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1 Ceva’s theorem

Ceva’s theorem, and its older brother Menelaus’ theorem, deal with “signed ratios” of seg‑
ments, which are properly defined in “affine geometry”. In euclidean geometry the theorem
has the following formulation.

Theorem 1. A necessary and sufficent condition, that the three points {𝐴′, 𝐵′, 𝐶′} on respective
sides {𝐵𝐶, 𝐶𝐴, 𝐴𝐵} of the triangle 𝐴𝐵𝐶, define three lines {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} intersecting at the
same point 𝑃 not lying on the side‑lines of 𝐴𝐵𝐶, is (see figure 1)

𝐴′𝐵
𝐴′𝐶 ⋅ 𝐵′𝐶

𝐵′𝐴 ⋅ 𝐶′𝐴
𝐶′𝐵 = −1. (1)
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2 Cevians 2

Proof. Here let us first observe that, for every point 𝑃 of the plane, not lying on the side‑
lines of the triangle, the intersections {𝐴′, 𝐵′, 𝐶′} of {𝐴𝑃, 𝐵𝑃, 𝐶𝑃} with the respective op‑
posite sides either all are contained in the interiors of the sides or exactly one of them is
contained in the interior and all others are in the exterior, hence the sign ‑1.

Now, for the proof, paying attention to the correct signs. Draw a parallel from one
vertex, for example from 𝐴 to the base 𝐵𝐶. This creates pairs of similar triangles:

(𝑃𝐵𝐶, 𝑃𝑌𝑍), (𝐵′𝐵𝐶, 𝐵′𝑌𝐴), (𝐶′𝐵𝐶, 𝐶′𝐴𝑍).

From the side proportions of these similar triangles we have the equalities:
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Figure 1: Ceva’s theorem

𝐴′𝐵
𝐴′𝐶 = −|𝐴𝑌|

|𝐴𝑍| ,
𝐵′𝐶
𝐵′𝐴 = − |𝐵𝐶|

|𝐴𝑌| ,
𝐶′𝐴
𝐶′𝐵 = −|𝐴𝑍|

|𝐵𝐶| .

The claimed relation follows by multiplying these by parts and simplifying.
For the converse, let us assume that the two lines {𝐴𝐴′, 𝐵𝐵′} intersect at point 𝑃 and

also assume that 𝐶″ is the intersection point of 𝐶𝑃 with 𝐴𝐵. Then, according to the
proved part of the theorem, will hold

𝐴′𝐵
𝐴′𝐶 ⋅ 𝐵′𝐶

𝐵′𝐴 ⋅ 𝐶″𝐴
𝐶″𝐵 = −1, and by assumption

𝐴′𝐵
𝐴′𝐶 ⋅ 𝐵′𝐶

𝐵′𝐴 ⋅ 𝐶′𝐴
𝐶′𝐵 = −1.

From these two follows immediately

𝐶″𝐴
𝐶″𝐵 = 𝐶′𝐴

𝐶′𝐵 ,

which shows that 𝐶″ = 𝐶′.

2 Cevians

Because of Ceva’s theorem the term “cevian” has been established to mean a line segment
starting at a vertex of a triangle, ending on the opposite side and passing through a point
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Figure 2: Medians Bisectors Altitudes
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𝑃 not lying on the side‑lines of the triangle. The most prominent cevians are the “me‑
dians”, the “bisectors”, the “altitudes” and the “symmedians” of the triangle. The medians
pass through the middles of the opposite sides. The bisectors divide the opposite sides in
the signed ratios 𝐴′𝐵/𝐴′𝐶 = −|𝐴𝐵|/|𝐴𝐶|, … and the altitudes are orthogonal to respective
opposite sides. Figure 2 shows these lines together with the corresponding “cevian trian‑
gles” defined by the traces of the corresponding cevians on the opposite sides. In the case
of the medians the triangle 𝐴′𝐵′𝐶′ is the “medial” triangle of 𝐴𝐵𝐶. In the case of the bi‑
sectors 𝐴′𝐵′𝐶′ is the “incentral” triangle of 𝐴𝐵𝐶. In the case of the altitudes 𝐴′𝐵′𝐶′ is the
“orthic” triangle of 𝐴𝐵𝐶. The proof that these lines pass really through the corresponding
points {𝐺, 𝐼, 𝐻} is an easy exercise in the use of Ceva’s theorem. These three points are
respectively the “centroid, incenter” and “orthocenter” of the triangle.

There are lots of analogous “centers, cevians” and “cevian triangles” of the triangle 𝐴𝐵𝐶,
examined in the frame of “triangle geometry” (see [Kim97] and [Kim18]). Figure 3 shows
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Figure 3: Circumcenter Symmedian point Gergonne point

three other remarkable “triangle centers”∶ the center of the circumcircle∶ “circumcenter”,
the “symmedian point”, defined as intersection of the “symmedian lines” and the “Gergonne
point”, defined as intersection of the lines joining the vertices with the contact points of
the “incircle” with the opposite sides. The two last points are discussed in short in the
file Symmedian center of the triangle. Figure 4 shows three other remarkable “triangle
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Figure 4: Nagel point Fermat point 1st Isodynamic point

centers”. The first is the “Nagel point”, through which pass the lines {𝐴𝐴′, …} joining the
vertices with the opposite side contact point of the corresponding “excircle” or “tritangent
circle” (see files Nagel center of the triangle and Tritangent circles of the triangle). The
second is the “Fermat” point, from which each side is seen under 120∘. The third is the
“1st isodynamic point”, which together with the “2nd isodynamic point” are the common
intersection points of the three “Apollonian circles” handled in the file Apollonian circles
(see also file Isodynamic points of the triangle).
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3 Relation of Ceva’s and Menelaus’ theorems

Theorem 2. Given is a triangle 𝐴𝐵𝐶 and three points {𝐴′, 𝐵′, 𝐶′} on its sides and different from
its vertices. Then the relation of ratios of lengths:

|𝐴′𝐵|
|𝐴′𝐶| ⋅ |𝐵′𝐶|

|𝐵′𝐴| ⋅ |𝐶′𝐴|
|𝐶′𝐵| = 1

implies exactly one of the next two propositions:

1. Points {𝐴′, 𝐵′, 𝐶′} are collinear.
2. The lines {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} pass through a common point.

Also, if 𝐶″ is the harmonic conjugate of 𝐶′ relative to {𝐴, 𝐵}, then (see figure 5),
3. when (1) occurs, the lines {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶″}, pass through a common point.
4. when (2) occurs, points {𝐴′, 𝐵′, 𝐶″}, are collinear.
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Figure 5: The “trilinear polar” of 𝑃 relative to 𝐴𝐵𝐶

Proof. The proof follows directly from the previous theorem and the theorem ofMenelaus
(see file Menelaus’ theorem). If the product of ratios of lengths is equal to 1, then the
corresponding product of signed ratios will equal 1 or ‑1. In the first case, by Menelaus’
theorem, we have (1). Because of the relation between harmonic conjugates

(𝐶′, 𝐶″) ∼ (𝐴, 𝐵) ⇒ 𝐶′𝐴
𝐶′𝐵 = −𝐶″𝐴

𝐶″𝐵 ,

(3) will also be valid. Similarly in the second case holds simultaneously (2) and (4).
Note that similar properties will be valid also for the other corresponding harmonic

conjugates (𝐴″, 𝐴′) ∼ (𝐵, 𝐶) and (𝐵″, 𝐵′) ∼ (𝐴, 𝐶) .

Remark 1. The last corollary reveals that the two properties, expressed by the theorems
of Menelaus and Ceva, are intimately related. To see them in a unifying spirit and to
include the symmetry implied in this relationship, we must, along with the three points
{𝐴′, 𝐵′, 𝐶′} on the sides of triangle 𝐴𝐵𝐶, consider also their three harmonic conjugates
{𝐴″, 𝐵″, 𝐶″} relative to the end points respectively on the sides {𝐵𝐶, 𝐶𝐴, 𝐴𝐵}. There results
then the interesting figure 5, in which all the coincidences, besides those of {𝐴″, 𝐵″, 𝐶″} on
a line, are consequences of the previous propositions. The line which contains the points
{𝐴″, 𝐵″, 𝐶″} is called “trilinear polar” of 𝑃 relative to triangle 𝐴𝐵𝐶 and point 𝑃 is called
“trilinear pole” of the line 𝐴″𝐵″ relative to the triangle 𝐴𝐵𝐶. These two notions occupy an
important position in the so called “Geometry of the triangle”, ([Yiu13], [Gal13]). The fact,
that points {𝐴″, 𝐵″, 𝐶″} are collinear is a direct consequence of “Desargues’ theorem”. If
fact, by definition the triangles {𝐴𝐵𝐶, 𝐴′𝐵′𝐶′} are point‑perspective, hence, by Desargues’
theorem, they are also line perspective and the trilinear polar is “their axis of perspectivity”
(see file Desargues’ theorem).
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4 A limit case

Ceva’s theorem is valid also in the limit case, in which the point 𝑃 goes to infinity.
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Figure 6: Theorem of Ceva for parallels {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′}

In that case the three lines {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} are three parallels, which we consider as con‑
curring to a point 𝑃 at infinity. The theorem of Ceva follows, then, from that of Thales

𝐴′𝐵
𝐴′𝐶 ⋅ 𝐵′𝐶

𝐵′𝐴 ⋅ 𝐶′𝐴
𝐶′𝐵 = −1.

Figure 6 shows that case, displaying also the corresponding to 𝑃 trilinear polar. Changing
𝑃 i.e. changing the direction of parallels, changes also the location of the corresponding
trilinear polar. Figure 7 displays the “envelope” of all these trilinear polars. It is an ellipse
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Figure 7: The Steiner inellipse enveloping the trilinear polars

inscribed in the triangle and tangent to its sides at their middles. This is the maximal el‑
lipse that can be inscribed in the triangle, called “Steiner inellipse” of the triangle. The fig‑
ure displays also the envelope of lines 𝐶′𝐴′𝐵″ , which is a hyperbola touching these lines
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at themiddle 𝐵1 of the segment 𝐴′𝐶′. The center of the hyperbola is the vertex 𝐵 and the
sides {𝐵𝐴, 𝐵𝐶} are its “asymptotes”. There are two other analogous hyperbolas envelop‑
ing correspondingly all lines 𝐴′𝐵′𝐶″ and all lines 𝐵′𝐶′𝐴″ with centers correspondingly
at {𝐶, 𝐴}.

5 A second version of Ceva’s theorem

Another form of Ceva’s theorem is obtained by introducing two angles at each vertex.
The two angles are defined through the respective “cevian” and the sides of the triangle.
In figure 8 the oriented angles are such that
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Figure 8: Theorem of Ceva expressed through angles

𝐴 = 𝛼2 − 𝛼1, �̂� = 𝛽2 − 𝛽1, 𝐶 = 𝛾2 − 𝛾1.

Then Ceva’s condition is equivalent with ([Ask03, p.41]).

sin(𝛼2)
sin(𝛼1) ⋅ sin(𝛽2)

sin(𝛽1) ⋅ sin(𝛾2)
sin(𝛾1) = −1. (2)

This follows by observing that from the sinus theorem for triangles we have

𝐴′𝐶
sin(𝛼2) = 𝐴′𝐴

sin(𝐶)
, 𝐴′𝐵

sin(𝛼1) = 𝐴′𝐴
sin(�̂�)

, ⇒ 𝐴′𝐶
𝐴′𝐵 ∶ sin(𝛼2)

sin(𝛼1) = sin(�̂�)
sin(𝐶)

. (3)

Analogous equations to the last one are valid also for the other vertices and multiplying
the three corresponding equations and simplifying we get at equation 2.
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Figure 9: Theorem of Ceva in vectorial form
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6 Vectorial form of Ceva’s theorem

Another version of Ceva’s condition is obtained by introducing unit vectors {𝑢1, 𝑢2, 𝑢3}
respectively along the sides {𝐴𝐵, 𝐵𝐶, 𝐶𝐴} and {𝑤2, 𝑤3, 𝑤1} along the cevians {𝐴𝑃, 𝐵𝑃, 𝐶𝑃}.
Then, denoting by ⟨… , … ⟩ the usual inner product and by 𝐽(𝑋) the transformation that
turns every vector by 𝜋/2, we have the equivalent to Ceva’s condition:

⟨𝑢1, 𝐽(𝑤2)⟩
⟨𝑢3, 𝐽(𝑤2)⟩ ⋅ ⟨𝑢2, 𝐽(𝑤3)⟩

⟨𝑢1, 𝐽(𝑤3)⟩ ⋅ ⟨𝑢3, 𝐽(𝑤1)⟩
⟨𝑢2, 𝐽(𝑤1)⟩ = −1. (4)

This follows from the second version of Ceva’s condition (equation 2) by observing that
the sinus of angles can be expressed by inner products∶

sin(𝛼2) = ⟨−𝑢3, 𝐽(𝑤2)⟩, sin(𝛼1) = ⟨𝑢1, −𝐽(𝑤2)⟩ ⇒ sin(𝛼2)
sin(𝛼1) = ⟨𝑢3, 𝐽(𝑤2)⟩

⟨𝑢1, 𝐽(𝑤2)⟩ .

Analogous formulas are valid also for the other angles and the condition follows by sub‑
stitution into the condition of the previous section.

7 Projective version of Ceva’s theorem

A fourth version of Ceva’s condition is obtained by intersecting the sides of the triangle
and the cevians with an arbitrary line 𝜀 as in the figure 10. This defines on each side‑line
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Figure 10: Ceva’s theorem, projective version

of the triangle one cross ratio (see file Cross Ratio) and the condition of concurrence is
that the product of these cross ratios is ‑1 ([Gre54, p.354]).

(𝐵𝐶; 𝐴′𝐴″) ⋅ (𝐶𝐴; 𝐵′𝐵″) ⋅ (𝐴𝐵; 𝐶′𝐶″) = −1. (5)

The proof of this “projective” version of Ceva’s theorem results from general principles
of “projective geometry”, according to which for any two sets of four lines in general position,
there is a “projectivity” transforming the first set onto the second. In particular, taking the
first three lines to be the sides of the triangle, the fourth line of the first set to be 𝜀 and
the corresponding line in the second set to be the “line at infinity”, we construct a map
sending the given triangle and the line 𝜀 to a triangle and the line at infinity.

Then, we use the fact that “projectivities” preserve the cross ratio and the fact that cross
ratios with one point at infinity reduce to simple ratios. Thus, the projective case is reduced to
the affine one handled in section 1.
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8 Projective version using an arbitrary line

From the previous version of Ceva’s theorem results also a fifth version, which can be
read on line 𝜀 using the six traces of the lines (sides + cevians). This results from the
following relation (see figure 10) ∶

(𝐵𝐶; 𝐴′𝐴″) = (𝐵1𝐶1; 𝐴1𝐴″), (𝐶𝐴; 𝐵′𝐵″) = (𝐶1𝐴1; 𝐵1𝐵″), (𝐴𝐵; 𝐶𝐶″) = (𝐴1𝐵1; 𝐶1𝐶″).

These, in turn, result by considering the pencils of lines at 𝑃. The first equality, for exam‑
ple, results by considering the pencil 𝑃(𝐵, 𝐶, 𝐴′, 𝐴″) and the two lines {𝐵𝐶, 𝜀} intersect‑
ing it and using the fact that any line intersecting a pencil, defines through its four intersection
points a cross ratio independent of its particular position, hence the same for all lines (see file
Cross Ratio). Thus, using these equalities and equation 5 we arive at the equivalent to
Ceva’s theorem condition

(𝐵1𝐶1; 𝐴1𝐴″) ⋅ (𝐶1𝐴1; 𝐵1𝐵″) ⋅ (𝐴1𝐵1; 𝐶1𝐶″) = −1. (6)

9 Triangle’s ratio coordinates

The ratio coordinates w.r. to triangle 𝐴𝐵𝐶 locate a point 𝑃 by the signed ratios 𝑟𝑖 = 𝑝𝑖/𝑞𝑖
defined by the cevians through 𝑃 on the sides of the triangle. Each one of the signed ratios
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Figure 11: Ratio coordinates {𝑟𝑖 = 𝑝𝑖
𝑞𝑖

} of 𝑃

determines the corresponding “trace” of 𝑃 on the side of the triangle:

𝑟1 = 𝑝1
𝑞1

= 𝐴′𝐵
𝐴′𝐶, 𝑟2 = 𝑝2

𝑞2
= 𝐵′𝐶

𝐵′𝐴, 𝑟3 = 𝑝3
𝑞3

= 𝐶′𝐴
𝐶′𝐵 .

By Ceva’s theorem 𝑟1𝑟2𝑟3 = −1. Thus, the three numbers are not independent and two
of them determine the third. Two of them can be given arbitrarily, the third determined
then by the preceding equation. Next theorem leads to the relation of this kind of coor‑
dinates with the “barycentric coordinates” or “barycentrics” (𝑏1, 𝑏2, 𝑏3) of the point 𝑃 (see
file Barycentric coordinates).

Theorem3. Let the points {𝐵′, 𝐶′} on the sides {𝐴𝐶, 𝐴𝐵} of the triangle 𝐴𝐵𝐶 divide the sides cor‑
respondingly in the ratios {𝐵′𝐶/𝐵′𝐴 = 𝑝2/𝑞2, 𝐶′𝐴/𝐶′𝐵 = 𝑝3/𝑞3}, then the following relations
are valid (see figure 12).

1. 𝑝1/𝑞1 = 𝐴′𝐵/𝐴′𝐶 = −(𝑝2/𝑞2)−1(𝑝3/𝑞3)−1 ,
2. 𝑄𝐵/𝑄𝐶 = −𝑝1/𝑞1 ,
3. 𝑃𝐴/𝑃𝐴′ = 𝑝3/𝑞3 + 𝑞2/𝑝2 ,

In particular, the ratios 𝑝1/𝑞1 and 𝑃𝐴/𝑃𝐴′ do not depend on the lengths of the sides but only on
the ratios {𝑝2/𝑞2, 𝑝3/𝑞3}.
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Figure 12: The ratio 𝑃𝐴/𝑃𝐴′

Proof. Nr‑1 follows from Ceva’s theorem.
Nr‑2 follows from the fact that (𝑄, 𝐴′) ∼ (𝐵, 𝐶) are harmonic pairs.
Nr‑3. Start with the right side:

𝑝3
𝑞3

= 𝑃𝐴
𝐶″𝐵, 𝑞2

𝑝2
= 𝑃𝐴

𝐵″𝐶 ⇒

𝑝3
𝑞3

+ 𝑞2
𝑝2

= 𝑃𝐴 ( 1
𝐵″𝐶 + 1

𝐶″𝐵) = 𝑃𝐴
𝑃𝐴′ ( 𝑃𝐴′

𝐵″𝐶 + 𝑃𝐴′

𝐶″𝐵) = 𝑃𝐴
𝑃𝐴′ .

Corollary 1. For a point 𝑃 not lying on a side‑line of the triangle 𝐴𝐵𝐶 its absolute barycentrics
(𝑏1, 𝑏2, 𝑏3) w.r. to the triangle 𝐴𝐵𝐶 are related to the ratio coordinates (𝑟1, 𝑟2, 𝑟3) of 𝑃 through
equations:

𝑏1 = 1
1 − 𝑟3 + 𝑟1𝑟3

, 𝑏2 = 1
1 − 𝑟1 + 𝑟2𝑟1

, 𝑏3 = 1
1 − 𝑟2 + 𝑟3𝑟2

.

Proof. By the preceding theorem, denoting by (𝑋𝑌𝑍) the signed area of triangle 𝑋𝑌𝑍,
we have (see figure 12)

𝑟3 + 𝑟−1
2 = 𝑃𝐴

𝑃𝐴′ = 1 − 𝐴𝐴′

𝑃𝐴′ = 1 − (𝐴𝐵𝐶)
(𝑃𝐵𝐶) = 1 − 𝑏−1

1 ⇒

𝑏1 = 1
1 − 𝑟3 − 𝑟−1

2
= 𝑟2

𝑟2 − 𝑟3𝑟2 − 1 = 𝑟2
𝑟2 − 𝑟3𝑟2 + 𝑟1𝑟2𝑟3

= 1
1 − 𝑟3 + 𝑟1𝑟3

,

the other relations obtained from this by cyclically permuting the indices.

Remark 2. For points lying on the side‑lines of the triangle the relation of ratio‑coordinates
to barycentrics can be founddirectly. In fact, from the proper definition of the barycentrics
as a quotient of areas (see file Barycentric coordinates) we see that for a point 𝐴′ on side
𝐵𝐶 with ratio 𝑟1 = 𝐴′𝐵/𝐴′𝐶 the corresponding barycentrics are ((see figure 12)):

𝐵𝐶 ∋ 𝐴′(𝑟1) ∶ ( 0 , 1
1 − 𝑟1

, −𝑟1
1 − 𝑟1

) and analogously (7)

𝐶𝐴 ∋ 𝐵′(𝑟2) ∶ ( −𝑟2
1 − 𝑟2

, 0 , 1
1 − 𝑟2

) , (8)

𝐴𝐵 ∋ 𝐶′(𝑟3) ∶ ( 1
1 − 𝑟3

, −𝑟3
1 − 𝑟3

, 0 ) . (9)

As an example application of this case, using the well known area formula in barycentrics

(𝐴′𝐵′𝐶′) = (𝐴𝐵𝐶)
∣∣∣∣∣

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

∣∣∣∣∣
, (10)
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inwhich the columns of the determinant represent the absolute barycentrics of {𝐴′, 𝐵′, 𝐶′},
we can compute the area of the “cevian triangle” 𝐴′𝐵′𝐶′ of the point 𝑃 in dependence of
the ratio coordinates of 𝑃,

(𝐴′𝐵′𝐶′) = (𝐴𝐵𝐶)
∣∣∣∣∣∣

0 1
1−𝑟1

−𝑟1
1−𝑟1−𝑟2

1−𝑟2
0 1

1−𝑟21
1−𝑟3

−𝑟3
1−𝑟3

0

∣∣∣∣∣∣

= 1 − 𝑟1𝑟2𝑟3
(1 − 𝑟1)(1 − 𝑟2)(1 − 𝑟3) ⋅ (𝐴𝐵𝐶). (11)

Taking into account that 𝑟1𝑟2𝑟3 = −1 this reduces to

(𝐴′𝐵′𝐶′) = 2
(1 − 𝑟1)(1 − 𝑟2)(1 − 𝑟3) ⋅ (𝐴𝐵𝐶). (12)

10 Dividing the sides of a triangle

Here, using the theorem of Ceva, we study some properties of figures created by points
on the sides of a triangle and the corresponding ratios they define on them.

p
3

q
3

p
1 q

1

p
2

q
2

A

B CA'

C' B'

A''

B''

C''

A
1

B
1

C
1

A
2

B
2

C
2

Figure 13: Location of intersection points

Figure 13 illustrates a typical problem related to Ceva’s theorem:
To determine the ratio coordinates of the various intersection points of three given ce‑
vians {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′}, for which are given the ratios {𝑟1 = 𝑝1/𝑞1, 𝑟2 = 𝑝2/𝑞2, 𝑟3 = 𝑝3/𝑞3}.
By applying Ceva’s theorem we find:

𝐴1𝐵
𝐴1𝐶 = −(𝑟2𝑟3)−1, 𝐵1𝐶

𝐵1𝐴 = −(𝑟3𝑟1)−1, 𝐶1𝐴
𝐶1𝐵 = −(𝑟1𝑟2)−1.

This leads to the ratio coordinates of the points {𝐴″, 𝐵″, 𝐶″}:

𝐴″(𝑟1, −(𝑟3𝑟1)−1, 𝑟3), 𝐵″(𝑟1, 𝑟2, −(𝑟1𝑟2)−1), 𝐶″(−(𝑟2𝑟3)−1, 𝑟2, 𝑟3).

Using these one can solve a classical problem concerning the determination of the area
of the triangle 𝐴″𝐵″𝐶″ ([Ste71, (I) p.163]). For this we can use again the area formula in
barycentrics

(𝐴″𝐵″𝐶″) = (𝐴𝐵𝐶)
∣∣∣∣∣

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

∣∣∣∣∣
,
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in which the columns of the determinant represent the absolute barycentrics correspond‑
ingly of the points {𝐴″, 𝐵″, 𝐶″}. Using the preceding expressions and the corrolary 1 we
find these barycentrics

(𝑎1, 𝑎2, 𝑎3) = 1
1 − 𝑟3 + 𝑟3𝑟1

( 1, −𝑟3, 𝑟3𝑟1 ) ,

(𝑏1, 𝑏2, 𝑏3) = 1
1 − 𝑟1 + 𝑟1𝑟2

( 𝑟1𝑟2, 1, −𝑟1 ) ,

(𝑐1, 𝑐2, 𝑐3) = 1
1 − 𝑟2 + 𝑟2𝑟3

( −𝑟2, 𝑟2𝑟3, 1 ) .

Introducing these expressions into the preceding determinant we find that

(𝐴″𝐵″𝐶″) = (𝑟1𝑟2𝑟3 + 1)2

(1 − 𝑟1 + 𝑟1𝑟2)(1 − 𝑟2 + 𝑟2𝑟3)(1 − 𝑟3 + 𝑟3𝑟1) ⋅ (𝐴𝐵𝐶) . (13)

This shows once again that the three cevians {𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′} pass through the same point
precisely when

0 = (𝐴″𝐵″𝐶″) ⇔ 𝑟1𝑟2𝑟3 = −1 .

Exercise 1. Show that the ratio coordinates of the points {𝐴2, 𝐵2, 𝐶2} are correspondingly:

(𝑎1, 𝑎2, 𝑎3) = (−𝑟2
1𝑟2𝑟3 , −(𝑟3𝑟1)−1 , −(𝑟1𝑟2)−1 ) ,

(𝑏1, 𝑏2, 𝑏3) = (−(𝑟2𝑟3)−1 , −(𝑟3𝑟1)−1 , −(𝑟2𝑟2
3𝑟1) ) ,

(𝑐1, 𝑐2, 𝑐3) = (−(𝑟2𝑟3)−1 , −(𝑟1𝑟2
2𝑟3) , −(𝑟1𝑟2)−1 ) ,

and the signed area of 𝐴2𝐵2𝐶2 is

(𝐴2𝐵2𝐶2) = − (𝑟1𝑟2𝑟3 − 1)2(𝑟1𝑟2𝑟3 + 1)2

(𝑟2
1𝑟2𝑟3 + 𝑟1𝑟2 + 1)(𝑟1𝑟2

2𝑟3 + 𝑟2𝑟3 + 1)(𝑟1𝑟2𝑟2
3 + 𝑟1𝑟3 + 1)

⋅ (𝐴𝐵𝐶). (14)
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Related material
1. Apollonian circles
2. Barycentric coordinates
3. Cross Ratio
4. Desargues’ theorem
5. Isodynamic points of the triangle
6. Menelaus’ theorem
7. Nagel center of the triangle
8. Projective line
9. Symmedian center of the triangle
10. Tritangent circles of the triangle

Any correction, suggestion or proposal from the reader, to improve/extend the exposition, is welcome
and could be send by e‑mail to: pamfilos@uoc.gr
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