Facts as facts do not always create a spirit of reality, because reality is a spirit.

Chesterton, G.K., On the Classics p. 49

Figure 1: $\quad G J=G K$

Butterfly theorem

Theorem. Consider a circle $\kappa(O)$ and a chord $C D$ of it whose middle is G. Draw two other chords $\{F H, E I\}$ through G. Then lines $\{F I, E H\}$ intersect chord $C D$ at points respectively J, K, which are symmetric with respect to G.

Proof. The theorem is a consequence of the fact that line $L M$ is the polar of G with respect to the circle. Then lines $L(F, E, G, M)$ form a harmonic pencil and every line intersecting these lines is divided harmonically by them. Thus, $J K$ being parallel to $L M$ is bisected by $L G$.

Notice that $\{L G, M G\}$ are respectively the polars of M and L and line $A G N$ is orthogonal to the parallel lines, hence G is the middle of the chord $C D$. The relevant properties of the polars are discussed in the file Cyclic Projective.

Information on the history of the problem and discussion of various alternative proofs can be found in the article by Bankoff [Ban87].

Bibliography

[Ban87] Leon Bankoff. The metamorphosis of the butterfly problem. Mathematics Magazine, 60:195-210, 1987.

