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Self-Pivoting Convex Quadrangles

Paris Pamfilos

Abstract. In this article we examine conditions for the existence of pivoting
circumscriptions of a convex quadrangle q1 by another quadrangle q similar to
q1, pivoting about a fixed point. There are 8 types of such circumscriptions and
we formulate the restrictions on the quadrangles of each type, imposed by the
requirement of such a circumscription. In most cases these restrictions imply
that the quadrangles are cyclic of a particular type, in one case are harmonic
quadrilaterals, and in two cases are trapezia of a special kind.

1. Possible configurations

Given two convex quadrangles {q1 = A1B1C1D1, q2 = A2B2C2D2}, we study
the circumscription of a quandrangle q = ABCD, which is similar to q2, about
the quadrangle q1. Disregarding, for the moment, the right proportions of sides,
and focusing only on angles, we can easily circumscribe to q1 quadrangles q with
the same angles as those of q2 and in the same succession. For this, it suffices to
consider the circles {κi, i = 1, 2, 3, 4}, the points of each viewing corresponding
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Figure 1. Circumscribing q2 about q1

sides of q1 under corresponding angles of q2 or their supplement. Then, taking an
arbitrary point A on κ1, we draw the line AB1 intersecting κ2 at B, then draw
the line BC1 intersecting κ3 at C and so on (See Figure 1). It is trivial to see
that the procedure closes and defines a circumscribed quadrangle with the same
angles as q2. Below we refer to this construction as “the standard circumscription
procedure” (SCP). By this, the resulting quadrangles q have the same angles as q2
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but in general not the right proportions of sides, that would make them similar to
q2.

There are here several possible configurations, that must be considered, since a
vertex of q, A say, can be opposite or “view” any of the four sides of q1. Each ver-
tex of q2 and each side of q1 give, in principle, two possibilities for circumscription,
corresponding to equally or oppositely oriented quadrangles. Fixing the side A1B1

and considering all possibilities for the opposite to it angle of q together with the
possible orientations, we see that there are in total 8 possibilities. We call each of
them a “circumscription type of q2 about q1” and denote it by q2(q1, X)±. In this
notation X stands for the vertex of q2 opposite to the side A1B1 of q1 and the sign
denotes the equal or inverse orientation of the circumscribing to the circumscribed
quadrangle. Thus, in figure-1 the symbol denoting the case would be q2(q1, A)

+.
In general there are 8 different types of circumscription, each type delivering

infinite many circumscribed quadrangles q with the same angles as q2. In some
special cases the number of types can be smaller, as f.e. in the case of a circum-
scribing square, in which there is only one type. We stress again the fact, that if we
stick to a type and repeat the procedure SCP, starting from arbitrary points A ∈ κ1,
we obtain in general quadrangles with the same angles as q2 but varying ratios of
side-lengths. There is an exceptional case in this procedure, which produces cir-
cumscribed quadrangles q of the same similarity type, for every starting position
of A on κ1. This is the “pivotal case” examined in the next section.

2. The pivotal case

This type of circumscription, besides the quadrangle q1 = A1B1C1D1, which
we circumscribe, it is characterized by an additional point, the “pivot”, not lying
on the side-lines of q1. The pivot, for a generic convex quadrangle, defines four cir-
cles κ1 = (A1B1P ), κ2 = (B1C1P ), κ3 = (C1D1P ), and κ4 = (D1A1P ) (See
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Figure 2. The pivotal case
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Figure 2), and through them a circumscribed quadrangle q = ABCD, that can
be non convex, even degenerate in the case P is the Miquel Point of the complete
quadrilateral generated by q1 ([8, p.139]). Having the circles {κi}, a circumscribed
quadrilateral can be defined by starting from an arbitrary point A on κ1 and apply-
ing the SCP procedure. Measuring the angles at the second intersection point F1

of the circles {κ1, κ3}
̂AF1P = ̂PB1B and ̂CF1P = ̂PC1B,

we see that F1 is on the diagonal AC of q. Analogously we see that the intersection
point F2 of the other pair of opposite lying circles {κ2, κ4} is on the diagonal BD
of q. This implies that the triangles created by the diagonals of q are of fixed
similarity type, independent of the position of A on κ1. Thus, we obtain an infinity
of pairwise similar quadrangles circumscribing q1 in a way that justifies the naming
“pivoting”.

At this point we should notice that the pivotal attribute is a characteristic of a
particular type of circumscription of q2 about q1. The same q2 can have a pivotal
type of circumscription about q1 and at the same time have also another type of
circumscription, which is non-pivotal. Figure 3 shows such a case. The quadrangle
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Figure 3. A pivoting circumscription and a non-pivoting one

q = q2 = ABCD is pivotal about q1 with shown pivot P . This circumscription
is described by the symbol q2(q1, A)+. The other quadrangle q′ = A′B′C ′D′,
circumscribing q1, is similar to q = q2, but it is not pivotal. Opposite to side A1B1

has the angle ̂B of q2, its symbol being q2(q1, B)+. The characteristic property of
the pivotal circumscription is formulated in the next theorem.

Theorem 1. The convex quadrangle q2 is pivotal of a given type for q1, if and only
if the pedal quadrangle of q2 w.r. to some point P is similar to q1 and q2 has the
given type w.r to that pedal.
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Figure 4. Pivotal q about its pedal (similar to) q1

Proof. The proof follows from the equalities of the angles shown in figure 4, which
results easily from the inscribed quadrangles in the circles {κi}. These angles
vary with the location of the point A on κ1 and become right when A obtains the
diametral position of P on κ1, showing that q1 is then the pedal of q2 = ABCD
w.r. to P . The inverse is equally trivial. If q1 is the pedal of P , then, per definition,
the segments {PA1, PB1, . . .} are orthogonal to the sides {DA,AB, . . .} and the
circles {κi} are defined and carry the vertices of quadrangles ABCD, pairwise
similar and pivoting about P . �
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Figure 5. Pedal and dual viewpoint

There is an interesting dual view of the pivotal circumscription, which we should
notice here (See Figure 5), but which we do not follow further in the sequel. If
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q1 = A1B1C1D1 is the pedal of q = ABCD w.r. to some point P , then turn-
ing the projecting lines {PA1, PB1, . . .} by the same angle φ, we obtain points
{A′

1, B
′
1, . . .} on the sides of q, defining the quadrangle q′1 = A′

1B
′
1C

′
1D

′
1, similar

to q1 and inscribed in q. Taking the obvious similarity f to draw q′1 back to q1 and
applying it to q, we find q′ = f(q) similar to q and circumscribing q1. Thus, piv-
otal circumscriptions about a point are dual and correspond, in this sense, to some
pivotal inscriptions about the same point and with the same similarity types of the
involved quadrangles.

3. Self-pivoting quadrangles
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Figure 6. Triangle self-pivoting about a Brocard point and the orthocenter

By “self-pivoting” is meant a convex quadrangle q that allows pivotal circum-
scriptions by quadrangles q′ similar to q. The corresponding problem for triangles
leads to the two well known Brocard points {Br1, Br2} ([7, p.94], [9, p.117]), the
orthocenter H and three additional points {Ap, Bp, Cp} (See Figure 6-I), which,
for a generic triangle, are the 6 internal pivots of circumscribed triangles ABC
similar to the triangle of reference A1B1C1. Thus, every triangle is self-pivoting
in all possible ways, which means that the pivoting triangle ABC may have op-
posite to A1B1 any of the three angles of the triangle and the orientation of the
circumscribing can be the same or the opposite of the circumscribed one.

The situation for quadrangles is quite different. A quadrangle may not allow
a pivotal circumscription by quadrangles similar to itself or allow the pivotal cir-
cumscription for some types of circumscription only. In the sections to follow we
investigate the possibility of self pivotal circumscription by one of the 8 types of
circumscription, which, in principle, could be possible and are schematically dis-
played in figure 7. The symbols used are abbreviations of those introduced in the
preceding section, q denoting the similarity type of a convex quadrangle. Thus, the
symbol q(A)+ denotes a pivoting configuration, in which the circumscribed and
the circumscribing quadrangle have the same orientation, are both of the similarity
type of the quadrangle q = ABCD, and the circumscribing has its vertex A lying
opposite to the side AB of the circumscribed quadrangle.

Looking a bit closer to the different types, reveals some similarities between
them, implying similarities of the corresponding circumscription structures. For
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Figure 7. Types of self-pivoting quadrangles q′ ∼ q about q

instance, the first two types {q(A)+, q(B)+} are the only types for which each
vertex X of the circumscribing is viewing a side VW of the circumscribed by an
angle φ, which is also adjacent to the side VW of the circumscribed quadrangle.
We could call this phenomenon an “adjacent angle side viewing” of the vertex X
and use for it the acronym ASV. Thus, for these two types all four vertices have
the ASV property. The next two {q(C)+, q(D)+} are the only circumscription
types which have no vertices with the ASV property. Finally, for all other types the
ASV property is valid for precisely two vertices lying oppositely. The following
discussion shows that self-pivoting quadrangles with the same number of ASV
vertices have some common geometric properties, e.g. the types {q(C)+, q(D)+}
consist of trapezia of a particular kind (section 7).

4. The types q(A)+ and q(B)+

The symbol q(A)+ resp. q(B)+, represents the pivotal circumscription of a
quadrangle by one similar to itself and equally oriented, opposite to side AB hav-
ing the angle ̂A resp. ̂B. Figure 8 shows an example of the type q(B)+. The
characteristic of q(B)+ is that the circle κ1 carrying the vertices B is tangent to
B1C1, the circle κ2 carrying the vertices C is tangent to C1D1 and so on. The type
q(A)+ would change the meaning and orientation of these circles, i.e. κ′1 would
carry the vertices of angles ̂A and would be tangent to A1D1, κ′2 would carry the
vertices of angles ̂B and would be tangent to A1B1 and so on. For these two
types, the circumscribing quadrangle q can take the position and become identical
with the circumscribed q1. In the case q(B)+, shown in the figure, the tangency
of the circles to corresponding line-sides of the quadrangle implies that the angles
{ ̂BA1B1, ̂CB1C1, . . .} are equal. For the same reason also the lines from the pivot
P to the vertices, make with the sides equal angles

̂PA1B1 = ̂PB1C1 = ̂PC1D1 = ̂PD1A1 = ω.
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Figure 8. Self-pivoting of type q(B)+

This is reminiscent of the way the Brocard points of a triangle are defined. In fact,
if the quadrangle ABCD is cyclic, then the property of self-pivoting of type q(A)+

or q(B)+ is known to be equivalent with the harmonicity of the quadrangle ([6]).
In this case the two types occur similtaneously, i.e. if the quadrangle is harmonic,
then it is also simultaneously pivotal of type q(A)+ and q(B)+. And if it is cyclic
and pivotal of one of these two types, then it is pivotal of the other type too. The
corresponding pivots are then the two, so called, “Brocard points” of the harmonic
quadrangle ([13]) and the angles ω for the two pivotal circumscriptions coincide
with the, so called, “Brocard angle” of the harmonic quadrangle. Next theorem
gives a related characterization of the harmonic quadrangle, without to assume that
it is cyclic, but deducing this property from the possibility to have simultaneously
the two types of pivoting.

Theorem 2. A convex quadrangle q1 = A1B1C1D1 is harmonic, if and only if it
is simultaneously self-pivoting of type q(A)+ and q(B)+.

Proof. By the preceding remarks, it suffices to show that, if the quadrangle is si-
multaneously self-pivoting of type q(A)+ and q(B)+, then it is cyclic. For this
we use the remark also made in section 2, that the diagonal AC of a pivoting
quadrangle passes through a fixed point F1 lying on the diagonal A1C1 of the cir-
cumscribed quadrangle q1. This is seen in figure 9-I for the pivoting of type q(A)+.
The crucial step in the proof is to show that the pivoting of type q(B)+ has the cor-
responding F ′

1 on A1C1 identical with F1. This is seen by considering a particular
position of the q(A)+ pivoting, seen in figure 9-II. For this position the diagonal
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Figure 9. Simultaneous self-pivoting of types q(A)+ and q(B)+

AC of the pivoting intersects the circle κ′4 of the q(B)+ pivoting at a point A′.
This point, taken as vertex of the q(B)+ pivoting quadrangle q′ = A′B′C ′D′,
shows that the diagonals {A′C ′, AC} of the quadrangles q′ and q = ABCD co-
incide. Thus, both diagonals pass through the same fixed point of A1C1, thereby
proving the coincidence F ′

1 = F1.
The last step, in proving that q is cyclic, follows by considering also special

positions for the pivoting quadrangles of the two types. These positions are seen in
figure 9-III. The quadrangle q is now taken so that its vertex B coincides with C1,
the vertex A obtaining then a position on B1C1. For the pivoting quadrangle q′ we
choose then the position for which A′ is the intersection of CD with the circle κ′4,
carrying the vertices A′ from which A1D1 is seen under the angle ̂A1. It is easily
verified that the points {D,A′, D1, D

′, C} are then collinear. Besides, the circles
{κ′4, κ3} pass both through F1 and the quadrangles {A′A1F1D1, D1F1C1C} are
cyclic. Considering the angles of these quadrangles, we see that {A′B′, CB} are
parallel

̂A′ + ̂C = ̂D1F1C1 + ̂D1F1A1 = π,

which is equivalent with ̂A+ ̂C = π and proves the theorem. �

In the rest of this section we describe a general procedure, which, starting with
an arbitrary triangle, produces, under some restrictions, general self-pivoting quad-
rangles of types q(A)+ or/and q(B)+, not necessarily cyclic. We call the cor-
responding angle ω = ̂PA1B1 = ̂PB1C1 = . . . the “Brocard Angle” of the
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Figure 10. A second self-pivoting of the same type q(B)+

pivotal circumscription (See Figure 10). First we formulate a simple lemma show-
ing that a self-pivoting quadrangle of this two types is related to other self-pivoting
quadrangles of the same type and the same Brocard angle. The lemma, formulated
for brevity as a property of the circle κ4 and the type q(B)+, holds analogously for
the type q(A)+, and in both cases the circle κ4 can be replaced, with the necessary
adaptation, by any one of the circles {κi}.

Lemma 3. If the circle κ4, of a self-pivoting quadrangle q1 of type q(B)+, which
is tangent to the side A1B1, has a second intersection D′

1 with the opposite side
C1D1, so that q′1 = A1B1C1D

′
1 is convex, then this is also a self-pivoting quad-

rangle of the same type, with the same angles as q1, and the same Brocard angle.

Proof. Referring to the case of figure 10, all that is needed here is to show that
the points {D,D′

1, A} are collinear, which follows from a trivial angle chasing
argument. The quadrangle q′1 = A1B1C1D

′
1 has the same angles with q1, the

two angles at {B1, C1} being identical and the angles at {A1, D
′
1} being those at

{A1, D1} permuted. �
Corollary 4. The two quadrangles {q1, q′1} of the preceding lemma, if they exist,
they are completely determined by the triangle A1B1P and the position of C1 on
the tangent ε of the circumcircle κ1 at B1.

Proof. In fact, the given point C1 determines the circle κ2. The circle κ4 is deter-
mined by its property to be tangent to A1B1 at A1 and the points {D′

1, D1} are the

intersections of circle κ4 with the tangent of κ2 at C1. The angle ̂PA1B1 of the
triangle is the Brocard angle of the circumscription of this type. �
As is suggested by the lemma and its corollary, not every triangle τ = A1B1P
allows the determination of two points {D1, D

′
1}, defining the two corresponding

self-pivoting quadrangles. Depending on the angles of the given triangle τ and
especially on the angle ω = ̂PA1B1, destined to play the role of the Brocard
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Figure 11. Existence of self-pivoting quadrangles

angle, we may have one, two or none of these points in existence. In fact, consider
the points C1 varying on the tangent ε at B1 to the circumcircle κ1 of τ (See Figure
11). Then, by the well known Newton’s method to generate conics ([15, p.259], [5,
I,p.44]), the lines η, making with PC1 the constant angle ω, envelope a parabola
σ with focus at P and tangent to ε. If this parabola has κ4 totally in its inner
region, then its tangents cannot have common points with κ4, i.e. there are no
points {Di}. If σ touches κ4, then there is only one line η intersecting the circle
κ4, i.e. the points {D1, D

′
1} coincide and we have one solution only. Finally, if
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Figure 12. Case in which κ4 intersects the parabola
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the circle and the parabola intersect at two points, the common tangents to {σ, κ4}
define corresponding contact points {T1, T2} of the circle, contact points {S1, S2}
of the parabola and two points {C ′

1, C
′′
1} on ε (See Figure 12). The tangents η =

C1S of σ intersect κ4 only if C1 is in the interval C1 ∈ [C ′
1, C

′′
1 ] ⊂ ε. For the

points C1 ∈ (C ′
1, C

′′
1 ) of the open interval we have two solutions, whereas at the

end points {C ′
1, C

′′
1 } of this interval we have one solution only. Figure 12 shows

the special self-pivoting quadrangle having C1 = C ′
1 and D1 identical with the

corresponding contact point T1 of the common tangent η1 with κ4. Notice that the
circle κ4 cannot be completely outside of the parabola, since it passes through the
focus P of it. Hence, the cases considered above exhaust the possibilities that may
occur, concerning the existence or not of self-pivoting quadrangles of type q(B)+,
defined from a triangle AB1P using this recipe.

5. The Brocard angle

In the previous section we defined the Brocard angle of a pivotal circumscription
of a quadrangle of the types q(A)+ and q(B)+. This angle is intimately related to
the aforementioned generation of parabolas, resulting by varying an angle of fixed
measure ([4, p.28]). Figure 13-I shows a consequence of this relation. Here we
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Figure 13. The circles {κ4} for A1 ∈ κ1 generate a cardioid

start with a parabola σ and the tangent t at a point B1 of it. For every point C1 on
t the, other than t, tangent to the parabola from C1 makes with the line PC1 the
same constant angle ω = ̂PA1B1. The circle κ1 is defined by its property to be
tangent to σ at B1 and pass through the focus P of the parabola. The points A1

of κ1 view the segment PB1 under the fixed angle ω = ̂PA1B1. If there were a
pivotal quadrangle of type q(B)+ with Brocard angle ω, then this would produce
such a figure, with the circle κ4 intersecting the parabola. By its definition, the
circle κ4 is tangent to A1B1 at A1 and passes through P . By the discussion in the
previous section, in order to have a pivotal circumscription with Brocard angle ω, it
is necessary and sufficient to have a place of A1 on κ1, such that the corresponding
circle κ4 intersects the parabola. By varying the position of A1 on κ1, we obtain a
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one-parameter family of circles κ4, which will be seen below to envelope a cardioid
tangent to σ at B1 ([1], [11, p.34], [10, p.118], [14, p.73]). Then, the condition of
existence of a circle κ4 intersecting the parabola appears to be equivalent with the
existence of an intersection point of the cardioid and the parabola, other than B1.
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Figure 14. Seeking the position of the cardioid relative to the parabola σ

In the sequel we determine the position of the cardioid, relative to the parabola,
showing that the value π/4 of the Brocard angle ω plays an important role, sepa-
rating the intersecting from the non-intersecting cases. We start with the case case
ω = ̂PA1B1 > π/4, the case ω < π/4 allowing a similar handling. For this,
consider the tangent at the vertex D of the parabola σ, intersecting the tangent t
at the point C1 (See Figure 14). Let also L be the intersection point of the axis
ε of the parabola with the line B1A0, where A0 is the diametral point of B1 on
κ1. The quadrangle LB1C1D is cyclic and, since all tangents of σ intersect line
t at points C1 making with PC1 the angle ω, the lines {LB1, PC1} are parallel.
Using this and measuring the angles at A0, we find that ̂A0PL = 2ω − π/2. On
the other side, the center K of the circle κ4 is on the medial line of PA1 and since
κ4 is tangent to B1A1 at A1, the line A1K passes through A0. From the aforemen-
tioned tangency follows also that the angle ̂A0KT = ω, point T being the center
of κ1. Thus, the center K of κ4 is viewing the fixed segment A0T under the fixed
angle ω. This implies that, as A1 changes its position on κ1, the center K, of the
corresponding circle, moves on a circle κ0 passing through the points {A0, T, P}.
Thus, all circles κ4 represent one of the standard ways to generate a cardiod, by
fixing a point P on a circle κ0 and for every other point K on κ0 drawing the circle
κ4(K, |KP |) ([11, p.35]). The cardioid is then the envelope of all these circles
{κ4}. It is also well known that the line, which is simultaneously tangent to the
cardioid and the generating it circle κ4, is the symmetric of the tangent of the circle
κ4 at P w.r. to the tangent of the circle κ0 at the center K of κ4. Later applied to
κ1, which represents a special position of κ4, shows that the line t is also tangent
to the cardioid. Concerning the location of the center S of the circle κ0, we notice
that the angle ̂A0SP = 2π−4ω, which implies that ̂SPA0 = 2ω−π/2 = ̂A0PL.
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A short calculation shows also that the radius of κ0 is

|PS| = |PB1|
(2 sin(ω))2

=
|PD|

4 sin(ω)4
.

From this follows immediately that

|PS| < |PD| precisely when ω > π/4. (1)

On the other side, the cardioid is intimately related to the parabola, since, as is well
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Figure 15. The associated cardioid τ of the parabola σ

known, the cardioid is the inverse of a parabola, the center of inversion taken at the
focus of the parabola ([16, p.91,p.131]). Figure 15 shows the result of inversion
of the parabola with equation x2 = 4ay, relative to the axis {η, ε′}, consisting of
the tangent at the vertex and the axis of the parabola. The inversion is done w.r. to
the focus O and the circle with diameter the latus rectum AA′ of the parabola and
produces the cardioid τ ′. Of interest for our discussion is the reflection τ of τ ′ w.r.
to the latus-rectum line ε. This cardioid τ is tangent to the parabola at {A,A′}.
It is also generated as the envelope of the circles {κ4(S, |SO|)}, for the points S
of the circle κ(K, a), where K is the symmetric of the vertex of the parabola w.r.
to its focus O. All these facts are consequences of straightforward calculations,
which I leave as an exercise. I call τ the “associated to the parabola cardioid”. A
short calculation w.r. to the system with axes {ε, ε′} shows also that corresponding
points {P,Q} on {τ, σ} with the same polar angle θ are represented by

r = OP = 2a(1+sin(θ)), r′ = OQ =
2a

1− sin(θ)
⇒ r′−r =

2a sin(θ)2

1− sin(θ)
.

(2)
This shows that the cardioid τ is completely inside the inner domain of the parabola,
containing the focus, touching the parabola only at the points {A,A′}.
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Figure 16. The two parabolas and their associated cardioids

Figure 16 combines the results of the preceding discussion and illustrates the
arguments for the proof of the next theorem. The cardioid generated by the cir-
cles {κ4} is now denoted by τ ′, whereas τ denotes the associated cardioid of the
parabola σ. The two cardioids are connected with a similarity f with center P ,
mapping τ onto τ ′. Point P and the symmetric S′ of the center S of the circle κ0
w.r. to P are respectively the focus and the vertex of a parabola σ′, whose associ-
ated cardioid is τ ′. The similarity f has its center at P , its angle is χ = ̂DPS′ and
its ratio is k = PS′/PD. It is easily seen, that this similarity maps the parabola σ
onto σ′ and τ onto τ ′.

With this preparation, we can now prove that the cardioid τ ′ has no other than B1

intersection point with the parabola σ. In fact, assume that X is a point common to
σ and τ ′. Consider then the point Y on the position radius PX , lying on τ . From
equation 2 we know that Y is between the points {P,X}. Consider now points
{X ′ = f(X), Y ′ = f(Y )}. The order relation is preserved by f . Thus, Y ′ is again
between the points {P,X ′}. But since X is an intersection point X ∈ σ ∩ τ ′, its
image X ′ = f(X) must be a point lying between {P, Y ′}, which is not possible
if X �= B1. Thus, we have proved that if ω > π/4, then there is no other than B1

point of intersection of the cardioid τ ′ with the parabola σ. An analogous argument
for ω < π/4 shows that there is indeed such an intersection of the corresponding τ ′
with σ. Finally for ω = π/4, the cardioid τ ′ coincides with the associated cardioid
of σ and for this Brocard angle the corresponding self-pivoting quadrangle is easily
seen to be a square. Summarizing the previous arguments, we arive at the proof of
the following theorem.
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Theorem 5. The Brocard angle of a self-pivoting convex quadrangle of the type
q(A)+ or q(B)+ is less or equal to π/4, the equality being valid only for the
square.

6. Types q(A)+ and q(B)+ with three equal angles

Here we continue the analysis of figure 12, of a self-pivoting quadrangle of type
q(B)+, taking into account general properties of parabolas ([2, p.21], [4, p.28],
[17, p.133]), and noticing that the triangles {B1C

′
1P, PC ′

1S1} are similar. Thus, in
the case the circle κ4 and the parabola σ are tangent, then all four points {Si, Tj}
coincide, the three triangles {B1PC1, C1PD1, D1PA1} are similar and three of
the angles of the quadrangle are equal. The proof of the following theorem, formu-
lated for the type q(B)+, gives a recipe to construct such self-pivoting quadrangles
with three equal angles. The analogous theorem for q(A)+ is also valid. The nec-
essary formulation, as well as minor adaptations and changes for its proof, are left
as an exercise.

Theorem 6. The case, of a self-pivoting quadrangle of type q(B)+, in which the
circle κ4 is tangent to the parabola σ and the triangles {B1PC1, C1PD1, D1PA1}
are similar, is, up to similarity, completely determined by the angle φ of the trian-
gles at the pivot point P .

C

D

Bt

A

At

Pt

B

κ1
κ2

κ3

κ4

Α'φ

ξ

Gt

D'

Figure 17. Self-pivoting quadrangle of type q(B)+ with three equal angles

Proof. Figure 17 shows the recipe to construct such a self-pivoting quadrangle of
type q(B)+, up to similarity and from a given angle φ at P . The construction
starts with a circle κ3 and a chord of it CD, viewed from points of the circle
under the angle φ or its supplement. Taking such a point Pt ∈ κ3, we define
the similarity transformation ft ([3, ch.IV]) with center at Pt, rotation angle φ
and similarity ratio kt = PtC/PtD. The image Bt = ft(C) of C under the
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similarity defines the triangle PtBtC ∼ PtCD and applying ft once more we
obtain At = ft(Bt) = f2

t (C) and the triangle PtAtBt ∼ PtBtC. As Pt varies on
the circle κ3, the corresponding point At = f2

t (C) moves on a parabola ξ. This is
an immediate consequence of two facts. The first, following from a simple angle
chasing argument, is that the line AtBt makes the angle φ with the tangent CB of
κ3 at C. The second fact, following directly from the definitions, is that the ratio
AtBt/BtC = kt.

Combining these two facts, we can find a simple parametrization of the variable
point At, showing that it moves on a parabola. For this we use the bisector PtGt

of the angle φ at Pt, which divides the side CD at the ratio kt = t/(a− t), where
a = CD. Then setting x = CBt and y = BtAt, we see that

x

a
= kt =

t

a− t
,

y

x
= kt ⇒ x = a

t

a− t
, y = a

t2

(a− t)2
,

which is a parametrization of a parabola in oblique axes. The point A is an intersec-
tion of the parabola with the tangent DA of κ3 at D and point B is the intersection
of CB with the parallel to AtBt, making with BC the angle φ. From its defini-
tion follows that the quadrangle ABCD is self-pivoting of type q(B)+ with pivot
P , coinciding with the second intersection of the circles {κ3, κ2}, where κ2 is the
circle tangent to CD at C, passing through B. �

It is easy to see that if φ = π/2, then the quadrangle ABCD is a square. In
general, since the three angles of the quadrangle are equal to π− φ, the magnitude
of the angle is restricted by the inequalities for the fourth angle at D

̂D = 2π − 3(π − φ) = 3φ− π and 0 < ̂D < π ⇒ 60◦ < φ < 120◦.

C

D
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B

κ1
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κ3

κ4

Α'

D'

P

Figure 18. The similar quadrangles ABCD ∼ BCDA′ ∼ D′ABCD

Figure 18 shows another characteristic of this class of quadrangles, determined,
up to similarity from an angle φ satisfying the above restriction. The other in-
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Figure 19. Self-pivoting quadrangle from a regular pentagon

tersection points {A′, D′} of the two circles {κ1, κ4} correspondingly with sides
{AD,DC} define similar quadrangles ABCD ∼ BCDA′ ∼ D′ABC.
It is also easily verified that the new quadrangles are self-pivoting about the same
point P with the original one. Figure 19 shows one more example of a self-pivoting
quadrangle of the type q(B)+. It is the one with three angles equal to 108◦, the
angle of the regular pentagon. By the previous restriction for the angles and the
discussion so far, follows that the rectangle and the pentagon are the only regular
polygons, whose angles may appear in this kind of self-pivoting quadrangles. No-
tice that in this case the axis of the parabola ξ is parallel to the line KL, which is
parallel to a diagonal of the pentagon.

7. Self-pivoting quadrangles of types q(C)+ and q(D)+

As noticed in section 3, these two types of self-pivoting quadrangles have similar
arrangements of vertices, leading to identical geometric properties. For this reason
we confine our discussion to one of them, the type q(C)+, and make some remarks
on the differences for the related type q(D)+, at the end of the section. In the type
q(C)+ the circumscribing q, which is similar to the circumscribed q1, has opposite
to A1B1 the angle ̂C and the orientation of the two quadrangles is the same. Next
theorem shows that the requirement of self-pivoting of this type is quite restrictive
for the quadrangle.

Theorem 7. A convex self-pivoting quadrangle of the type q(C)+ is necessarily a
trapezium of a special kind, for which the circles {κ2, κ4} are equal. The trapezium
in this case defines another isosceles trapezium inscribed in κ2 called the “core”
of q. Each isosceles trapezium is the core of two, in general, different trapezia,
which are self-pivoting of type q(C)+.
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Figure 20. Self-pivoting quadrangle of the type q(C)+ is a trapezium

Proof. Figure 20 shows a quadrangle of this type together with the corresponding
isosceles trapezium τ = QSB1P , which is the core of the quadrangle q1. In
order to define it, start with q1 and consider the second intersection points {S, T}
of {κ2, κ4} respectively with {A1B1, C1D1}. A simple angle chasing shows that
lines {C1S,A1T} are respectively tangent to the circles {κ3, κ1}. For A1T this
follows from the equality of angles

̂CB1A1 = ̂CF1A1 = ̂C1F1A = ̂C1D1A = ̂BD1T = ̂BA1T .

Analogously is seen the other tangency. This implies that C1TA1S ∼ ABCD
is a position of the pivoting quadrangle ABCD. The similarity of the triangles
A1B1C1 ∼ ABC implies then that ̂B1A1C1 = ̂A1C1T , which shows that the
lines {A1B1, C1D1} are parallel. From this follows immediately that SC1D1A1,
B1C1TA1 are parallelograms and {SB1C1, D1TA1} are equal triangles. This
implies in turn that the circles {κ2, κ4} are equal, since the equal segments {C1S,
D1A1} are respectively seen from {B, T} under equal angles.

Combining these facts, we see that the whole figure can be reproduced from the
two glued, equal to the core, isosceli trapezia {B1SQP,QPD1T}. In fact, if we
start from these two equal trapezia and their circumcircles {κ2, κ4}, then the miss-
ing vertices {A1, C1} can be defined as intersections of these circles respectively
with the lines {BS,D1T}. Figure 21 shows how the self-pivoting trapezium is
defined from the isosceles trapezium B1SQP . In fact, starting with the arbitrary
isosceles trapezium B1SQP we define its symmetric QPD1T w.r to the middle O
of the non parallel side PQ. The missing vertices lie on respective circumcircles
of the trapezia and are symmetric w.r. to O. Thus, there result two acceptable solu-
tions {A1B1C1D1, A

′
1B1C

′
1D1} i.e. self-pivoting quadrangles of the type q(C)+

about the point P . �
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Figure 21. The two cases defined by the trapezium ABCD
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Figure 22. Self pivoting quadrangle of the type q(D)+

The arguments used in the discussion of the type q(C)+ apply almost verba-
tim to the case of q(D)+ and lead to a similar result. The quadrangle is again a
trapezium of the kind, referred to in the previous theorem.

Theorem 8. A convex self-pivoting quadrangle of the type q(D)+ is necessarily a
trapezium of the special kind, considered in theorem 7.

Figure 22 shows a characteristic case of a self-pivoting of type q(D)+. The
only difference is in the arrangement of parallel sides. Here the parallel sides are
{A1D1, B1C1}, whereas in the previous case the parallels are {A1B1, C1D1}.

Corollary 9. The only self-pivoting convex quadrangle w.r. to all types of positive
pivoting is the square.
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Proof. By positive pivoting we mean the types {q(A)+, q(B)+, qC)+, q(D)+}. If
the quadrangle q1 is of the first two types simultaneously, then, by theorem 2 it is
harmonic. If it is also simultaneously of the two last types, then, by the theorems
of this section, it is also a parallelogram. But the only harmonic parallelogram is
the square. �

8. Self-pivoting of types {q(A)−, q(B)−, q(C)−, q(D)−}
These four types of self-pivoting quadrangles, have some common traits, noticed

in section 3. They are precisely the types that have exactly two opposite vertices
with the ASV property. The main consequence of this is given by the next theorem.

B=A1
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D=C1

D1

A

C

(I) (II)

κ1

κ3

A1

A=B1

C1

B

C=D1
D

κ1

κ3

Figure 23. {q(A)−, q(B)−} have two opposite vertices with the ASV property

Theorem 10. The self-pivoting quadrangles of the types q(A)−, q(B)−, q(C)−,
q(D)− are cyclic.

Proof. The proof relies on the fact, that the vertices of the circumscribing pivot-
ing quadrangle q = ABCD with the ASV property move on circles which are
tangent to two opposite sides of the circumscribed quadrangle q1 = A1B1C1D1

(See Figure 23). Working with the type q(A)−, we notice that there is a posi-
tion of the circumscribing q, for which we have identification of two opposite
vertices with corresponding two vertices of the circumscribed q1. The vertices
are B = A1 and D = C1 (See Figure 23-I). Consequently also the side-lines
{A1D1 = BC,B1C1 = AD}. This is valid also in the case of type q(B)− (See
Figure 23-II), and also in the remaining two types. This identification of vertices
and side-lines is, more generally, valid also in the case the two quadrangles {q, q1}
have the same angles and the correct arrangement of the angles, according to the
circumscription type under consideration, even if they are not similar, as is the
case with the two configurations for q(A)− and q(B)− in figure 23. If however
the quadrangles {q, q1} are similar, then the side CD resp. C1D1 is viewed from
the vertices {A,A1 = B} resp. {A1, A = B1} under the same angle. This proves
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that the quadrangles are cyclic for the two types {q(A)−, q(B)−}, the proof for the
remaining two types being exactly the same. �

B=A1

B1

D=C1
D1

C

A

κ1

κ3

κ4
κ2

Figure 24. Trying to draw a quadrangle of type q(A)−

Figure 24 shows how to draw a cyclic quadrangle q1 and a particular circum-
scribing q of the type q(A)− allowing a quick construction of the circles {κi}.
The condition on the angles implies that (A1B1, CD) and (AB,C1D1) are pairs
of parallels. It is also easily seen, that drawing in an arbitrary cyclic quadran-
gle q1 parallels {A1A,C1C} to opposite sides we obtain a new cyclic quarangle
q = ABCD, with the same angles as q1. Figure 24 shows such a general construc-
tion from an arbitrary cyclic quadrangle q1. In order to obtain a self-pivoting one
we must succeed to have four points coincident. These are the second intersections
of adjacent circle pairs {κ1 ∩ κ2, κ2 ∩ κ3, . . .}, their quadrangle shown also in the
figure. Next theorem shows how this is done. The proof again is given in detail
only for the type q(A)−, the other cases allowing a completely analogous handling.

Theorem 11. The self-pivoting quadrangles of type q(A)−, q(B)−, q(C)−, q(D)−
are necessarily cyclic quadrangles. Given a cyclic quadrangle q0, there is, up to
similarity, precisely one self-pivoting quadrangle q1 of each of these types, with the
same angles and the same succession of angles as q0.

Proof. The first part of the theorem follows from the preceding discussion. To
show the second part for the type q(A)−, we consider the arbitrary fixed convex
cyclic quadrangle q0 = A0B0C0D0 and the family of other cyclic quadrangles q′ =
ABC0D0, produced by varying one of its sides (AB) parallel to itself (See Figure
25). In order to locate the self-pivoting among all these quadrangles we exploit
the fact that, for this type of self-pivoting, the circles {κ1, κ3, κ4} are respectively
tangent to {A0D0, B0C0, AB

′} at the points {A,C0, A}, where AB′ is parallel
to C0D0. In this case the self-pivoting quadrangle results when, for varying A
on ε = A0D0, the second intersection point P of the circles {κ1, κ4} takes a
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Figure 25. Seeking a self-pivoting quadrangle of type q(A)− with given angles

position on the circle κ3. But as the point A varies on ε, the lemmata below show
that the corresponding point P describes a cubic curve ζ having a singular point
at D0 and intersecting the circle κ3 at two other points {P ′, P ′′}, leading to two
similar quadrangles with the desired properties. The determination of the whole
quadrangle from the point P is trivial, since the angle

δ = ̂A0D0C0 = ̂D0PA = ̂APB′,

remains constant for all positions of P . Hence, having the position of P , we can
draw the angle ̂D0PA = δ and find the position of A, from which the parallel to
A0B0 determines the whole quadrangle.
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Figure 26. The cubic determining the self-pivoting q1 = A1B1C1D1 of type q(B)−

The proof for the other types is the same. Figure 26 shows e.g. the correspond-
ing cubic for the type q(B)−. In this case the cubic is the geometric locus of the
second intersection points {P} of the circles {κ1, κ2}, circle κ1 being tangent to
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B1C1 at B1 and passing through A1, as B1 moves on line C1B0. The circle κ2
is tangent to the parallel B1B

′ to C1D1 and passes through C1. Here we start
again from an arbitrary cyclic quadrilateral A0B0C1D1 and draw parallels A1B1

to A0B0 seeking the position of B1, which defines the self-pivoting quadrangle q1.
The figure shows the appropriate position of the pivot P , which is the intersec-
tion of the cubic with κ3. It shows also a pivoting quadrangle q = ABCD ∼ q1
circumscribing q. �

In the rest of this section we discuss in detail the case of the cubic ζ related to
the type q(A)−, the arguments for the cases {q(B)+, . . .} and the cubics related to
these types being completely analogous.
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Figure 27. The cubic carrying the points P

Lemma 12. Under the notation and conventions of theorem 11, for the type q(A)−,
the intersection point P of the circles {κ1, κ4} describes a cubic curve.

Proof. Referring to figure 25, we use cartesian coordinates with origin O at the
vertex D0 of the quadrangle q0 and identify the x−axis with the line D0A0. The
line AB moves parallel to itself with A on the x−axis. Also B is on the fixed line
ε = A0B0. The point P is on the circle κ1, which is tangent to the x−axis at A
and passes through B. It is also on the circle κ4, which is tangent to AB at A and
passes through the origin O. Now we consider the inversion f w.r. to a fixed circle
λ centered at O (See Figure 27). By this the image ε′ = f(ε) is a fixed circle,
κ′1 = f(κ1) is a circle tangent to the x−axis and intersecting the circle ε′ under
a fixed angle, and κ′4 = f(κ4) is a line passing through A′ = f(A) and having a
fixed direction. Thus the inverted P ′ = f(P ) is the intersection of a line κ′4 and a
circle κ′1 passing though A′ tangent there to the x−axis and cutting the fixed circle
ε′ under a fixed angle. Next lemma shows that the geometric locus ζ ′ of such points
P ′ is a parabola passing through the origin and having the form

(px+ qy)2 − rx− sy = 0.
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This, taking again the inverted in the form (x, y) = f(x′, y′) = k(x′, y′)/(x′2 +
y′2), with a constant k, shows that the inverted of the parabola ζ = f(ζ ′) satisfies
the cubic equation

k(px+ qy)2 − (rx+ sy)(x2 + y2) = 0.

�

Lemma 13. A point A moves on the fixed line ε, and the line η through A has a
fixed direction. The circle κ(X, r) is tangent to ε at A and intersects a fixed circle
λ(K, r0) passing through O ∈ ε under a fixed angle φ. Then, the geometric locus
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r=|y|

Figure 28. The parabola of points B

of the second intersection point B of η and κ is a parabola through the point O.

Proof. Using the point O as origin and the line ε as x−axis of a cartesian coordi-
nate system, in which K = (x0, y0), we find that the center X of the variable circle
κ satisfies the parabola equation (See Figure 28)

x2 − 2x0x− 2(y0 − r0 cos(φ))y = 0.

On the other side the intersection point B(x′, y′) of κ and the line η in fixed direc-
tion can be expressed in terms of X(x, y) and a fixed unit vector e = (e1, e2) by
the equations

B = X + ye ⇔ x′ = x+ ye1, y′ = y + ye2.

This means that B describes the affine transformation of a parabola, which is also
a parabola with the desired properties. �

Lemma 14. Under the notation and conventions of this section, the two quadran-
gles, created from the intersection points {P ′, P ′′} of the cubic ζ, of theorem 11 for
the type q(A)−, with the circle κ3, are similar and inversely oriented. The points

{P ′, P ′′} are isogonal conjugate w.r. to the angle ̂C1ED1.
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Figure 29. The two similar quadrangles of type q(A)−

Proof. The fact that there are precisely two such intersection points follows from
the geometric definition of the points P of the cubic ζ. The cubic has a singular
point at D1 and its limit tangents at D1 from the two branches coincide with the
line ξ, which is symmetric to D1C1 w.r. to D1A1 (See Figure 29). The circles
{κ4, κ′4, . . .} for the various positions of P are members of the pencil of circles
tangent to ξ at D1. This implies geometrically that there are two intersection points
of the cubic with κ3 lying on either sides of ξ. It is also easily seen geometrically
that the two resulting solutions are similar and inversely oriented. That there are
no more intersection points follows from the fact that the cubic and the circle κ3
are inverses under f respectively of a parabola and a line, which can have no more
than two intersection points. �

9. Self-pivoting quadrangles of type q(C)−

In the previous section we saw that a self-pivoting quadrangle, whose type coin-
cides with one of {q(A)−, q(B)−, q(C)−, q(D)−}, is necessarily cyclic. We saw
further that, given a convex cyclic quadrangle q0, there is, up to similarity, precisely
one self-pivoting quadrangle q1 of each one of these types, with the same angles
and the same succession of angles as q0. Next theorem shows that this q1, in the
case of the type q(C)−, satisfies a stronger condition.

Theorem 15. The only self-pivoting quadrangles of type q(C)− are the harmonic
quadrangles.

Proof. Constructing the self-pivoting of this type by the method of the previous
section, we start with an arbitrary cyclic quadrangle q0 = A0B1C1D0, with fixed
given angles, and an arbitrary point D1 moving on the line C1D0. From D1 we
draw the parallel D1A1 to D0A0 and consider the variable circles κ3 tangent to
D1A1 at D1 and passing through C1 and κ4 tangent to C1D1 at D1 and passing
through A1. Their intersection point P describes, as D1 moves on C1D0, a cubic ζ.
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Figure 30. Constructing a quadrangle of type q(C)−

This is exactly the same situation as in the preceding section. The difference from
that is now that the similar triangles {PC1D1, PD1A1} have their angle at P equal
to ̂B1, while in the previous case this angle was equal to ̂C1. The equality of the an-
gles implies now that the intersection point P of the cubic with the fixed circle κ2,
which is tangent to B1A1 at B1 and passes through C1, is on the diagonal B1D1.
This follows trivially from the equality of the angles ̂B1PC1 = π − ̂C1B1A1.
Then, an equally simple angle chasing argument shows that the two similar trian-
gles {PC1D1, PD1A1} are also similar to the triangle A1B1C1, which is a char-
acteristic property of the harmonic quadrangles ([12]). �

There are several partial results that could be produced as corollaries of the
previous disccussion. Corollaries concerning self-pivoting of quadrangles w.r. to
combinations of some types, or/and corollaries concerning such combinations and
some particular kinds of quadrangles, like rectangles, parallelograms, trapezia etc,
all left as exercises for the interested reader.
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