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I am among those who think that science has great
beauty . . . A scientist in his laboratory is not only a
technician but also a child placed in front of natural
phenomena which impresses him like a fairy tale.

E. Curie, Madame Curie p.341
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1 Definition and group property

Considering the case of two dimensions, “Affine transformations” or “Affinities” are invert-Affinity
ible transformations of the plane onto itself, which, fixing a coordinate system (not neces-
sarily orthogonal or having equal unit-lengths on the axes), are defined by an invertible
matrix {A, |A| = a11a22 − a12a21 , 0} and a vector v(v1, v2) ([Cox61, p.203]):

Y = f (X) = AX + v, with A =
(
a11 a12
a21 a22

)
y1 = a11x1 + a12x2 + v1,

y2 = a21x1 + a22x2 + v2.

}
(1)

Using the three dimensional extensions X ′ = (x1, x2,1) of points X(x1, x2) ∈ R2 and the
matrix

Av =
©«
a11 a12 v1
a21 a22 v2
0 0 1

ª®¬ =
(

A v

0 1

)
, (2)

equation (1) is equivalent with

Y ′ = Av · X ′ ⇔
©«
y1
y2
1

ª®¬ = Av
©«

x1
x2
1

ª®¬ . (3)

The determinants of Av and A, are equal and the inverse of Av is of the same form:

A−1v =
1

|A|
·
©«

a22 −a12 a12v2 − a22v1
−a21 a11 a21v1 − a11v2
0 0 |A|

ª®¬ =
(

A−1 −A−1 · v
0 1

)
,

which guarantees that this represents again an affine transformation. Also the product
(composition) of two such transformations, represented by the matrices {Av,Bw}, is of the
same form: (

A v

0 1

)
·

(
B w

0 1

)
=

(
AB Aw + v
0 1

)
.

These remarks imply easily the important property formulated as a theorem:

Theorem 1. The affinities of the plane form a group GA .Group
property

We say two shapes of the plane {A,B} are “affine equivalent”, if there is an affinity
mapping the first onto the second. The affine geometry of the plane deals with propertiesaffine

equivalent of shapes that remain the same (invariant) by affinities. For example, the middle of a
segment. We’ll see below that by an affinity a segment µ maps to a segment µ′ and its
middle M ∈ µ maps correspondingly to the middle M ′ ∈ µ′. We say in short: affinities
“preserve” the middles of segments.

Remark 1. There are successive extensions {GE ⊂ GA ⊂ GP} of the group of transfor-
mations defining the “equality” or “equivalence” of two shapes of the plane, the symbols
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standing respectively for the euclidean, the affine and the projective group of transforma-
tions. These groups can be represented by matrices in the form

Euclidean isometries: GE =

©«
cos(φ) ∓ sin(φ) a
sin(φ) ± cos(φ) b
0 0 1

ª®¬ , for φ,a, b ∈ R
 ,

Affinities: GA =

©«
a b c
k l m
0 0 1

ª®¬ , for a, b, c, k, l,m ∈ R
 ,

Projectivities: GP =

©«
a b c
k l m
p q r

ª®¬ , for a, b, c, k, l,m, p,q,r ∈ R
 .

In the two last groups we require also from the matrices to be invertible i.e. to have
non-zero determinants. In the last group also we consider that two matrices differing
by a non-zero multiplicative constant B = λ · A, λ , 0, define the same (projective)
transformation.

Analogous to the “affine equivalence” is the “congruence” of two shapes, meaning that
there is an euclidean isometry mapping one to the other. Finally, “projective equivalent”
are called two shapes for which there is a projectivity mapping one to the other.

The fewer parameters has the group, the more entities, the group acts upon, can be
distinguished as non-equivalent. Thus, the euclidean group, having only three param-
eters, distinguishes several kinds of hyperbolas, of ellipses and parabolas. The affine
group, with six parameters, cannot distinguish that many entities. For it all hyperbolas
are the same, i.e two hyperbolas, which from the euclidean aspect are different, can be
transformed, one to the other, via an affine transformation f ∈ GA and thus, can be con-
sidered to be the same thing. Ultimately, under this aspect, there is only one hyperbola,
one ellipse and one parabola. Finally, under the projective aspect, the previous three dif-
ferent kinds are unified and, ultimately, there is only one conic, the circle. In the following
sections we confine our study to the elements of the group GA of affine transformations
and properties of shapes preserved by affinities.

2 Determination of an affinity

Given three points of the plane {X,Y, Z}, the determinant of the corresponding matrix

XY Z = ©«
x1 y1 z1
x2 y2 z2
1 1 1

ª®¬ , |XY Z | := (y1z2 − y2z1) + (z1x2 − z2x1) + (x1y2 − x2y1),

if the coordinate frame is “orthonormal”, expresses twice the signed area of the triangle
XY Z ([Str88, p.239]). For a general (oblique) coordinate frame this is a multiple of the
area of the triangle. This implies that the three points are collinear precisely when this
determinant vanishes. Also applying the affinity to {X,Y, Z} we obtain three other points
{U,V,W} and we can describe this operation with a matrix multiplication:

UVV = Av · XY Z ⇒ |UVW | = |Av | · |XY Z | = |A| · |XY Z |.

This implies that if {X,Y, Z} are non-collinear(collinear) the same is true for {U,V,W}. In
addition, it follows that the quotient of the areas of two triangles is preserved by affinities.
By splitting a polygon in triangles, we conclude that affinities preserve the quotient of
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areas of two polygons. There is even a kind of affinities preserving the area. This, by
the last formula, happens when the determinant of the affinity is |A| = |Av | = 1. These
special affinities are called “equiaffinities”. The following theorems formulate the previousequiaffinity
remarks.

Theorem 2. An affine transformation maps collinear points to collinear and non-collinear topreserve
collinearity non-collinear points as well.

Corollary 1. An affine transformation maps a line of the plane onto a line of the same.lines map to
lines

Corollary 2. An affine transformation maps a genuine triangle to a genuine (non-degenerated)
triangle.

Theorem 3. For an affine transformation the image f (p) of a polygon p is a polygon with the
same number of sides and the ratio of the signed areas | f (p)|/|p| is a constant independent of the
particular polygon.

Corollary 3. An affine transformation preserves the quotient of areas of two polygons {p, p′}, i.e.quotient
of areas
preserved

| f (p′)|/| f (p)| = |p′ |/|p|.

The inverse of the matrix XY Z , for non-collinear points, is found to be

(XY Z)−1 =
1

|XY Z |
©«
y2 − z2 z1 − y1 y1z2 − y2z1
z2 − x2 x1 − z1 x2z1 − x1z2
x2 − y2 y1 − x1 x1y2 − x2y1

ª®¬ .
Thus, given two triples of non-collinear points {(X,Y, Z), (U,V,W)} the matrix equation

B · XY Z = UVW ⇔ B = UVW · (XY Z)−1,

has a unique solution and defines the matrix B, which, a short calculation shows to be of
the form of equation (2), thus defining an affinity. We formulate this as a theorem.

Theorem 4. Two triples of non-collinear points {(X,Y, Z), (U,V,W)} define a unique affinity faffinity from
3 to 3 pts mapping the first to the second: { f (X) = U, f (Y ) = V, f (Z) = W}.

This implies several other properties expressed by the next corollaries.

Corollary 4. Given two triangles ABC and A′B′C ′ there is precisely one affinity f mapping
the first onto the second, in the sense { f (A) = A′, f (B) = B′, f (C) = C ′}.

Corollary 5. An affinity mapping the vertices of a triangle ABC onto the same vertices is theidentity:
fix 3 pts identity transformation.

Corollary 6. Two affinities coinciding at three non collinear points (or the vertices of a triangle)
coincide at every other point of the plane and define the same transformation.

Corollary 7. Two lines of the plane are “affine equivalent”.

Corollary 8. Every triangle of the plane is “affine equivalent” to the equilateral.equilateral’s
universality

In section 20 we will show that two non-degenerate conics of the same type are affine
equivalent.
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3 Additional fundamental properties of affinities

Corollary 9. Two different parallel lines map by an affinity to two different parallel lines.parallels to
parallels

Proof. In fact, assume that the parallels {α, β} have images {α′ = f (α), β′ = f (β)} inter-
secting at the point C. Then, f −1(C) is a point on α ∩ β, which is a contradiction. �

Corollary 10. Two arbitrary parallelograms of the plane are affine equivalent, equivalently, every
parallelogram is affine equivalent to a square.

Proof. Consider the affinity f mapping the triangle ABC onto A′B′C ′. Then see that
f (D) = D′ (See Figure 1). �

A

B C

A'

B' C'

D D'

Figure 1: Parallelograms are affine equivalent

Corollary 11. If the affinity f maps the line α onto the line β, then the ratio of three points onratios
preservation α : CA/CB is the same with the ratio of their images on β : f (C) f (A)/ f (C) f (B) = CA/CB.

Proof. In fact, the point C ∈ α can be expressed as a linear combination

C = (1 − λ)A + λB ⇔ C ′ = (1 − λ)A′ + λB′,

the primes denoting the extended 3-dimensional points, and applying the affinity f on
C means multiplying C ′ by a matrix Av leading to

Av · C ′ = (1 − λ)Av · A′ + λAv · B′ ⇔ f (C) = (1 − λ) f (A) + λ f (B).

The proof follows from this and the general relation of CA/CB with λ :

C = (1 − λ)A + λB ⇔
CA
CB

=
λ

λ − 1
.

�

Corollary 12. If the affinity f maps the line-segment AB onto the line segment A′B′, then itmiddles
preservation maps also the middle M of AB onto the middle M ′ of A′B′. If the affinity interchanges the end-

points of a segment, i.e. { f (A) = B, f (B) = A}, then it fixes the middle M of AB : f (M) = M .

Given n points of the plane {Ai, i = 1...n} and n numbers {ti, i = 1...n,} the weighted
sum

A0 =
1∑
ti
(t1A1 + · · · + tnAn), (4)

is called “barycenter” of the system of masses {ti} attached to the points {Ai}. Using the
vectors {A′i = (xi, yi,1)} instead of {Ai(xi, yi)} and applying the method of corollary 11, we
prove easily next property formulated as a theorem.

Theorem 5. Affinities f preserve the barycenter of systems of weighted points of the plane, i.e.

A0 =
1∑
ti
(t1A1 + · · · + tnAn) ⇒ f (A0) =

1∑
ti
(t1 f (A1) + · · · + tn f (An)).
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Remark 2. Setting {t1 = t2 = ... = tn = 1}, point A0 = (A1 + . . . An)/n is the “barycenter” orcentroid or
barycenter “centroid” of the polyon A1A2...An and the theorem means that

“Affinities preserve the barycenter of polygons”.

Remark 3. Barycenters can be used to give an alternative definition of affinities. Accord-
ing to this: an affinity of the plane is a transformation which preserves barycenters.

Exercise 1. Show that an affinity preserves the “convexity” property of a polygon, which meansconvexity
preservation that if {X,Y } are points inside the polygon, then the whole segment XY is also inside.

Exercise 2. Given n points of the plane {Ai, i = 1...n} consider the function, which for every
point of the plane P defines m(P) =

∑
i |PAi |

2. Show that m(P) attains its minimum value at
the centroid A0 of the polygon A1...An ([Rya86, p.54]).

Corollary 13. An affinity of the plane mapping the triangle ABC onto itself leaves the centroid
G of the triangle fixed and maps each median line to another median line of the triangle.

G

A

B C
D

E

Figure 2: Fixing the centroid G of the triangle

Proof. It is obvious that an affinity leaving invariant a triangle permutes the vertices
of the same. Assume now that the affinity f defines such a permutation mapping
{ f (A) = B, f (B) = C, f (C) = A}. Then, the middle D of BC maps to the middle E = f (D)
of CA and the median AD maps to the median BE (See Figure 2). Then the equality of
ratios GA/GD = GB/GE = −2 shows that G maps onto itself. Analogous is the proof for
the other permutations of the vertices of ABC introduced by f . Alternatively, the result
follows from theorem 5 and the representation of the centroid:

G =
1

3
(A + B + C),

�

4 Special kinds of affinities

Using the general properties of affinities, discussed in the previous sections, we can de-
fine affinities in several ways, mainly using their determination by prescribing the images
{ f (A), f (B), f (C)} of three non-collinear points, which we may consider as the vertices of
a triangle. An important role in this endeavour play the “fixed points”, i.e. points such
that f (P) = P and the “invariant lines”, i.e. lines such that f (µ) = µ of an affine trans-
formation. By the previous discussion, we can have only {0,1,2} fixed points (invariant
lines) if the affinity f , e is different from the identity. From the preceding discussion
we deduce the following corollaries:

Corollary 14. If the affinity has one fixed point O, then it maps every line µ through O onto a
line f (µ) = µ′ through O.
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Corollary 15. If the affinity f fixes two points {A,B} of the line α then, it leaves the whole linetwo points
fixing invariant “fixing every point of the line”.

Corollary 16. If the affinity has one invariant line µ then it maps every line µ′ parallel to µ to
a line µ′′ also parallel to µ.

Corollary 17. If the affinity has two non-parallel invariant lines {µ1, µ2}, their intersection point
O = µ1 ∩ µ2 remains fixed and every parallelogram with sides parallel to these two lines maps to
a parallelogram with the same property.

Corollary 18. If the affinity has three pairwise non-parallel invariant lines {µ1, µ2, µ3}, then it
is the identity.

Besides the “equiaffinities” alluded to in section 2, the following special kinds of affini-
ties are often used as “fundamental”, to which decompose all other general affinities, in
the sense that the general f is written as a composition f = fn ◦ ... ◦ f1.

1. “Axial affinities” characterized by having a line of fixed points ([ea83, p.80], [Tar11,
p.116]).

2. “Affine reflections” kind of “axial affinities”.

3. “Strains” kind of “axial affinities” with a B = f (A) and AB intersecting the axis.

4. “Shears” kind of “axial affinities” with a B = f (A) and AB parallel to axis.

5. “Dilatations” mapping “every line to a parallel to it”.

6. “Symmetries” or “Half-turns” usual point-symmetries and kind of “Dilatation”

7. “Translations” kind of “Dilatation” without fixed points.

8. “Homotheties” kind of “Dilatation” with a fixed point.

9. “Affine glide reflections” product of an “affine reflection” and a “translation”.

10. “Hyperbolic rotations” 1 of 5 classes of “equiaffinities” ([Cox67, p.22]).

11. “Crossed hyperbolic rotations” 1 of 5 classes of “equiaffinities”.

12. “Elliptic rotations” 1 of 5 classes of “equiaffinities”.

13. “Parabolic rotations” 1 of 5 classes of “equiaffinities”.

14. “Focal rotations” 1 of 5 classes of “equiaffinities”.

Affinities

Direct Affinities

Equiaffinities

Products of  reflections

Dilatations

Translations and Half-turns

Translations

Figure 3: Inclusion diagram of main normal subgroups of the group of affinities
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Figure 3 given also by Coxeter [Cox67, p.15] shows the inclusion diagram of the most
important “normal subgroups” of the group G of affinities. These are sets G′ of special
affinities closed under composition, inversion and conjugation, latter meaning that:

g ◦ f ◦ g−1 = f ′ ∈ G′ for every f ∈ G′ and every h ∈ G.

“Direct affinities” are those that preserve the orientation of the triangles, equivalently
in the description of affinities with matrices {A, Av}, they have positive determinants
|A| = |Av | > 0.

5 Axial affinities or homologies, shears, strains

By definition, “axial affinities” or “homologies”([Tar11, p.116]) leave a single line point-wiseaxial
affinity fixed. They are usually defined by prescribing their images at four points:

f (A) = A, f (B) = B, (AB = the axis,) and f (C) = D , C.

They could be represented by a quadrangle and its diagonals. If the diagonals intersect
AB ∩ CD , ∅, then the image D′ = f (C ′) of any other point C ′ can be found using the

A

C

B

DE

C'
D'

F

A

C

B

DE

C' D'

F

(I) (II)

E'
E'

Figure 4: Strains: axial affinities with {A = f (A),B = f (B),D = f (C),E = CD ∩ AB}

line CC ′ and its intersection F = CC ′ ∩ AB (See Figure 4). Point D′ = f (C) will be on line
FD = f (FC) and from the preservation of ratios by corollary 11, {C ′D′,CD}must be par-
allel, giving a geometrical construction of the image point for all C ′ of the plane, except
for those C ′ ∈ CD, which, by the analogous constancy of ratio are seen to map to points
on the same line CD. From the similar triangles involved, follows that, introducing line
coordinates with x-axis along AB and y-axis along CD the affinity f is described by a
real constant k, different from 0 and 1 and the matrix(

x ′

y′

)
=

(
1 0
0 k

)
·

(
x
y

)
=

(
x

ky

)
. (5)

Transformations of this kind are called “strains”. The line AB is the “axis” and the con-
stant k the “ratio” of the strain. In the special case k = −1 they are called “affine reflec-
tions” and the axis is often referred to as mirror. “Euclidean reflections” are a special case
in which the mirror is orthogonal to the axis.
If the diagonals {AB,CD} do not intersect (See Figure 5), then the same procedure leads

to an analogous construction of the image D′ = f (C ′) for an arbitrary point of the plane.
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A B

C D

F

C' D'

Figure 5: Shears: axial affinities with CD ∩ AB = ∅

In this case introducing line coordinates with x-axis along AB and y-axis along AC, we
see that the affinity is described by a constant k , 0 and the matrix(

x ′

y′

)
=

(
1 k
0 1

)
·

(
x
y

)
=

(
1 + ky

y

)
. (6)

Transformations of this kind are called shears . Line AB is the “axis” and the constant k
is the “ratio” of the shear. Next theorems summarize the discussion.

Theorem 6. Every axial affinity is defined by giving four pairwise different arbitrary points
{A,B,C,D} with {C < AB,D < AB} and prescribing their values:

f (A) = A, f (B) = B and f (C) = D.

Theorem 7. The only affine transformations which leave a single line ε point-wise fixed are axial
affinities, i.e. shears and strains having ε for axis.

A

B C

A'

X

Y

X'Z

Figure 6: Axial affinity defined by two triangles with a common base

Exercise 3. Show that two trianlges {ABC, A′BC} with a common side define an axial symme-
try f fixing point-wise the common base BC and mapping A 7→ A′. Show also that for each
point of the plane X < BC the image Y = f (X) defines a line XY parallel to AA′ and two lines
{AX, A′X ′} intersecting at a point Z ∈ BC. Show finally, that if X ′ is the projection of X on
BC, the triangles X X ′Y have constant angles (See Figure 6).

A

B

C

DE

Figure 7: Strains defined by a quadrangle ABCD
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Exercise 4. Show that a quadrangle ABCD defines through its diagonals two strains. The first
strain f1 has for axis the diagonal AC and conjugate direction that of the other diagonal BD.
Its ratio is k = EB/ED, where E = AC ∩ BD (See Figure 7). Analogously is defined the other
strain f2 with axis BD and ratio k ′ = EC/E A. Find some conditions, so that these strains leave
the quadrangle invariant.

Show also that in a coordinate system with (x, y) -axes the pair (ED,E A) the composition
f2 ◦ f1 of the two strains is described by the equations:

x ′ = k · x,

y′ = k ′ · y.

}
⇔ X ′ = AX with A =

(
k 0
0 k ′

)
. (7)

Exercise 5. Show that the axial affinities with the same axis α form a group. Show further that
this group acts “transitively” on the plane, in the sense that for any two different points {A,B},
there is an affinity of this group mapping A to B.

6 Affinities leaving invariant a triangle

From the affinities f , different from the identity and leaving invariant the triangle ABC,
of particular importance is an affinity leaving one vertex, A say, fixed. Then it must
interchange the other two: { f (B) = C, f (C) = B} leaving also fixed the middle D of BC
and, by corollary 15, fixing the whole line AD, while mapping line BC onto itself. By
applying corollary 11 we see that f acts on BC as the symmetry about D. The same

A

B C
D

X Y

N

X
1

Y
1

ε

Figure 8: Affine reflection

behaviour can be seen to happen on every parallel line ε to BC. In fact, if the parallel
intersects the median AD at the point N and the sides {AB, AC} at {X1,Y1}, then, again
by corollaries 9, 15 and 11, follows that a) X1Y1 is parallel to BC, and b) f (X) = Y is the
symmetric of X w.r. to N . Next theorem summarizes the short discussion and justifies
the notation A(BC) used by Coxeter for the affine reflection interchanging {B,C} andreflection

A(BC) fixing point A < BC.

Theorem 8. If an affinity, different from the identity, leaves invariant a triangle and fixes a vertex
of it, then it is an affine reflection with axis the median from that vertex and conjugate direction
the opposite side to that vertex.

Exercise 6. Show that if an affine reflection leaves invariant a quadrangle, then its axis either
coincides with a diagonal or it is the line joining the middles of two opposite sides. Show also that
in the first case the conjugate direction is that of the other diagonal, whose middle must lie on the
axis. In the second case the quadrangle is a trapezium and the conjugate direction is that of the
parallel sides (See Figure 9).

Consider now the product (composition) of two reflections as these of the preceding
section. First f A

B then f BC . The first with axis the median ε1 = CC ′ and the second the
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A

B

C

D

A B

CD

ε
ε

Figure 9: Affine reflections leaving invariant a quadrangle

reflection with axis the median ε2 = AA′. Their product transformation f = f BC ◦ f A
B is

an affinity recycling clockwise the vertices {A
f
7→ C

f
7→ B

f
7→ A} (See Figure 10). Since each

of the factors leaves invariant the triangle, the same happens also with their composition

A

B CA'

C'

G

ε
1

ε
2

X

Y=f(X)

X
1

Y
1

Figure 10: Composition of two reflections

f . Since the centroid G is fixed by each reflection, it is fixed also by their composition.
Every other point X , G maps to a point Y = f (X) and if the line GX intersects a side,
CB say at a point X1, then this line maps to f (GX) = GY, which intersects the image-side
BA at a point f (X1) = Y1. From the discussed properties we deduce easily the relations

X1C
X1B

=
Y1B
Y1A

and
X1G
X1X

=
Y1G
Y1Y

.

From this and similar relations w.r. to the other sides of the triangle we deduce that there
is no other fixed point of f .

A

B CA'

C'

G

ε
1

ε
2

X

X
1

X
2

Figure 11: The centroid of triangles with vertices {X,X1 = f (X),X2 = f 2(X)} is G

Affinities which can be represented as product of two affine reflections and have aaffine
rotation unique fixed point, are called “affine rotations” and their fixed point is called “centre” of

the rotation. Next theorem formulates what we proved so far.
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Theorem 9. The product of two affine reflections leaving invariant the triangle ABC is an affine
rotation with center at the centroid G of the triangle.

Exercise 7. Show explicitly that the affine rotation f , defined above, has no other fixed pointsame
centroid except G. For the same rotation consider an arbitrary point X and show that f 3(X) = X . Show

also that the centroid of the triangle with vertices {X, X1 = f (X), X2 = f 2(X)} is always the fixed
point G of f .

X
Y

A

B C

D

E

Figure 12: Symmetry at E represented as an affine rotation

Exercise 8. Consider the affine rotation, which is the product of reflections f = f2 ◦ f1, wheresymmetry
{ f1, f2} have for axes the diagonals {AC,BD} of the parallelogram ABCD and conjugate direc-
tions respectively the other diagonals {BD, AC}. Show that f coincides with the symmetry at the
center E of the parallelogram (See Figure 12).

Exercise 9. Determine all the affinities leaving invariant a parallelogram and show that they form
a group.

Exercise 10. Show that a pentagon has in general no affinities preserving it, i.e. mapping it onto
itself. Show also that if the pentagon has each diagonal parallel to a side, then it has affinities
leaving it invariant. Describe then all these affinities leaving the pentagon invariant.

7 The period of an affinity

The affine reflections, defined in the previous section, have period 2. This means, theyperiod
satisfy f 2 = f ◦ f = e, where e represents the identity transformation. More general the
“period” of a transformation is the smallest integer n, such that f n = e. The transforma-
tion f = f BC ◦ f A

B of section 6 is of period 3. This can be immediately seen by considering

its effect on the vertices, which, as we already noticed, is {A
f
7→ C

f
7→ B

f
7→ A}. Thus, f 3

leaves the three vertices fixed, hence, by corollary 5, it is the identity.
Here we should notice, that not all affinities have a period. It is possible that no n

exists, such that f n = e. We say then that f has “infinite period”. The product of affine re-infinite
period flections f = f BC ◦ f A

B of period 3 is a special one related to a triangle. In general, the prod-
uct of two reflections is of infinite period. Figure 13 shows such an affine rotation of infi-
nite period. There the affinity f is the product of the reflection fα with axis α and con-
jugate direction AB and the reflection fβ with axis β and conjugate direction BC. The
sequence of points is {X, X1 = f (X), X2 = f (X1) = f 2(X), X3 = f 3(X), ..., Xn = f n(X), ...}
which never recurs to the starting point X . In section 13 we will see that all these points
making the “orbit” of X under the composition of affine reflections f = fβ ◦ fα lie on a
conic, as suggested by the figure.

Theorem 10. An affinity is of period 2, if and only if it is an affine reflection or a symmetry at aperiod 2 =
reflection or
symmetry

point M .
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O

α
β

A

B

C

X

X
1

X
2

X
3

X
4

X
5

Figure 13: Composition f = fβ ◦ fα of two reflections of infinite period

Proof. That an affine reflection is of period 2, follows from the definition of the affine re-
flection in section 6. To show the converse, consider a point X with Y = f (X) , X hence
f (Y ) = X . Then the line α = XY is invariant under f , i.e. f (α) = α and the middle M
of the segment XY is fixed by f . Take also another point X ′, consider again Y ′ = f (X ′),

X YM

X' Y'M'

α

α'

β

O

Figure 14: Affinity of period 2 is a reflection

the line α′ = X ′Y ′ and the middle M ′ of X ′Y ′, which again remains fixed under f (See
Figure 14). Assume now that M ′ , M . Then, by corollary 9 the line β = M M ′ remains
fixed under f . For the intersection O = X X ′ ∩ M M ′ follows then that also {Y,Y ′,O} are
collinear and from Thales’ theorem follows that lines {α,α′} are parallel, thereby proving
the reflective property of the transformation. The reflection’s axis is line β and the con-
jugate direction is that of the line α = X X ′ for an arbitrary point X not lying on β.

X

Y

X'
Y'

Z

Z'

M

ε

ε'

Figure 15: A point symmetry is an affinity of period 2

In the case M = M ′ we have the situation of figure 15, in which X X ′YY ′ is a parallelo-
gram and M is its center and line ε = X X ′ maps under f onto ε′ = YY ′. By the preser-
vation of ratios it is seen that points Z ∈ ε maps to its symmetric Z ′ ∈ ε′ . Using again
the preservation of ratios, we see easily that each point on M Z maps to its symmetric
w.r. to M . This proves that f is the symmetry at M . �

Remark 4. Symmetries about a fixed point M are often called “half-turns” about M .half-turns
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Theorem 11. An affinity is of period 3, if and only if it is an affine rotation with axes two medians
of a triangle and the corresponding sides as conjugate directions.

Proof. That an affinity with the above properties is an affine rotation has been established
in section 6. To show the converse, consider a point A with C = f (A) , A and f (C) = B,
having necessarily f (B) = A. Assume for the moment that {A,B,C} are not collinear and
form a genuine triangle ABC. In this triangle consider the reflections { f A

B , f BC } and their
product f ′ = f BC ◦ f A

B , defined as in the preceding section. The two affinities f and f ′

recycle the vertices in the same way {A 7→ C 7→ B 7→ A} (See Figure 16). Thus, by corol-

Α

Β CA'

C'

G

ε
1

ε
2

Figure 16: Affinity of period 3 is a rotation

lary 6, they coincide everywhere, thereby proving the theorem.
It remains to show that there is a point A, such that {A,C = f (A),B = f (C)} are not

collinear. To see this we work with the matrices Fv representing the affinity f as ex-
plained in the first two sections. The collinearity of {A, f (A), f 2(A)} means for the corre-
sponding matrix representation, the existence of a number λ such that:

F2
v · A = λA + (1 − λ)Fv · A ⇒

A = F3
v · A = λFv · A + (1 − λ)F2

v · A

= λFv · A + (1 − λ)[λA + (1 − λ)Fv · A] ⇒

(λ2 − λ + 1)A = (λ2 − λ + 1)Fv · A.

Since the factor never vanishes, last equation is equivalent with Fv · A = A and if this is
valid for every A, then Fv is the identity matrix, which is contrary to the assumption. �

8 Translations

Theorem 12. The product f = f2 ◦ f1 of two reflections { f1, f2} with parallel axes {ε1, ε2} and
common conjugate direction β is a “translation” i.e. a map defined by a fixed vector v, which to
every point P corresponds the point P′ = P + v.

Proof. The proof follows from figure 17. For an arbitrary point A and f1(A) = B, f2(B) = C
the segment AC is the double of DE in the common conjugate direction β. This defines
a vector of constant direction and constant length, hence proves the claim. �

Remark 5. Notice that the relevant ingredient in the representation of the translation
as a product of reflections is the “conjugate direction” β. In fact we can “turn” the two
parallels{ε1, ε2} to a new position taking care only that their distance in the β -direction
remains the same and equal to half the measure of v. Then the translation can be again
represented as a product of the two reflections w.r. to the two parallel lines in their new
position. Thus, turning v1 about D in the new position ε′1 and turning also ε2 about E
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A

B

D

C

ε
1

E

β

ε
2

ε'
1

ε'
2

Figure 17: Translation as a product of two affine reflections

in the new position ε′2 so that it is parallel to ε′1, we obtain two other affine reflections
{ fε′1,β, fε′2,β}, whose composition is the same translation f = fε′2,β ◦ fε′1,β by the double v

of the vector DE .

Remark 6. Translations build a normal subgroup of the group of all affinities of the plane.
The composition f = f2 ◦ f1 of two translations by the vectors {v1, v2} is the translation
by the vector v1 + v2. This is not so for the set of reflections. The product of two reflec-
tions is not a reflection. The previous representation of a translation as a product of two
reflections gives a counterexample.

A B

X

Y

Z

Figure 18: Translation as composition of two symmetries

Exercise 11. Show that the composition SB ◦ SA of two symmetries w.r. to the points {A,B} is
the translation by the vector v = 2AB (See Figure 18).

9 Dilatations

Translations are a particular case of “dilatations”. Latter are affinities characterized by thedilatation
property to map every line α to a line α′ parallel to α. A dilatation leaving at least one
point fixed is called a “central dilatation”. The symmetry or half-turn about a point O iscentral

dilatation obviously a central dilatation.

Theorem 13. A central dilatation f , different from the identity, has precisely one fixed point O,
called “center” and there is a constant k, called “ratio” of the dilatation, such that for every other
point P , O it is

f (P) = O + k · (P −O).

Proof. Assume first that besides the fixed point O there is a second one O′ remaining
also fixed under f . Consider also a line ε through O. Since, per definition, ε maps
to a parallel ε′ = f (ε) containing also O, line ε remains invariant under f : f (ε) = ε.
If a point P ∈ ε were fixed by f , then we would have three fixed points and f would
be the identity transformation, contrary to the hypothesis. Thus, P′ = f (P) , P and the
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O O'

P

P'

ε

Q

Q'

Figure 19: Central dilatation

lines {O′P,O′P′} have the property f (O′P) = O′P′ without to be parallel, contrary to the
hypothesis for f .

Having that, the claim about the constant k is verified by selecting another point Q
and its image Q′ = f (Q), which, by the previous reasoning is on line OQ. By assumption
the line PQ maps then to a parallel P′Q′ and by Thales’ theorem OP′/OP = OQ′/OQ,
completing the proof. �

Exercise 12. If f is a dilatation and for a point X,Y = f (X), show that the line ε = XY is
invariant under f i.e. f (ε) ⊂ ε.

Remark 7. Central dilatations coincide with usual euclidean “homotheties” and half-turns
or symmetries about a point O of the plane are dilatations with ratio k = −1.

A

B

A'

B'

Figure 20: Non-central dilatation is a translation

Exercise 13. Show that a non-central dilatation maps two points {A,B} to {A′,B′}, such that
ABB′A′ is a parallelogram and therefore is a translation and has no fixed points.

Exercise 14. Show that a dilatation is completely determined by prescribing the images { f (A), f (B)}
of two points {A,B}.

Exercise 15. Show that the dilatations build a normal subgroup of the group of all affinities of the
plane. Show also that the translations build a normal subgroup of the group of all dilatations. If Tv

denotes the translation by the vector v and g is a dilatation, what kind of affinity is g−1 ◦ Tv ◦ g?

10 Shears

Shears are products s = g ◦ f of two affine reflexions { f ,g}whose “mirrors” are identical.shear
Figure 21 shows the image s(P) = g( f (P)) of a point P under such a composition of
transformations. Line ε is the common mirror of the two reflections. The segment AB
defines the conjugate direction of f and segment BC defines the conjugate direction of
the affine reflection g. A fundamental property of this transformation is that the points
of the mirror ε are left fixed by the shear and that the triangle PP′P′′ with vertices
{P,P′ = f (P),P′′ = g(P′)} has fixed angles. This implies that all these triangles resulting
for various positions of P are similar to each other. Thus, also the direction of the median
MP′′ is fixed and all triangles PMP′′ are also similar to each other. This enables a quick
construction of P′′ once the direction of the median MP” has been determined:
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C

N

B

A

P'' P

ε = ε'

P'

M

Figure 21: Shear as a composition of two reflections

1. Project P on the first mirror L along the conjugate direction L’ of f to the point M.

2. Draw from M parallel to the direction of the median and find its intersection P”
with the parallel from P to the mirror L.

This implies immediately that each parallel to ε is left invariant by the shear which,
restricted there, coincides with a translation by a vector of fixed length, depending only
of the distance of the parallel from ε. Thus, moving P on the parallel to ε through that
point gives a point P′′ = s(P) such that PP′′ is parallel to ε and has a constant signed
measure, which is the double of that of MN .

Notice that in the product representing the shear s = g ◦ f the order plays a role and
f ◦ g is different from s, latter defining the “inverse” shear s−1 = f ◦ g .

From the similarity of all triangles PP′P′′ and all triangles PMP′′ follows that the
translation vector effecting the shear along the parallel to ε from P is a constant multiple
of the distance of P from ε. This implies that in a coordinate system with x-axis identical
with ε, the shear is described by a constant k and a matrix in the form:

x ′ = x + k · y,

y′ = y.

}
⇔ X ′ = AX with A =

(
1 k
0 1

)
. (8)

Exercise 16. Show that two reflections with axes intersecting at a point P and the same conjugate
direction u define a shear with axis parallel to u and passing through P.

Exercise 17. Given a shear f , write it as a composition f = h ◦ g of two reflections. How many
possibilities are there for this?

x

y

O

Figure 22: Shear’s “canonical” representation

Exercise 18. Given a shear f , show that selecting for x-axis its axis and an appropriate transver-
sal to it y-axis (See Figure 22), the transformation can be represented by the matrix

f :

(
1 1
0 1

)
.
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11 Strains

A “strain” is a transformation f somewhat more general than an affine reflection. Itstrain
can be defined by describing three points and their images (theorem 4). For the first two
points {A,B}we assume to remain fixed by f , so that the whole line ε = AB remains also
fixed by f (See Figure 23). For the third point and its image {P,P′ = f (P)} we assume
that their line is not parallel to ε = AB. To describe the effect of f on any other point X

YQ

X'

P'

Z

XP

ε QP'/QP = k

Figure 23: Strain’s axis ε and ratio k

of the plane, consider the intersection point Q of line PP′ with ε. Notice first that, by
the preservation of ratios, line PP′ is invariant by f , i.e. it maps onto itself. Then, for
any point X and its image X ′ = f (X) draw the parallel XY to PP′ intersecting ε at Y .
By the preservation of parallels by affinities and the constancy of Y follows that line XY
is also left invariant by f . Hence X ′ is on XY . Using Thales’ theorem is then easy to see
that PX and P′X ′ intersect at a point Z of ε and X ′Y/XY = QP′/QP is constant. Thus
the image X ′ is found in this case by a simple recipe:

1. Draw from X a parallel to PP′.
2. Take X ′ on this parallel so that Y X ′/Y X = QP′/QP, where Y is the intersection

point of X X ′ with ε.

12 Invariant pencils

A “pencil” of lines consists of all the lines passing through a point P, real or at infinity,pencils
called “center” of the pencil. If P is at infinity, then the pencil consists of all the lines
parallel to a given direction. As remarked by Coxeter [Cox67, p.17] in his marvellouspencils

invariant
under
affinities

talk, for every affinity which is a shear, strain, translation or central dilatation there is a
pencil of lines, the members of which remain invariant under the affinity. A shear leaves
invariant all lines parallel to its axis. A strain leaves invariant all lines parallel to its
conjugate axis. A translation leaves invariant all lines parallel to the translation vector
and a central dilatation leaves invariant all lines through its center. Next theorem uses
this property to characterize axial symmetries and dilatations.

Theorem 14. An affinity f , for which there is a pencil of lines P, such that each member-line
ε of P remains invariant, is an axial affinity or a dilatation and vice versa.

Proof. We distinguish three cases: 1) f has no real fixed points. 2) f has precisely one
fixed point. 3) f has at least two fixed points.
1) If f has no real fixed point, then two invariant lines {PP′,QQ′} cannot intersect, since
their common point would be a fixed point for f . Thus, pencil P consists of parallel
lines. Take then points {P,Q} (See Figure 24) on two such lines and their images {P′,Q′}
contained in the same lines. Then, {PQ,P′Q′} cannot intersect at a finite point S. This,
because then, by Thales’ theorem, the ratios QS/QP = Q′S/Q′P′ would imply that S is a
fixed point of f , contrary to the hypothesis. Thus, in this case PP′Q′Q is a parallelogram
and the transformation is a translation.
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P P'

Q Q'

S

Figure 24: No fixed point for translation

2) If f has one only fixed point, then the lines of the invariant pencil P must go through
that point. This because if they didn’t, then they would be parallel, since the intersection
of two invariant lines is a fixed point contained in both lines. Assuming then that the

O

P

P'

Q

Q'

Figure 25: One only fixed point for central dilatation

invariant lines are parallel and do not pass through the fixed point, take points {P,P′} on
two of them (See Figure 25) and their images {Q,Q′} contained each in the same invariant
line. Then applying again Thales’ theorem, we see that the intersection O = PP′ ∩QQ′ is
a real fixed point, except the case in which O is at infinity. Later though cannot happen,
since then, as is easily seen, f would be a translation, without real fixed points. Thus
O must be a real point and varying the locations of {P,P′} on the same lines we obtain
infinite many fixed points {O}, contrary to the hypothesis. Thus, in any case, assuming
that the invariant lines do not pass through the fixed point we land to contradiction. Now
assuming that the invariant lines pass through the same real point O and arguing as in
theorem 13, we see that f is a central dilatation.
3) If f has at least two real fixed points, then the line of these points is fixed and the
result follows from theorem 7. �

13 Equiaffinities as products of reflections

Equiaffinities are affinities preserving the area of triangles. By theorem 14, an equiaffin-
ity preserving a pencil of lines must be a shear or half-turn or a translation, which, by
the discussion so far, are affinities representable as a product of two affine reflections.
Next theorem, whose proof I take from Coxeter’s lecture [Cox67, p. 17], guarantees this
property for every equiaffinity.

Theorem 15. Every equiaffinity is the product of two affine reflections.

Proof. For equiaffinities f preserving a pencil of lines, this results from the previous re-
marks. If f does not preserve any pencil of lines, then there is a triangle ABC with
{B = f (A),C = f (B)} (See Figure 26). For point D = f (C) it follows that the triangles
{ABC,BCD} have the same area and a common base, hence their vertices {A,D} are on
a parallel to BC. If {M,N} are the middles of {AD,BC} consider the affine reflections
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A
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f

f

D

f

M
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Figure 26: Equiaffinities are products of affine reflections

{g = M(BC), h = C(BD)} (see section 6 for the notation):

A
g
7→ D

h
7→ B, B

g
7→ C

h
7→ C, C

g
7→ B

h
7→ D.

Thus, the equiaffinity f coincides with h ◦ g at three non collinear points, hence it coin-
cides with it everywhere and f = h ◦ g, thereby proving the theorem. �

Since the composition of an even number of affine reflections is an equiaffinity, it can
be refactored to a product of two reflections and this proves next corollary.

Corollary 19. A product of n affine reflections can be refactored to a product of two, if n is even,
or three affine reflections, if n is odd.

Exercise 19. Show that an affinity of finite period n > 2 is necessarily an equiaffinity.

14 Conjugacy for affinities with fixed points

“Conjugate” are called the affinities { f , f ′} for which there is a third affinity g, such that

g ◦ f ◦ g−1 = f ′.

Conjugate affinities have the same geometric properties and, converesly, affinities with
the same geometric properties are conjugate. Writing the relation with corresponding
matrices, as in equation 2,

g :

(
G h
0 1

)
, f :

(
A v

0 1

)
, f ′ :

(
A′ v′

0 1

)
,

the conjugacy condition takes the form(
G h
0 1

)
·

(
A v

0 1

)
·

(
G−1 −G−1h
0 1

)
=

(
A′ v′

0 1

)
⇔

(
GAG−1 −GAG−1h + Gv + h

0 1

)
=

(
A′ v′

0 1

)
⇔

(1) GAG−1 = A′ and (2) GAG−1h − h = Gv − v′. (9)

Thus, if the affinities are conjugate, then the matrix parts are also conjugate, but the con-
verse is not valid in general, since the second condition is not necessarily a consequence
of the first. Anyway, if the first condition holds, then the second can be written:

A′h − h = Gv − v′. (10)
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If the affinity f has no fixed point, then selecting a point X and its image Y = f (X) and
composing f ′ = Tv ◦ f with the translation by the vector v = Y X we get the affinity f ′,
which has X as fixed point. Taking the fixed point as origin of coordinates, the affinity
reduces to a representation in the form (

A 0

0 1

)
,

and the respective conjugacy classes correspond to the conjugacy classes of the matrix
A. Thus, the “classification” of affinities fixing a point results from the conjugate classes
of the matrices A. These, in turn, are distinguished by the corresponding eigenvalues
and their multiplicities. If the eigenvalues are (conjugate) complex, i.e. the characteristic
polynomial of A

p(x) = x2 + bx + c,

has b2 < 4c and “complex roots”. Then, selecting an arbitrary vector u , 0 and taking the
basis of {u,u′ = Au}, we have

Au = u′, Au′ = A2u = −bAu − cu,

since A satisfies its characteristic polynomial A2 + bA + cI = 0. Hence, w.r. to the basis
{u,u′} the matrix A is conjugate to

A′ =
(
0 −c
1 −b

)
.

If the eigenvalues are real and distinct {a, b}, then, changing to the basis of two eigenvec-
tors, the matrix A is conjugate to the diagonal one

A′ =
(
a 0
0 b

)
=

(
a 0
0 1

)
·

(
1 0
0 b

)
,

representing a product of “strains” for a, b < {0,1}.
If the characteristic polynomial has a double root, then in the case of one only inde-

pendent eigenvector, there is a basis such that A is conjugate to

A′ =
(
a 1
0 a

)
= a

(
1 1/a
0 1

)
for a , 0.

This, since then there is a vector v : (A − aI)v = v′ , 0. This, since (A − aI)2v = 0 for every
vector v, implies that in the basis of {v′, v} the matrix has the previous representation. In
this case the affinity is the product of a shear and a homothety if a < {1,0} and a simple
shear if a = 1.

In the case of multiplicity two, with two independent eigenvectors, A is conjugate to
the diagonal matrix representing a “homothety” for a , 1.

A′ =
(
a 0
0 a

)
.

15 Elliptic affinities

“Elliptic” are called the affinities f fixing a point and, by the discussion in section 14,
having the representation resulting from a characteristic polynomial with complex roots
χA(x) = x2 + bx + c, with b2 < 4c :(

A 0

0 1

)
with A =

(
0 −c
1 −b

)
.
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The eigenvalues of A are in this case complex-conjugate:

α = µ + iµ′, β = µ − iµ′ with µ = −
b
2

and µ′ =

√
4c − b2

2

leading to two complex conjugate eigenvectors {uα = v + iw, uβ = v − iw} and

Auα = α · uα, Auβ = β · uβ ⇔

{
Av = µ · v − µ′ · w,

Aw = µ′ · v + µ · w.

}
Taking into account µ2 + µ′2 = d2 = c > 0 and setting

µ

d
= cos(φ),

µ′

d
= sin(φ) ⇒

{
Av = d(cos(φ) · v − sin(φ) · w),

Aw = d(sin(φ) · v + cos(φ) · w),

}
we see that the affinity in this case is the composition f = h ◦ g of an equiaffinity g and a
homothety h. These two affinities are represented in the frame of {v,w} by matrices {C,B}
and their composition by the product of matrices

A = B · C =
(
d 0
0 d

)
·

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
.

Denoting by U the affine transformation fixing the origin and mapping the standard
basis {e1, e2} to {v,w}, we see that the equiaffinity g is conjugate to a rotation Rφ , since
{U,Rφ} can be identified with the matrices

U =
(
v1 w1

v2 w2

)
, Rφ =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
and g is represented w.r. to the standard base {e1, e2} by the matrix

G = U · Rφ ·U−1.

It is easy to see that G leaves invariant the homothetic w.r. to the origin ellipses {U(κr )},

v
w

e
1

e
2

A
φ

Β

Β
φ

Α

κ
κ'

Figure 27: Equiaffinity leaving invariant a family of homothetic ellipses

where κr denotes the circle x2 + y2 = r2 (See Figure 27), mapping the orthogonal direc-
tions {e1, e2} to two conjugate directions {v,w} w.r. to the ellipses. The figure shows also
the images on the ellipse U(κ)

B = U(A) and Bφ = U(Aφ) = URφ(A) = URφU−1(B) = G(B).

of two points {A, Aφ = Rφ(A)} on the circle κ.

Remark 8. The claim about the conjugate diameters is a simple consequence of the preser-
vation of middles of segments by affinities. Since in the circle two orthogonal directions
define diameters in the one direction whose middles are on a diameter parallel to the
second direction, the same property will hold with the images of these two families of
diameters by the affinities.



16 Orbits of points under equiaffinities 23

16 Orbits of points under equiaffinities

In this and the following sections I study Coxeter’s ([Cox67, p.18]) classification of equi-
affinities, which he started with the following comment:

“Until two weeks ago, I thought the complete classification of equiaffinities might be
a rather awkward problem, but then (while sitting on a bench in Leicester Square,
London) I saw something very simple which I should have thought of long ago, ... ”

What Coxeter saw is the fact, used in section 13, that for every affinity f , not possessing a
pencil of invariant lines (section 12), there is a point A , such that {A, B = f (A), C = f (B)}equiaffinity

invariant
λ = AD

BC

are non-collinear, and in the case of “equiaffinities” the point D = f (C) is then on the
parallel ε to line BC from A (See Figure 28). Then the equiaffinity is characterized by

A

B C

D

ε

Ε

F

G

H

I

μ ν

Ν

Μ

P

Figure 28: The orbit of point A lies on a conic

the ratio
λ =

AD
BC

(11)

and the “orbit” under the action of f of a point A of the plane:
orbit

A, B = f (A), C = f 2(A), D = f 3(A), E = f 4(A), . . . (12)

lies on a conic, which, depending on the value of λ, can be an ellipse, parabola, hyperbola
or a degenerate one. In the non-degenerate cases, the equiaffinity is correspondingly
named “elliptic, parabolic, hyperbolic, crossed-hyperbolic”, the last class relating to orbits that
have their points alternatively on a hyperbola and its conjugate. In the degenerate cases
the equiaffinity is called “focal” and the points of the corresponding orbit, as will be seen
below, alternate on two parallel lines.

In section 15, using analytic arguments we saw an “elliptic” case. The geometric ar-
gument applicable to any case and used by Coxeter is based on the fact that the orbit
ABCD..., which, in general, is an infinite polygon, is invariant not only under f , but also
under the affine reflections {g = M(BC), h = C(BD)} whose axes are the lines {µ, ν} and
which, by theorem 15, represent f = h ◦ g . This is inductively seen by first noticing that
{h(E) = A⇔ h(A) = E}, which follows from (See Figure 28):

h(A) = E ⇔ h(A) = f (D) = h(g(D)) ⇔ A = g(D),

implying that {g, h} map the first four points of the orbit to points of the same:

g(A) = D = f (C), h(A) = E = f (D),

g(B) = C = f (B), h(B) = D = f (C),

g(C) = B = f (A), h(C) = C,

g(D) = A, h(D) = B.
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Then, the first six points of the orbit map under {g, h} to points of the same:

g(E) = g(h(A)) = f −1(A) ⇒ g(F) = g( f (E)) = g(h(g(E)) = g(h( f −1(A)) = f −2(A),

⇒ h(F) = h(g( f −2(A)) = f ( f −2(A)) = f −1(A), . . . and so on.

To show that the orbit is contained in a conic, consider the conic κ passing through
{A,B,C} and having for diameters the lines {µ, ν} (See Figure 28). By the assumed invari-
ance of κ w.r. to the affine reflections {g, h}, the conic can be seen inductively to contain
also all other points of the orbit:

D = g(A), E = h(A), F = f (E) = h(g(E)) = h(g(h(A)), . . . and so on.

We summarize these facts in the form of a theorem:

Theorem 16. The orbit { f n(A), n ∈ Z}, under the equiaffinity f , for every point A of the plane,
is invariant under f and also invariant under the affine reflections {g, h} representing f = h ◦ g.
It is also contained in a conic κ, invariant under f .

17 Classification of equiaffinities

Continuining the discussion of the previous section, we examine how the kind of an or-
bit { f n(A), n ∈ Z}, of a point under an equiaffinity and the kind of the conic κ containing
such an orbit is influenced by the value of the signed-ratio invariant λ = AD/BC. Draw-
ing the parallels {MQ,DD′} to AB from {M,D} we see that the ratio

A

B C

Dε

μ ν
Ν

Μ

P

O

D'Q

Figure 29: Center O of the conic carrying the orbit. λ > 3 : hyperbolic rotation

λ =
AD
BC

=
BD′

BC
=

2BQ
2BP

=
BQ
BP

.

Since {M,N} are diameters of the conic κ containing the orbit of A, the intersection point
O = µ ∩ ν is the center of κ. The location of O depends on λ and figure 29 shows the

0 1-1 3

λ

Figure 30: Location of the invariant λ

case λ > 3. In this the center O is on the other than A side of BC, κ is a hyperbolahyperbolic
rotation containing the entire orbit in one of its branches and the equiaffinity is called “hyperbolic
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A
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μ ν
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Μ

P

D'Q

S

Figure 31: Center O of κ at infinity. λ = 3 : parabolic rotation

rotation”. In the case λ = 3 it is easily seen that the diameters {µ, ν} are parallel, hence
the conic carrying the orbit is a parabola and the equiaffinity is called “parabolic rotation”parabolic

rotation (See Figure 31).

Exercise 20. Show that the orbits of hyperbolic and parabolic rotations have infinite many points.

In the case −1 < λ < 3 the two diameters {µ, ν} intersect on the side of BC contain-
ing the points {A,D}, the conic is an ellipse and the affinity is called “elliptic rotation” (Seeelliptic

rotation Figure 32).
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D'Q

Figure 32: Invariant −1 < λ < 3 : elliptic rotation

Remark 9. Notice that the affinities of finite period are elliptic rotations, since they are
equiaffinities (see exercise 19) and their orbit is finite (see exercise 20).

Exercise 21. Show that an equiaffinity f is of period 3 (theorem 11) precisely when λ = 0.
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E
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Figure 33: Invariant λ < −1 : crossed hyperbolic rotation

In the case λ < −1 the segments {BC, AD} are inversely oriented and, by the discus-
sion in the previous section, ADBE is a trapezium and using the value of λ we see that



18 Analytic description of orbits of equiaffinities 26

{ACE,BD} are a triangle, respectively a segment, inscribed in the conic with C lying in
the interior of the trapezium. This can happen only if the conic is a hyperbola and the
two shapes are on different branches. Inductively, using the value of λ by means of the
analogous pairs { f n(ACE), f n(BD), n ∈ Z}, we see that the points of the orbit lie alterna-crossed

hyperbolic
rotation

tively on the two branches of a hyperbola (See Figure 33). The equiaffinity in this case is
called “crossed hyperbolic rotation”.

The case left λ = −1, leads to a degenerate conic of two parallel lines. In fact, it is then
easy to see that the orbit points lie alternatively on the two side-lines {BD, AC} of the
parallelogram ADBC (See Figure 34). The centers {O,P} of the parallelogram, respec-focal

rotation tively of side BC are interchanged by f which is called “focal rotation”. On each line the
orbit points are evenly distributed and successive points on each are at distance 2|OP |

B
C

AD

μ

ν

E

F

G

H

O

P

Figure 34: Invariant λ = −1 : focal rotation

proceeding in opposite directions.
Thus, the equiaffinities, which do not preserve a pencil of lines (see section 12), quot-

ing Coxeter ([Cox67, p.23]):

“To sum up, the equiaffinities, other than translations, half-turns, and
shears, may be classified into the following types:”

λ > 3λ = 3-1 < λ < 3λ = -1λ < -1

HyperbolicParabolicellipticfocalcrossed hyperbolic

Figure 35: Classification of equiaffinities not preserving a pencil of lines

18 Analytic description of orbits of equiaffinities

For the analytic description of the orbits we can use the fact that affinities do not distin-
guish the conics of the “same kind” (see section 20). Thus, all ellipses are affinely equivalent
to the circle represented in appropriate coordinates by x2 + y2 = 1, all hyperbolas are
affinely equivalent to the hyperbola xy = 1, and all parabolas are equivalent to the one
represented by y = x2. Using such an affinity the various “affine rotations” are equivalent,
i.e. conjugate f = g ◦ f ′ ◦ g−1 by an affinity g, to standard affinities described by:
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1. “Elliptic rotations” corresponding to f ′ : rotation by an angle φelliptic
rotation (

x ′

y′

)
=

(
cos φ − sin φ
sin φ cos φ

)
·

(
x
y

)
, (13)

the orbit consisting of the points

(1,0) , (cos φ, sin φ) , (cos 2φ, sin 2φ) , (cos 3φ, sin 3φ) , . . .

the ratio λ being given, as expected −1 < λ < 3, since by the figure 36 and the
well known identity sin(3φ) = 3 sin(φ) − 4 sin3 φ ([Hob18, p.52]):

λ =
AD
BC

=
sin 3φ

sin 2φ − sin φ
=

3 − 4 sin2 φ

2 cos φ − 1
= 2 cos φ + 1.

A

B

C

D

φ

Figure 36: λ = AD
BC

2. “Hyperbolic rotations” corresponding to f ′ : hyperbolic rotation by thyperbolic
rotation (

x ′

y′

)
=

(
et 0
0 e−t

)
·

(
x
y

)
, (14)

the orbit consisting of the points

(1,1) , (et, e−t ) , (e2t, e−2t ) , (e3t, e−3t ) , . . .

and λ having the value

λ =
AD
BC

=
e3t − 1
e2t − et

=
e2t + et + 1

et
= 2 cosh t + 1 > 3.

3. “Parabolic rotations” corresponding to f ′ given byparabolic
rotation (

x ′

y′

)
=

(
1 0
2 1

) (
x
y

)
+

(
1
1

)
=

(
x + 1

2x + y + 1

)
, (15)

the orbit consisting of the points

(0,0) , (1,1) , (2,4) , (3,9) , . . .

and λ having the value

λ =
9 − 0

4 − 1
= 3.

4. “Crossed hyperbolic rotations” corresponding to f ′ given by the commutative prod-crossed
hyperbolic
rotation

uct of the hyperbolic rotation and the half-turn (x ′, y′) = (−x,−y)(
x ′

y′

)
=

(
−et 0
0 −e−t

)
·

(
x
y

)
, (16)



19 Remarks and exercises on orbits of equiaffinities 28

the orbit consisting of the points

(1,1) , (−et,−e−t ) , (e2t, e−2t ) , (−e3t,−e−3t ) , . . .

and λ having the value

λ =
AD
BC

=
−e3t − 1
e2t + et

= −
e2t − et + 1

et
= 1 − 2 cosh t < −1.

5. “Focal rotations” corresponding to f ′ given byfocal
rotation (

x ′

y′

)
=

(
−1 −1
0 −1

) (
x
y

)
, (17)

with focal points {P,O = (±1
2,0)} and orbit consisting of the points

(0,1) , (−1,−1) , (2,1) , (−3,−1) , . . . .

O

P

(0,1)

(-1,-1)

(2,1)

(0,0)

(4,1)

(-3,-1)(-5,-1)

(1,0)

Figure 37: Orbit of a focal rotation

19 Remarks and exercises on orbits of equiaffinities

Here I collect some properties of affinities related directly or indirectly to the much cited
talk by Coxeter [Cox67]. First, we should notice that equiaffinities f preserving a non-
degenerate conic κ are intimately related to orbits of points by equiaffinities. This follows
by considering a point A ∈ κ and its orbit under f , i.e. the iterates { f n(A),n ∈ Z}. The
whole orbit must be a subset of the conic and, if the orbit has more than 4 points in
general position, this determines uniquely κ.

A B

CD

A' B'

C'D'

κ
0

Α
1

Β
1

C
1

D
1κ

Figure 38: Orbit {A,B,C,D} of equiaffinity contained in many conics

Figure 38 shows a simple example of four points which are the vertices of a parallelogram
and represent also the orbit {A,B = f (A),C = f (B),D = f (C)} of an equiaffinity f . There
is a “pencil of conics” passing through these four points, but from its infinite many non-
degenerate members, it can be shown that only one conic κ0 is invariant under f . This
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is the image-conic κ0 = g(κ) of the circumcircle κ of a square A′B′C ′D′ transformed to
ABCD by the affinity g mapping the {A′,B′,C ′} respectively onto {A,B,C}. The figure
shows also a second orbit {A1B1C1D1} of f for a point A1 on κ0 . The conjugate affinity
f ′ = g ◦ f ◦ g−1 is the rotation by π/2 about the center of the circle κ.

Second, we should notice also that a conic κ has plenty of affine reflections leaving
it invariant. Every diameter α of the conic and its conjugate direction u define such an
affine reflection.

Third, we should notice also that the two reflections {g, h} to which decomposes an
equiaffinity (theorem 15) f = h ◦ g, which preserves the conic κ, preserve this conic too.
This, for the case of affinities of infinite period follows from the discussion in section 16.
For orbits of affinities of finite period this follows from the fact that they occur only in the
elliptic type. But ellipses are affinely equivalent to circles and there the equiaffinities are
ordinary rotations, represented by two ordinary reflections, whose axes (mirrors) are at
angle half the angle of rotation.

These remarks lead to the next two exercises.

Exercise 22. An affinity leaving invariant a non-degenerate conic κ is either an equiaffinity or
a product of an equiaffinity and an affine reflection.

Hint: This can be quickly seen using matrices and representing the conic in cartesian
homogeneous coordinates by an invertible matrix B and the corresponding quadratic
equation:

κ : X t · B · X = 0.

An affine transformation f expressed through a matrix Av (notation of section 1) leaves
invariant the conic if the first condition below is valid, implying the second one of re-
spective determinants:

At
v · B · Av = B ⇒ |At

v | |B| |Av | = |B| ⇒ |Av |
2 = 1.

Thus, if |Av | = 1 the transformation f is an equiaffinity, otherwise composing with
an affine reflection g preserving the conic, the transformation g ◦ f is an equiaffinity,
thereby proving the claim.

Exercise 23. Every affinity f preserving a conic κ is a product of 1, 2 or 3 affine reflections,affinity
preserving
a conic

each of them preserving the conic too.

Exercise 24. Assume that the orbits {Xn = f n(X),n ∈ Z} and {Yn = f n(Y ),n ∈ Z} are contained
in the same non-degenerate conic κ. Show that there is an affinity g preserving κ and mapping
the first orbit onto the second.

Hint: Use again matrices, Av for f and Cw for the affinity g mapping {X0,X1,X2} respec-
tively to {Y0,Y1,Y2}. Since Av satisfies its characteristic polynomial, there are constants
{a, b, c} such that, with the unit 3 × 3 matrix I3 :

A3
v = aI3 + bAv + cA2

v .

By the assumption

CwXi = Yi ⇔ CwAi
vX0 = Ai

vY0 for i = 0,1,2

we have then

Cw · X3 = Cw · (A3
vX0) = Cw · (aX0 + bAvX0 + cA2

vX0) = aY0 + bAvY0 + cA2
vY0 = A3

vY0 = Y3.
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In the same way, using A4
v = aAv + bA2

v + cA3
v we show CwX4 = Y4 and inductively the

equivalent to the claimed condition CwXn = Yn for all n. The preservation of the conic κ

under g follows immediately if the orbits contain more than 4 points and by reduction
to the circle in the other cases.

Exercise 25. Show that for a central conic κ and the orbit {Xn = f n(X),n ∈ Z} in it by anarea swept
affinity f preserving κ the areas of the triangles OXiXi+1 are equal, O being the center of the
conic. Show also that the areas of the corresponding sectors of the conic have the same area and

O

X

X
1

X
2

X
3

X
4

X
5

Figure 39: Areas swept by the radius from the center

also the corresponding “conic segments” enclosed by the chord XiXi+1 and the corresponding arc
of the conic are equal.

Exercise 26. Show that an affine reflection preserving the circle S1 = {(x, y) : x2 + y2 = 1} is anaffinities
preserving
a circle

ordinary euclidean reflection (with conjugate axis orthogonal to the axis). Show that the product of
three reflections preserving S1 is a reflection too. Conclude that the group of affinities preserving
S1 consists of “rotations” about its center and reflections on its diameters.

Exercise 27. Show that an affinity f can be represented as a composition f = s ◦ r2 ◦ r1, with
two affine reflections {r1,r2} and a shear or strain s. Conclude that every affinity is the product,
f = s ◦ g, of an equiaffinity g = r2 ◦ r1 and a shear or strain s. In some particular cases one or
more of these factors of f can be the identity. Investigate these cases and see when they happen.
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Figure 40: General affinity decomposition

Hint: Consider a triangle ABC and its image A1B1C1 under f . Define an affine reflection
r1 with conjugate axis BB1 and axis µ1 arbitrary (See Figure 40). This maps ABC onto
a triangle A2B1C2. Then, define the affine reflection r2 with conjugate axis C1C2 and
axis µ2 the median of B1C1C2 from B1. This maps A2B1C1 onto A3B1C1 . Then, the
two triangles with common base B1C1 define a shear or strain fixing the line B1C1 and
mapping A3 to A1.
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20 Affine equivalence of conics

Analogously to “homotheties = central dilatations” centerred at O, represented in cartesian
coordinates by {x ′ = λx, y′ = λy}, which map central conics κ to central conics κ′ with
the same axes and the same eccentricity, the use of affinities and in particular strains cre-

y

λy

A

B

A'

B'

O
κ

κ'

X

X'

B

λB

κ

κ'

(Ι) (ΙΙ)

Figure 41: Central conics κ′ resulting via a strain from conic κ

ates maps between conics of the same type and of different eccentricities. Figure 41-I
illustrates such a case of a strain applied to hyperbola κ, which maps to hyperbola κ′ by
“bending” the original hyperbola κ while maintaining fixed its vertices, i.e. preserving the
transverse axis a and changing only the conjugate axis b. It shows also how the point A
of κ and A′, on the asymptote of κ, map correspondingly to points B of κ′ and B′ of the
asymptote of κ′. By varying the parameter λ of the strain, we can obtain from a hyperbola
with eccentricity e a hyperbola with any other value e′ of eccentricity we wish. Equiv-
alently, from a hyperbola κ with angle between the asymptotes ω, a hyperbola κ′ with
arbitrary angle ω′ between its asymptotes. Figure 41-II shows the analogous procedure
mapping a circle κ to an ellipse.

(x,y)
(λx,λy)κκ'

Figure 42: All parabolas are similar

The analogous property for parabolas is trivial, since all of them are pairwise similar and
similarities are special affinities. Figure 42 shows the parabola κ′ : y = 1

λ x2, resulting
from κ : y = x2 by the homothety x ′ = λx, y′ = λy.

21 Affinities preserving a non-degenerate conic

By exercise 23, every affinity preserving a non-degenerate conic is the composition of at
most three affine reflections. The first property to show is the following concerning a
single reflection.

Exercise 28. An affine reflection f preserving a non-degenerate conic has necessarily its axis µ
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coinciding with a diameter of the conic and its conjugate direction u coinciding with the conjugate
direction of µ.

X Y Z

X'
Y'

Z'

u
μ

Figure 43: Affine reflection preserving a conic

Hint: For all points X on the conic X ′ = f (X) defines chords X X ′ parallel to u whose
middles lie on the conjugate diameter µ to u.

Exercise 29. The product f of two affine reflections preserving an ellipse/parabola/hyperbola is
respectively an elliptic/parabolic/hyperbolic or crossed hyperbolic rotation.

Hint: Take a point X on the conic and apply repeatedly f to create the orbit { f nX} of
points of the conic (section 17).

Next exercise can be given a solution valid for all three kinds of conics. This depends
however on the possibility to rewrite an affine rotation f as a product f = f2 ◦ f1 of
two reflections whose axes and respective conjugate axes are conveniently chosen. For
non-euclidean rotations this is not trivial, but this sort of argument can be avoided by
examining the cases separately. For the elliptic case this is already handled in exercise
26. Thus, the solution can be given by examining the remaining cases: (i) of the parabola
y = x2 and (ii) the case of the hyperbola xy = 1.

Exercise 30. The product f of three affine reflections preserving a non-degenerate conic is an
affine reflection preserving the conic.

Hint: Show that this is equivalent with the following geometric property of quadrangles
inscribed in conics.

Exercise 31. Given three directions {u1,u2,u3}, a conic κ and an arbitrary point A on it, con-
struct the inscribed in it quadrangle ABCD, such that {AB,BC,CD} are respectively parallel to
{u1,u2,u3}. Show that the fourth side DA is then parallel to a fixed direction u4.

Hint: In the case of the parabola y = x2 project the vertices on the x-axis to the points re-
spectively {A′,B′,C ′,D′}. Use the description of the symmetry of the x-axis about its point
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Figure 44: Inscribed quadrangles with fixed directions of three sides

m, given by x ′ = 2m − x and show that the coordinates {α, δ} respectively of {A′,D′} are
related by the equation (See Figure 44)

δ = 2(m3 − m2 + m1) − α,
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{m1,m2,m3} being respectively the (fixed) coordinates of the middles of {AB,BC,CD}.
In the case of hyperbola and a chord AB of it such that AB = (α, β) and coordinates
{A(x1, y1),B(x2, y2)} show first that for fixed direction λ = α/β of the chords AB(

x2
y2

)
=

(
0 −λ

− 1
λ 0

)
·

(
x1
y1

)
,

describes the affine reflection with conjugate direction the one of AB. Calculate the com-
position of three analogous reflections and show that the resulting transformation is an

A
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2
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1

Figure 45: Affine reflection with conjugate direction defined by AB

affine reflection (See Figure 45).
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