Ασκήσεις-1

> with(linalg):

> a1:=vector(3, [24,7,-20]); a2:=vector(3,[4,-3,-2]);

a1 := vector([24, 7, -20])

a2 := vector([4, -3, -2])

> f1 := (x,y)->a1[1]*x+a1[2]*y+a1[3];

f1 := proc (x, y) options operator, arrow; a1[1]*x+...

> f2 := (x,y)->a2[1]*x+a2[2]*y+a2[3];

f2 := proc (x, y) options operator, arrow; a2[1]*x+...

> solve( {f1(x,y)=0, f2(x,y)=0},{x,y});

{y = 8/25, x = 37/50}

Για τις επόμενες ασκήσεις χρησιμοποίησε εντολές της Maple.

Τι κάνουν οι προηγούμενες εντολές ; Προσδιόρισε το σημείο τομής των ευθειών 3x+2y+1=0, 6x-5y-3=0.

Βρές το σημείο τομής της ευθείας 3x+5y-6=0, με την κάθετο προς αυτήν που διέρχεται από το σημείο (10,3).

> cir:= (x,y)-> x^2+y^2+a2[1]*x+a2[2]*y+a2[3];

cir := proc (x, y) options operator, arrow; x^2+y^2...

> solve({f1(x,y)=0,cir(x,y)=0},{x,y});

{x = 1/5*RootOf(25*_Z^2-52*_Z-118,label = _L2), y =...

Tι κάνουν οι προηγούμενες εντολές; Βρες την τομή του κύκλου x^2+y^2+3x-5y-8=0, με την ευθεία 3x+7y-3 = 0. Εάν οι καμπύλες δεν τέμνονται άλλαξε τους συντελεστές ωστε να τέμνονται.

> B:=vector(2,[3,4]); orDir:=vector(2,[-a1[2],a1[1]]);

B := vector([3, 4])

orDir := vector([-7, 24])

> c:= -innerprod( B, orDir );

c := -75

> f3:= (x,y)->orDir[1]*x+orDir[2]*y+c;

f3 := proc (x, y) options operator, arrow; orDir[1]...

> solve( {f1(x,y)=0, f3(x,y)=0},{x,y});

{y = 388/125, x = -9/125}

Τι κάνουν οι 4 τελευταίες εντολές; Προσδιόρισε την προβολή του σημείου B=(3,4) πάνω στην ευθεία 52x+37y-100=0. Αν Γ είναι αυτή η προβολή, βρες την απόσταση των Β,Γ.

> n1:= sqrt(a1[1]*a1[1]+a1[2]*a1[2]); n2:= sqrt(a2[1]*a2[1]+a2[2]*a2[2]);

n1 := 25

n2 := 5

> ff1:= (x,y)->f1(x,y)/n1; ff2:= (x,y)->f2(x,y)/n2;

ff1 := proc (x, y) options operator, arrow; f1(x,y)...

ff2 := proc (x, y) options operator, arrow; f2(x,y)...

> gg1:= (x,y)->ff1(x,y)-ff2(x,y); gg2:= (x,y)->ff1(x,y)+ff2(x,y);

gg1 := proc (x, y) options operator, arrow; ff1(x,y...

gg2 := proc (x, y) options operator, arrow; ff1(x,y...

> with(plots):

> display( implicitplot(f1(x,y)=0, x=-22..22, y=-22..22, numpoints=10, color = magenta, thickness = 3, scaling = CONSTRAINED));

[Maple Plot]

> myPlot1 := implicitplot( f1(x,y)=0, x=-22..22, y=-22..22, numpoints=3, color = magenta, thickness = 3, scaling = CONSTRAINED);

> myPlot2 := implicitplot( f2(x,y)=0, x=-22..22, y=-22..22, numpoints=3, color = magenta, thickness = 3, scaling = CONSTRAINED);

> myPlot3 := implicitplot(gg1(x,y)=0, x=-22..22, y=-22..22, numpoints=3, color = red, thickness = 1, scaling = CONSTRAINED);

> myPlot4 := implicitplot(gg2(x,y)=0, x=-22..22, y=-22..22, numpoints=3, color = red, thickness = 1, scaling = CONSTRAINED);

> display( myPlot1, myPlot2, myPlot3, myPlot4);

myPlot1 := INTERFACE_PLOT(CURVES([[0., 2.8571428571...
myPlot1 := INTERFACE_PLOT(CURVES([[0., 2.8571428571...
myPlot1 := INTERFACE_PLOT(CURVES([[0., 2.8571428571...
myPlot1 := INTERFACE_PLOT(CURVES([[0., 2.8571428571...
myPlot1 := INTERFACE_PLOT(CURVES([[0., 2.8571428571...

myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...
myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...
myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...
myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...
myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...
myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...
myPlot2 := INTERFACE_PLOT(CURVES([[-16., -22.], [-9...

myPlot3 := INTERFACE_PLOT(CURVES([[-22., 4.45454545...
myPlot3 := INTERFACE_PLOT(CURVES([[-22., 4.45454545...
myPlot3 := INTERFACE_PLOT(CURVES([[-22., 4.45454545...
myPlot3 := INTERFACE_PLOT(CURVES([[-22., 4.45454545...
myPlot3 := INTERFACE_PLOT(CURVES([[-22., 4.45454545...

myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...
myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...
myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...
myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...
myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...
myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...
myPlot4 := INTERFACE_PLOT(CURVES([[-3.3181818181818...

[Maple Plot]

>