the matrix a-u satisfy
(w¥ay, - 6(a=u),)X; =0, forall X with ¥ X, =0, #)
which implies that the (uijkaijk- 6(a-u),) are all equal, say to d. Then, condition tr(asu) = 0
implies :
au)=9d = (aww);= (1/6)(uiﬂ‘aijk- (1/9a()) =
(asu), = (1f6)(uiﬂ<amjk- (1/19a)d, ) . (3)
‘We have also :
<acu,bev> = 18{( 1f6)(uiﬁ‘amﬁ(- (1/9a(u)d, N1/6)(v™ b, - (1/9)b(v)d )},
<avv,bru> = 18{(V/6)(via, - (1/9)a(v)d,, X1/6)(u™ b, - (1/9)b(w)d,, )},
<asu,bev> - <gev beu>
= (1/2}{uiﬂ‘amjkv”""‘bﬁ5 -vilkamjkum b, -(1/9)(a(u)b(v)-a(v)b(w))}. (4)
And @*v) = ¥,y Cpeneinek,
(u xv)(eif\ej/\ek )=:3! Cige = [u, v, STUTEN ]
=1""viPle. Ae e, €, Ae e, € AeAe, | = U™MsyAPE(mrs,pat,ijk), (5)
where (mrs,pqt.ijk) denotes the signature of the permutation. Analogously we compute the
coordinates of axbe 'V,
(axb) = F; 44 d¥e;nene, ,
dik = (W3ha, bt (mrs,pqtijk). (6)
From (5) and (6) we get
(@xv)(@axb) =3! L,y cijkdIIK
= 3!):i<j<k {( 1/3!)ﬁ’“’sv"P‘i‘(mrs,pqt,ijk)(uB!)ém.r.s.b"P.q.t.(m'r's',p’q't',ijk)}.
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Using the other coordinates (ﬁiﬁc =(1/3D)} sgn(n)un{i)m}‘m)) and absorbing the sign of the
permutation 7 into(mrs,pqt,ijk), we get
(uxv)(@xb) = W3S 4 (0™ VP (mrs, patijk)a g bygu(MTS P, K}
We notice that the ordering of each triple is inessencial (complete skew-symmetry) and we
distinguish the following cases:
a) {mrs} = {m'r's'} which implies {pqt} = {p'q't'}. The corresponding summands are
um™syPda b, and their sumis a(u)b(v).
b) {mrs} = {p'q't'’} which implies {pqt} = {m'r's'}. The corresponding summands are
umqu‘apqtbm, and their sum is - a(v)b(u).
¢) Two elements of {mrs} are equal to two elements of {m'r's'} which implies that also two
elements of {pqt} will be equal to two elements of {r's't'}. f.e. we have the case
umqu‘(mrs,pqt,ijk)am.bpq‘.(mrs',pqt',ijk),
and 8 similar cases, which give equal summands, when we bring the equal indices in the two
first places. We bring mr and pq in the first places in u, v respectively. To put the indices at
the two first places in a, b, there are 3 *3=9 possibilities. For all these s=t', t =s' and the sig-
nature of the permutation is -1. Thus the sum of all these summands is
Qumyrey b .
d) Two elements of {mrs} are equal with two of {p'q't'}, consequently two of {pqt} are
equal with two of {m'r's'}. f.. the case
um P (s, pqt.ijka b, (pas',mrt k).
The signature, since s=s', t=t', is +1. As before, we get the summands
e ypq‘apqsbm .
Thus, the sum takes the form
(uxv)(axb) = u/(3"){a(u)b(v) - a(v)b(u) + 9(u”m‘\,'1"1‘:1?(1313“1It - umqut%nbpqs )}
In Freudenthal’s construction (uxv)(axb) = <asv,beu> - <aeu,bev>, which using (4) gives
/(3 =12 = p=2(3)3=432.

Junges frisches Gehirn auf solche Art zu desorganisieren
ist wahrlich eine Siinde, die weder Verzeihung noch
Schonung verdient.

Schopenhauer, Uber die Universitits-Philosophie, p. 194

Proposition  With the preceding definitions the corresponding Freudenthal construction
sl(9; C)oVeV* is a simple Lie algebra of type E

That this is a Lie algebra, is already checked in the §30. To prove the rest we find a
Cartan subalgebra and apply the lemma of §27.

We denote by h the abelian subalgebra of sl(9;C)(identified with the corresponding
subalgebra in sI(9;C)® V& V*) which consists of the diagonal matrices. The roots of s1(9;C)
are expressible in terms of the linear forms on h

ANH)=h,i=1,..,9,
and as we saw in §27 they are exactly the
HAAA) i<
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From the definition of the bracket in s1(9; C)®V® V* we see that
HAFAHA) L i<k,
are also roots of s1(9;C)®V&V*, since
[H, e;Ae A 1= (Ai+7\j+7\k)(H)eiAejAek .
[H, e'neinek] = -(\+A A el neinek,
and using (3)
le;neney, eineinek] = (6){2(E+E;+E, ) - (319)1} 0.
Applying the lemma of §27 we see that sI(9;C)®V@V* is semi simple and h is a Cartan
subalgebra with roots
HAA) , for i<j and £(0+A 42y , for i<j<k. ©
The Killing form of the Lie algebra can be easily computed
<HH>=12 Ei-:j (hi‘hj)g * 22i<j<k (111+hj+hk)2.
The two sums are symmetric functions in the h,’s and are expressible in terms of elementary
symmetric functions. The first was computed in Ex-4, §12,
2%, {;h)*=18Y h? (since ¥ h; =0).
For the second we compute the coefficient of h,? , which is (223) and put
Tiga Mith )= B)(E b)) + AT, (h;h).
Taking h =1, h,=1, h;=0 for i>2, we find A = -42. Using thisand ¥ h, =0, we find
Liga (Mythythy)?=21F h?,

<HH>=60Yh?. ®
A fundamental system of roots is given by
0= Ay Agy ey Qg =Ag-Ag, and Qg = Ag+A,+A,. )]

In fact, Ag-Ag = Ag+ (A 1+ ... +Ag) = (A FA+A)H( A, A5 +Ag+(Ag+As+Ag). This implies that
all the roots of the form ( AN, for i<j are positive. For i<j<k<8

(A ALY = Arhgt A At A -Ag H(Ag + Ay Ag),
as well as all (Ai+?\j+?\8) are positive, whereas all (?\i+?\j+7\9) C -(?\i,+?\j.+)\k.)— (A+A+Ag) are
negative. Finaly computing the Cartan integers, we find that the Lie algebra is simple and
its Dynkin diagram is the E..

a, a, Us &
Eg o——C——0 o) I O
Og

The Weyl group of this and the other exceptional Lie algebras we’ll compute elsewhere.

Exercise-1 Identifying (A, ... ,Ag) with the canonical basis of R®, {e, ..., e}, show that the
coefficients of the other (non-simple) roots (Ai-Aj) , for i<j and ( li+lj+lk) , for i<j<k with
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respect to the fundamental system of roots (o, ... , o) are given from the solutions of the
linear systems (Ai-?\j) = Ax, and ( Ai+7\j+}\k) = AXx, where A is the matrix

10000000 30
-11000000 3 30
0-11 00000 3330

A= 00-110000 |,withAl=1{3 3 3 3 0
000-11000 313333 30
0000-1101 2. % 2 2 29 4 4
00000-111 1 . 121 1 L 12
000000O0-11 1 1111111

Exercise-2 Solve the preceding linear systems and show that the following list is true.
Exercise-3 Prove that Eg has 248 dimensions.

The list, on the next page, gives the half of the whole set of roots of Eg , namely these which
can be written
(J\i—Aj) or (Ai+kj+kk) =0, + .. + g0, for i<j<k.
The other roots are the negatives of those in the list.
‘0, =0 characterizes the roots of E,,
n, =n,=0 characterizes the roots of E.
The underlined roots are correspondingly the highest (or negatives of them) of Eg, E, E...
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The roots of Es
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AuBerdem wird noch die logische Behandlung der
Mathematik dem Genius widerstehn, da diese, die eigentli-
che Einsicht verschlieBend, nich befriedigt, sondern eine
bloBe Verkettung von Schliissen, nach dem Satz des
ErkenntniBgrundes darbietend, von allen Geisteskréften am
meisten das Gedachtniff in Anspruch nimmt, um namlich
immer alle die fritheren Sitze, darauf man sich beruft,
gegenwirtig zu haben. Auch hat die Erfahrung bestatigt,
daB GroBle Genien in der Kunst zur Mathematik keine
Fihigkeit haben: nie war ein Mensch zugleich in Beiden
sehr ausgezeichnet.
Schopenhauer, Welt als Vorstellung p. 244

34. The structure of E, and Eg

Consider the roots of the preceding table characterized by the condition n = 0.
n,Q, + .+ Ngllg. (1)
This subset A' of the roots of Eg consists of those elements, which can be written
HAA j), for 2<i<j<8 (42 in number),
HA* ;\j+7\k), for 2<i<j<k<8 (70 in number), and the 14 roots

HA ARG = E A A Ag - -Ag)y i =2, o 8. 2
We check easily that the subset of Eg, '
g=<H JaeA>@ . CX,, 3

is a subalgebra, and applying the lemma of §27, that this is a semi simple Lie algebra with
Cartan subalgebra N = <Haia€A‘> of dimension 7. A' (when restricted on h') is the set of
roots of this Lie algebra, and

o = o, o= aglh ol = ol
is a fundamental system of roots, whose Dynkin diagram coincides with that of E,. This is
most easily seen by noticing that the Cartan integers coincide with the corresponding in Eg:

Canﬁr;’—— a'(Hﬁr) = G(Hﬁ) = CC(ﬁ .
[0 a4 0{6

E7 e, O O— I O O

U7
Exercise-1 Show the identities
5 1iegeren 0007 = CDE B + 02)(0-3) L ()
=(0-2)(T h;)* + ((n-2)(n-3)/2)F h;?.
Exercise-2 Prove that the Killing form of E., restricted on N is given by
<H,H> =363 rg;q 17 + 18(h +hg)? .
Exercise-3 Find the fundamental coroots H,, fori=1, ..., 7of E,.

Exercise-4 Show that the subalgebra g in (3) coincides with the direct sum
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g19®vl9®(v 19)*’
where g'? is the subalgebra of s1(9;C) consisting of matrices of the form

7: T § 0
0 0
P
. e, 0a

[All the coroots H , are contained in this subspace, as well as the 42 Eij, for 2<i=j<8.
Coincidence follows for dimension (=48) reasons.]
Show also that
VI =<en ene | with i#1 and k=9 or (1,k)=(1,9)>,

(V1%)* = <elpeine | with i#1 and k=9 or (i,k)=(1,9)> .
The construction of a model of E is analogous to the previous one. We consider

again the model of Eg, constructed in the previous § and in this, the roots not containing s
O, N304 + ... + Ng0g . This subset A" of roots of Eg contains the following roots :

H(A-Ay), for 3<i<j<8 (30 in number),
HA A +Ay), for 3<i<j<k<8 (40 in number), and the 2 roots
HA AR )
Exercise-5 Show that A" coincides also with the subset of the roots of E,, which do not
contain the root o', = o, |H .
Applying again the lemma of §27, we see that
g'= <HataeA">eaq5A‘. L85 49 (5)
is a semi simple Lie algebra with Cartan subalgebra h" = <H_la€A"> of dimension 6. A"
(when restricted on h") is the set of roots of this Lie algebra, and
a’ =ogh", o, = o, ., o= o, (6)

is a fundamental system of roots, whose Dynkin diagram coincides with that of E. This is
most easily seen by noticing that the Cartan integers coincide with the corresponding in Eg:

Ca”ﬂ" = a"(Hﬁu) = O{(Hﬁ) —_ COIE! .

oy as a5
Og

Exercise-6 Show that the subalgebra g" in (5) coincides with the direct sum
where g'* is the subalgebra of s1(9; C) consisting of matrices of the form
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Show also that
vi® = <e;AgjAe | with i, k#1,2,9 >+<e ne,ne, >,

(V1P)* = <eineinek | with i,j, k#1,2,9 >+<elre2re?>.

Exercise-7 Show that the Killing form of E, when restricted on h" is given by
<HH>=24F 14 h? + 8(h +h,+hg)>.

Exercise-8 Show that E4 and E,, have respectively the dimensions 78 and 133.
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But these are foolish things to all the wise,
And I love Wisdom more than she loves me;
My tendency is to philosophize
On most things, from a tyrant to a tree;
But still the spouseless Virgin Knowledge flies.
What are we? and whence came we? what shall be
Our ultimare existence? what's our present?
Are questions answerless, and yet incessant.
Byron, Don Juan, Canto VI, 63

35. The structure of F,

The Dynkin diagram of E has an obvious symmetry :

< EEps

Call f the permutation of the fundamental system IT= {a,, ..., o5} suggested by the figure
(interchange a, < o, o, « 0, fixing o, o ¢ Since I1is a basis of h* (dual of a Cartan sub-
algebra) we can Extend f linearly on h* and on the root system A of E ¢ and denote by

o = fla), forevery aeh*, (D
We extend also f on h, so as to preserve duality :

o' (f(H)) = a(H), for every aeh*andHeh. 2
We have then

fHy) =H,, forevery acA. 3

In fact, because of the symmetry of the diagram, f is an isometry on h and we have
B'(fH) =BH,) =2<Bo>/<o,o> = 2<f',a'>/<a’ o> = B'(H ).

We extend f on the whole Lie algebra by defining it on the root vectors :

fX,) =X, forall aeA. 4
It will be seen later in §37 (or by calculation in the mode] of Eof the preceding §) that f is
a well defined involutive (f=I) automorphism of the Lie algebra, which leaves h invariant
and permutes the root vectors X o as well as the coroots H,. Since f is a linear involution, it
decomposes the Lie algebra into a direct sum of its +1-eigenspaces, the +1-eigenspace being
a Lie subalgebra g of E. g isa model for F,. The following table gives the roots of F ,and
relates them to those of E, and their representation in terms of ?\i—?\j, A.l+)\j +Ay, in §33. The
Cartan subalgebra h' of gis characterized by the equation

o (H)=a(H), forall ged, =

h'=<H,,H, H +H, H,+H >. (5)
A fundamental system of roots consists of the restrictions of the roots &, &, ¢, ¢ of E, on
h':

Yy = alh, v = ol vy = oglh', v, = gl ©



The structure of F,

(1) or (i,j.k)

G ST RS SO S T T G
g oo Tref TP ~e Ve T O~ 00
4 OO QOO OO0 O
m TOORTT T T TOO A A A= OOOO O —
3]
ol N aaa Qg Q9 Qd

oo oo © e —

— O —_——— O co o oo —
- <o — — — oo — — ot —
s ® e ] o

CoOFEC— B EEEENNEENEEE

o O OO = o — — — o~

oo oo © O e —

00 0OCO~CO~00~ 'O~ '\00Wn

TNOSNOSOUSVOOONNNO N < <t
NVt FTNnnnt <ttt T

—~
(o))
o

The roots of F 4

n,o, +...+n60(6

OOO—OOOOOO r— mt v — — —— — (]

COCOOOO—0O00CO OOt —drdrdrtr—r—
OOOOO O (D (Dt v v el = O] == 1 OO
CO—0OO— A At = S = NN~ NN NN
O OOt O OO rd v O] O Y
—OOCO "~ 00000000 — — —t — —

m, Y, +..+m, Y,

COO—~ OO0 CO i rdrrrirdrdrd—r— — — —
OO OO et ot e o == O OO = O e on)
O~ OO —— N~ IO~ — NI o <t <t <t
OO —NOOOO—O~—O—— NIl

ki

2

<H3 5 Hﬁa H1+H5, H:"’Hd_ >@ CXi‘Ui@ C(-Xﬁ;"XBrl) o> C(X_ﬂfX_ﬁ') :

1
1

(Hﬁ?uHﬁ'i) *0.

12
1

12
1

The other 12 satisfy o’ #a and we denote them by f, ...
Hi 5

o-i(H)Xio'i!
HXp+Xp)l = ByEXXXp),

ol =

» Op-

K X )] = = B, 55X )

X, X}
(XgtXg), Xp+X-p)]

[HX,

The table contains 24 roots. 12 of them are restrictions of 12 roots of E satisfying o = .

We denote them by o, ...

B,, . The Lie algebra may be represented by the direct sum

Also the following relations hold :
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The last relation holds because f'-B; is not a root. This follows from the fact that f pre-
serves the sign of the roots and f(B';-B,) =-(p’;-B;). Also the last term is non-zero because

By(Hp, +Hg.) = 0.

In fact, in the contrary case we should have 2+2<f,,p">/<f.B,> = 0, which (f preserving the
sign) gives the contradiction <B+f',,B,+p';> = 2<B B>+2<B, B> =0.

Applying the lemma of §27, we conclude that g is a semi simple Lie algebra, with
Cartan subalgebra h'and roots the o, and ..

Computing the coroots and the Cartan integers we find

Hyl = Hai +H(x5, HY2= Haz +Ha4, Hy3 = Hg3 N Hy4= Hus,
y,Hy )= Vaa'lv3) =-1, vs(Hy,) =-2, y3(Hy4) = -1, all other integers being 0.

Thus the Dynkin diagram of g coincides with the F .

E, O——O0===0 0

Exercise-1 ~ Show that h'is described in the model of E, used in the previous §, by the
equations .
At 29=0,
A= g
Ay-Ng=h- Ay,
7 S W W
Define then the linear forms on h'
Wy =(Ag +Aq+ 25)h'= (A5 + Ao+ A5 )R,
Wy=(hy - Ag ' =(As5- A",
Wy=(Ay-A5)'=(Ag- 2",
Wy=-(Az3+ A5+ Ag)lh'=- (A3 + A, + A;)h".
Show that all the roots of F, can be written in the form (verify the last column of the table)

T®;, £, (12)(20, £@, b +@,).
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Demnach bedarf ein schénes Werk eines empfindenden
Geistes, ein gedachtes Werk eines denkenden Geistes, um
wirklich dazuseyn und zu leben. Allein, nur gar zu oft
kann Dem, der ein solches Werk in die Welt schickt, nach-
her zu Muthe werden, wie einem Feuerwerker, der sein
lange und miihsam vorbereitetes ErzeugniBl endlich mit
Enthusiasmus abgebrannt hat und dann erfihrt, daB er
damit an den unrechten Ort gekommen, und simmtliche
Zuschauer die Zoglinge der Blindenanstalt gewesen seien.
Schopenhauer, Parerga p. 504

36. The order of the Weyl group

The Weyl group of the classical Lie algebras and of G, has been determined in §§27-
30. The order of the Weyl group of the Lie algebras F,, E, E, and E; is found using a theo-
rem of Witt, stated below.,

Let g be a semi simpole Lie algebra and IT = {a,, ... , @4} be a fundamental system of

roots. Consider the "dual basis" {f,, ..., B} defined via the relations

<ai’6j> = blj . (1)

Notice that, in general, the ﬁj’s are not roots themselves,

Exercise-1  Show that {tﬁjlt>0} are the 1-dimensional faces of the fundamental Weyl
chamber, corresponding to IT. Analogously {tﬁi+tﬁ jIt,t>0} are the 2-dimensional faces, etc.
Show finally that the fundamental Weyl chamber C,is described by

Co = {Z;t;Bt;>0}.

After these preliminary remarks, consider now the set of roots a€ A, which are orthog-
onal to the last dual root B,. All these roots are contained in the (d-1)-dimensional plane ﬁdl
and form a root system which has IT'={x, ... , &y, } as a fundamental system. Let W' be the
corresponding Weyl group generated by the fundamental reflections S 1o 844+ Letalso
Cy, C'y, ... denote the Weyl chambers of W'. W' may be considered as a subroup of W
(Weyl group of A) and all its elements fix B,. This is characteristic for W' :

Theorem W' coincides with the (isotropy) subgroup Wg of W, which fixes B, .

In fact, suppose geWg-W'. ¢ induces an isometry on the plane B j‘, hence
g(C'y)NC #d, for some C', . Let TeW" be the element of W' which sends C', o C', and as-
sume that y=g(x) € g(C'))NC', with x€ C'; . Then T(g(x)) €C', and we can choose x so that

P +x € Cyand T(g(x) €C,, (C, fundamental corr. to II). (2)
By simple transitivity of W, Tog=I , hence g = T € W', a contradiction.

That (2) holds, is due to the fact that C', and C_ are "cones" i.e. with each x belonging
in there, the whole postive line {tx|t>0} is contained in the same set. Also ty = g(tx)
€g(C'yNC',, since the intersection is again a cone (g being isometry). Fori=l,..,d-1 and

t>0 we have,
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<a.l,ﬁd+tx> = <qi,tx> >0,
<(1-=,T(g( ﬁd"'bc)):’ = "’-ai,ﬁd*T(g(tX)P >0,
<(1.l,§d+tx> = ]+t< oy, X>,
<a, T(g(By*tx))> = 1+t<a, T(g(x))>. )
Since x, T(g(x)) € C', (hence positive linear combinations of the elements of I1") we have
<0 gx> £ 0, <a, T(g(x))><0.
Thus we obtain (2) by taking t sufficiently small, so that the right sides of (3) be positive.
g.e.d.
The choice of B is insignificant. An analogous result holds also for the subgroup of
W leaving any other fundamental root fixed. Thus, for a given root system A, we can con-
sider a) the orbit W(B ) and b) the isotropy group W . It is elementary that
W] =[W(B )IWgl,
and this allows in certain cases the determination of the order [W|. The two next proposi-
tions assist the subsequent calculations.

Exercise-2 LetIT={a,, ..., a4} and a be a root orthogonal to all ; but o, . Then f = ta.

Proposition Let the Dynkin diagram of the root system A be connected and have only sim-
ple connections. Then the Weyl group W operates transitively on A and all the roots have
the same length.

In fact, in this case, for two adjacent roots o, o of the fundamental system, we have
¢;=-1, hence S;§(ax) = S;(o+a) = -0;+8 (o) = -0+ *+a) = ;. Hence the Weyl group is
transitive on the simple roots. Since the Weyl group is transitive on the Weyl chambers,
every root of A is conjugate, under W, to some fundamental root (Ex-4,§26). Thus W is

transitive on the whole A and consequently all roots must have the same length.
q.e.d.
We examine now the Dynkin diagrams of E, E,, Eg and F, .

as
o—O0—0—0—0 As
a, T U

o)

oy

E; The maximal root (negative, see the table in p. 33-6) & = A, +A,+A, of E is orthogonal
o 0y, ., 5 (OH( J\i-?\j), o ?\.1-7\].) are not roots). Thus, B, = ta, and in Bdl we have a root
system of type A 5, whose Weyl group has the order 6!, hence [Wg|=6!. Since Eg has simple
connectins, we have also [W( )l=[W(a)| = 72 = number of roots of E.

Thus,
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W] = [W(B "Wyl = 72+6! = 27-3%:5 = 51,840,

Oy

—-—-O

oy O
Dg %

E, The maximal root (negative, see the table in p. 33-6) a = A +Ag+Ag of E is orthogonal
to oy, ..., 05 and a; (aH(A,-A5), ..., o Ag-27), a+(Ag-2g), at(Ag+As+Ag) are not roots).
Thus, B-=ta, and in ES.,J‘ we have a root system of type D, whose Weyl group has the order
6!1-23, hence [Wgl=6!+2°. Since E, has simple connections, we have also [W(B)|=[W(o)| =
126 = number of roots of E,. Thus,

W= [W(BIWgl| = 126+61+25 = 210.3%.5.7 = 2 903,040.

as
. O— .
a, Gy
E; g

Eg  The maximal root (see the table in p. 33-6) a=A,-A, of Ej is orthogonal to Uy, oy Og
(ot ... , atog are not roots). Thus, Pg = ta, and in ﬁgi“ we have a root system of type E.,
whose Weyl group has the order 1266!+25, hence [Wgl =126+6!+2% . Since E; has simple
connections, we have also W(Bgl=W(a)| =240 = number of roots of E; . Thus

W =[W(Bg)IIWgl = 1266!-2%-240 = 214:35:52+7 = 696,729,600.

F, The maximal root (see the table in p. 35-2) a = @ 1-@, of F, is orthogonal to Y Yo V3
(oty,, 0tY,, aty, are not roots). Thus 8 4=ty andin B f we have a root system of type C,,
whose Weyl group has the order 3!+23, hence Wl = 3123,

Now we need an exercise, which is proved with the arguments used in the previous
proposition (transitivity on Weyl chambers + transitivity between fundamental roots of the
same length).

Exercise-3 Show that the Weyl group W of F 4 has two orbits in the root system A. One is
{2® 0 j} (long roots) and the other (short) {£@®.} U {x®,+®,+0+0,}, each containing 24
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elements.

Using this result, we see that [W{p 2l =IW(a)| =24 = number of roots in the orbit of a.
Thus,

W= [W(BlIWp| =2431:23 = 27:32= 1,152,



The portion of this world which I at present
Have taken up to fill the following sermon,
Is one of which there’s no description recent:
The reason why, is easy to determine:
Although it seems both prominent and pleasant,
There is a sameness in its gems and ermine,
A dull and family likeness through all ages,
On no great promise for poetic pages.
Byron, Don Juan, Canto XIV, 15

37. Weyl-Chevalley normal form

We show in this § that the Dynkin diagram completely describes the structure of the
corresponding semi simple Lie algebra. Let IT = {a, ..., & } be a fundamental system of
roots (notation as in the preceding §§). The Cartan matrix of IT is the integer matrix whose
elements are the Cartan integers of the fundamental system:

Cij=2<ai’aj>/<aj’aj> 0 1= Liasid (1
The next list gives the Cartan matrices corresponding to the diagrams of the list p. 25-5.
2-100
Ad o—0—0 . O—0 -1 2-10
. 0-120
211
-12
2-100
5 22-10
1 ' 0! S 0-120
Bd o==00—0 ..... [ ] . i
- g4
-1 2
2200
2 0y -12-10
Cy =E=0—70 .o o——0 0-120
21
-1 2
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cxl (5% 2 -1
G, == 32
2-100
o o -12-10
F, o——0 O e 0-22-1
00 <1 2
2-100
«, a, o 1 2=i D
E, o O e, 0-1 2-10-1
. -1 2-10
0-1 20
-1 00 2
g
2 -1
-1 2-100
a
0-12-1 0-1
-1 2-10
0-1 20
ay -1 002
2 -1
o o & 2%
5 7 -12-100
BE, o—o—o—o Griseieg o el 0
I 0-1 2-10-1
-1 2-10
0-1 20
%3 1002

Exercise-1 Prove that reversing the arrow in the Dynkin diagram gives transposed corre-
sponding Cartan matrices (f.e. B and C ).

Exercise-2 Show that the determinant of the corresponding Cartan matrix is as in the list
below.

G,
1

B

Ad Bd Cd Dd Eﬁ E’7 ES F
d&*l 2 2 4 3 2 1

—

Proposition-1 ~ The Carran matrix (or the Dynkin diagram) of a fundamenral system 11,
completely determines the system of roots A.

In fact, A can be constructed inductively, using the hight of a root (p. 26-5). Suppose
we know all the roots of hight less than the fixed hight k. By Ex-10 §26, all the roots of
hight k+1 will have the form a+c;, where a a root of hight k. Thus it suffices to know
which of the a+a; are roots, when o runs into the set of roots of hight k and ¢ runs into IT.
But, by induction, for a root a of hight k, we know which of a-a;, a2« ... are roots (of
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hight < k). In other words, in the formula

2< a,ai>/< o,0> =q-p,
we know the g. But then

P =q-2<q,0,>/<0,a,>, (2)
andif a=Y% 155 1% then (2) gives

P=4- X gea G 3
Hence, knowing also n; and ¢ i if p>0, then a+a, will be a root, otherwise not. Thus, we
can construct all the roots of hight k+1, and the induction is completed. g.e.d.

The next step is to show that the Cartan matrix not only determines A, but also a suit-
able basis of the Lie algebra g. In fact, we show that the basis of the Lie algebra can be
choosen so that the corresponding structure constants are all integer numbers. This will be
called a Weyl-Chevalley basis (or normal form). We start with the copy of sl(2;R) corre-
sponding to each positive root a€ A* (see (6), §23):

g = <H,, X4, X o> # A(2R),

HXol =2Xg, HX o] =2X 4, KoXl =Hg - Q)
These are certain subalgebras of the Lie algebra g, and by 1-dimensionality of the root spac-
es gy (Pro-3, §23) we know that there are (complex) constants N 5, such that

[Xaxﬁ] == Naﬁxaﬂi . ®
We agree that Ng =0, when a+f is not a root, or when «, or f is not a root.

The N, s satisfy some important identities which suffice to their determination via

the a-strings of roots and the integers appearing in there. In fact, we saw in §24 that g(“)

operates via ad on the a-string

96" = Xp-ga® o ® Xp® ... © Xy, ©)
and induces there an irreducible representation D of sl(2;R), with 2J+1=p+q+1. In this rep-
resentation the eigenvectors of H  are

Vo= Xcﬁ-pﬁ! sy Vp = Xﬂ! ey Vor = Xﬁ-q(l!
2] = p+q is the maximal eigenvalue of H, and by the properties (§13) of these representa-
tions :

X o Xqv; =i(p+q+1)y, =

X XeXpll =p(g+1)Xp. @]
On the other side

[X_& {,XuXﬂ]] = Nuﬁ [X_aXmﬁ] = NaﬁN-a,a+ﬁXﬁ . (8)

Proposition-2  For rwo roots a#1f of g, the following equations hold:

a) Nuﬁ . -N;h ’ (9)
b) a+P+ty=0 = Nyg/<y,y>=Np,/<a,0> =N, /<f,p>, (10)
¢)  NggNog-p= -p(q+1)<a+B,a+P>/<p,p>, (1D

d  NggN_g-p=-(q+1)2. (12)
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In fact, 2) is a consequence of the skew-symmetry of the Lie bracket. b) follows from
Jacobi’s identity. In fact, by duality, we have
a+p+ry=0 = hg+ hﬁ"' h‘(=0 =

<a,00H, + <B,p>Hp + <yy>H, =0. *)
Also XXXyl + [XpX Xl + [X X Xpll =0 =
NoyHo + Ny Hy # Nog Hy=0. "

The vectors Hy , Hpare independent, hence (*) and (**) are not independent = b). c)isa
consequence of (7), (8) and b) applied on the triple (o+B) + (-a) + (-B)=0 =

N_gq+p =N-g-p <B.B>/<a+f,a+p>.
Substitution of this in (8) and comparison with (7) gives c).

Finally d) follows from c) by proving that for each pair of roots the following equation

is true:

p<a+p,o+p>/<f,p>=q+1. (13)
This is verified case by case, for all 2-dimensional root systems (§24) spanned by two roots
a, P and such that a+f is again a root (A DA, excluded). The different cases are:

A, B, (2 cases)

b A

<K R

p=1,q=1, p=2,q=0,
p= 1 q=0, <o+f,a+p> =2<p,p> 2<+f,a+p> = <ﬁ,fj>
<a+f,o+p> = <f,p> and (13) holds. and (13) holds.
and (13) holds,
G, (3 cases)
+ 5 o+
B orB p o+ p
a o a4
i) when!:l,q=2, ii) when p=2,q=1, iii) when p=3,q=0,
<o+f,a+f> =3<p,p> <o+f,a+p> =<f,p> 3<a+f,a+f> =<p,p>

and (13) is true. and (13) is true. and (13) is true.
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This completes the proof of Pro-2.

The root vectors X, can be modified to X', = ¢, X, , where, in order to preserve rela
tions (4) the c,’s have to satisfy

Celog = 1. (14)
From [c X, ¢pXpl = N'45¢ 445X g4p » We have also the relation between the N's
N' o5 = Nog (CCp/C g1p)- (15)

Now we modify the X,’s so that the corresponding N,g s become integer numbers. This is
done inductively, with respect to the hight |a=Y|n j of the root a=Fn.a.. For the roots of the
fundamental system II (hight=1) we start with arbitrary X,. For the roots of hight 2, o+
with o,Bell, we define cpup = Nyg, which by (15) gives N';g = 1. From Pro-2(d) we have
then (since g=0) N'.; -5 = -1. The idea is to continue inductively with respect to the hight
and construct the N ,3’s, 50 as to satisfy
Nyg=-N_g-p - (16)

Pro-2(d) implies then that these N g are integers.

Proposition-3

a) If (16) holds for positive roots o, B with |a+p| <k, then it holds also for negative
with |o+B| <k as well as for positive o, |&| <k and negative B, | B| <k.

b) If (16) holds for positive roots of hight < k and 1 is positive of hight k, and the pos-

irive roots v, 9, €, C have 1 = y+d = e+, then we have
NVBW—\'.—E) = NsC/N—s,—C - (17)

The statement about negative roots in a) is obvious. Suppose o positive, p negative,
y= —a—f, with |y|<k and v negative. By Pro-2(b), since a+p+y=0 (and B, y are negative) im-
plies
Naﬁ/<y,y> = Nﬁy,n’<o(,a> = -N_ﬁﬂ/‘zq,a:’ = N‘Y.‘B/< o,0> = N—ﬁi,-a’r<V=V> = 'N—ot;ﬁ/{\’r\’} .
This proves a). To prove b), apply Jacobi’s identity

(Xy XX Il + [XX X+ [X X, X5]] =0 =
No-e Nygoy * NogyNpg5 + Nyg Negew =0. =
Np-eNyg-y ¥ NogyNy g = NygNog ¢ (<0C>/<n.n>). (18)
By a) and since the roots d-¢, v, -y, —€ and {-d have all hight <k, we see that the sign of
the left side of (18) does not change by replacing y—-y, 8—-3, e—-¢, and {—-{.
Comparison of the corresponding right side with (18) completes the proof of b). g.e.d.

Proposition-3 completes the inductive modification of the X ;s so that (16) is valid for
all roots. For each positive root n we choose a definite representation n=y+d, with roots of
less hight and modify X, by ¢;, 50 as to have (using (15)) Ns = (q+1) and consequently also
N_y-5=-(q+1). The whole procedure (choosing a specific representation for 1 etc.) is
called a normalization and Pro-3(b) shows that for an other representation with positive
roots £+(=7, (16) remains also valid. Notice also that, specifying a representation n=y+d,
and taking N, = (q+1), fixes also the Ng's for all other representations of n, inductively
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and through formula (18). Also the "mixed" Ngp s are determined inductively through Pro-
2(b).

Theorem-1 In every semi simple Lie algebra g we can choose the root vectors X, o I such
a way as to safisfy the equations :

[HoXo] = 2Xy, [HoX o] = -2X o, [XoX o] = H,
[XoXp] = £(g+1)X g,
where Bqq, ..., B, ..., B+pa is the a-string of the root B.

Theorem-2  Let g,, g, be semi simple Lie algebras with root systems A 1 A, and suppose f
1o be a weak equivalence of the two root systems i.e. a bijective map such that

Jra) =-f(o) and f(a+P) =f(a)+f(B)

then f can be extended to an isomorphism berween the two Lie algebras.

In fact, extend f between the corresponding Cartan subalgebras in the obvious way.
The map preserves the Cartan integers and the restriction of the Killing form on the Cartan
subalgebra. We choose then a normalization for g, and its image in g,. The extension of f
on the whole g, (depends on the normalization choosen in g , and) is then defined so as to
satisfy f(X,) = Xj@) . By its construction, f preserves a-strings and satisfies Ngg =
N sp)- This proves that f is an isomorphism. g.e.d.

The following exercises, taken from Jacobson (pp. 123-127), show the way the Lie al-
gebra is constructed out of a fundamental system and the corresponding H, = H, X, = X,
X ;=X (satisfying (4)).

Exercise-3 Fix IT={a,, a,, ..., &} and denote the corresponding root vectors (satisfying
(4)) by e=X, and f=X,. After Ex-10, §26, every positive root « can be written as a sum, o
= Ojc* O+ ... + 0, in such a way, that every "partial sum” & , Oyt G, wer y Oyt O+ oo + O
is again a root. Denote by [e,e_ .. e]=[..[[e,e le]..¢e]and el o £ = [ IIEE T ...
f.] and show them to be equal with non zero multiples of X ;and X _, respectively.

Exercise-4  With the preceding notation, let {k', m', ..., r'} denote a permutation of {k, m,
.., T}. Show that [e e . ... e.] (resp. [fi. £ - £:]) is a rational multiple of [ee_ ... e ] (resp.
of "{fkfm ... 1) , the multiplier being determined by the Cartan matrix (cij).

Exercise-5 Show that {H, ... H,}U {[e,e  ...e], [f,f ... T.]} form a basis of the Lie alge-
bra g, and the structure constants with respect to this basis are determined by the Cartan ma-
trix (c i

Exercise-6 Let [1= {ay, o, ..., oz}, IT'= {';, Oy, .., 4} be fundamental systems of
roots for the Lie algebras g,, g,. Suppose also that the corresponding Cartan matrices are
equal. Then there is a unique isomorphism of Lie algebras f:g, — g, which maps X=X,
and X ;=X ;. [Use the basis of the preceding exercise.]
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Remark We used this exercise in §35, in order to extend the obvious symmetry of the
Dynkin diagram E; to an involutive automorphism of the whole Lie algebra. The same
method can be used to extend any symmetry (isometry) of a Dynkin diagram to an automor-

phism of the Lie algebra. The corresponding extension of such a symmetry will be called
henceforth canonical extension of the symmetry.
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Es ist kein witziger Einfall sondern die lautere Wahrheit,
daB vor der Revolution die Jagdhunde des Kénigs von
Frankreich mehr Gehalt hatten, als die Akademie der
Inschriften. S. Neue Bibliothek der schénem Wissen-
schaften. Band 44. Stiick 2 p. 234. Die Hunde 40 000, die
Akademisten 30 000, Hunde waren 300, Mitglieder der
Akademie 30.
Lichtenberg, Sudelbiicher p. 410

38 . Existence and conjugacy of Cartan algebras

In §22 we introduced the notion of a Cartan subalgebra h of a Lie algebra g, and saw
that for semi simple g, there is a set of roots ACh*, root vectors {X«la€A} and g decompos-

es into the direct sum :
h & . CX, . (L)
Here we fill in the gap concerning the existence of such a subalgebra.
An element X €9 is called regular, when the dimension of the vector subspace

9o(X) = {Y € gladX(Y) =0}, )
is minimal. The characteristic polynomial of adX
det(adX-tl) = (-1)"t" + ... + det(adX), 3)

has coefficients a,(X) which are polynomials with respect to X (det(adX)=0, since adXX=0).
In (3) there is a last term a (X) which is not identically zero. Xisa regular element of g, ex-
actly when a(X) # 0. Since a (X) is an analytic function and vanishing on an open subset
would imply identical vanishing of the function, the set of regular elements is an open and
dense subset of g.

Lemma-1  For every regular element X€g the corresponding g,(X) is a Cartan subalge-
bra of g.

That g, (X) is a subalgebra, was shown in §22. Go(X) is nilpotent : In fact, let g,(X) be
the generalized eigenspaces of the linear endomorphism adX : g — g. Fori#0, adX|g,(X) is
invertible. It follows that for all Z in a neighborhood U(X) of X in 9y(X), adZ|gy(X) is also
mvertible. Then, adZ|g,(X) must be a nilpotent operator, since in the contrary case g,(Z)
would have dimension less than that of gO(X), contradicting the choice of X. Since nilpo-
tency of an operator is a polynomial condition (hence analytic) and adZ|g,(X) is nilpotent
for Z€ U(X), adZ|g,(X) is nilpotent for all Z € Go(X).

We have still to show that g,(X) is self-normalizing. In fact, g decomposes into the
direct sum of generalized eigenspaces of adX

8= GH(X8g,(X) o ... 89 (X). )
Let now Y€ g, such that [Ygy(X)]=gy(X). If Y had a component in g,(X), i#0, then [YX]
would have a component in g,(X) too, which contradicts [YX] € Gp(X). Thus Yeg,(X).

Lemma-2  Every Cartan subalgebra h of a semi simple Lie algebra g, coincides with the
9,(X), for some regular element X contained in h.

In fact, for a Cartan subalgebra h, we have the decomposition (1) into the root spaces
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of h. Take then some X € h, with a(X)#0, for all a€A. Then g,(X) = h. g.e.d.

Remark For every element X of a Cartan subalgebra h, for which a(X)#0, for all roots
€A, we have go(X) = h

We proceed now to the investigation of the different Cartan subalgebras of the same
semi simple Lie algebra. Recall that inner automorphisms of g are these which can be writ-
ten as compositions of automorphisms of the form

f=exp(adX), for X€g.
Recall also the formula

(d/dt) o f(Z) = (d/dt) j(exp(adtX))Z = [XZ]. &)
From the well known formula

dimKernF + dimImF = dimV, 6)
for a linear map F: V — W, we have the following result :

g = h&[X.,g], for every regular X€h. @)

This, combined with (5), implies that the derivative of the map
hxg3(X,Y) — expadY)X,

at (X,0) ehxg is of maximal rank, hence there is a neighborhood V of X in g, whose all ele-
ments are of the form :

YeV = Y =exp(adZ)W, with (regular)Weh. (8
By the remark above, for all W in a convenient neighborhood U of X eh we’ll have g (X) =
go(W). Hence for YE'V or eventualy a smaller neighborhood of X in g, we’ll have g,(Y) =
exp(adZ(g,(W))) = exp(adZ(g,(X))). This means that for every regular X also a neighbor-
hood V of X consists of regular elements and g,(X), g,(Y) for Y €V are conjugate with re-
spect to an inner automorphism. If follows immediately that for every connected component
S, of the set of regular elements, the Cartan subalgebras g,(X) and g,(Y) are conjugate.
That there is only one connected component, follows from the more general:

Lemma-3 Ler V be a complex vector space and f :V — C a polynomial funcrion. Then the
set V' = {ve Vifiv)=0} is connected.

In fact, for v, v'€ V the function of t, f(tv+(1-t)v') = g(t) is (non-zero) polynomial in t,
hence it has finite many zeroes t,, ..., t, , hence C' = C-{t, ..., t, } is connected and with
this V' {tv+(1-t)v'te C'} is connected too.

Since the set of regular elements of g is identical with {Xla (X)#0}, we have the proof
of the:

Theorem  In every complex semi simple Lie algebra g there are Cartan subalgebras, and
two such subalgebras are conjugate through an inner automorphism of g.
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Wihrend die Wissenschaft dem rast- und bestandlosen
Strohm vierfach gestalteter Griinde und Folgen nachge-
hend, bei jedem erreichten Ziel immer wieder weiter gewi-
esen wird und nie ein letztes Ziel, noch vollige Befriedi-
gung finden kann, so wenig als man durch Laufen den
Punkt erreicht, wo die Wolken den Horizont beriihren, so
ist dagegen die Kunst iiberall am Ziel.
Schopenhauer, Die Welt als ..., I, p. 239

39. Automorphisms

Automorphism of a Lie algebra g, is a linear isomorphism f: g — g, with the property
JIXYD) = [f(X).f(Y)], forall X,Y€g. (1)
The set Aut(g) of all automorphisms of g is an algebraic closed Lie subgroup of GL(g) and
its Lie algebra is Der(g), the set of derivations of g. In §17 we saw that when gis semi sim-
ple, then all derivations are inner i.e. of the form D=adX, for some X €g. In this § we as-
sume that g is semi simple and use the notation introduced in the preceding §§. The con-
nected component Int(g) of Aut(g) is a normal subgroup of Aut(g) and consists of automor-
phisms of the form
exp(adX)o ... o exp(adX,). )
In this § we show that
"G = Aut(g)/Int(g) ' 3
is a finite group which is isomorphic to the group of automorphisms of the corresponding
Dynkin diagram. A useful remark is the :

Exercise-1 Every automorphism f: g — g, wich leaves invariant some Cartan subalgebra
h of g, induces there an isometry which leaves invariant the root system A. [f is an isometry
with respect to the Killing form]

In §37 we saw that, inversely, every isometry of A comes from some automorphism of
g (the isometry induces isometry between fundamental systems of A, which can be extended
choosing a normalization etc.). Two automorphisms with f {(A)CA, for i=1,2, can induce the
same isometry on A. Then the automorphism (f 1)‘loj",_, will leave A fixed and it is useful to
know that :

Lemma-1 The following assertions are equivalent :
1) The automorphism f: g — g, has f(h)<h and flh =id,
2) f=exp(adH), for some He h .

2) = 1) is obvious.
1) = 2) is also easy. In fact, with the usual notation IT = { Wsns 505 H;, X, etc. we’ll have
fH;)=H, fX,) =aX; f(X;)=bX,, and by invariance
XX D =FH,)=H =abH = ap=1
Take then (complex numbers) t, with exp(t;) = a;, and Heh such that a(H) = t.. Then we ver-
ify easily, that exp(adH)X; = exp(t)X; = a.X,. Thus, exp(adH) and f are two automorphisms
which coincide on h and the X;’s. Since these generate the Lie algebra g, they coincide ev-
erywhere. | ge.d.
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Lemma-2  Every inner automorphism of g has +I-eigenspace (={X€g| (f-1}’X=0, for
some integer k}) of dimension > d = dimh.

We need this lemma below and his proof uses the analyticity and connectedness of the
Lie group Int(g). From §22, we know that adX, for every X €g has 0-eigenspace
go(X) = {Y € g| (adX)*Y=0, for some integer k},

has dimension 2 d = dimh. But g,(X) is a subset of the +1-eigenspace of exp(adX), hence
the lemma is true for some neighborhood of 1€ Int(g). The characteristic polynomial of an
automorphism f€ Int(g) can be written in powers of (t-1):

X,(t)=}:05j$r (t-l)ipi(f), “
where p,(f) are analytic functions on Int(g). But for these functions, the preceding remark
shows that

P =..=py; (H=0, ™)
on a neighborhood of the identity. By analyticity and connectedness of Int(g) we conclude
that (*) must be true everywhere on Int(g). This proves the lemma.

Lemma-3 Fix a Cartan subalgebra h of g. Then Aut(g)/Ini(g) = G,/Gf, where G, = the
subgroup of automorphisms leaving h invariant, and GP = the subgroup of inner automor-
phisms leaving hinvariant.

The proof is easy. For an automorphism f: g — g, h'=f(h) is again a Cartan subalge-
bra and by the conjugacy theorem (Theorem §38) there is an inner automorphism ¢, such
that ¢o f{h)=h. Then also f-lo ¢! (h)=h and for ¥ = f1od we have

fl=xod.
Thus, each automorphism can be written as a product of a x€ G, and an inner automorphism
¢. This means that the canonical projection restricted on G,

Gy, — Aut(g)/Int(g), with x—[x],

is surjective. The lemma follows then from the fact that G,° is the kernel of this homomor
phism of groups.

After this lemma, in order to investigate the group Aut(g)/Int(g), we may restrict our-
selves to automorphisms f leaving a definite Cartan subalgebra h invariant. Such an auto-
morphism induces then an isometry of A onto itself. The next step will be to show that an
inner automorphism leaving h invariant (i.e. f€G,°), when restricted in h, gives some ele-
ment of the Weyl group. The lemma is the easy part:

Lemma-4  For every element S€W of the Weyl group, there is some f€ G2 (inner auto-
morphism preserving h ) such that S = fih .
Since W is generated by the reflexions S ,, with respect to the roots a€ A, it suffices to
verify it for such a §, . The proof is constructive. With the usual notation, we have
X+ X g H] = -a(H)(XgX-g),
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(ad(X +X o) H= 2a(H)H,,

(ad(X  +X_ o )*H = - 4a(H)(X,X_,), and inductively
(@d(X o +X ) ** H = - 2% a(H)(X ;X o)
(ad(X ( +X_o ) *H = 2% q(H)H,,

Take then
X=imt(X X o) -
(2 Zk+1 o (2 Zke+2
1 itm) ] 1 itm)
expladX)H=H ): sy o) X X) + 2 L o HH,.
Fort= 12, X = (in2)(X,+X_,),Heh =
exp(adX)H=H- aH)H, =S (H) . g.e.d.

The converse to the lemma is also valid, but to prove this we need to examine inner auto-
morphisms permuting, not only A, but also the fundamental system IT.

Lemma-5 Ler f be an inner automorphism of g, with f(h)Ch and f(TI)CI1, then fih = Id.

‘We divide the proof in several steps:
1) f defines a permutation of A, T: A—A, which is decomposable to cyclic permutations
T=0p..00, .
2)  For each cyclic permutation o=0,, and each root o, non-constant with respect to o,
there is an integer g=q;, such that (somewhat loosely speaking)

=(a, o(a), 0%a), ..., 6T (@)), and 0%(x) =
3) The subspace of g

gO'= CXG6CXO'(C()® e @CXUq-l(GO s

is obviously f-invariant and taking {X, ..., qu-l{a)} as a basis, the matrix representing f|g°
is

. v,
Vi 0 ves veses 3 o 0
0 v, 0 ........ 0
[, i/ 0

4) The characteristic polynomial of £|g° is t1-v *v,... W

5) ForHeh, exp(adH)g’c g%and {X,, ..., Xgel(} are also eigenvectors of exp(adH)
exp(adH)X iy = exp(a(00) ()X giggp)-
Thus, the matrix representing exp(adH)of]g® has the same form with the matrix in 3) with
v'. = exp( ol (e ; and characteristic polynomial

t9- v oVyteoV  €XP(E 1 g 07 (O(HD).
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6) Since f(IT)<TL, for positive (resp. negative) roots «, f(a) is again positive (negative),
hence ¥ gqeq 0°() # 0, and we can find some H € h such that
VitVp etV €XP(L 1 ey 07 ()(H)) # 1. *
Moreover we can choose H so that (*) is valid for all 6= a, ..., o,
7) We have obviously
g=heg"'®,..,59% ,
and the result in 6) shows that exp(adH)oflg” @ , ..., ®g°» has not the eigenvalue 1. This
means that the +1-eigenspace of exp(adH)of is contained in h, and from lemma-2 it must be
identical with h. Thus, by lemma-1 there must be some H' €h, such that
exp(adH)of = exp(adH"),
which proves lemma-5, g.e.d.

Theorem-1  For each element S€W of the Weyl group, there is an inner automorphism f
of the Lie algebra g, leaving the Cartan subalgebra h invariant and extending S. Inversely,
Jor every inner automorphism f, with f(h)Zh the restriction flhe W.

The first part of the theorem is the lemma-4. The second (inverse) follows from lem-
ma-5. In fact, if f is an automorphism with f(h)ch, and if II is a fundamental system of
roots, then f(IT) = IT' is a fundamental system too. Hence, by the simple transitivity of W on
the Weyl chambers, there must be some S€ W such that S(f(IT")) = II. According to lemma-
4, S can be extended to an automorphism £ of g, with f'lh=S. Then fof(I1) = ITand f of
is an inner automorphism which satisfies the hypothesis of lemma-5. Thus flofjh = Id, and
consequently flh=S81, g.e.d.

Theorem-2  Aur(g)Int(g) = Aut(DD), where Aut(DD) is the group of symmetries of the
Dynkin diagram or equivalently, the group of isometries of the corresponding fundamental
system I in itself. )

In fact, we saw that Aut(g)/Int(g) = G,/G,, and we have a natural mapping
F: Gy~ Aut(A) = group of isometries of A,
which is defined by restricting its automorphism f€ Gy, on h. WCAut(A) is a normal sub-
group, and by the preceding theorem F(G ?)CW, hence F induces an isomorphism of groups
: F: GG — Aut(A)/W.
It suffices to show that the map
f: Aut(DD) — Aut(AYW, a—[4],
where 4 is the extension of a from IT to A, is an isomorphism. In fact, f is onto, since for

every u € Aut(A), there is a unique T€ W such that uoT(II)CII. Then a = uoT|II, has [4] =
[u]. fisone to one, since [4] = W means a=(Id[II)modW. g.e.d.

Exercise-2 Show that WCAut(A) is a normal subgroup. [ For T€ Aut(A) and a reflection
SG! we have Fl-“:)sozo'-.[‘-j = ST(G)]

Inspecting the Dynkin diagrams, we see that Aut(g)#Int(g) (equivalently Aut(DD)={1})
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only in the four cases of the following table :

P
Aut(DD)| Z, S; | Z

&2| D,

[=H
(o)}

(]
L8]
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» At sapiens colaphis percussus, quid faciet?« quod Cato,
cum illi os percussum esset: non excanduit, non vindicavit
injuriam: nec remisit quidem, sed factam negavit.

»Ja«, ruft ihr, »das waren Weise!« - Ihr aber seid Narren?
Einverstanden. -

Wir sehn-also, daB den Alten das ganze ritterliche
Ebrenprincip durchaus unbekannt war, weil sie eben in
allen Stiicken der unbefangenen, natiirlichen Ansicht der
Dinge getreu blieben und daher solche sinistre und heillose
Fratzen sich nicht einreden liefen.

Schopenhauer, Aphorismen ... p. 413

40 . Real forms, Cartan decomposition

We call real form of a complex Lie algebra g, a real subalgebra g, with the property:
9o*igy =g (D
go has real dimension = complex dimension of g and defines a conjugation in g i.e. a coju-
gate-linear mapping with the properties:

G:.g—-g _ _
C(AX+uY) = As(X)+us(Y),
g, _
o[XY] = [0(X),0(Y)]. @
Such a o is defined by g,:
o(X+iY) = XY, forall X, Yeg, 3

Lemma-1  Every real form g, of a complex Lie algebra g defines a conjugation o of g and
inversely, every conjugation ¢ of g defines a real form g,,, through the fixed points of o:
9o = {Xeg|oX)=X}. 4
We need only to prove the inverse. But this is a consequence of the characteristic
properties (2) of the conjugation o.
We call two conjugations equivalent, when the corresponding real forms are isomor-
phic real Lie algebras.

Lemma-2  Two conjugations o,, 0, are equivalent, if and only if, there is an automor-
phism f: g — g, such that

0,=fogof 1. §)

Given (5), define corresponding real subalgebras using (4):

g =i{XegloX)=X}, i=1,2.
Then f(g,)=g. and f]g, is a real isomorphism. For the inverse, extend the given f 9= G
to a complex f:g — g, through

FXHY) = f(X)+HAY), forall X, Yeg,. g.e.d.
Exercise-1 ~ Show that the product of two conjugations f=0,00, of a Lie algebra g, is an
automorphism of g.

Exercise-2 Show that every conjugation ¢ can be written as a product
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g = foa,,
where o is an arbitrary fixed cgnjugation and f is an automorphism, such that
oofod, =f1.
[Use Ex-1, and write 6=(000,)00, f=000 )]

It is not necessary for a complex Lie algebra to possess real forms, However semi
simple Lie algebras do possess real forms. In fact, using the root space decomposition of
such an algebra, we can define the so-called normal real form corresponding to a fixed
Cartan subalgebra h, and a definite set of root vectors Xy €A

9o = ho @ qe AR X, O]
where hy = <H j|o€ A>p is the real subspace of h, spanned by the coroots H .

Exercise-3 Consider the classical Lie algebras realized by the matrix algebras sl(n;C) and
sp(n;C). Show that, using the diagonal Cartan subalgebra and the usual root vectors (as in
§§27-30), the corresponding normal real forms are sl(n;R) and sp(n;R) i.e. they coincide
with the (real) subspaces of real matrices of the corresponding matrix spaces.

Besides normal real forms, semi simple Lie algebras possess also an other class of
very important forms, the so-called compact real forms. These are characterized by the
property: the Killing form <...,...> of g, restricted on g, is definite.

Exercise-4  Show that the restriction of the Killing form of g on a real form g is the
Killing form of g, (and consequently takes real values there).
[Use an R-basis of g, which is also a C-basis of g].

Exercise-5 Show that when the Killing form on g, is definite, then it is negative definite.
[For X€g,, adX is skew symmetric w.r. to <...,...> = has purely imaginary eigenvalues =

(adX)? has negative eigenvalues].

Theorem-1  Every semi simple Lie algebra has a compact real form, namely:

u= iho Buea RE X )@ gea IRE X ), Y
where h is some Cartan subalgebra and hy and X, as in (6) above.

In fact, setting U, = X,-X_, and V, =i(X ,+X_,)we compute easily:

[HH,Uyl = aH)Vy,

[iH,V,]=-aMH)U,

UV l=2iH,. (8)
iH, Uy, V, are orthogonal to each other (see §22, Pro-2), hence the Killing form for

K=l ¥ r U +F 55V

<X, X>=-<HH> + ¥ 1,2 <U,U,> + ¥ 5,2 <V,,V,>, but

<UgUg>= <Xa'X—ana"X—a> =<XpXg> <X o X o> '2<XwX—a>

and since (Pro-3, §22)

KX > =<X_g:Xo>=0and <X, X ,>=2/<q,a>,



Real forms, Cartan decomposition 40-3

we have
<UUy>=-d/<a,a>.
Analogously
<V, V> =-4l<o,0>, =
<X, X>=-<HH> - (4/<0,0)¥ (r2+s5,2) <0. ge.d.

Compact real forms u are very important since all other real forms of the complex
semi simple Lie algebra g, can be constructed out of involutive automorphisms of u. Besides
all compact real forms of g are isomorphic. In the next lines we discuss these facts.

Lemma-3  Let u be a compact real form of the complex semi simple Lie algebra g and
f:u—uan involutive automorphism (f*=1). Let furthermore k, p be the (+1) eigenspaces of
flu=kep):

k={Xeu|fX=X},

p={Xeu |fX=-X}.
Then

gp=keip
is a real form of g .

In fact, this follows immediately from the properties
[kkick,
[kol<p,
[Pplck, . )

for the corresponding eigenspaces of the automorphism f. k is called the characteristic
subalgebra of g,

Theorem-2  Every real form g, of the complex semi simple Lie algebra g is conjugate,
With respect to some inner automorphism of g, 1o a real form k @ ip as above.

The proof relies on the following lemma:

Lemma-4 Ler u be a compact real form and g, a real form of the complex semi simple Lie
algebra g, and ler 7, o, be the conjugations with respect to u and g, respectively. Assume
also that
To0, = G,OT. (10)
Then the restriction f = oylu is an involutive automorphism of u, with the property
g,= keip,
where k, p, as above, are the +1-eigenspaces of f.

In fact (10) and o> = 1 implies

oo(W)CU, 2 =1, (11)
and, since we are considering only real linear combinations, f= oolu is R-linear. Thus,
a(K) =k,

0y(ip) = -igy(p) =ip, =
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k @ ipcg,.
Equality follows for dimension reasons. g.e.d.

To prove now the theorem, it suffices to find some conjugate g, of the real form g,
whose conjugation ¢, satisfies

To0; = 00T (109
The construction of &, out of ¢, is done by the following computation :
1) First, since the Killing form K(X,Y) of gisreal on U and g, We have
K(tX,1Y) =K(0,X,0,Y) = K(X,Y), (conjugate) for all X, Yeg.
2) We show that the new bilinear form H, defined by
H(X,Y) =K(1X,Y)
is an Hermitian form of g :
i) Itis conjugate-linear with respect to X, and linear with respect to Y.
i) H(Y.X) =K(1Y,X) = K(*Y,1%) = R(Y,rX) = HX.Y).
iii) Definite: H(X,X) = K(1X,X) = K(X'-iX",X'+X") = KX, X)+K(X",X™) <0, for X', X" € u.
3) P= oyotis C-linear automorphism of g and selfadjoint with respect to H. In fact,
H(PX,Y) = K((Te0,01)X,Y) = K( 05oTX,TY) = K(1X,0,7Y) = H(X,PY).
4) It follows that P:g—g can be diagonalized, and has real non-zero eigenvalues B ae 4
A... Lt
9=8,..V,, V.={Xeg|PX=0X},
be the corresponding decomposition into the eigenspaces of P. Notice that [ViVj]CVﬁD with
Arij) = Ai?\j .
5) We define Q = [P|"'”2 (inner automorphism conjugating g, to g,) by means of
QIV; = 12 (1dIV).
From the definition and the fact |A]>= A> (holding for reals), we have the equation

FP=PIQ2 (12)
We note also that Q embeds into the 1-parameter-subgroup of automerphisms of g, given by
{IPI'|te R}.

Thus, it is of the form exp(tadX), for some Xeg.
6) We define the real form

g, =Q(gy), whose conjugation is
0, =Qo0Q?! (o,lg, =id, o,lig, =-id).

We’ll show that (10") holds.

1) opePros! =Pl because 0,0Po0 ;! = 6010, =To0,1 =P |

ii) Thisimplies 0Qooy! = Q! because gyoPeg,t = P! = g oP = Plog, =
UO(VM)CVM" and
0°Qoay(v;) = 6,0Q0(0ov) = o131 agv;) = [A [Py, .

iif) Finally, 6,01 = QoopQler = Qoop(0pQor, ot = Q%0opt = Q*P=P1Q2
=10 0,0Q0 Q! = 10 Qoge Q1 = 100, . ge.d.
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Theorem-3  Two compact real forms of the same complex semi simple Lie algebra g are
conjugate (isomorphic) by an inner automorphism of g.

The proof is an application of the previous theorem, for p={0}. Thus, we can say the
compact real form of g. In fact, by The-2, a second compact form of g will be conjugate to
some g, = k @ ip, as in the lemma-3. But then <ip,ip> > 0, and we must have p={0} and
gg=u. g.e.d.

Absorbing i into p, we see that every real form g, has a Cartan decomposition ie. a
decomposition into subspaces g,= k @ p such that
[kk]ck,
[kplcp,
[ppIck,
<k,k> <0, and <p,p>>0. (13)
Notice that we pass from the Cartan decomposition to the compact form by taking again
u=keaip.
The Cartan decomposition is essentially unique. In fact if
9=k ®&p; =k, ®p,,
are two such decompositions then, let u; = k; @ ip,, u, = k, ® ip, , be the corresponding
compact forms and ¢, 0, the corresponding conjugations. Then,
Q=lo,00,[17,
is, as we saw in the proof of The-2, an automorphism mapping U, onto u,. Then, by lemma-
4, the conjugation o, of g, commutes with o, o, hence also with Q. Thus, Q maps g,
onto itself and defines an R-automorphism of gp - We have also Q(k,) = Q(g,Nu,) =
GoNQ(u,) = gynu; =k;. Analogously also Q(p,)=p,. We proved the

Theorem-4  Every real form g, of the complex semi simple Lie algebra g has a Cartan
decomposition (as fn (13)). Also two such decompositions are R-isomorphic through an

inner automorphism of g,, of the form f= expfadX), X¢ 9y (flky)=k,, and f(p,)=p )

The last assertion of the theorem follows from the fact that Q= jof_,ocrll'm embeds into
a 1-parameter subgroup {|o,00,[ [t€R}, of automorphisms of g, q.e.d.

From the discussion in this § follows that the problem of classification of all real
forms of a complex semi simple Lie algebra is equivalent to the problem of classification of
all involutive automorphisms of the compact real form uof g. We note first, that for conju-
gate automorphisms . f' = PofoP! (P:u—u automorphism of ), the corresponding real forms
gy = K'@ip'and g,= kip are isomorphic through P = the complex extension of P.

Pc(go)= g(}‘-
Inversely, let U = k&p = kK'@p' and g, = k&ip, g, = k'®ip' be isomorphic real forms,
through an isomorphism
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Arg,—g,-
Then A(k)+iA(p) is a Cartan decomposition of g,'. Thus, there is an automorphism

R:g,) — g,, with

R(A(K)) = K, R(A(p))=P" &)
Extending A and R on g we obtain B=RoA, which, by (*), implies B(u) = u and for the con-
jugations o, 0, of g, =k&ip, g, = k'®ip', respectively, 0,=Boc0Bl. We proved the

Theorem-5 Let g be a complex semi simple Lie algebra and u be a compact real form of
g. Then, there is a bijection berweeen the ser of conjugacy classes, in Aur(g), of all real
Jorms of g and the set of the conjugacy classes, in Aut(u), of all involutive auromorphisms

ofu.



Dies aber weiB ich, daB wenn, wie es jetzt droht, die
Erlernung der alten Sprachen ein Mal aufhéren sollte, dann
eine neue Litteratur kommmen wird, bestehend aus so bar-
barischem, plattem und nichtswiirdigem Geschreibe, wie
es noch gar nicht dagewesen;

Schopenhauer, Parerga, p. 610

41 . Real semi simple Lie algebras

The definition of real is the same with the corresponding for complex (§17) : the real
Lie algebra g is called semi simple, when it has no solvable ideals. The properties of com-
plex semi simple lead to properties of real semi simple Lie algebras by taking the complexi-
fication :

gc=90+ig. (D
d¢ has complex dimension = real dimension of g . Multiplication by complex numbers :
(a+1b)(X+1Y) = (aX-bY) + i{bX+aY). 2

The Killing form of g :
<XHY X'+HY'™> = (<X, X'> - <Y,Y'>) +i(<X,Y>+<Y',X>). 3

Exercise-1 Show that for every Lie subalgebra (ideal) acg, is a subalgebra (ideal) of dc
Show also that (&)™ = ().

From the exercise, we see that if a is a solvable ideal of the real g, then gc has the
solvable ideal ac. Inversely if g is not semi simple, then its Killing form is degenerate,
hence

9o = {XHY | <X+Y,U+iV> = 0, for every U+iV g} = {0},
is a solvable ideal (Cartan’s st criterion) of g Then
a={Xeg|X+Ye gCL, for some Y €g} = {0},
and
L
qg=dg*
By Ex-1, (a™) = (ao)™ hence a is a solvable ideal and g is not semi simple. We proved
the

Theorem-1  The real Lie algebra g is semi simple, if and only if the complexification gcis
Semi simple.

Cartan’s theorem says that g is semi simple if and only if its Killing form is non-de-
generate. This means that the matrix representing the Killing form with respect to some
basis of g is invertible. Choosing a basis of g (which is also a basis of dc) we see that the
corresponding matrix is real and invertible, hence

Theorem-2  The real Lie algebra g is semi simple if and only if its Killing form is non-de-
generate.

Exercise-2  Show that for a real semi simple Lie algebra g and an ideal h=g the orthogo-
nal complement with respect to the Killing form h-is again an ideal. Conclude that
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gsemisimple = g=h,® .. ®h_ isdirect sum of simple ideals.
Exercise-3 Show that for a real semi simple Lie algebra g, [gg] = g.
[ [9g]" is an abelian ideal]

The two exercises are proved as the corresponding ones for complex Lie algebras
(§17). Analogous is also the proof of the following
Theorem-3  All the derivarions of a real semi simple Lie algebra g are inner i.e. of the
Jorm D=adX, for some X in g.

For the construction of certain Cartan subalgebras of a real Lie algebra g, we start with
the Cartan decomposition of g : g = kép, [kk]ck, [kplcp, [ppIck, <...,...> negative defi-
nite on K, and positive definite on p. Then u = kip is a compact form of the complexifica-
tion g and for the conjugation with respect to u, T : 9¢— 9 we have 1lk =Idlk, 1ip=-Id|p
= @ is T-invariant.

Proposition-1  Ler hp be a maximal abelian subalgebra of p and hcg a maximal abelian
Subalgebra of g containing h o Then the complexification h is a Cartan subalgebra of 9c

First we study, how h is situated in g.
Xeh Y ehp = 1X-Xegand [tX-X,Y]=[1X,Y] = 1[X,7Y] = 1[X,-Y] = 0. (¥
We have also 7(1X-X) = -(1X-X) = (7X-X)€p. Hence, by the maximality of hp, and since
(*) holds for every Y Ehp (tX-X) EhD = 1(X) €h. In other words, h is T-invariant and con-
sequently
h=hnkehnp = hnp= hp.
Let h,=hnk. The complexification hc is generated by vectors X € thBihp C u. Thus for
X €u and the definite hermitian form H (defined in the preceding § )
H(X,)Y) =<1X,Y>,

we have
H([XULV) + H(U,[XV]) =0,

= <7[XU],V> + <1U,[XV]> =0,

= <[X,7U],V>+ <1U,[XV]> =0.
Thus, for X¢€ u and an adX-invariant subspace V of g, the H-orthogonal complement Vtis
again adX-invariant, hence adX is a semi simple operator. Besides, h ¢ is a maximal abelian
subalgebra of g, (Ex-4), hence, by Pro-10 §22, h¢is a Cartan subalgebra of dc-

Notice that hcg is a real Cartan subalgebra (according to the definition of §22). In
fact h is nilpotent (since abelian) and [Xh]ch implies [X he1<he, hence Xeh, = Xeh.
Thus we proved the
Theorem-4  For every real semi simple Lie algebra g, with Cartan decomposition g =
kep and every maximal abelian subalgebra hp of p, there is a real Cartan subalgebra h of
g, which satisfies

h =hnkehnp, and hnp= hp.
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Exercise-4 Let g be areal semi simple Lie algebra and g its complexification. Show that
the complexification h of a maximal abelian subalgebra of g is a2 maximal abelian subalge-
bra of g.

Exercise-5 Show that if hy is a maximal abelian subalgebra of k and h,chcg a maximal
abelian subalgebra of g, then h=hnkshnp, and h is a Cartan subalgebra of g.

The maximal abelian subalgebra h,Ck of the preceding exercise determines a unique
maximal abelian h,Chcg. In fact, if H=HNk®h Np were an other, we would have
h nk=hnk=h, . For NNp: Let Yeh np, X €h. Then

X = (12)(X+X)+(1/2)(X-1X) eh, ehNp,

[YX]=[Y, (1/2)(X-1X)] €[pp]ck, and for Z €h,,

-[Z1YX]] = [Y[XZ]]+[X[ZY]] = O,
hence [YX] commutes with every element of h,. Since this is a maximal abelian subalge-
bra, we have [YX]€ h,Ch. X was arbitrary, hence [Yh]ch = Yeh. We proved the

Theorem-5 Ler g=k&p be a Cartan decomposition of the real semi simple Lie algebra g,
and h,Ck a maximal abelian subalgebra of k. Then there is a unique maximal abelian sub-

algebra h of g containing hy. his a Cartan subalgebra of g, and h=hnk&hnp, hnk = h,.

Exercise-6  Show that every subalgebra acp is abelian. Conclude that hp is a maximal
subalgebra of p. ' [[PPI<k]

Notice that h, constructed either from h, <k or from hpCp, is T-invariant, where T the
involution of g. In both cases h, EBihp is a Cartan subalgebra of the compact form u=k®ip.
It is interesting to find the location of the roots of g, relative to h ¢ Using the standard no-
tation, hy= @ ;.- RH, isa real subspace of hCg and we have the

Theorem-6  Let h—g be a Cartan subalgebra of the complex semi simple Lie algebra g,
which is T-invariant with respect to the conjugation T of a compact form u of g. Then
i) hy=& ,-RH,Ciy,
1) The root vectors X, X _, can be choosen in such a way that
u= ih0® acA* R{XQ—X_G)Q aeA*Ri(X&+X—a)'

To prove the theorem, we use again the hermitian form H(X,Y) = <tX,Y> (negative
definite p. 40-4) on g. ForHeh, a€A, and X€ g, we have
[tH, 1X] = T[HX] = ta(H)X = a(H) 7(X) = (0OT)(tH) 1X. *)
This shows that o = (—(15-‘5 is again a root. We show now that hy, is 1-invariant.
<theH>= <h,tH> =(00T)(H) = <h,H> =
The) =hgr.
Thus, h, is T-invariant and tjh, is an involution, hence there is a corresponding decomposi-
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tion hy = h;®h , of h, into +1-eigenspaces. It follows h;={0}, since X€h, = <X,X> =
<1X,X> <0, which contradicts the fact, that the Killing form is positive definite on h, (§24).
Hence hy=h , which shows i) and in addition also the " = - .
From (*) we have 7(X,) = ¢, X_q = Co€oq =1, (2 =1)
KoXol=H, = X ZXyl=H, = cpcq=1
Thus, ¢, is real and replacing X, with -(c )X, for all a.€ A, we see that

X, =-X g and 17X, =-X,,
This implies ii). g.e.d.

We conclude that hyC ik® p, hence (using the previous notation g=kep etc.)
hy =ify®h,,
ihy=h, ®ih,c u. “)

Notice that i, is a maximal abelian subalgebra of u. In fact [X, ih)] =0 = [Xh]=0=
Xeh = Xeih,. Inversely, every maximal abelian subalgebra of u is a Cartran subalgebra
of u. This happens because the Killing form of u is definite and every adX-invariant sub-
space VCu defines an orthogonal complement v+ which is adX-invariant too. Conse-
quently adX is a semi-simple operator.



Eine Wirkung vollig zu hindern, dazu gehort eine Kraft,

die der Ursache von jener gleich ist, aber ihr eine andere

Richtung zu geben bedarf es &fters nur einer Kleinigkeit.
Lichtenberg, Sudelbiicher p. 431

42 . Compact Lie algebras

So are called the real Lie algebras g, which possess some metric <...,...> such that all
f€ Aut(g) are isometries. The basic example is that of compact real forms of a complex
semi simple Lie algebra, endowed with the negative Killing form (this gives a positive defi-
nite metric on the Lie algebra). For these Lie algebras Aut(g)CGL(g) is a closed subgroup
of the orthogonal group O(g,<...,...>), hence a compact Lie group. The connected compo-
nent Int(g) of Aut(Q) is generated by the inner automorphisms of g, of the form exp(adX)
and the map exp: g — Int(g) may be identified with the exponential of g and is onto the
compact group Int(g).

Proposition-1  For every compacr Lie algebra g, we have
g =c®[9g],
where C is the center of g and [gg] is semi simple.

In fact, let <...,...> be the Int(g)-invariant metric of g, ¢ the center of g and ¢t the or-
thogonal complement of ¢. For X ECJ‘, <adYX,c>=-<X,[Yc]> =0, hence ¢t is an ideal and
g=Cc® ¢, Besides adX:ct—ct is skew-symmetric with respect to <...,...>, hence
tr(adXoadX)<0 and =0 = adX=0i.e. X=0. Thus, by Cartan’s criterion ¢’ is semi simple
and coincides with [gg].

We saw in the previous § that the Cartan subalgebras of a compact real form U coinci-
de with the maximal abelian subalgebras of u. This motivates our interest for the maximal
abelian subalgebras of a compact Lie algebra.

Proposition-2  Ler acg be a maximal abelian subalgebra of the compact Lie algebra g.
Then there is some X €a with
a = gyX) = {Ye gl[YX]=0}.

In fact, exp(ada)CInt(g) is a closed abelian subgroup (a maximal toroid), hence a
compact torus. In such tori there are elements x=exp(adX), such that their powers x,x2,x3, ...
build a dense subset {of the torus). X €a is what we want. We call it a generator of a. In
fact, Y €g(X) = [YX]=0 and consequently exp(adtX)Y =Y = exp(ada)Y=Y = [aY]=0
= Yea.

Proposition-3  For a maximal abelian subalgebra a of the compact Lie algebra g we have
g= Uxegexp(aa'X}a.

In other words, every element of g1is contained, at least, in one maximal abelian sub-
algebra of g (conjugate to a).

In fact, take Y arbitrary and X€a as before. Consider then the function on Int(g)
f(g)=<X,gY>, g€nt(g). This has a minimum on some g € Int(g). Hence, for every Z€g
we’ll have
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0 = (d/dt)| , f(exp(adtZ)g,)) = (d/dt)| ;<X exp(tadZ)g  Y>
= <X,[Z,g OY]> = _<[X5goY]92P =
[Xg,Y]=0=¢g Yea = Yegl(a)
g.e.d.
Proposition-4  Two maximal abelian subalgebras a, a' of a compact Lie algebra g, are
conjugate with respect to some inner automorphism g€ Int(g).
In fact, choose some X € a, as in pro-2. Then, by Pro-3, there is some g €Int(g) with
gXea =Xegl(a)=g,(X) = dima>dima'. Analogously dima'>dima g.e.d.

Corollary  All Cartan subaigebras of a compact semi simple Lie algebra are conjugate o
each other.

When g is a compact semi simple Lie algebra and hcg is a maximal abelian subalge-
bra, then, by Theo-6 §41, the complexification hc is a Cartan subalgebra of gcand g can be
written

g=1ihg® (car RX ;X )@ jeca RiX+X ).
Using the formulas §40 (8), we compute the matrix representing ad(iH) with respect to the
basis U,V (for Hehy):

,

0
ad(i) = 0 -a(H)
aH) 0

0 -wH)
wH) 0
Proposition-5  For every maximal abelian subalgebra h of the compact semi simple Lie al-
gebra g, there are linear forms q, ..., w and a basis of g, such that for all X€ a :

1

cosa(X) -sino(X)

dX =
SAPLadR) sina(X) cosa(X)

cosw(X) -sinw(X)
sinw(X) cosw(X)

{ia, ..., iw} = A" build a system of positive roots of the Cartan subalgebra h¢ of the com-
plexification g..

Instead of {, ..., w} it is often useful to work with {a’=a/27, ... , w'=w/27}. We call
{a, ..., w'} roots of the compact Lie algebra g. The analogon of Pro-5 holds also for
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more general compact Lie algebras (non-semi-simple). The only difference is in the box
with 1's which will have dimension greater than the maximal abelian subalgebra a, whereas
the vector space spanned by {, ... , w}Ca* will be a (proper) subspace of dimension = rank
of [gg].

Proposition-5 (and its analogon for more general compact Lie algebras) completely
describes the maximal toroids of Int(g), in terms of the roots of of the Lie algebra. A crucial
role in the study of compact Lie algebras plays the diagram, which is a set of hyperplanes
inside a:

D={Xea'|dK)eZ}. (1)
By Pro-5, if a'(X) € Z, then in exp(adX) the corresponding 2 *2 matrix

cos2na'(X) -sin2mo’(X) _{L 0
sin2mo!(X) cos 2ma'(X) 01/

and the normalizing subgroup of f=exp(adX) (i.e. the subgroup of the automorphisms com-
muting with f) has dimension bigger than the dimension of a.

The central latice A, of the Lie algebra is
Az={Xeal d'(X) € Z, for every a'e A}.
Here we use the symbol A to denote the set of roots of g, with respect to a.. This, having
in mind that 2mria’€A. The points X €A, have obviously exp(adX) = Id. The relations be-
tween roots, their angles, their ratios, positive roots, fundamental systems etc., all this can
be transfered to the roots {c’, ... , '} of g, since 2rmia' are roots of gp..

The vectors X € D are called singular, whereas the elements of a-D are called regular.
Later we’ll see that for every singular X €D, adX is conjugate in Int(g) to some adY, with
Y €Dy adY = foadXo f1, with fe Int(g), where

D, = {X€a| o'(X)=0, for some a€A}.

The characterization of an element X €g as singular, involves the use of a maximal
abelian subalgebra and its corresponding diagram but is independent of these. In fact, every
X €g is contained in a maximal abelian subalgebra a (Pro-3). When «'(X)#0, for every
X €A, the eigenspace gy(X )={Y €g|[YX]=0} has minimum dimension = dima = rank of g.
However this property is independent of the particular abelian subalgebra a of g. The pre-
ceding consideration shows that the elements X €D, are characterized by the non-minimality
of the zero-eigenspace g(X). More general, the X €D are characterized by the same proper-
ty, since they are conjugate to elements of D,

Proposition-6  For a compact lie algebra g, X€g is regular if and only if it is contained in
a unique maximal abelian subalgebra. X is singular if it is contained in more than one max-
imal abelian subalgebras.

In fact, X regular, means g,(X)=a=maximal abelian subalgebra of g. Every other
maximal abelian subalgebra containing X, should be contained in G,(X) and for dimension
reasons should be identical with a. On the other side, if X is singular then go(X) contains
some UV _and {X,U_} generates an abelian subalgebra which lies in some maximal abe-
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lian subalgebra a. Similarly, {X,V } generates an abelian subalgebra, which lies in some
maximal abelian a'. These facts can be easily proved using an argument like the one used in
Pro-2. Obviously a'*#a, since in the contrary case, we should have [U ,V oJ =0, which con-
tradicts [U ,V, ] = 2iH , (§40 (8)). g.e.d.

Notice that dim g(X)=(rankg)mod2.

Theorem There are as many isomorphy classes of compact semi simple Lie algebras, as
the isomorphy classes of complex semi simple Lie algebras. In particular the compact sim-
ple Lie algebras are classified by their corresponding Dynkin diagrams A,, B,, C,, D, E,
E,E.,F,G,.

The theorem is a consequence of the fact, that to every such Lie algebra corresponds
bijectively a (isomorphy class of) root system A of g. The theorem combined with Pro-1,
classifies also the more general compact Lie algebras g=c®g', where g' semi simple. Notice
also that models of compact simple Lie algebras can be constructed from a Cartan decompo-
sition of a real form g=k@p of a simple complex Lie algebra, by taking the corresponding
u=keip.



Unser Daseyn nimlich ist ein wesentlich rastloses, daher
wird die ginzliche Unthdtigkeit uns bald unertriglich,
indem sie die entsezlichste Langeweile herbeifiihrt.
Diesen Trieb nun soll man regeln, um ihn methodisch und
dadurch besser zu befriedigen.

Schopenhauer, Aphorismen ... p. 478

43 . Automorphisms of Compact Lie algebras

The work has been done in §39. If u is a compact semi simple Lie algebra, then every
maximal abelian subalgebra acu defines a Cartan subalgebra h=a®ia, of the complexifica-
tion go=u®iu and the roots of h in g define the corresponding roots of U (§42).

Lemma-1  Every automorphism f:u—u of a compact semi simple Lie algebra u, which
leaves a maximal abelian subalgebra a invariant, induces in A'Ca* an isometry, and in-
versely every isometry of A' extends to an automorphism of U which leaves a invariant.

The first part is obvious, since f is an isometry with respect to the Killing form, which
maps roots to roots etc.

The inverse follows from the corresponding The-2 (§37) by extending to an automor-
phism, using a Weyl-Chevalley normalization. In fact, f will be naturally extended to h and
then to u. Using a normalization we can define (set o'=f(a))

fXe) =Xy,

where, ¢,C_o=1, Ngg =Ngrg's CoCa=Cosp- (1)
Choose then a fundamental system Il={ «,, ..., & } and take H €h with

¢; = exp(-0y(H)).
Using (1) and writting every root as a sum of simple roots a =}, n,o; we get

¢~ exp(-a(H)).
Then

foexp(adH)(X o) =X 4,

f°exp(ﬂdH)(Xa) = Xf(o:) ,
and [X X ,J=H, implies [X,X_]=Hy, hence vectors of the form iH,, X,-X_, and
i(X,+X_,) are mapped to similar ones. But these generate Uc (The-6, §41), which then re-

mains invariant under f.
g-e.d.

Corollary  Ler f:u—u be an automorphism of the compact semi simple Lie algebra u,
leaving the maximal abelian subalgebra a invariant. Then the extension of f on u satisfies

FXy) =Xy, Withc e, =1 and |c 5 |=1.
In fact, we have CyuC-¢=1, as before, and for=Tof, where T is the conjugation of u.
Since
X = (112){X X -ii(X X )} = X, =-X_4, we have
Tof(X) = Tc Xy =-C X gr'»
= forX, =-fX g =C o X .
From these we have C ;= c_,. g.e.d.

Lemma-2 An automorphism f:u—u of a compact semi simple Lie algebra leaves a maxi-
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mal abelian subalgebra a pointwise fixed, if and only if, it is of the form
f = exp(adH), with Hea.

In lemma-1 of §39 was shown that f=exp(adH), with H € h=a, leaves the Cartan sub-
algebra h pointwise fixed. The point is that HE a. In fact,

J(X o) = exp(a(H)X o
and from the preceding corollary, we have |exp(a(H))|=1, hence a(H) is purely imaginary
= Hea. g.e.d.

Lemma-3  Ler u be a compact semi simple Lie algebra. Then Aut(u)Ini(u)=G,/GJ ,
where G, is the group of automorphisms of u, leaving a maximal abelian subalgebra a in-
variant, and G the subgroup of G ,, consisting of inner automorphisms.

The proof is the same with that of Lemma-3 of §39.

Theorem-1 For every element S€ W of the Weyl group W of a compact semi simple Lie al-
gebra u, with respect to some abelian subalgebra a, there is an inner automorphism f with
the properties i) f(a)a and ii) (fla)=S. Inversely, every inner automorphism f leaving a
invariant, has (f|la)ew.
The proof of the theorem is that of The-1.in §39. Notice there, that the element
X = ({n/2)Xy+X o)

whose adX is the reflexion S, belongs to u. For the inverse, apply The-1(§39) to h=a,..
The rest is consequence of the definitions. _

Theorem-2  For every compact semi simple Lie algebra u, Aut(u)/Int(u) = Aut(DD),
where Aut(DD) is the group of symmetries of the Dynkin diagram.
The proof is again the same with that of the corresponding theorem in §39.

Remark-1 The automorphisms of compact semi simple Lie algebras play a crucial role in
the classification of real semi simple Lie algebras. According to The-5 §40, the real forms
of a semi simple complex Lie algebra are defined through (conjugacy classes of) involutions
of a compact real form u. From the analysis we made here and the description of Aut(DD)
(p.39-5), we know that, but for 4 cases, all automorphisms of compact semi simple Lie alge-
bras are inner. For inner involutive automorphisms we have the following

Theorem-3 Ler f:u—u be an involutive automorphism of a compact semi simple Lie alge-
bra u. Let also k be the (fixed by f) +1-eigenspace of f. Then the following statemenis are
equivalent :

1) felnru),

2)  rank(u)=rank(k),
where, as usual, rank(u)=dimension of a maximal abelian subalgebra of u.

In fact, if f €Int(u), then by compactness, f=exp(adX), for some X €u. By Pro-3 §42,
X will belong to some maximal abelian subalgebra a of u, which by lemma-2 will be invari-
ant with respect to f, hence ack.

Inversely, if ack is also maximal abelian in k and u, then by lemma-2, the automor-



Automorphisms of compact Lie algebras 43-3

phism f will be of the form f=exp(adX), with X€ a. g.e.d.

Remark-2  Notice that k is compact (not necessarily semi simple) subalgebra of u and the
orthogonal complement p=kl, u=k®p is the -1-eigenspace of f. Hence, all these f are de-
termined if we know all possible k i.e. all the compact Lie subalgebras of u, which have
maximal rank (=rank(u)). As we noticed earlier, k is called the characteristic subalgebra of
the corresponding real (form) Lie algebra kaip.
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denn jeder Irrthum trégt ein Gift in seinem Innern. Ist es
der Geist, ist es die Erkenntnif}, welche den Menschen zum
Herrn der Erde macht, so giebt es keine unschidlichen
Irrtiimer, noch weniger ehrwiirdige, heilige Irrthiimer.
Schopenhauer, Die Welt als ... I. p. 67

44 . Diagram and latices

The definitions of roots and diagram of a semi simple compact Lie algebra g were
given in §42. Recall from there that the diagram, with respect to some maximal abelian sub-
algebra a, and the corresponding root system A is

D= {XeaguaX)€eZ, for some root a€A}, ()
the central latice being

A= {Xealu(X) € Z, for every root a€A}. 2)
A denotes here the set of roots of the compact Lie algebra g, related to the roots of the corre-
sponding complexification g, with respect to the Cartan subalgebra h=a, through

A3 = 2ma is aroot of dc (with respect to ac) (3)
Exercise-1 If IT={a, ..., 0} is a fundamental system of roots for A and (X oo 5 X o808
the duals of {a, ..., 0}, defined by the relations o (Y j)zf)ij , show that
Ag=ZY +..+ZY,. _ (4)
Lemma-1 A operates simply transitively on itself (by translations) as a normal subgroup
of the group G of isometries of a, which leave the latice A z invariant.

Only the normality needs some comment, v €A, and f=(A,w) €G have
(Aw)To(Lv)o(Aw) = (A1-ATw) o A v+w)=(LA T v),
where the composition is that of the semi direct product O(d)x ;R g.e.d.

Lemma-2  With the previous notation, G/A, = G, where G, is the isotropy group at 0. We
have also G=G,*; A\
In fact, the map (A,v) — A defines an homorphism of G onto G, whose kernel is A,.
Exercise-2 Show that if f=(A,v)€ G, then VEAZ and A(A)CA,.
[v=1£(0), (A,0)=(1,-v)o(A,V)]
Using the basis {Y ,, ..., Y4} of A, we can describe G, by a matrix representation.
This basis is not orthogonal (in general) and consequently the matrices representing f€G,
are not orthogonal. We have («' denoting the roots of gand « the roots of gc)
f(Y)=% 3;Y, f(YJ.) €A,
o', (f(Y)) =& €Z.
<f(Y_})'f(Yk}> = <Yj’Yk> =
<aijr,asst> = <Yj,Yk> =
AYSY,Y 2)A = (<Y Y. *)
The matrix (<Y Y >) can be expressed through the Cartan matrix of the Lie algebra g..
in = szhr (h =h, €hy, the dual of a,).
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218y = 2ma' (Y ) = 2miad', (Y ) = -4 (1Y ) = -b 5 <hy,hy>

®,) = 2n(<h;,h>)".

<Y,Y>=<b, h #0511, > =by <hphi>by

(<Y,Y>) = B‘(<ai,aj>)B =-21B'=-2nB.
Taking the inverse matrices in (*) we see that G is described by the matrices A, with integer
coefficients, which leave invariant the quadratic form defined by the matrix (<a,a )

Al(<a,a PA = (<0,04). &)
Exercise-3 Using the definition of the Cartan matrix (§37), show that

<ai,aj>=cij<aj,aj>/2.

Inspecting the Dynkin diagrams for the different simple complex Lie algebras, we no-
tice that A ;, D4, E, E,, E; have simple links, hence all vectors of the corresponding funda-
mental system [T have equal lengths. Thus, in these cases (5) is equivalent with

AECA =IC, ©)
C being the corresponding Cartan matrix.
Exercise-4 For the remaining cases of simple complex Lie algebras show that the matrix
(<a,,0>) is a constant multiple of the matrices :

2 -1 2 -1
-12-1 -12-1- o |
-12 -12 : .
- B, " = C, 1_223_2 = F,
-12-1 -12-2 2 4
- 2
23
33) -

Problem For the symmetric matrices (<o,0;>) of the two last exercises, find the group of
invertible integer matrices A, satisfying the equanon

Al(<0,02)A = (<a,0,>).
The correspondence established by (3) a* « h,*, defines a similarity between a and
ho
hyH — 2mH=H'€ a, @)
such that
o' (H') = a(2mH) = a(H). it
Through this similarity h , is mapped into h , = 27ih , and the corrots H  to 2mi2h /<o, 0.
Exercise-5 Show that
H, =2mH_ € A,
Exercise-6 For every o€ a* thereis a "dual" t,, €&, defined by
<ty .X>= «'(X), forevery X€a. 9
Show that
h, =-4n%, . (10)
[for X€ g, <h,,X> = <2mih X> = <h 2mX> = a(271X) = &' (-47X) = <-4mt,, X>]

Exercise-7 Show that
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H,=2t, /<d',d',>,

and from this conclude that the vectors H, are orthogonal to the planes
(a,0) = {Xeaa'(X) = 0},

and their length is twice the distance of the parallel planes (o,0) and (a’,1), where
(o',]) = {Xego'X) =1}.

Exercise-8 Every isometry of h, defines an isometry of a, so o—==h
that the nearby diagram is commutative. Show that the reflexion 24 & é' i
with respect to the plane (,0) of h,, corresponds to the reflexion N :

with respect to the plane (,0) of a.

Exercise-9  Show that the reflexions with respect to the planes (o,0) leave invariant the
sets {h .}, {t,}, the latice A, and the diagram of the compact semi simple Lie algebra g.
Conclude that in G is contained a subgroup W', which through the mapping of Ex-8, corre-
sponds to the Weyl group of g..

Of fundamental importance for the structure of semi simple compact Lie algebras is

the subgroup I of the isometry group of the latice A, which is generated by the reflexions
on the planes
(a'n) = {Xeaa'(X)=n},neZ. (11

Proposition-1 T = W'x,Ay, where Ayw=ZH';+ ... +ZH';, and H', are the coroots of a fun-
damental system TI={Q,, ..., %4} of G-

First, the reflexions on the planes (11) leave the latice A, invariant. In fact, the reflec-
tion on the plane a'(X)=n, decomposes to the Weyl reflection S, and the translation: twice

the distance of the planes o'(X)=n and
o' (X)=0. As noticed in Ex-7, this distance is
a multiple of H , .This shows that

TCW' x ;A
The inverse inclusion is obvious. Al A A"

The connected components of the com- |
plement a-D of the diagram are called cells of IA'A"=2d
the diagram. They are open, convex and
bounded polyeders of a. Convex, since they

; . - e
are intersections of (convex) "strips” i i
m<o'(X)<m+l,meZ. w

Bounded, for the same reason, in addition to 1 i
the fact, that {a’€ A} contains a basis of a*. !
‘ 1
| |

Remark The points of A, are vertices of a’=0 o'=n

some cells. For some diagrams the vertices of
the cells build up the whole A,. In general, however, A5 is a proper subset of the set of ver-
tices of all cells.

The following pictures display the diagrams of the different two-dimensional root sys-
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tems.
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1)  The vectors Y, coincide with some coroots Hs

i) Ay=ZY+ZY,,

ili) © = (fundamental) cell of the diagram,

v) Az =A«=ZH +ZH,, but here the vertices of all cells build up a latice, finer than A
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i) Thevectors Y; do not coincide with coroots Hy s Az # Ay,

i) A,=ZY,+ZY,, coincides with the set of vertices of all cells,
iil) © = (fundamental) cell of the diagram,
) A«=ZH [+ZH,.
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1)  Only Y, coincides with some coroot Hy . AxCA 4,

i) Apz=27ZY+ZY,, do not coincides with the set of vertices of all cells,
iii) © = (fundamental) cell of the diagram,
iv) A«=ZH |+ZH, .

Proposition-2  The group T operates simply transititvely on the set of all cells.

Transitivity: Let x , X, belong to two different cells P,, P, respectively and take z, in
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the orbit I'x, of x, nearest to X,. z, cannotbe x
separated by some plane (o,n) of the diagram,
since reflection of z, on that plane would pro-
duce a point closer to x, Thus, the point
z,€T'x, belongs to the same cell with x, =
z,=f(x,) €P, , and this implies (P, )=P,.

Simple transitivity: Take X = ¥, 4 Y;, v
with t; > O sufficiently small, so that

AX) =Yg 1< 1,

for every positive root a€A*, Then X is con-
tained in some cell P, with cl(Pp30. Assume
now that I" does not act simply transitively on the set of cells. Then, there must be different
f), €T, with £,(Py)=f,(P)) = f,lof P)=P, The map f,"lof, has the form f,of, =
(A,v) €T=W xAy, and v=f, 1of (0) € cI(P,). Hence, v=Y 1<ica ;Y €€l(Py) and a(v)=2n, >0.
If some n, 21, then we have a contradiction, since the cell P, is characterized by o (v)<1, for
all vecl(Py). Thus,n=0foralli = v=0 and consequently f,lof, € W, with f,1of (Py)=P,.
By the simple transitivity of W' on the Weyl chambers, we have fylof, =1d

1 X,

o' (x)=n

_ g.e.d.
Proposition-3  The groupT' is generated by the reflexions on the walls of an arbitrary cell
P of the diagram.

In fact, let T" be the subgroup of T, generated by the reflexions on the walls of some
cell P,. Take another cell P,, x,€P,, x,€P,, and z€I'x; such that |z-x,| is minimum.
Thinking as in the preceding proposition, we find z€ P,, and some feI" with f(P,)=P, =
I"ar. g.e.d.

Fixing a root system Il={a, ..., oy}, the cell P,, we defined above, is characterized
by the equation

cl(Py = {X€al X=F ,,, tY; and T <t £1, 203,
where o =n,q, +... + n &, is the maximal root of II.
P, is called fundamental and is contained in a fundamental Weyl chamber, with respect to
I1. Recall that n >0, for all i, and every other positive root o can be written 0= g™
with m <n,, for all i.
Exercise-10 Show that P, is indeed a cell of the diagram.

Exercise-11 ~ Show that the reflexions S, on the walls of some cell P are conjugate to the
reflexions $' on the walls of the cell P, through an feI", with fP=P'i.e. §' = foSof,
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Dieserwegen wird man einst (natiirlich nicht, so lange ich
lebe) erkennen, daB die Behandlung des selben Gegen-
standes von irgend einem fritheren Philosophen, gegen die
meinige gehalten, flach erscheint. Daher hat die Mensch-
heit Manches, was sie nie vergessen wird, von mir gelernt,
und werden meine Schriften nicht untergehn.
Schopenhauer, Parerga ... I, p. 150

45 . Inner involutions of simple compact Lie algebras

We are interested in the classification, with respect to conjugation in Int(g), of inner
involutive automorphisms of a simple compact (real) Lie algebra g. We use the diagram
and the latices studied in the preceding §.

Theorem-1 Let g be a compact semi simple Lie algebra. Then every inner automorphism
Jeln(g) is conjugate in Int(g) to some automorphism of the form exp(adHy) of g, with
H € cl(P,), where P, is a fundamental cell of the diagram of g.

Every fe Int(g) can be written f=exp(adX). Let a be a maximal abelian subalgebra of
g. Then, by Pro-3 §42, there is a Y€g, such that X=exp(adY)H, with Hea For
A=exp(adY) €Int(g) and X=AH we have, f=exp(adAH) = exp(A(adH)A!) = Aexp(adH)A .
By the simple transitivity of T on the set of cells, we conclude that H = SH,+v, where
(S,v) EW'x; Ay and H j€ cI(P,) (a fundamental cell). We have then

exp(adH) = exp(ad(SH,+v)) = exp(adSH,)exp(adv),
since v, SH € a and consequently [SH, v]=0. Since v € A, we have adv=I, hence

exp(adH) = exp(ad(SH,))) = exp(Sad(H)S) = Seexp(adH)e S 0
Thus,

f = (AoS)o(expadH )o(AeS) . g.e.d.

~ We restrict ourselves to the simple compact Lie algebras g and consider the automor

phisms of order 2 of the form f=exp(adX), with X €cl(P). P, is defined by a fundamental
system of roots IT={a,, ..., &4} and the maximal root o,

Qp=10,0 + ... + 0,0,

cl(Py) = {X€al a;(X)20, for i=1, ..., d and a((X)<1}. (D

According to Pro-5 §42, X € P, will define an involutive automorphism exp(adX), if and
only if,

ZX €A, 2)
If we write in the basis of {Y}, ..., Y }

 X=tY)+ .+, Y, with t20 and

(X)) =t n +.+tyn <1,
we see that

t<l/m; .
Thus, if for some i the corresponding n,>2, then

2t<2m;<1 and 2X=Y2tY. €A,
We proved: The only X € a, satisfying (2) are these for which
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t=0, when the corresponding (in the max. root Og) n.>2. 3)
Besides 2t; must be an integer >0, thus if t #0, then t21/2. We conclude that there can be no
more than two t;, different from 0, since in the contrary case we’ll have ¥t.n>1. Thus X can
only have one of the following forms:

X =Y,/2, and the corresponding n; =1, 4
X =Y,/2, and the corresponding n =2, &)
X= (Y;+Y;)/2, and the corresponding n; = n, =1 (©)

Case (6) gives an involutive automorphism f=expadX which is conjugate to an automor-
phism f'=expadX', with X' as in (4). In fact, the translated cell P=P,-Y; is a cell of the dia-
gram and O€cl(P). Hence there is some element of the Weyl group S€W', such that
S(Py)=P,-Y;. Then the isometry
Y - $(Y-Y)) ®

leaves P, invariant and maps Y. to 0. At the same time YJ- is mapped onto some other
Y, €A, and, by linearity, X=(Yi+Yj)!2 is mapped onto Y, /2. Y, has again corresponding
n, =1 (coeficient in the maximal root), since it is the image of Y €A, under the isometry (*)

which preserves A, and is contained in the plane a,(X)=1 (all vertices of P, different from 0
are contained in that plane). Thus, up to conjugation, the images for the different positions

of X in cI(P) are the following two :

Case 1. X =Y,/2, with corresponding n,=1.| Case 2. X = Y\ /2, with corresponding n,=2.
(Y is a vertice of the cell Py (X is a vertice of the cell Py

Yo ayX=l

The corresponding automorphisms f=expadX, for the different vertices Y, of P, (fall-
ing into the two cases above) may be conjugate to each other. The investigation of this
question, for simple Lie algebras, proceeds in a case by case examination, using the notion
of extended Dynkin diagram, which results from the usual Dynkin diagram I1, by adding
the maximal root &, We denote the corresponding extended root system by

O={ag ), .., 0}

The next table displays the extended Dynkin diagrams of the various simple Lie alge-
bras. The calculation of the maximal root, with respect to some fundamental system, was
made using the information in §§27-35.
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Maximal roots and extended Dynkin diagrams

Lie Al| Positive roots Maximal root Extended Dynkin diagr.
Ay ot e O Qe By o ~ oy
0
B, it ..t oy 0 a, o,
At e+ Oy 42 oyt ..+ 20y S0 e o=—p
(ai+..+ad)+(aj+..+ ay o
Ot . + O o, « o
C i 1 0 1 d
d (0t g JH(ay+ a) 200+ 20, * Ay O v o==0
.+ f
ot ..t 451 02004 e + 2004, e a, Ay
Dd (gi+__+ ad_l)+(aj+__+ c(d_z)-f- P +-(I e =
a1 %y o o
ay 0 d
op S -O— 0
x Us
Eq See table on p. 33-5 Q20 t3ay+2 o+t 20 o,
%o
2o, 3o, H o, +3a
See table on p. 33-5 r e gy o &
E +20,+20., %, 0
200,30, + o, 5 o, + o, o o
E; | Seetableon p.33-5 R 0y 0 ™1 7
6os+4a+200,+ 30 &g
o—C—0—0—®
F, See table on p. 35-2 2a o +3as 420, | a &, O
G, See picture on p. 32-3 200,430, O=0—e
- o % a

Theorem-2  Every inner involution of a compact simple Lie algebra g is conjugate ro one
of the form

i)
i)

0, = exp(ad(Y,/2)),
where Y satisfies one of the following conditions :

m=1 (corresponding coefficient in o) and then Y, is a vertex of P,,.
n,=2 and then Y /2 is a vertex of P,.

Moreover the involutions 6, and 0 ; are conjugate, if and only if either
a n i=n;=2 and there is an isometry f of T1, with f{a )= o, or

b) n l.=rzj=1’ and there is an isometry f of T, with f{ ai)=0tj.
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The first two assertions are already proved. As to the last assertions we proceed as follows :
I) First we remark that every isometry f of the root system, which leaves P invariant
(f(Py)<P,), defines an isometry of I, (extended root system). f is considered here as an
isometry of a (maximal abelian etc.) and to each root «, corresponds the root o=aof,
f(Py)©P, means that the walls of P, are mapped to similar walls. Thus, we have an isometry
of I'l,. The inverse is also obvious.
m 6, Bj are conjugate in Aut(g) if and only if, Yk=f(Yj) with fasin I). In fact, in that
case we have
ek%xp{ad(f(YjQ))) = foexp(ad(Y j/2))of'1 = foB}ﬂf‘l.
Inversely, if 6,=fof,of", then
Y, /2= f(Yj/2)+v, with veA, . (*
f is an automorphism, it preserves the roots and the diagram and maps the cell P, onto some
other cell P20. The translate P'=P+v is also a cell of the diagram, and there are two possibi-
lities:
1) le2 is a vertex of P, (nj=’7). Then Y, /2 is a vertex of P (n,=2) too and Y /2 €P".
By the transitivity of T on the cells, there is some weT with YP'=P; and (Y /2)=Y /2 (Y,
belongs to both P'and P ). In that case
F:X = p(f(X)+v)
is an isometry on the roots, leaves P invariant and maps Yj-/2 onto Y, /2. Since all the non-
zero vertices of P, lie on the plane o, (X)=1, we have oo (Y/2)=n,/2=1, hence n, =2,
2) YJ. is a vertex of P, (nj:l). Then Y is again a vertex of P (n,=1) and Y, €P. For
the same reason as before, there is a peI” with pP'=P and w(Y =Y, and the map

F:X = pAX)+v)
is an isometry on the roots, leaves P invariant and maps Y jonto Y. Thatn =1 is seen by

the same argument as in 1).
3) In the case 1) F preserves the plane ay(X)=1. To see this note that F is not, in gen
eral, linear. In fact y will be of the form Y=, Vo) EW x Ay, hence
F(X) = p(f(X)+v) = gy (f(X)+v)+v,,
and since F(Yj/2)=Yk/2 we’ll have (using (*))
F(Y /2)=Ykl2 = Py(f(Y ﬁ)+v) o= WY /2)+v, =
F(X) = w(f(X-Y j/2))+Yk/2 .
Suppose now that n,=n,=2 and ooF=a,, with i#0, j. Then

A eF(X)=ay(X)= 0o (wo(f(X-Y /2))) +a (Y /2),
which for X=Yj12 gives the contradiction 0=1. g.e.d.



Lesen ist ein bloBes Surrogat des eigenen Denkens, Man
1aBt dabei seine Gedanken von einem Andern am
Géngelbande fithren. Zudem taugen viele Biicher bloB, zu
zeigen, wie viel Irrwege es giebt und wie arg man sich ver-
laufen konnte, wenn man von ihnen sich verleiten liefie.
Den aber der Genius leitet, d.h. der selbst denkt, freiwillig
denkt, richtig denkt, - der hat die Boussole, den rechten
Weg zu finden. - Lesen soll man also nur dann, wann die
Quelle der eigenen Gedanken stockt; was auch beim besten
Kopfe oft genug der Fall seyn wird. Hingegen die eigenen,
urkriftigen Gedanken verscheuchen, um ein Buch zur
Hand zu nehmen, ist Siinde wider den heiligen Geist.
Schopenhauer, Parerga ... II, p. 539

46 . Simple real Lie algebras of inner type

These are the real Lie algebras of the type
g=keip,

where k, p are the +1-eigenspaces of an inner involution 6 : u—u of a simple compact Lie
algebra u. The involutions of this type were classified in the preceding §, here we classify
the characteristic subalgebras k, in dependence from uand 6.

We start with a simple compact Lie algebra u and take the complexification gc=udiu.
If ais a maximal abelian subalgebra and h=a_. the corresponding Cartan subalgebra of 9cs
then to the roots a’€A' of u, with respect to &, correspond the roots a=2ma’e h* of 9
with respect to h. The root vectors can be chosen so as to satisfy (see §42) :

U=1iny@uep- REK X g )®gea-Ri(X +X ), and ihy=a. (V)

We fix a fundamental system of roots I[I={a 1 = » 04} and the corresponding extended sys-
tem IT=ITU {a}, where o is the maximal root with respect to II,

Q=004+ ... + 0404, withall n,>0. (1)
The central latice is

Ag=ZY+.. + ZYd,whe:rea(Y}) By, (2)
and, by the results in §45, every inner automorphism 8 of uis conjugate to one of the form

0 = expad(Y,/2). (3

We denote the extension of 6 on g by the same letter and we notice the (induced) direct
sum splitting ge=Kc+P, where K, p are respectively the +1-eigenspaces of 6. ke isa
complex subalgebra of g and obviously
h=a. cke. (4
For the different roots a=2ma’ of g we have:
D 8Xy =expina’ (Y )X,=X,,

when o does not contain o,_or contains it with coefficient=2 . (&)}
1) e(Xa) = exp(iﬂﬂ' (Yk))Xa = _Xa s
when o contains «, with coefficient=1. 6

Remark  All the Y, appearing in (3) correspond to n, <2 (in the maximal root). Hence all
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other roots containing o, will contain it with coefficient <2 (The-5, §26). Thus (5) and (6)
exhaust all possible cases.
Obviously k¢ and p can be written as direct sums:
kC = h®a€mcl CXG ?
Pc=%accasen CXy.
Applying The-2 of the preceding paragraph, we distinguish the two possibilities :
n,=1 and consequently Y, is a vertex of the cell P ; :
In this case
Ko =h®gecase1 CXg=h Sen CXy
where A, is the subset of roots, which do not contain @, . Then the (d-1) linear equations
a'(X) =0,i=1, ..., dand i#k,
define a 1-dimensional subspacet of a, which is in the center of k. Then, taking the orthog-
onal complement t of tin a, we see that
[kk] = it" @ o, RO 4 X o) @ge pr RIK o #X )
k=1 ®[kk], (7
where [kK] is a semi simple (applying the lemma of §27 to [kck.]) compact Lie algebra.
The roots of this Lie algebra may be identified with the set A, and a corresponding funda-
mental system of [kK] with
{0 v s Oy Ogs oor s O gl ) 8
n, =2 and consequently Y,/2 is a vertex of the cell P,
In this case
ke = N® gecase1 CXg= N Bgen. CXg Poe ot CXy
where A, is the subset of roots, which do not contain a; and Azk is the subset of roots, which
contain oy with coefficient =2 . A% contains the maximal root & and, applying the lemma
of §27, we see that k- is semi simple compact and its root system may be identified with
A UAZ_. Since every root of gc results from the maximal one, by substracting successively
simple roots (Ex-10 §26), we see that a fundamental system of roots for K. is given by
{00 Qs ey Qgs Cpigs woe s Gl S
In the rest of this section we point out the different cases of compact Lie subalgebras
k, arising as fixed point subalgebras of some involution 6, as in (3). This is done by a case
by case examination of the 9 types of compact Lie algebras.

A4 The maximal root (table in §44) shows that k can take all the values 1, 2, ..., d and in
all these cases n,=1.
By the symmetry of the Dynkin diagram, we see that only the values
k=1,2,.,[(d-1)/2]+1,
give non-conjugate involutive automorphisms ([x] denoting the integer part of x). In all
these cases, a fundamental system has the form (8) and consequently the corresponding
characteristic Lie algebra k has the form :
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k=to[kk]=t ®A, @A, , for i=1,..,[(d-1)/2]. (10)
tis the 1-dimensional center and all these k are non-isomorphic to each other.

B, Here the maximal root (table in §44) has the form
O +20,+ . + 20 .
There is only one case n;=1, which gives the characteristic subalgebra
k=tolkk]=t® By, . (11)
The other cases are d-1 in number and have all
n=2, fork=2,..,d.
The type of the corresponding Lie algebra results from the fundamental system (9), which
by inspecting the extended fundamental system of B g8ives:
k=D, @B, , for k=2,..,d. (12)

C4  The maximal root here has the form
2004205+ .+ 20, + @y,
There is again one case n =1, with corresponding characteristic subalgebra
k=telkkl=te A, . (13)
The other cases are d-1 in number and have all
n=2, fork=1,..,d-1.
The type of the corresponding Lie algebra results from the fundamental system (9), which
by inspecting the extended fundamental system of B ggives:
k=Ck ®Cyy , for k=1, ...,d-1. (14)
By the symmetry of the extended diagram, only the first [(d-1)/2]+1 are non-isomorphic to
each other.

D,. The maximal root here has the form
O +20* e + 205+ O O
Here we have three cases with n,=1, for k=1,d-1and d. For k=1 we have
k=telkkl=te D, . (15)
The other two cases, for k= d-1 and k=d, give conjugate involutions, the corresponding char-
acteristic subalgebra being
k=tolkkl=te A, . (16)
The other cases are d-3 in number and have all
n =2, fork=2,..,d-2.
By the symmetry of the extended diagram, only the first [(d-4)/2]+1=[d/2]-1 are non-iso-
morphic to each other. The type of the corresponding Lie algebra results from the funda-
mental system (9), which by inspecting the extended fundamental system of D g gives:
k=D, ®Dy, , for k=2,..., [d2]-1. (17)

E;. The maximal root has the form
20,43 a+2 0+ ast 20 .
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Here we have two cases with n =1, for k=1and 5, which give conjugate involutions and
corresponding characteristic subalgebra

k=t ®kk]=t ®D;. (18)
We have also three cases with n, =2, for k =2, 4 and 6, which by the symmetry of the ex- _
tended Dynkin diagram, give conjugate involutions. The corresponding characteristic subal-
gebra is given by

k=A & A;. (19)

E,. The maximal root has the form
2030yt a3 o+ 200+ 20, .
n, =1, and corresponding characteristic subalgebra
k=t @[kk]=t @ E,. (20)
n,=2, for k =2 and 6, which by the symmetry of the extended Dynkin diagram, give conju-
gate involutions. The corresponding characteristic subalgebra being given by

k=A, ®Dg. 1)
n,=2, and characteristic subalgebra being given by
k=A, . (22)

Eg. The maximal root has the form
200430, a5 0, Ho 0+ 4o+ 200+ 3ag .
n,=2, the characteristic subalgebra being

k=A, ®E,. (23)
n,=2, and characteristic subalgebra being given by

k=Dg . (24)
F,. The maximal root has the form

2o, H o, 30,120, .
n,=2, with characteristic subalgebra

k=B,. (25)
n,=2, with characteristic subalgebra

k=A, &C,. (26)
G, . The maximal root has the form

2, 30, .

n,=2, with characteristic subalgebra

k=A,©A,. (26)

Theorem Formulas (10) - (26) give the characteristic subalgebras of all the real simple Lie
algebras of inner rype. The real Lie aglebra has the Cartan decomposition

g=keip,
where k, p are respectively the +/-eigenspaces of an inner involution © : u—u of a simple
compact Lie algebra u (=k® p).




If people contradict themselves, can I

Help contradicting them, and every body,
Even my veracious self? -But that’s a lie;

I never did so, never will-how should 1?
He who doubts all things, nothing can deny;

Truth’s fountains may be clear-her streams are muddy,
And cut through such canals of contradiction,
That she must often navigate o’er fiction.

Byron, Don Juan, Canto XV, 88

47 . Canonical representation of automorphisms

Since the automorphisms of the compact simple Lie algebras B, C, Eg, E. F, G, are
all inner (§43), the real subalgebras of the previous theorem give all rea] forms of the corre-
sponding complexifications. It remains to study the real forms of the remaining types of
compact Lie algebras A ;, for d>1, D, D, for d>4 and E, which have also "outer" automor-
phisms. In these cases we are interested in "outer" involutive automorphisms and their cha-
racteristic subalgebras. In order to classify these automorphisms, we represent them in a
"canonical form". Here we explain how this is done.

Lemma-1 Let u be a simple compact Lie algebra and 6 : u — u be an involutive automor-

phism. Let u=k&® p be the decomposition in +1-eigenspaces of 0. Then k is a maximal Lie
subalgebra of u.

For the orthogonal decomposition u=k® p we know (§40) that
[kkl< k, [kp]<p, [ppl k. (1)

[pp]=k. @
In fact, suppose [pp] is a proper subspace of k and take the orthogonal complement a=[pp]
# {0} in k. We arive at a contradiction as follows.
[ap]<p and <[ap], p>=-<a[pp]>=0 =
[ap]=0.
Then [a[pp]] =0, since [a[pp]]=-[p[pall-{pLap]].
Besides <[aal,[pp]> =0, since <[aa],[pp]> = - <a, [a[pp]]> = 0. Thus a is an ideal of u,
which is impossible (u simple).
Suppose now there were some subalgebra k' kontaining k as a proper subalgebra, and
k'=k. Then take the orthogonal complements
kK=kop
u=ksp' ep", p=p' ep".
For these subspaces we have
ko1<p', [P, pl<k, [kp"l<p", [P, p"1={0} and [p", p"]<k.
It follows that K=k& p' and p" satisfy (1) and consequently also (2). Thus we should have
[P, p"]=k=k® p',
which is impossible, when p'#{0}. ge.d

We show that

L

Lemma-2  Let u be a simple compacr Lie algebra and 8 : u — u an "outer" automorphism
(ie. 0¢Int(u)). Let u=K® p be the decomposition in +1-eigenspaces. Then k is semi simple.
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Since k is compact, we have (§42) k=c@[kk], where c is the center of k and [kk] is
semi simple. The center ¢ is contained in every maximal abelian mck, which extends
uniquely to a maximal abelian subalgebra a of u (The-5, §41). a is not contained in k, since
0¢ Int(u) (The-3, §43). Hence a and k are both contained in the centralizer of ¢ in u*

z{c) = {Xeul [Xc] =0},
which, consequently contains k as a proper subalgebra. By the previous lemma, we must
have z(¢) = u, and ¢ will be abelian ideal of u, which is impossible. g.e.d.

Lemma-3  Let u be a compact semi simple Lie algebra and B:u—u an involution, with
corresponding eigenspace decomposition u =k®p. Let mTk be a maximal abelian subalge-
bra of k. Then there is an abelian subalgebra m<a invariant under 8, Xem a regular ele-
ment of U and the Weyl chamber containing X is invariant under 6.

Given mck, the existence and uniqueness of a is proved in §41, The-5. The invari-
ance of a follows from mCa, which implies 6(m)=mcH(a) and by uniqueness of a, H(a)=a.
As to Xem, consider a generator X of m (§42). Then every maximal abelian subalgebra a
with X € a contains also m (proof the same as that of Pro-2, §42). If X were not regular ele-
ment of u, there would be another maximal abelian subalgebra a'3X and a'#a. But then, by

uniqueness of &, we should have a=a, a contradiction.

The last statement of the lemma is a consequence of the fact, that 0 leaves invariant
the diagram D, (containing the planes through 0) hence the connected component containing

X is mapped onto itself. q.e.d.
Remark From the last lemma, we see that the Weyl chamber containing X, defines a fun-
damental system of roots IT, mapped by 6 onto itself. Thus, 8 defines an isometry of I and
since it is an automorphism of u, for every root of the later, we’ll have

[H,X,] = a(H)X, -

[6(HD.6(X)] = (6™ (BEN) 8(X).
Thus, as usual for automorphisms,

o = 0!
is again a root of U and

6(X) =X, where c,c_ =1 and c,cgN g = NegCasp - (3
On the other side (see §39) an isometry 0, of ITis canonically extended to an automorphism
of ug, denoted by the same letter. This is done by defining the automorphism on the root
vectors {X|a; €I1}, which generate the Lie algbra, by taking ¢, =1, for all o€IT :

eo(X a‘) = qu‘s

06X ) =X_4, forall €Tl 4
The composite automorphism

®= 90_10 0
is of the form

© =exp(ad(H)), with He a,
and leaves (Lemma-2 §43) the subalgebra a pointwise fixed. Thus, we can write
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8 =B 0 exp(ad(H)), with He a.
When 6 is an involution, 6, and © are involutions too. This is obvious for 0, and ©%=1 fol-
lows from ©2=8 106 o 6o70 8 and the fact that 6, 6, commute, since they commute on the
vectors X, , for all a;€I1, and coincide on a. .
The following theorem shows that there is a conjugate of 8 (with respect to Int(u)
which can be written in the form 6 exp(ad(H)) with He m, instead of H €a.

Theorem-1  Let u be a simple compact Lie algebra and 0:u— u an involurive automor-
phism. Then there is a maximal abelian subalgebra a which is invariant by 8, a fundamen-
ral system 11 of roots, with respect to @ in which 8 induces an isometry 0, which extends ca-
nonicaly 10 an automorphism of U - (denoted by the same letter). Then, there is a HE a fixed
by 8, such that 6, expadH is conjugate to 9 .

Let k be the +1-eigenspace of 8, mCk a maximal abelian subalgebra, a and B, as in
the preceding remark. ITis the disjoint union of the two following subsets :
I'={ay, ..., a}, with the property o, =,
"={§: &'« E..E} , where E #E ",
and 2r+s = d is the tank of u. For the corresponding coefficients ¢, in (3) we’ll have (Cor
§43) .
Cy = exp(2imp ).
In particular taking a=E, €I1", the linear system of r equations
(E-E)E) = py s
has solutions H € &, and for such an H we can define the inner automorphism of u
V =exp(adH).
0'=VoBoV-l has the following properties :
1) 0'isinvolutive and leaves a invariant,
ii) ©'induces in II the same isometry as 9 ,
iii) Let
el(Xa) = !-lchd E
For the constants 1, we have the following relations :
Mol =1, Hg=H_g,
and since ' is involutive
Hghg =1 Uy =1_g.
Thus,
Ug>=1, for &’ = aeIl' =
0'Xq) =+X,, , for oell’,
For the roots a = §,€I1" we have
8'(X¢,) = Vob o exp(ad(-H)}(X¢ ) = Vob (exp(-2in&; (H))X¢) = Ve, (exp(-2inE,(H)))X £
= c(exp(2in( & (H)-§(H)))) X, -
By Y=y,
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and since ¢¢ ¢+ =1 (involution)
0'Xe ) =Xg -
These calculations show that 8' and 6 are commuting automorphisms, since they commute in
a and in X,,, a€1], which generate u;. Thus, we have
B(K)<k', where k'=Vk is the +1-eigenspace of 0",
Then
O=0,1o¢
defines an automorphism of k', which Ieaves both m'=Vm (maximal abelian subalgebra of
k) and @>m' pointwise fixed. For this automorphism of u we have

X)) =cuXq, 5
G)(XE‘) = Xa 3
@(XE") = X;’:lt .

We define then H € & so as to satisfy the equations
Ei’(H) = Ei(H) =0,
exp(oy(H)) = Cq, -
Then @ and exp(adH) coincide on X, a€I1, consequently they coincide everywhere. In ad-

dition &;'(H) = £,(H) implies (see following Ex.) He m'.
g.e.d.

Exercise-1 Show that mCaabove, is characterized by the equations &/(H) = £,(H), fori
=1..,F.

Remark In the case of "outer" involutions, 8:u—u, K is semi simple and the same is true
for k' = Vk. In addition @ = 8, o §' leaves m' pointwise fixed, thus by applying lemma-2
of §43, we get O®=exp(adH) for some Hem'.



Das Beschneiden der Bidume zu niitzen, Taxus usw.
Buchsbaum, so werden Gelehrte am Hofe und im Staate
behandelt.

Lichtenberg, Sudelbiicher p. 513

48 . Real Lie algebras of outer type

We study here real forms resulting from outer automorphisms 6:u—u of a simple
compact Lie algebra u. Such automorphisms exist only in the cases of compact simple Lie
algebras of type A , D, and E . From the preceding paragraph, we know that each involu-
tion 6 is conjugate in Int{ U) to some involution of the form B0 exp(adH), where 8, is the ca-
nonical extension (to an involutive automorphism) of an involutive isometry of the Dynkin
diagram, and H is an element of a maximal abelian subalgebra a of u, which is invariant
under 6 and in addition 6,(H)=H.

The classification below, proceeds in two steps. First we classify the Lie algebras re-
sulting from involutions, whose canonical representation has H=0. In this case we proceed
by describing the corresponding characteristic Lie algebra

Ky = {X€uB(X)=X}.
In the second case, exp(adH) is non trivial and can be considered as an element of
Int(k,). By the methods of §46, we bring it to a canonical form. There is here a subtle

point, in the identification of exp(adH) € Int(u) with an element of Int( k,) :
k, is a subalgebra of u, and u decomposes in a direct sum
Uu=Kk,® p,,
Po = {X€uB(X)=X]},
ko= {X€ ulB,(X)=X},

[kokol =Ko, [KaPol<Py, [PoPEICK, - ey

The elements of Aut(u) of the form {exp(adX)[X € Ko} generate a subgroup of Aut(u), which
consists of automorphisms of u, which leave k; and P, invariant. The connected component
K of this subgroup is canonicaly isomorphic with Int(k,). The isomorphism is defined using
the decomposition of such an element exp(adX) :

exp(adX) = exp(adX)|k,® exp(adX)|p, , 2)
the isomorphism being given by

j(exp(adX)) = exp(adX)|k, .
This is "proved” by the following remarks :

i) Kisa closed subgroup of Int(u) and corresponds to the subalgebra Ky K coincides
with the connected component of the unity of the subgroup of automorphisms of u, which
commute with 6, . Besides K, is the Lie algebra of Int(k).

ii.) j:K—Int(k,) is a covering of compact groups and a homomorphism whose kernel is a
discrete, normal subgroup of K, hence contained in the center of K (Chevalley p. 50).

ili.) The center of K is {1}, thus j is an isomorphism. To see this, consider the center cCK
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and z(c) <Int(u) the centralizer of ¢ :

z(c) = {g elnt(u)jge cegt = 1}.
KCz(c) and T=exp(a)<z(c), since the torus S=exp(m) (notation of the preceding §) contains
¢ and T>S. Besides T is not contained in K, since 8,¢ Int(u). Thus, K is a proper subgroup
of z(c), hence z(c)=Int(u) and c is contained in the center of Int(u). But thisis {1}. q.e.d.

Notice that the reasoning here is that of lemmas-1, -2 of §47 transfered from the Lie
algebra to the Lie group level.
Lemma-1 Let 8:u—u be an involutive automorphism of a simple compact Lie algebra u,
u = k® p, the corresponding eigenspace decomposition, mk a maximal abelian subalge-
bra of k and a>m a maximal abelian subalgebra of u, invariant with respect to0 9. Ler A the
set of roots of u and for each root o€ A, denote by o'= ao6 €A and by X, the root vectors
Define also k, :
0 X)=k, Xy .
Then A= A UA,UA,, where
A, ={acAla'=a and k, = 1},
A, ={acAla'=a and k, =-1},
A= {acA| o' a}
That o'= o implies k,=%1, was proved in the previous §. The rest is obvious.
The same equations defining A,’s define also subsets of a fundamental system IT :
I, ={o, &, .., ap},
H?_: {f’ls 62: ey Bq}!
,={%,8, 5,8, .. &%
From the general theory on compact real forms, we know that the corresponding com-
plexifications give a decomposition :
Ue =88 qen CXp=Ke® Pe 3
where k. and p.. are the *1-eigenspaces of the extension of 6 on Uc. From (3) and the
lemma above, we get immediately
Ke= Me®uen,CXy Beep, CptkeXe)

Pc=n¢ @BEAgcxﬁ GBEEﬂac(XE_kEXE')' 4
Here a=m#n is the decomposition of a, with respect to k&p.
m= {Xea| §X) = E(X) for Le A} ®)

The following is obvious :

Lemma-2 Let o=al|m denote the restriction of a root on m. Then
{gls g?_! maeiiy gps ﬁls ﬁgs sss ﬁq! §ls g: grmany ET}

are independent linear forms on mck and p+q+r is the dimension of m (dima=p+q+2r).

Lemma-3 The subser of roots of k
{gp g:! CLIEE ) gps §1! §2 guseacy ..E.r}
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consists of simple roots .

In fact, suppose w belongs to this subset and it can be written
W =y+d,
where y, d are positive roots, with respect to an ordering of m* which is compatible with an
ordering of a*. Such orderings are defined by extending a basis of m to a basis of a. A

consequence of such an ordering is that g>0 = o>0. For the corresponding root vectors of
k¢ we’ll have

[X,+0X,, X5+0X5] and X ,+0X,, are linear dependend.
By the independence of X,.5 , X3 , ... (When they are non-zero) follows that w will be
equal to some of the y+3, y+d’, y'+d’, ... etc. but this is impossible. g.e.d.

In the special case 6=6 (in the canonical decomposition of 6) we have A= @ (from the def-
inition of the canonical extension) and for Hem,. :

[HX ] = a(H)X,,
[H, XE+kEX€J] = [H, XE +80X§] = E(H)XE+GOIBO_IH, X]
=E(H) +8,EHE)Xy

=EH)X+keXp) . (EHE)=EH)
Here (apply the lemma of §27),

A={ala€AUA}
is the set of roots of (the complexifications of) k, with respect to m.

Lemma-4 In the case 6=6, (q=0) the set of roots I1y={a, &y, ..., & . S < L L
Jundamental system of roots for K .

This is a consequence of lemma-3 and the subsequent remarks.

We turn now in a case by case examination of outer involutions of the form 6=6, .

Ad deVen, d=2d*, Ho={ 51; §25 1§d*}
O Q) eoeee e, O O
51 ?C:g gd* Ed*: 53' 51’
If t<d*-1, £+n §,, isarootof (Kq)c» only for n=1.
Ege. 0 g is aToot of (Ky)e, only for n=1, n=2.
Thus, the Dynkin diagram for (k) is

o! O===0 B .
g 1 §2 gd"‘— 1 -Ed*

©

Ad dOdd: d=2d*+1! n{]:{givg:y"'sgd*v gl}
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& & & o & & &

If t<d*, & +nf,, isarootofke,only for n=I.
n £+ o isaroot of (Kg)¢, only for n=1, n=2.
Thus, the Dynkin diagram for (ky) is

0—0 = O—O=20 -
§1 g’_l —E‘d* -Q{-I

™

with maximal root
REFE* . REFa .

Dd H0={ glsg‘la ""gd*-l’ E-‘l}
&/
oy o, Ayn

&

If t<d2, a,+ng,, isarootof ke ohly for n=1.
Q4o *1 & isaroot of (kyc, only forn=1,n=2. 2 o, + £, isnotaroot.
Thus, the Dynkin diagram for ( Ko)c is

a1
o % Qe &

@®

with maximal root
(s 0% O o B

E6 H():{g.pgﬂ_:.glei’l}

G+ %o, Aot & and &+ & are roots of (ky .
Thus, the Dynkin diagram for (k) is

o9 o, & §

©

with maximal root
28, +4E+30,%2 4,

The computation of Dynkin diagrams has been done using strings of roots. In all these
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cases (K)¢ is proved to be simple. This has a technical advantage: The restriction of the
Killing form of u on k; is adkinvariant, hence a multiple of the Killing form of k. Thus,
we can compute angles and compare lengths into k using the Killing form of u .

We come now to the second step, of classification of involutive automorphisms of the
form

6 =0, exp(adH), with 8y(H) =H. (10)
From (10) we have 8,6=6°6, and (expadH)?>=1. We have also expadH(ky)<k,, hence
expadH|k;= expady H (ady, being the adjoint representation of k) is an inner involutive au-
tomorphism of k,. Thus, we can apply to K, the results of §§45, 46. In particular, expadH is
conjugate in Int(k,) and consequently (introductory remarks of this §) also in Int(u), to an
inner involution ¢ of U, which leaves k invariant and induces on this an involution ¢, deter-
mined by the coefficients of the maximal root of k;

Q=100 +..+0,a +n" &, Fmtnl e
Using the notation of §§45, 46, the involution ¢ is defined by some Y, , where the corre-
sponding n'; or n", in the maximal root @ is 1 or 2. Thus, Y, is defined by the equations
a,(Y')=0,/2 and E(Y')=0, (11)
or by the equations :

a,(Y")=0 and E(Y")=20/2,

for a=1,..,pandb=1,..,r. (12)
Lemma-5 For a Y", satisfying (12), the corresponding involution 8,° exp(adY",) is conju-
gate inInt(u) to 6.

In fact, the equations

B0 =0,, Gry=tgh, Eie)=0;
define an element of @ = max. abelian subalgebra of U (invariant under 6, etc.). We have

Y' =Y, + 0,(Y).
This because both sides belong to m and

0, (Y") = a,(Y; + 04(Y)) =0,

E(Y")=E(Y)=0,/2. (since {a, £ } isa basis of m*)
By its definition, since 2Y; €A, (of U) expadY is an involutive automorphism of u. Thus
we have

expad(-Y ) = expad(Y,),

expad(Y o6 expad(Y,) = 6, (0 expad(Y,)°8,)oexpad(Y )

=0,0 expad(6,Y Joexpad(Y,;) = 8,0 expad(Y;+0,Y))

= 6,0 expad(Y"). g.e.d.

The lemma shows that in the case of A ,, with d=2d*, where k;, is given by (6), only the case
(12) is possible, hence there are no other outer involutions non-conjugate to the canonical
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one 6,

In all other cases there are roots of kj of the form g, which are restrictions a=0;/m of

roots of u, with the property o= 08, = o, . Thus, we assume now that

6 =00 expad(Y",),
and without loss of generality, we may also assume that i=1: In fact, in the cases (7) and (9)
there is no other root but o, with coefficient (in the corresponding maximal root of ky 1 or
2. In the case (8) our reasoning depends only from the part of the diagram, which starts
from ¢; and ends at £, and all these parts of the diagram have an obvious similarity. For
convenience, we suppress the prime from Y', and write instead

0, = 6yoexpadY,,
where Y ;=Y", satisfies (11) for i=1. We consider the corresponding subsets (of roots of u)

A UA,UA, of lemma-1, with respect to 0 =0, . By lemma-1, a fundamental system of roots
of u consists of the roots

M={f,0p,..,0,&,&" ., &, & (13)
This results from the defining relations (11) and the formula

(expadY )X af = (exp21naj(Y D)) forj=1,..,p.
By lemma-2, {B, o, ..., (<8 Epns ) consists of independent linear forms and by lemma
3, there is a fundamental system of roots of the Lie algebra

k={Xeu 10,(X) =X},
of the form

Hk:{ll’ g:a“-ag.P-: gls---y gr}7 (14)
where 1 is a simple root of k which is also the restriction on m of a root n€ A UA, of u (see
lemma-1 and lemma-3). To determine 1 we use the following :

Lemma-6 Let I1= {a,, .., oy} be a fundamental system of roots of a semi simple com-
plex Lie algebra g. Ler also o be a root which can be written as a sum

a=o+.. +a,
of n different simple roots of TL. Let also o be different from all the summands of a,. Then
o+, is again a root, if and only if there is some roor o, € {«

i e s O With <ot o> <0.
This because for simple roots <a,, aj><0 and the Cartan integer 2< cci_.aj>/< 00> =
g-p <0 = p=q. &0 is not a root, hence g=0, and consequently X+, isaroot = p>0 =

<04,,0> <0, for some i,. g.e.d.

We turn now to the determination of 1) :
Since U is simple, there is a sequence of simple roots, which connects f with the "nearest" to
B (in the Dynkin diagram) €, (connectedness of the Dynkin diagram):
ﬁs ail ey a& H] Ek N (15)

1) This sequence is uniquely determined by &,, since there are no "loops” in the Dynkin
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diagrams. Two different sequences from f to & _would produce such a loop.

2) The sequence from B to § is a connected part of the Dynkin diagram of u. If we de-
lete some o (n=1, ..., t) the two remaining summs are orthogonal to each other and at the
same time they are roots of u, by lemma-6.

3 n=p+ O+t 0G + £, isaroot of u, by lemma-6.

4) neA,, hence n€ A, =root system of K .

5) nisa simple positive root of ke, hence it is the one appearing in (14). To see this, we
need a litle bit of work :

If n which is a positive root of K, were not simple, then there would exist positive

roots v, & of u with the properties

Y,0€ AJUA, and n=y+9d. (16)
Repeating the reasoning of lemma-3, we see that then we should have

N=y+d or =y'+d or =y+d’ or =y'+d".
Since

N=F+0og +.. v 04+, Y
we may assume that y or Y are sums of certain of the summands of 1 and & or &' are sums of
the remaining summands. We may assume that &_is contained in the summands of y. If B

were not contained in y too, then d (or & etc.) would contain P and some a; . Consequently
we should have d€ A, (X5=A[Xp[X[...]]] and all the partial products are #0, since d is a
sum of successive roots of the diagram (a connected part of this)). This contra-dicts to the
assumptions (16). Thus, we should have

y=Pp+oy r. o +E,
and no summand o of n would be missing (lemma-6) i.e. y=n, which is impossible. This
shows that 1) is simple.

Using the analysis above, we can computethe Dynkin diagrams of the characteristic al-

gebras k, which are fixed by the involutions

0, = 8,0expadY,.
This is done using the fundamental system of k :

O={n &, .., %5 &y &1
Since 6, and 8, induce the same isometry in the fundamental system IT of u, the subalgebra
m and the restrictions @,, ..., a,, §1 - ﬁr are the same for both 6, and 6, . The Dyn-
kin diagram of IT, results from that of IT, through substitution of &, by n, constructed from
the (connected) part of the diagram which connects a, and Ek. We have the three cases :

Ay d=2d*+1, n=oy+ &g, I ={1, &g s & .
The part of the Dynkin diagram of k corresponding to {€4 , ..., £} will be the same
with that of k; (given by (7)) :

&g 5 Egr
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For the rest of the diagram, we compute the strings of roots :
n* gd* = (gl+§d*+§d*') and (Cll*'id#ﬁd*') €A3 ’
thus n+ &, isnotaroot of k. In fact,
01Xy 1 ) = 0 (MX g X g Xy, D) = AKX tgelXa Xyl
Xy Ko Ko X g [X 0 X 1D = "oy +E g gu -
[X e Xg]=0, because &g+ is not a oot of A, . Analogously, we see that n+ £, isa
root and finally that the diagram of k is

Egr (18)

E6 i =a1+a2+ 52 ’ Hk= { n, -g-2’ g_"l_ ’ §1 }'
The part of the Dynkin diagram of k corresponding to { a,, £,, £} will be the same
with that of k,, (given by (9)) :

O=—0—0
o & &
For the rest of the diagram, we compute the strings of roots :
0+ & =(a+a,+E,+&) with (o +a +E,+E €A, .
Thus n+ &, isaroot of k and its diagram is

O=—0—-O0—0 C
@ & E 1 k (19)
D, In this case we have several choices for B :
B Ol s @i 5
for which the corresponding 1) is
N=04+ G+ + Oy + &)
and the corresponding root system is
Hkiz 1 O SP SR P TR Qys 5 &1}
The Dynkin diagram of Hki is computed from (8):
O0—0 =+ O—0===0 O—0 “+s O—O==0 By, ®B, ;, 20)
o %y I Qg [ SN

Lemma-7  The involutions 8,=0° expad(Y,) and 041 =0 rexpad(Y,, ) (the Y. as in the
(11)) are conjugate in Int(u), hence they give isomorphic decompositions of u, u=k&p and
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isomorphic real forms k®ip of u.

The isomorphism between k; and k; ; is obvious from (20). The lemma guarantees
the isomorphism of the corresponding real forms kjeE»ipj . In this case we have

%=BM
O——0 +++ss O——O===D
o2 & Qen &

and, by lemma-6
D=0+ Gyt ¥ Gy + &
isaroot of k=B, . Looking at the roots of B, we see that the mutual inner products in
the set
0l G O mevs Dot S
are given by the diagram

-1 a4, 9, 24, &

This means that {-n, @, , &,, .., Qy,} is also a fundamental system of B ,,. Thus, there
is a uniquely defined element S of the corresponding Weyl group, with the property
‘S(&) =-n,
S(ag) = @5,

S(a) = &gy -

We have also the following relation : .
Yaiy =SHY) +6(Y) + Y ®
where Y ;€ a is defined by the equations : -
a,(Yy) =0, fora=l,.,d-2 and £, (Y, = 1/2, /(Y ) =0.
(*) is verified by applying on its sides «;, &, ..., 045, &}, g,’, which build a basis of a:
(Y gip ) = @S Y +a, (B (Y )+ o, (Y ),

which is correct, since

a,(6,(Y )= a,(Y =0 and

Opai1/2 = 0,(Ygs1)
=0, (Y =g, W) =2y (Y)=04,,/2.
0 =E(Y4 ) =E ST+ E B (Y D+E(Y

=-n(Y)+E(Yy) =-1/2+1/2=0. etc.
By the leading remarks of this paragraph, S extends to an inner automorphism (denoted by
the same letter) of U, which commutes with 8, and we have :

(expad(Y »oST)o(B expad(Y,) o(Soexpad(Y )
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= (expad(Y y)of yo (S toexpad(Y JoS)e(expad(Y,)
= Bpoexpad(6,(Y ))sexpad(S(Y ) o expad(Y 3)
= Bgoexpad(S(Y) + B,(Yy + Y

This completes the proof of lemma, since by the definition of Y4, we have expad(2Y ) = 1
= expad(-Y,) = expad(Y ). g.e.d.

The last lemma completes the classification of the real simple Lie algebras of "outer”
type. The general classification of all simple real Lie algebras is given by the results of §46
as well as of this paragraph. Except the simple real Lie algebras which are real forms of
other simple complex Lie algebras, there is also another category of simple real Lie alge-
bras. It consists of the realifications of complex simple Lie algebras. The two categories are
disjoint (except the cases so(3,1) = sl(2;C)) : a Lie algebra of one category cannot be iso-
morphic to any Lie algebra of the other. Inspecting the list of real forms and their character-
istic Lie algebras, we see that the pair (u,k) determines uniquely the real form i.e. inside a
fixed u, the real forms are uniquely characterized by their characteristic subalgebras.



But I must crowd all into one grand mess

Or mass; for should I strech into detail,
My Muse would run much more into excess,

Than when some squeamish people deem her frail.
But though a "bonne vivante,” ’I must confess

Her stomach’s not her peccant part: this tale
However doth require some slight refection,
Just to relieve her spirits from dejection.

Byron, Don Juan, Canto XV, 64

49 . Real forms of A

The standard model of this type of complex Lie algebra is sl(d+1;C), studied in §12
and §27. Here we give concrete models of all real forms of this Lie algebra:
sl(d+1;R) The so-called normal real form of sl(d+1;C).
This form remains invariant under the involutive automorphism of sl(d+1:C)
8(X)=-X". (D)
This induces an involution in sl(d+1;R) and the corresponding (characteristic) subalgebra of
fixed points is:
o(d+1) = {Xesl(d+1;R) | X =- X} (2)
_sl{(d+1;R) = o(d+1) €Sym(d+1;R), 7 (3)
X =(112)X-XH)+(1/2DH(XK+XYH
= (112)(X+8(X)) +(L/2)(X-6(X)),
Sym(d+1;R)Csl(d+1;R) being the (vector) subspace of symmetric matrices in sl(d+1;R).
(3) is a Cartan decomposition k®p of sl(d+1;R) and the corresponding compact real form is

u = k®ip = o(d+1) ® iSym(d+1;R). 4
Considered as a subset of sl(d+1;C), this is identical with the matrices X satisfying
X*+X=0, &)

where
X*= X is the adjoint of X. (6)
u is called the special unitary Lie algebra and is denoted by su(d+1).
su(d+1) = {X esl(d+1;C) | X*+ X =0}. (7N
Lemma-1 su(d+1) is a compact real form of sl(d+1,C), and remains invariant under 0, the
later being an involurive automorphism of exterior type.
To see this consider the characteristic subalgebra k of 8, which is o(d+1) and whose
complexification is given by:
kc=0(d+1;C) =By, or D, according to d=2d* or d=2d-1. (8)
This means that for d=2d*, 6 is conjugate of the canonical extension of the symmetry of the
Dynkin diagram of sl(2d*+1;C):
O—0 e O——0—0 oo 0—0 )
& & Car Ca & &
sl(2d*+1;R) is the real form corresponding to the characteristic algebra (6) §48.
For d=2d*-1, sl(d+1;R) is the real form of sl(d+1;C) which corresponds to the exteri-
or involution and characteristic subalgebra (18) §48. g.e.d.
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Looking at the restriction of 6 onto the Cartan subalgebra h, of diagonal matrices, we
see that

Blh=-1d,
which, by the analysis valre made in §27, does not belong to the Weyl group of sl(d+1;C).
This gives another proof of the fact that 6 is not an inner involution (combine with The-1,
§39).

Let us discuss for a while, what this 8 is, in terms of our theory, developed in §48.
Ford=2d*, we know that 0 is conjugate, in Int{u), to the canonical extension of the obvious
symmetry of the Dynkin diagram suggested by (9). For d=2d*-1, the form of the chararac-
teristic subalgebra in (8), shows that 6 defines an outer involution of u=su(d+1), which is
not conjugate to the canonical extension of the symmetry of the Dynkin diagram. In order
to find the canonical extension of the symmetry of the Dynkin diagram, in this case, we use
the so-called opposition element of the Weyl group, defined by the permutation of coordi-
nates of diagonal matrices (see §27):

¢(H1; ey Hd+1) = (Hd+1, ey Hl)- (10)
This maps the fundamental roots
o(H) =H.H,.,,
to the roots 7
o= 0o, o (H) = 0 gy, o H) =Hyppy-Hyy ;=
o= = Oy -

This is related to the complex structure of R?*! In fact, using the arguments of lemma-4,
§39, we can compute an inner automorphism of sl(2d*;C) which induces ¢ on h. This lem-

ma suggests to use expadA, where A is the matrix of sl(2d*;C) given by
Bl | 1 1

A= 1B, where B=

[ o8]

A belongs to su(2d*) and has expA = B. We have also, expad(A)C Ad,, C AdgC =
BCB (see §9), and since B*=-1, B"! =B, ¢ can be extended (easy to see) to the inner in-
volution of su(d+1) defined by (use of the same letter)

$(C) =-BCB =BCB!, (11)
In order to bring everything in standard form, we conjugate su(d+1) by the matrix

0.l

0
0..
0

which leaves su(d+1) invariant. J = B-D is the matrix defining the standard complex struc-
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which leaves su(d+1) invariant. ] = B-D is the matrix defining the standard complex struc-
ture in R4*1:

0.:0)1..0

8'=-JAT!. (12)

is an outer automorphism of su(d+1). The characteristic subalgebra (of fixed points) of
su(d+1) is given by

k={Aesu(d+1)] -JAT!=A} = {Aesu(d+1)|JA*+ AT=0},
whose complexification is

ke = {A€sl(d+1;C) [JA'+ AT=0} =sp(d*;C) = C,  (d+1=2d%).
Thus, we have the case (7) §48. The corresponding real form is described by the next two
exercises.
Exercise-1 Find the Cartan decomposition of the real form, whose characteristic subalge-
bra is given by the preceding k. Show that the real form g = k®ip of sl(2d*;C) is de-
scribed by the set of matrices :

A+A, | B+B,

BB, AdA,

where A, A, B, B, are d*x d* complex matrices, satisfying the relations

A+A'=0, A+A'=0,

B'=B, B'=-B, and

tr(A,)=0.
Exercise-2 Show that the set of matrices, described above, coincides with the real Lie sub-
algebra of sl(2d*; C):

X YV X, Y: d*x d* complex matrices
* *Yy — — it b )
SuRRE = {(Y X)I with trX+rX = 0, } 13)

Our arguments show that (13) is the real form corresponding to the canonical exten-
sion of the symmetry of the Dynkin diagram, in the case d=2d*-1. The characteristic subal-
gebra of this form (the previous k) is denoted by sp(d*):

sp(d*) = su(2d*) N sp(d*; C). (14)

We turn now to the remaining real forms of A4, which come all from inner involutive
automorphisms of the compact form su(d+1). Thus, these involutions are of the form:

B(A)=1-A-J! | where J =expB, and B€ su(d+1).
Since 6 is an involution, we must have
J2.A.J2 = A, forevery A €su(d+1),
and by extending to the complexification, we’ll have



49-4 Real forms of A ;

J2.AJ2=A, forevery Aesl(d+1;C) = I?=clL
Dividing J by a complex number, does not alter § and we may assume that
Jo=1,
From elementary linear algebra, we know that C%*! decomposes into the direct sum of the
two eigenspaces V|, V , , corresponding to the £1 eigenvalues

CHl=vev, .
Choosing a basis of eigenvectors of J, we get the matrix representation:
|3 (0 I— 0
.................... 3
. 0..010..0 5
~10..0 -1..0 ()
e | Ya
0 o -1

We conclude that the initial involution is conjugate to 8(A) = J.A-J' | where J (J71=]) is
given by (15). The corresponding characteristic subalgebra k is found by the relations:

Acsu(d+1) and JAT=A =

A= ( g 0 ) il B*+B=0 (B:pxp d?mensions),

C L C*+C =0 (C: g* g dimensions), and .
trB+trC = 0.
The matrices A can be decomposed into the sum:
B-(tB/p)I_ O ) , ( 0 0 ) ((trB/p)I 0 )
A= ( P ¥ + P
0 0 0 C-(rClg)l, 0 (aCig)I,

which, by trB+trC=0, gives the characteristic subalgebra:

kK=su(p)@su(@)®t (p+rq=d+l). (16)
t is the (real) 1-dimensional abelian ideal of k, consisting of matrices of the form:

_ (Um0 )
t= {7\( 0 Pl | AeR} .
The corresponding -1-eigenspace p of the involution is:

0Y

= {A€su(d+1)| JAT =-A} = (_
p = {A€su(d+1)| 1= A{(50
and the corresponding real form denoted by su(p,q) is given by:

—reine §[A Y\ Y:px qcomplex matrix, A*+A=0,
Su(p.q) = keip = {(Tma)l B*+B=0 and trA+trB=0. yooan

)l Y:px q complex matrix }

Exercise-3  Show that the matrices in su(p,q) coincide with the matrices of sl(d+1;C),
which leave, infinitesimaly (i.e. hpq(AZ,W)+hpq(Z,AW)=O), invariant the hermitian form of
cdl .

hpq(Z,W) =W+ HZ W - Zp+1Wp+l L

pp " Zp+qWp+g -



Denn der Charakter ist schlechthin inkorrigibel; weil alle
Handlungen des Menschen aus einem innern Princip
flieBen, vermdge dessen er, unter gleichen Umstinden,
stets das Gleiche thun muB und nicht anders kann. Man
lese meine Preisschrift iiber die sogenannte Freiheit des
Willens und befreie sich vom Wahn.

Schopenhauer, Aphorismen ... p. 494

50. Real forms of B,

A model of this type of complex Lie algebra is
[Aesi(2d+1;C) |JA + AT=0}, (1)
where J is the matrix (see §§21, 30):
1

As we saw in §21, this model is conjugate to the standard one, of skew-symmetric matrices:

0(2d+1;C) = {A€sl(2d+1;C) |At+ A=0}. 2
Restricting to the real matrices we get the compact real form of this Lie algebra:
o(2d+1;R).

Since all automorphisms of o(2d+1;R) are inner, making analogous computations with those
of the previous §, we see that every involution of o(2d+1;R) is conjugate to one of the form:

Opg(A) - ToaApq - 3
where Jpq (Jpq- = 1) is the matrix:

[ | S 0
.................... 33
0040 0.0

rd 0..0 -1..0
.................... lq
0 e -1

The corresponding characteristic subalgebras are given by:

k={Aco2d+L;R)|] _A] =A}= { (?COH B‘+B=C‘+C=O}

P9 PQ

= o(p:R)@o(q;R).
Since p+q = 2d+1 is odd, one of {p, g} must be odd, the other being then even. Thus, we
get the cases (10) and (11) of §46. More precisely, (10) for which
k=t®B,,,
corresponds to p=2 and q=2d-1=2(d-1)+1. For all other cases we have
k=D.®B,,,
for appropriate r, depending on p, q.
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The corresponding -1-eigenspace of 9 - is given by:
0 X :
p={Aco(2d+;R)|T AT, =-A} ={ {-xt : ) l X =real px q matrix} (4)
the corresponding real form being

: B iX) | X =real px q matrix,
=keip={[ >, ]
g=keip={| v o) |pepeciscmn, ) ®)
This is conjugate to the so-called Lorentz Lie algebra o(p,q), defined by:
_ ¢[B X\ |X=real px q matrix,
@)= { [X‘ C) BeBeCleCm0, | ©

The isomorphism between (5) and (6) is given by:

L0, il 0
s en)alsn)
o 1J%\0 1,

(BiX) (B XJ
ixtcl T oixtc

Remark In order to have J pq€ SO(2d+1), q must be even. When q is odd, then p is even
(since p+q=2d+1) and —JpqE SO(2d+1) and the involution defined by -Jpq is identical with
that in (3). - :



Nihil est ab ommi parte beatum.
Horace, Ode I1, 16

51. Real forms of D,

A model of this type of complex Lie algebra is
{A€sl(2d;C) [JA'+ AT=01}, )
where J is the matrix (see §§21, 29):

0(1..0
01| 8 &
0

As we saw in §21, this model is conjugate (in gl(2d;C)) to the standard one, of skew-sym-
metric matrices:

0(2d;C) = {A€sl(2d+1;C) |A'+ A =0} @
Restricting to the real matrices, we get the compact real form of this Lie algebra:

o(2d) =0(2d;R) = {A€sl(2d+1;R) | A+ A=0}.
The inner involutive automorphisms of this compact Lie algebra may be computed as in the
preceding §. They are conjugate to one of the following:

BoglA) =T Al , 3
whereJ (I pqz = 1)is the matrix:
1 Qv 0
; 0..010..0
Pq 0.0 -1..0
.................... Is
L SR —— -1

and the integers p, q are both even. In fact ] 5t SO(2d), only when p, q are both even.
The corresponding characteristic subalgebras are given by:

; — Al B O
k={A€0QAR)I I AT, =A}= { ( : c) l Bt+B= C1+C=0 )

= o(p;R)&0o(q;R).
Since p, q are both even, we get the cases (15) and (17) of §46, for which

ke=D, ®Dy, r=1,2,3,..,[d2].

The corresponding -1-eigenspace of 6 o is given by:
p={A€OQRER)IT AT, =-A} = { (_;t 3‘] ] X =real px qmatrix}  (4)

the corresponding real form being

) . B i X=re&1pxqmatrix,
g=keip= { (_in é() ' BY+B=C+C=0. } ©
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This is conjugate to the Lorentz Lie algebra o(p,q), defined by:
_ [[B X) X =real px q matrix,
@a= { (x* c)|penciceo. ) ©)
where p, q are both even . For r =1 we have the particular case (15) §46, which has
k=o(p;R)®0o(q;R),
ke =t& Dy, .
There is still another inner involution of o(2d) given by
B(A) =-JAJ,
with J asin ((1), §52). The corresponding characteristic subalgebra is given by:
k={Aco2dR)| AT=JA} = { (2 CB) ] B'+B=0, C'=C } .
The map
(29 - Bec
defines an R-linear isomorphism of k with the unitary Lie algebra u(d)
u(d) =R ®su(d),
whose complexification is té A, , which corresponds to the case (16) §46.
The corresponding -1-eigenspace of 6 is given by:
p={Aco2dR)| AT =-JA} = {(g _%)
the corresponding real form being

B'+B=C'+C=0 } )

g=keip={[ 275 BiC||BH+B=CC=E+E=0, D=D}

={(_2§( }()!X@(d;q, Y=y} .
The last real Lie algebra is denoted by

s0*(24d).
Exercise-1 Show that so*(2d) is the Lie algebra of endomorphisms of C24, which leave
(infinitesimally) invariant the skew-hermitian form of C29 (J as in (1), §52):

hZW)=ZTW.

As proved in §46, these are all real forms of inner type of D, By the results of the same §,
we know that the only exterior real forms are these which correspond to (3) for p, q both odd
(#1) numbers. These have characteristic subalgebras (in accordance with (20) §48):

k=o(p;R)€0(q;R), K¢ =B,® Bip
the corresponding real form being the Lorentz Lie algebra o(p,q).
For g=1, p=2d-1, we have the characteristic subalgebra

k=0(2d-1), with ko =B,

corresponding to the case (8), § 48, whose real form is the Lorentz Lie algebra o(2d-1,1).




The mind is lost in mighty contemplation
Of intellect expended on two courses;
And indigestion’s grand multiplication
Requires arithmetic beyond my forces.
Who would suppose, from Adam’s simple ration,
That cookery could have call’d forth such resources,
As form a science and a nomenclature
From out the commonest demands of nature?
Byron, Don Juan, Canto XV, 69

52 . Real forms of C,

A model of this type of complex Lie algebra is
sp(d;C) = {A€sl(2d;C) | JA' + AT=0},
where J is the matrix (see §§21, 28):

0..071...0
0..0/0..
e 0
-1..0}0.. 0
0.-1l0.0
Restricting to the real matrices we get the real form of this Lie algebra:
sp(d;R).
An obvious involution which leaves this real form invariant is defined by
B(A) = JAJ! =-A", @

The corresponding Cartan decomposition is given by g=k&p, where
k={Aesp(G;R)|-A' = A} = { (](3: %) ‘ B4+B=0, C'=C} |
which by the map
(_(B: %) — B+C €u(d),

is proved to be isomorphic to the unitary Lie algebra u(d), whose complexification is, in ac-
cordance with (13) §46:

ke=18 A,

The corresponding -1-eigenspace being

p={Aesp(d:R)| Al = A} = {(g %) , B'=B,C'=C} ,
which gives the real compact form

— kiD= B+iC D+E t T = s

u=keip= {( BiC B-iC) ‘ B'+B=0, C'=C, D=D, E:=E } .

We see easily that this Lie algebra is equal to
su(2d) Nsp(d; C) = sp(d). 3
We met already this as the characteristic subalgebra of the real form su*(2d) of sl(2d; C).
The inner involutive automorphisms of this compact Lie algebra may be computed as
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in the preceding §. They are conjugate to one of the following:

0,4(A) =1 papq » C)]
whereJ (I pqz = 1)is the matrix:

where p+q=d. The corresponding characteristic subalgebras are given by:
k={A€sp(d)|T AT, =A} = sp(p)®sp(q),
which correspond to the cases (14) of §46, for which

ke=C,®Cy,, p=1,2,3,...,d-1.
The corresponding real forms are denoted by
sp(p.Q)-

Remark The Lie algebra sp(d) may be identified with the Lie algebra of the group of the
isometries of quaternionic d-dimensional space HY, with respect to the "hermitian" form:

h(Z,W) = Z Wt vz Wy,



Here the twelfth Canto of our intreduction
Ends. When the body of the book’s begun,
You’ll find it of a different construction
From what some people say ’twill be when done:
The plan at present’s simply in concoction.
I can’t oblige you, reader! to read on;
That’s your affair, not mine: a real spirit
Should neither court neglect nor dread to bear it.
Byron, Don Juan, Canto XTI, 87

53 . Signature and normal real form

The signature of a real form g of a complex semi simple Lie algebra g (= complexi-

fication of @) is defined to be the signature of the Killing form of g

3(g) = dimV* - dimV -, (D
where V7 (resp. V™) is the maximal dimensional subspace, on which the Killing form is pos-
itive (resp. negative) definite. If g=k®p is a Cartan decomposition of the real form, the sig-
nature of g is given by

0(g) = dimp - dimk. @)

We see that the signature of the compact real form u , d(u) = -dim(u), is the minimum
value that the signature can attain. We’ll see that the maximum value which d(g) can attain
is rank(g) and this happens for certain special real forms called normal.

Examples of such normal real forms (of semi simple complex Lie algebras) are con-
structed using Weyl-Chevalley bases (§37) of the complex Lie algebras:

8= h eBt::(E.’_\.CXD: »
and defining the real form to be
9=y Bgen- RE g Xoo)genr RK KXo 3)
Using the computations of The-1, §40, we see that the signature of gis indeed d=dim(h).

Proposition The signature of a semi simple real form g satisfies the inequaliry:
-dim(g) £ 8(g) £ rank(g).
The left inequality is obvious. To prove the right one, consider a Cartan decomposi-

tion of the g=k&p of g, take a maximal abelian subalgebra e of p and an element Yee. Y
defines two linear maps:

A=adY:p — k, and B=-adY: k— p,
for which we have

<AZW>=<ZBW>, forevery ZEp, Wek. (4)
A and B are conjugate with respect to the (definite) metrics in p and k. Thus, using or-
thonormal bases, they are represented by transposed matrices and consequently they have
the same rank. This gives the relations:

rankA =rankB =

dimp - dim{(kernA) = dimk - dim(kernB) =

dimp - dimk = dim(kernA) - dim(kernB)

< dime - dim(kernB)
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< dime £ dima=rankg.
Where a>e is a maximal abelian subalgebra of g, extending e, g.e.d.

We define a real form g to be normal, when the space p of the Cartan decomposition
contains a maximal abelian subalgebra a of g. One can easily verify that the examples (3)
fit into this definition.

Theorem  Two normal real forms of the same complex semi simple Lie algebra g, are
isomorphic to each other.

In fact, the existence of one normal form in g is proved by (3). We denote by U, this
special normal form and by u,=k,®ip, the corresponding compact form. If g,=k,&ip, is
another normal real form, and h,Cp, is a maximal abelian subalgebra, with dimh,=rankg,,
then ih, is a maximal abelian subalgebra of the corresponding compact real form
u;=k,®ip,. By §42, U and'u, are isomorphic through an automorphism f:u; —u,. By com-
posing with an automorphism of u,,, if necessary, we may assume that f(ih,)=h,. Let

B,: X+Y— X-Y, for X+Yeu=k@ip,,
be the conjugations with respect to the real forms g,. Then
0; =fo0,of L:uy;—u,
is an involution and for every X€ h; we’ll have
BX=0X=-X. _
Applying the lemma below, we conclude that there is o€ Int(u,,) with the property
B; = 0B o,
which means that 6; and 8, define isomorphic real forms. But the real forms defined by 6,
and 8, are also isomorphic. g.e.d.

Lemma Ler 0, 6, be involutive automorphisms of the compact semi simple real form u of
gc Let also a be a maximal abelian subalgebra of u, on which the automorphisms coincide
and have

8,(X) = 8,(X) = -X.
Then there is € Int(u) such that 8, = o800

We work with the Weyl-Chevalley basis of g, with respect to a. For every €A
8, X=c,X_,
clo=lLlc,l=1, CoCp = "Coup - (5
The two first of (5), because of the corollary in §43 and the last being a consequence of the
following computation

D(a’}(ﬁ] =Ngﬁxa+ﬁ =
8 I[XC(’XB] = NUBCG+[3X‘Q‘5

where the constants satisfy
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=c X ’X-B] = CacﬁN*a,—BX—a—ﬁ and N g =N ((16) §37).
We can define (as we did in lemma-1 §39) the elements

H,H, €h, such that

a(H,)

C~€ and analogously for 6,X =c' X,

C= —ea(Hz), for all oA
Then ¢ =exp(ad(H-H)/2) does the work. g.e.d,

Remark Notice that the (inner) involutions A — J quJ - in §49, leave the Cartan subaige-
bra of diagonal matrices of the compact form su(d+1) of sl(d+1;C) pointwise fixed.
However they are not conjugate to each other since they define different real forms.

Exercise Show that the signature of the real form g=kep is equal to dim g-2dim k..

But for the present, gentle reader! and

Still gentler purchaser! the bard-that’s I-
Must, with permission, shake you by the hand,

And so your humble servant, and good bye!
We meet again, if we should understand

Each other; and if not, I shall not try
Your patience further than by this short sample-
"Twere well if others follow’d my example.

Byron, Don Juan, Canto 1, 221
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"What I have written, I have written: let
The rest be on his head or mine!" So spoke
Old "Nominis Umbra;" and while speaking yet,
Away he melted in celestial smoke.
Byron, The vision of Judgment, 84

54 . Catalog of simple real Lie algebras

Real forms of sl(d+1;C) (A

su(d+1) = compact real form. Signature = -dimpsu(d+1) = -((d+1)2-1).
si(d+1;R) = normal real form. Signature =d. Outer type.
o(d+1) = Characteristic subalgebra.
sl(d+1;R) = o(d+1)®Sym(d+1;R) = Cartan decomposition.
Helgason’s type = Al
su*(2d*)  In the case d+1=2d*. Signature =-4d*-1=-2d-3. Quter type.
sp(d*) = Characteristic subalgebra.
Helgason’s type = AIL
su(p,q) With prq=d+1. Signature = 1-(p-q)% Inner type.
su(p) ®su(q) St = Characteristic subalgebra.
Helgason’s type = ATl
Real forms of 0(2d+1;C) (B
o(2d+1) = compact real form. Signature =-d(2d+1).
o(p.9) With p+q=2d+1. Signature = (p+q-(p-q)?)/2. Inner type.
o{p) ®o(q) = Characteristic subalgebra,
Helgason's type = BDI
Real forms of sp(d;C) (C))
sp(d) = compact real form. Signature =-(2d>+d).
sp(d;R) = normal real form. Signature =d. Inner type.
u(d) = Characteristic subalgebra.
Helgason’s type =CI
sp(p,q)  With p+g=d. Signature = -(p+q+2(p-q)°). Inner type.

sp(p) ®sp(q) = Characteristic subalgebra.
Helgason's type =CII
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o(2d)

(P9

s0*(2d)

o(p.g)

Eg(VIII)

E3(IX)

Catalog of simple real Lie algebras

Real forms of 0(2d;C) (D)

= compact real form. Signature =-d(2d-1).

With p+q=2d, p, q even. Signature = (p+q-(p-q)?)/2. Inner type.
o(p) @o(q) = Characteristic subalgebra.
Helgason’s type = BDI

Signature =-d. Inner type.
u(d) = Characteristic subalgebra.
Helgason’s type = DIII

With p+g=2d, p, q odd. Signature = (p+q-(p-q)2)/2. Outer type.
o(p) &o(q) = Characteristic subalgebra.
Helgason’s type = BDI

Real forms of Eg
Compact form dimy E;=248. Signature =-243.
= normal real form. Signature =8. Inner type.
Dy - = Characteristic subalgebra.

Helgason's type =EVIII

Signature =-24. Inner type.
A, BE, = Characteristic subalgebra.
Helgason's type = EIX

Real forms of E,
Compact form dim, E=133. Signature =-133.
= normal real form. Signature =7. Inner type.
A, = Characteristic subalgebra.

Helgason’s type =EV

Signature =-3. Inner type.
A ®Dg = Characteristic subalgebra.
Helgason’s type = EVI
Signature =-25. Inner type.
tPE, = Characteristic subalgebra.

Helgason’s type = EVII
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Real forms of E,
E, Compact form dimp E=78. Signature =-78.
EcD =  normal real form Signature =6. Outer type.
C, = Characteristic subalgebra.
Helgason’s type = EI
E, (1) Signature =2. Inner type.
ABA; = Characteristic subalgebra.
Helgason’s type = EII
E(TII) Signature =-14, Inner type.
teD; = Characteristic subalgebra.

Helgason’s type = EIII

E.(IV) Signature =-26. Outer type.
F, = Characteristic subalgebra.
Helgason's type =EIV

Real forms of F,

By Compact form dimyF,=52. Signature =-32.
F,D = normal real form. Signature =4. Inner type.
A 8C, = Characteristic subalgebra.
Helgason’s type =FI
F,dm Signature =-20. Inner type.
By = Characteristic subalgebra.

Helgason’s type =FII

Real forms of G,

G, Compact form dim,G,=14. Signatre =-14.
G, = normal real form. Signature =2. Inner type.
A DA, = Characteristic subalgebra.

Helgason's type =G
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Catalog of simple real Lie algebras

The Helgason’s type has to do with an other story, to be narrated elsewhere.

The other class of simple real Lie algebras consists of the realifications of simple com-

plex Lie algebras,

Warning In using the above catalog, one must be cautious in low dimensions. In fact, in
the case of real forms of low dimensional classical Lie algebras we have coincidences, for
some values of d, p and g, pointed out already by Cartan. Here is the list, taken from
Helgason. The geometric meaning (having to do with quaternions, octonions and all that) of
these coincidences may be found in the book of Porteous "Topological geometry”, Van

Nostrand.

i)

ii)

iv)

v)

vi)

vii)

viii)

X)

Xi)

su(2) = so(3) = sp(1),
sl(2;R) = su(1,1) = s0(2,1) = sp(1;R).

s0(5) = sp(2),
50(3,2) = sp(2:R)

so(4) = sp(1)»sp(1),
so(4,1) = sp(1,1).

su(4) = so(6),
sl(4;R) = s0(3,3).

su*(4) = so(5,1).
su(2,2) = so(4,2).
su(3,1) = so*(6).
50*(8) = s0(6,2).
s0(3,1) = s1(2;C).
80(2,2) = sl(Z;R) *sl(Z;R)

so*(4) = su(2)xsl(2;R).

END
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“MATHEMATICS AND FUNDAMENTAL APPLICATIONS”
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p.106, 1989,
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Simos ICHTIAROGLOU - University of Thessaloniki
p.51, 1989.
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Freddy DUMORTIER - Limburgs Universitair Centrum
p.82, 1990.
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Gerard MAUGIN - Université Paris VI
p.64, 1990.
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Marc CHAPERON - Université Paris VII
p.56, 1990.
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Paris PAMFILOS - University of Crete
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p.54, 1991.

21.CONTACT STRUCTURES
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0.60, 1991.

24.AIATHPHTIKEYX AINEIKONIZEIY KAI XAOTIKA ANAAAOIQTA XYNOAA
Zéuog 915( TIAPOTAQY - Havemorijulo @ecoaiovixng
¢.50, 1991.

25.POISSON BRACKETS AND POISSON MAPPINGS -
INTEGRABLE HAMILTONIAN SYSTEMS AND THEIR FERMIONIC
AND SUPERSYMMETRIC EXTENSIONS
Allan FORDY - University of Leeds
p.42, 1991.

26.EIZAI'QrH XTH FENIKH @EQPIA SXETIKOTHTAX
T(gsadgg?gHAHAKQZTAX - Havemotijuo Korjrng
0.65, 1991.

27.X2POXPONOX KAI IAIOMOP®IEY
Mégog I: T'ewpetounn Aoun tov Xwpoypdvou
Ka}gmgg"ZMAKHZ - ITavemotnuo Koring
0.115, 1991..



