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1 Apollonian circles of a segment

Given a segment 𝐴𝐵 and a positive real number 𝑘, the “Apollonian circle of the segment𝐴𝐵
for the ratio 𝑘 ” is defined to be the geometric locus of points 𝑃, such that |𝑃𝐴|/|𝑃𝐵| = 𝑘.
If {𝑃𝐶, 𝑃𝐷} are the internal and external bissectors of the angle 𝐴𝑃𝐵, it is a well known
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Figure 1: An Apollonian circle 𝛼

elementary theorem ([Cou80, p.15]), that |𝐶𝐴|/|𝐶𝐵| = |𝐷𝐴|/|𝐷𝐵| = 𝑘, hence {𝐶, 𝐷} which
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are well defined points on the line 𝐴𝐵, belong to the locus (see figure 1) and are harmonic
conjugate w.r.t. {𝐴, 𝐵}. But the angle 𝐶𝑃𝐷 is a right one. Thus, every point 𝑃 of the
locus is viewing the segment 𝐶𝐷 under a right angle. Thus, it belongs to the circle with
diameter 𝐶𝐷.

Theorem 1. Some further properties of figure 1 are the following∶
1. The angles 𝑂𝑃𝐴 and 𝑃𝐵𝑂 are equal.
2. The triangles {𝑂𝑃𝐴, 𝑂𝑃𝐵} are similar.
3. It is 𝑂𝑃2 = 𝑂𝐴 ⋅ 𝑂𝐵 , the circles {𝛼, 𝛾} are orthogonal and {𝐷, 𝐶} are harmonic conjugate

relative to {𝐴, 𝐵}.
4. For a constant 𝐴𝐵 and variable 𝑘 the “Apollonian circles 𝛼 for 𝑘 ” form a “non‑intersecting

pencil of circles”

Proof. Nr‑1. To see this, add to 𝑂𝑃𝐴 the angle 𝐴𝑃𝐶 and get 𝑂𝑃𝐶. Add to 𝑃𝐵𝑂 the angle
𝐶𝑃𝐵 = 𝐴𝑃𝐶 (because 𝑃𝐶 bisector) to get 𝑂𝐶𝑃 = 𝑂𝑃𝐶 from the isosceles 𝑂𝑃𝐶.
Nr‑2 follows from nr‑1. To prove the remaining properties see that triangles {𝑂𝑃𝐴, 𝑂𝑃𝐵}
being similar implies |𝑂𝑃||𝑂𝑃| = |𝑂𝐴||𝑂𝐵|. This means∶ (i) that 𝑂𝑃 is tangent to the cir‑
cumcircle 𝛾 of 𝐴𝐵𝑃 , (ii) that the Appolonius circle 𝛼 is orthogonal to the circumcircle
𝛾 of 𝐴𝐵𝑃, hence also to the circle 𝛿 on diameter 𝐴𝐵. Thus, all these Apollonian circles
form the pencil of circles orthogonal to 𝛿 and line 𝐴𝐵.

Exercise 1. Given a circle 𝛼(𝑂) and a point 𝐴 ≠ 𝑂 show that there is precisely one segment
𝐴𝐵 for which 𝛼 is an Apollonian circle (see figure 1).

Exercise 2. Given two consecutive segments {𝐴𝐶, 𝐶𝐵} on a line, show that the geometric locus
of the points 𝑋 viewing the segments under equal angles is an Apollonian circle of the segment
𝐴𝐵 (see figure 1).
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Figure 2: Point 𝑋 viewing the segments {𝐴𝐵, 𝐵𝐶, 𝐶𝐷} under equal angles

Exercise 3. Given three consecutive segments {𝐴𝐵, 𝐵𝐶, 𝐶𝐷} on a line, find a point 𝑋 viewing
these segments under equal angles (See Figure 2). Find conditions of existence of such a point.

2 Inversion properties of Apollonian circles

As we saw in the preceding section, an Apollonian circle and the circumcircle of △𝐴𝐵𝐶
are orthogonal, consequently the Inversion w.r.t to either of these two circles leaves the
other invariant. We notice also that the inversion w.r.t. the Apollonian circle 𝛼 inter‑
changes {𝐵, 𝐶} and fixes 𝐴. It follows that a circle 𝜆 tangent to the circumcircle 𝜅 of
△𝐴𝐵𝐶 at 𝐴 remains also invariant by the inversion w.r.t. 𝛼. Further, a circle 𝜇 through
{𝐴, 𝐵} maps by the 𝛼‑inversion to a circle 𝜇′ and the angles between the circumcircle 𝜅
and these two inverse to each other circles are equal (𝜙 = 𝜙′ in figure 3). This is of impor‑
tance for the next property.
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Figure 3: Circles inverted w.r.t. the Apollonian circle 𝛼

Theorem 2. Let 𝑃′ be the inverse of point 𝑃 w.r.t. the Apollonian circle 𝛼(𝑂) of the triangle
𝐴𝐵𝐶 and suppose that both {𝑃, 𝑃′} are inside the triangle Then, the difference of the angles is
preserved by the 𝛼‑inversion (see figure 4)

𝜙𝐶 = 𝐴𝑃𝐵 − 𝐶 = 𝐴𝑃′𝐶 − �̂� = 𝜙𝐵 .
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Figure 4: Preservation of the angle‑difference

Proof. By the figure. Each of the four angles defines a corresponding angle between the
tangents of the circles at 𝐴. The difference 𝜙𝐶 corresponds by the inversion to 𝜙𝐵 = 𝜙𝐶
because the inversion is “conformal”, i.e. respects angle measures.
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Figure 5: Angle relations by 𝛼‑inversions
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Remark 1. There is a multitude of similar results concerning the 𝛼‑inverses 𝑃′ of points 𝑃
lying in the various domains defined by a triangle its side lines and its circumcircle. These
results depend on the location of 𝑃 and 𝑃′ and take various forms, which can be unified
using, instead of “angles” the concept of “directed angle” introduced by Johnson ([Joh60,
p.13, p.52]). Figure 5 shows two other cases in which the angles are differently related:

In (I) : 𝐴𝑃𝐵 − 𝐶 = 2𝜋 − 𝐴𝑃′𝐶 − �̂�, and in (II) : 𝐴𝑃𝐵 + 𝐶 = 𝐴𝑃′𝐶 + �̂�.

These and all the analogous results play a key role in the discussion on Pedals, in proving
that the 𝛼‑inverse 𝑃′ of 𝑃 defines a pedal triangle w.r.t. △𝐴𝐵𝐶 similar to the pedal of 𝑃.

Theorem 3. Two points {𝐼, 𝐽} which are inverse w.r.t. to the Apollonian circle 𝛼(𝑂, 𝑟) passing
through the vertex 𝐴 of △𝐴𝐵𝐶 define ratios satisfying 𝐼𝐵

𝐼𝐶 ⋅ 𝐽𝐵
𝐽𝐶 = 𝐴𝐵2

𝐴𝐶2 . Conversely, if the points
{𝐼, 𝐽} satisfy this relation and are on a circle 𝜆 passing through {𝐵, 𝐶} and on the same arc defined
by 𝐵𝐶, then they are inverse w.r.t. the Apollonian circle 𝛼(𝑂, 𝑟) (see figure 6).
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Figure 6: Characterization of inverses {𝐼, 𝐽} w.r.t. Apollonian circle 𝛼

Proof. In fact, if the points are inversew.r.t. 𝜅, then {(𝑂𝐼𝐵 ∼ 𝑂𝐶𝐽), (𝑂𝐽𝐵 ∼ 𝑂𝐼𝐶)} are pairs
of similar triangles and we have:

𝐼𝐵
𝐼𝐶 ⋅ 𝐽𝐵

𝐽𝐶 = 𝐼𝐵
𝐽𝐶 ⋅ 𝐽𝐵

𝐼𝐶 = 𝑂𝐵
𝑂𝐽 ⋅ 𝑂𝐵

𝑂𝐼 = 𝑂𝐵2

𝑟2 = 𝑂𝐵
(𝑟2/𝑂𝐵)

= 𝑂𝐵
𝑂𝐶

= 𝑂𝐵
𝐴𝐵 ⋅ 𝐴𝐵

𝑂𝐶 = 𝑟
𝐴𝐶 ⋅ 𝐴𝐵

𝑂𝐶 = 𝐴𝐵
𝐴𝐶 ⋅ 𝑟

𝑂𝐶 = 𝐴𝐵2

𝐴𝐶2 .

Latter because 𝐴𝐵
𝐴𝐶 ⋅ 𝑂𝐶

𝑅 = 1. For an alternative proof of the last step see exercise 4 below.
Conversely, if the points {𝐼, 𝐽} satisfy the stated conditions, consider the inverse 𝐼′

of 𝐼 w.r.t. the Apollonian circle. By the first part of the theorem 𝐼′ will satisfy the stated
condition too andwill lie on the sameApollonian circle with 𝐽 and also on the same circle‑
arc through {𝐵, 𝐶}, hence it will coincide with 𝐽.

Remark 2. The Apollonian circles of the segment 𝐴𝐵 form one of the main categories
of “circle pencils”, namely that of “non‑intersecting type”. All types of circle pencils are
studied in the file Circle Pencils.

3 The Apollonian pencil of a segment

Consider a segment 𝐴𝐵 and the Apollonian circles dividing it in various ratios. All these
circles are members of a (coaxal) “hyperbolic pencil” of circles, which I call the “Apollonian
pencil” of the segment. This is a pencil of “non‑intersecting type”, i.e. two member‑circles
do not intersect. The common radical axis of the member‑circles of the pencil is the per‑
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Figure 7: Apollonian pencil of segment 𝐴𝐵

pendicular bisector line of the segment. As is with every pencil, the Apollonian pencil is
generated, i.e. completely defined, from two particular members, one of which can be the
perpendicular bisector 𝜀 of the segment. The points {𝐴, 𝐵}, called the “limit points” of the
pencil are considered as member‑circles with radius zero. Figure 7 shows some circles of
such a pencil labeled by their characteristic ratio satisfying |𝑋𝐴|/|𝑋𝐵| = 𝑘 for all points of
the corresponding circle. The perpendicular bisector line is the particular case for 𝑘 = 1.

Theorem 4. In the following formularium are listed the formulas for various distances concerning
the Apollonian circle 𝛼 of 𝐴𝐵 relative to the ratio 𝑘 > 0 (see figure 8).

1. |𝑋𝐴|
|𝑋𝐵| = 𝑘, for 𝑋 ∈ 𝛼 implies the following: 𝐶𝐴 = − 𝑘

1+𝑘 𝐴𝐵, 𝐶𝐵 = 1
1+𝑘 𝐴𝐵,

2. 𝐷𝐴 = 𝑘
1−𝑘 𝐴𝐵, 𝐷𝐵 = 1

1−𝑘 𝐴𝐵, 𝐶𝑀 = 1−𝑘
2(1+𝑘)𝐴𝐵, 𝐷𝑀 = 1+𝑘

2(1−𝑘)𝐴𝐵,

3. 𝑂𝐴 = 𝑘2

1−𝑘2 𝐴𝐵, 𝑂𝐵 = 1
1−𝑘2 𝐴𝐵, 𝑂𝑀 = 1+𝑘2

2(1−𝑘2)𝐴𝐵, |𝑂𝑍| = 𝑘
|1−𝑘2| |𝐴𝐵|.

The Apollonian circles of 𝐴𝐵 relative to the ratios 𝑘 and 1
𝑘 have equal radii and lie symmetrically

relative to the medial line of 𝐴𝐵 (see figure 8).
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Figure 8: Symmetric lying Apollonian circles of 𝐴𝐵

Proof. The formulas are easily computed. The geometric property by which the circles
corresponding to ratios 𝑘 and 1

𝑘 lie symmetrically relative to the orthogonal bisector of
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the segment 𝐴𝐵, results from the fact that for every point 𝑋 which satisfies |𝑋𝐴|
|𝑋𝐵| = 𝑘 its

symmetric 𝑌 relative to the perpendicular bisector of 𝐴𝐵 will satisfy |𝑌𝐴|
|𝑌𝐵| = 1

𝑘 .
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Figure 9: A member circle 𝜅(𝑂) and the member 𝜅′ passing through 𝑂

A half‑circle 𝜆 with diameter the segment 𝐴𝐵 gives another parametrization of the
pencil, in the sense, that every member‑circle 𝜅 cuts 𝜆 in exactly one point 𝑍 and sat‑
isfies 𝑘 = |𝑍𝐴|/|𝑍𝐵| = tan(𝜙). This leads to another way to construct the member‑circle
corresponding to ratio 𝑘 ∶

1. Find 𝜙 = arctan(𝑘) and locate point 𝑍 on the half‑circle.
2. Draw 𝑍𝑂 orthogonal to 𝑍𝑀 at 𝑍. This determines the center 𝑂 and the radius

|𝑂𝑍| = |𝐴𝐵|| tan(2𝜙)|/2 of the 𝑘−ratio member‑circle.

Notice that 𝜆 is part of theminimal member‑circle of the pencil 𝒜 whosemember‑circles
are orthogonal to the Apollonian circles of 𝐴𝐵. Figure 9 shows also the member‑circle 𝜅′

passing through the center 𝑂 of 𝜅, for which the following property holds.

Exercise 4. If 𝜅(𝑂) is an Apollonian circle of the segment 𝐴𝐵 characterized by the ratio 𝑘, then
the Appolonian circle passing through the center 𝑂 of 𝜅 is characterized by the ratio 𝜅2.

4 Related exercises

Exercise 5. Construct a triangle 𝐴𝐵𝐶 from its sides {𝑏 = |𝐴C|, 𝑐 = |𝐴𝐵|} and its bisector 𝑑 =
|𝐴𝐷| from 𝐴.

Hint: Consider an arbitrary segment 𝐵′𝐶′ of length 𝑎′. Construct its Apollonian circle
𝜅1, for the ratio 𝜆 = 𝑏/𝑐, which intersects 𝐵′𝐶′ at its inner point 𝐷′. Construct then the
Apollonian circle 𝜅2 of the segment 𝐷′𝐶′ for the ratio 𝜇 = 𝑑/𝑏. If 𝐴′ is an intersection
point of the circles {𝜅1, 𝜅2}, then the triangle𝐴′𝐵′𝐶′ is similar to the wanted, with a known
similarity ratio.

Exercise 6. Given the triangle 𝐴𝐵𝐶, to determine a point 𝑋, which has the two ratios of distances
|𝑋𝐴|/|𝑋𝐵| = 𝜅 and |𝑋𝐵|/|𝑋𝐶| = 𝜆. Show that for given {𝜅, 𝜆}, there exist in general two points
{𝑋, 𝑋′}, whose line 𝑋𝑋′ passes through the center 𝐾 of the circumcircle 𝜇(𝐾, 𝑟𝜇) of the triangle
𝐴𝐵𝐶. Show also that if 𝜅𝜆 = 𝜎 is constant, then the points {𝑋} are on a fixed circle.

Hint: 𝑋 is one of the intersection points of the two Apollonian circles {𝛼𝛽, 𝛽𝛾}, whose
points satisfy respectively |𝑋𝐴|/|𝑋𝐵| = 𝜅 and |𝑋𝐵|/|𝑋𝐶| = 𝜆 (See Figure 10). Then it
will also hold |𝑋𝐴|/|𝑋𝐶| = 𝜅 ⋅ 𝜆 and the corresponding Apollonian circle for 𝐴𝐶 relative
to the ratio 𝜅𝜆 will also pass through points {𝑋, 𝑋′}. The three circles are orthogonal
to the circumcircle 𝜇, hence the center 𝐾 of 𝜇 is contained in the common radical axis
of {𝛼𝛽, 𝛽𝛾, 𝛾𝛼}. From the fact that the power of 𝐾 relative to 𝛼𝛽 is equal to 𝑟2

𝜇, follows
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Figure 10: Three circles forming a coaxal pencil of circles

|𝐾𝑋| ⋅ |𝐾𝑋′| = 𝑟2
𝜇. This shows that the two points {𝑋, 𝑋′} are coincident only in the case

when the circles {𝛼𝛽, 𝛽𝛾, 𝛾𝛼} are tangent at a point 𝑋 contained in the circumcircle 𝜇 of
𝐴𝐵𝐶 and then the common tangent to these circles coincides with 𝑋𝐾.

Remark 3. The preceding exercise generalizes the construction of the “three Apollonian
circles of a triangle” (see file Isodynamic points of the triangle).

Exercise 7. Given is a line 𝜂, a point 𝐻 not lying on it and a constant 𝜅 > 0. Point 𝐴 moves along
a given line 𝛼. There exist at most two positions of 𝐴 on line 𝛼, for which holds |𝐴𝐻| = 𝜅|𝐴𝑋|,
where 𝑋 is the projection of 𝐴 onto 𝜂.

Hint: Assume that the line 𝛼 intersects line 𝜂 at point 𝐶 (see figure 11‑(I)). Then, for every
point 𝐴 of 𝛼 the ratio 𝜆 = |𝐴𝑋|

|𝐴𝐶| will be fixed. Consequently, for the wanted positions of
𝐴, the ratio 𝜇 = |𝐴𝐻|

|𝐴𝐶| = |𝐴𝐻|
|𝐴𝑋| ⋅ |𝐴𝑋|

|𝐴𝐶| = 𝜅𝜆 will be known. It follows that the wanted points
𝐴 coincide with the intersection points of line 𝛼 and the Apollonian circle of segment 𝐻𝐶
relative to ratio 𝜇. In the case where 𝛼 is parallel to 𝜂, segment |𝐴𝑋| is a known fixed
length and consequently segment |𝐴𝐻| = 𝜅|𝐴𝑋| is also known (see figure 11‑(II)). In this
case then, the wanted points are again intersections of a circle and a line.
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Figure 11: Intersections of a line and a conic

Remark 4. The last proposition gives the geometric proof of the fact that a line (𝛼) inter‑
sects a conic in at most two points ([IS01, p.42]).

Exercise 8. Construct a triangle, for which are given the side 𝑎 = |𝐵𝐶|, the altitude from the
opposite side 𝜐𝐴 and the trace of the bisector (internal or external) from 𝐴.

Exercise 9. Construct a triangle, for which are given the side 𝑎 = |𝐵𝐶|, the angle 𝛼 = 𝐵𝐴𝐶 of the
opposite vertex and the trace of the bisector (internal or external) from 𝐴.
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Figure 12: Construct equal segments 𝐶𝐼 = 𝐼𝐾 = 𝐾𝐵

Exercise 10. Construct a triangle, for which are given the side 𝑎 = |𝐵𝐶|, and the traces of the
altitude and the bisector on that side.

Exercise 11. Find points {𝐼, 𝐾} on the sides of a triangle 𝐴𝐵𝐶, such that segments {𝐶𝐼, 𝐼𝐾, 𝐾𝐵}
are equal in length.

Hint: ([Yag62, I,p.133]) Since {𝐼𝐶, 𝐾𝐵} are assumed to be equal, there is a rotation about
some point 𝐷 that brings the one to the other. Point 𝐷 can be determined without
knowing the exact lengths of {𝐶𝐼, 𝐼𝐾, 𝐾𝐵}. In fact, the center of the rotation has to be
on the medial line of 𝐵𝐶 and triangles {𝐷𝐶𝐼, 𝐷𝐵𝐾} must be equal, the angles at 𝐷 be‑
ing 𝐶𝐷𝐵 = 𝐼𝐷𝐾 = 𝐶𝐴𝐵. Thus 𝐷 is one of the intersection points of the circumcircle 𝜅 of
𝐴𝐵𝐶 with the perpendicular bisector of 𝐵𝐶. Now the isosceles 𝐷𝐶𝐵 with a known angle
at 𝐷 has a known ratio of side‑lengths (depending on 𝐶𝐴𝐵)

𝑘 = 𝐶𝐼/𝐼𝐷 = 𝐼𝐾/𝐼𝐷 = 𝐶𝐵/𝐷𝐶 = 𝐶𝐵/𝐷𝐵.

Hence 𝐼 lies on the Apollonian circle 𝜇 of the segment 𝐶𝐷, relative to the ratio 𝑘.
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Figure 13: Construct equal segments 𝐶𝐼 = 𝐼𝐾 = 𝐾𝐵 (II)

Figure 13 suggests another way to solve the problem. In fact, start by assuming that {𝐼, 𝐾}
have been constructed, 𝐴𝐶 is shorter than 𝐴𝐵 and the ratio 𝑟 = 𝐶𝐼/𝐶𝐴 is known. Define
𝐷 on 𝐴𝐵, so that 𝐴𝐷 = 𝐴𝐶. The homothety 𝑓𝐶,𝑟 (center at 𝐶, ratio 𝑟) maps 𝐷 to a point 𝐺,
so that 𝐼𝐺 = 𝐼𝐶. Thus, 𝐵𝐺𝐼𝐾 is a parallelogram and 𝐼𝐾 = 𝐼𝐶 = 𝐼𝐺, implying that it is a
rhombus. Draw a parallel to 𝐵𝐺 through 𝐷 intersecting 𝐵𝐶 at 𝐸. Because 𝐷𝐴 = 𝐷𝐸, this
is a constructible point and maps through 𝑓𝐶,𝑟 on 𝐵. Thus, 𝑟 = 𝐵𝐶/𝐵𝐷 can be determined
from the data. Having the homothety 𝑓𝐶,𝑟 the construction is obvious.

Exercise 12. To construct a triangle 𝐴𝐵𝐶 from the angle 𝐴 and the sums of its side‑lengths 𝑎 + 𝑐
and 𝑎 + 𝑏.
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Figure 14: Triangle construction from {𝐴, 𝑎 + 𝑏, 𝑎 + 𝑐}

Hint:Use the previous exercise starting from the constructible 𝐴𝐵′𝐶′ and locating {𝐵, 𝐶}.
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Related material
1. Circle Pencils
2. Inversion
3. Isodynamic points of the triangle
4. Pedals

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e‑mail to: pamfilos@uoc.gr
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